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Abstract

The bit error rate (BER) performance analysis of maximum-likelihood (ML) based

decode and forward (DF) cooperative diversity systems has been a subject of consid-

erable interest. Exact analysis of ML-DF transmission has been considered a chal-

lenging problem due to the nonlinear characteristic of the ML detector. In this thesis,

we provide exact expressions for the BER of ML-DF cooperative systems employing

a single relay. This is done by using a novel theory of conditionally Gaussian random

variables and special hypergeometric functions. By expressing the ML decision vari-

able in terms of functions of conditionally Gaussian variables, exact expressions for

the BER of the ML-DF system are obtained. Through simulation results, we verify

the validity of the derived analytical expressions.

We observe the PL combiner performs well with that of the ML detector.It is

difficult to work with the special functions because of the convergence of their infinite

series. Hence we extend our thesis to the multiple relays with the PL combiner at

the receiver. Using Gil-Pelaez inversion formula, BER analysis is done with the con-

cepts of contour integral approach.As there is recursive relation existing for multiple

relays [3],we propose an algorithm which evaluate the analytical results for arbitrary

relays.We verify the validity of the analytical results from the algorithm with the

simulations. We also derive the complexity of the algorithm.
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Chapter 1

Introduction

1.1 Challenges of Wireless Channel

Wireless Communication has been the rapidly growing mostly because of the possibil-

ity of mobility.The wireless channel is the free space with resources and also suffering

from attenuation, noise, interference etc. The performance of wireless system is very

much degraded by fading than the noise. To deal with multipath fading, diversity

techniques are employed in wireless communications.In the thesis we work on the

techniques that overcome noise and fading problems.

In wireless networks, transmission of information directly over large distance is ex-

pensive because of the need for more transmitted power. This results in fast dicharge

of battery resulting in shorter network life. Also increased transmitted power will

introduce interference to the local radios nearby. Fading and noise characteristics

of all the wireless channels are independent.Each channel experience different fading

characteristics. Using this fact, Diversity techniques are employed to improve the reli-

ability of the signal. Using multiple antennas at the transmitter and receiver helps in

improving the performance of the system. But multiple antennas at the transmitter

may lead to interference between them.

For efficient utilization of power and bandwidth resources and to achieve broader

coverage, relays are employed. The receiver combines the signals from the relays and

the source which are multiple transmissions of the same signal to reduce the effect

of fading. We refer to this technique as spatial diversity. The main aim is to design

a receiver that overcome the uncertainity in relay decision and still exploit spatial

diversity. Coperative Diversity acheives this antenna diversity with the cooperation
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of the antennas located between the transmitter and receiver.

1.2 Diversity Techniques for Fading Channels

When the channel is in deep fade, there is more probable error at the receiver. When

the receiver has several replicas of the transmitted signal over independent fading

channels then the probability of that all the signals fade simultaneously is reduced.So

the providing receiver with multiple independently fading replicas can be done in

several ways.

One such way is transmitting the same information over multiple carrier,i.e on two

frequency bands with separation more than coherence bandwidth.This is called fre-

quency diversity.Other method is to transmit the same signal in different time slots

with separation more thamn coherence time.This is time diversity.Most commonly

used technique is employing multiple antennas,where a single transmitting antennas

send the information while the multiple antennas at receiver receivesignal from dif-

ferent fading channels.This is space diversity.There is no need of coherent time and

coherent bandwidth like time and frequency diversity.

1.3 Cooperative System

Cooperative Diversity acheives antenna diversity by combining the ideas of interme-

diate relays and multiple antennas. The problem of multiple antennas at the node

in MIMO is avoided in this technique. Cooperative Diversity is a technique where

multiple antennas relay the information from transmitter to receiver exploiting the

diversity by allowing the antennas to relay in parallel and combining the signals from

source and the relays at the receiver.Relaying can be done in different ways, the relays

can decode or amplify or compress the signal from the transmitter and then forward

it to the receiver.

In this thesis,we assume that the fading coefficients are estimated accurately at the

receiver. All the transmissions are over orthogonal channels and hence the bandwidth

efficiency decreases with the number of relays. We focus on Decode and Forward(DF)

signalling at the relay, find the Exact Close-form expressions for the probability of
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error. Also extends this to multiple relays with a novel algorithmic approach. And

also verify there is an increase in diversity order for multiple relays.

1.4 Standards of Relay Technologies

1.4.1 IEEE 802.16j

This is a change to the standard IEEE 802.16e mobile WiMAX standards support-

ing the relay functionalities to improve throughput of cell users and extend cover-

age to interiors and with in mobile transportation vehicles.Relays are categorized as

transparent and non transparent based on whether mobile stations(MS) are aware

of relay existance.Non transparent relays are used when the MS are at he end of

the coverage area by forming virtual base station(BS).As the transparent relays to

enhance throughput of MS, they communicate using the same frequency on different

links.While nontransparent relays use different frequency bands

1.4.2 Long Term Evolution(LTE)-Advanced

The main aim in adding relay technologies to LTE is to extend coverage of high data

rates.Here the relays are classified as inband and outband based on whether the com-

munication between the BS and MS are over same frequency band.A type1 realay is

inband relaywhich controls its own cell, thus have its own synchronization,scheduling

information,physical cell ID and it appears as base station to the MS.
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Chapter 2

Performance Analyis for Decode

and Forward Cooperative System

2.1 Exact BER Analysis for ML-DF cooperative

system with one relay

2.1.1 System Model

Source (S) Destination (D)

Relay (R)

Direct Path

Figure 2.1: Three node cooperative diversity system.

Consider the model as shown in Fig.1 with single relay (R) between the source (S)

and destination (D). We assume that all the transmissions are on orthogonal channels

and the modulation is BPSK. Let the transmission bits at the source and relays be

xs ∈ {1,-1} and xr ∈{1,-1} respectively with powers Es and Er. The received symbols
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on S-D, S-R, and R-D links are

yd,s =
√
Eshd,sxs + zd,s

yr,s =
√
Eshr,sxs + zr,s

yd,r =
√
Erhd,rxs + zd,r

(2.1)

And zd,s, zr,s, zd,r ∼ CN(0, N0) represent additive white Gaussian noise at the

relay and destination.The fading coefficients hd,s ∼ CN(0,Ωd,s), hr,s ∼ CN(0,Ωr,s)

and hd,r ∼ CN(0,Ωd,r) are due to Rayleigh fading channel.

2.1.2 ML decision

We assume the BPDK symbols are equi-probable,hence the optimum Maximum A

Posteriori decision is same as the Maximum Likelihood decision. The decision rule

for BPSK modulation at the destination can be obtained from [4] as

X + f(Yr)
1
>
<

−1

0 (2.2)

where

X =
4
√
EsRe{h∗

d,syd,s}
N0

, Yr =
4
√
EsRe{h∗

d,ryd,r}
N0

(2.3)

f(t) = ln
δ + et

1 + δet
, 0 < δ < 1 (2.4)

The parameter δ in (2.4) is defined as δ = ǫ
1−ǫ

for the relay, where ǫ is average

probability of error for S-R link. For the analysis, we consider the suboptimal ML

scheme proposed in [9] which results in ǫ = 1
2

[

1−
(

1 + Ωr,sEs

N0

)

−
1

2

]

.

2.1.3 Problem Definition

We see that the Λ in [1, 12] is evaluated by PL combiner [1, 5] and close form approx-

imations are obtained for BER.Problem is to find the exact closed form expressions

for BER .So the problem reduces to evaluating the integral

Λ(p, q) =
1

p

∫ ln 1

δ

0

(

e−t − δ

1− δe−t

)p

e−qxdx (2.5)
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2.1.4 Derivation of Exact Expressions for ML Detector

Approach to this problem, is possible with the knowledge of special functions Ap-

pell,Horn etc. and convergence of their infinite series.

Λ(p, q) =
1

p

∫ ln 1

δ

0

(

e−t − δ

1− δe−t

)p

e−qxdx (2.6)

can be expressed as

Λ(p, q) =
1

p

∫ 1

0

(

t− δ

1− δt

)p

tq−1dt− 1

p

∫ δ

0

(

t− δ

1− δt

)p

tq−1dt (2.7)

From [10, 3.211], we have

∫ 1

0

xλ−1 (1− x)µ−1 (1− ux)−ρ (1− vx)−σ
dx

= B(µ, λ)F1 (λ, ρ, σ, λ+ µ; u, v) , ℜ{λ, µ} > 0 (2.8)

Substituting (2.8) in (2.7), we get

Λ(p, q) =
(−1

δ
)−p

p
[B(1, q)F1(q, p,−p, 1 + q, δ, δ−1)

−δqB(q, p+ 1)2F1(q, p, p+ q + 1, δ2)] (2.9)

where the functions F1 and 2F1 are defined in [10, 9.180] as

F1(α, β, β
′, γ, x, y) =

∞
∑

m=0

∞
∑

m=0

(α)m+n(β)m(β
′)n

m!n!(γ)m+n

xmyn (2.10)

2F1(α, β, γ, x) =

∞
∑

m=0

(α)m(β)m
(γ)m

xm

m!
(2.11)

It can be seen from above that the function in (2.10) is absolutely convergent if and

only if | x |< 1 | y |< 1 and the function in (2.11) is convergent if | x |< 1 and γ ≥ 0

Therefore, F1 is not convergent hence we transform the variables (x,y) to (u,v)=(x/y,1/y)

as stated in [11, 22] resulting
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F1(α, β, β
′, γ, x, y) =

Γ(γ)Γ(β ′ − α)

Γ(β ′)Γ(γ − α)
(−y)−αF1(α, β, 1 + α− γ, α− β ′ + 1,

x

y
,
1

y
)

+
Γ(γ)Γ(α− β ′)

Γ(α)Γ(γ − β2)
(−y)−β′

G2(β, β
′, 1 + β ′ − γ, α− β ′ + 1,−x,

−1

y
)(2.12)

where Horn G2 function is defined in [15] as

G2(α, β, β
′, γ, x, y) =

∞
∑

m=0

∞
∑

m=0

(α)m(β)n(β
′)n−m(γ)m−n

m!n!
xmyn (2.13)

In the convergence of the F1 function, the transformation results in complex num-

bers with small residues in the imaginary part which can be neglected.

2.1.5 Simulation Results

The total power used by the system is one unit, therefore Es + Er = 1, and Lr is

distance between S-R while the distance of S-D is 1 with fading power Ωr,s ∝ 1
L4
r
. The

simulation results are compared for the relay placed at location Lr = 0.3.

From 2.2, Also we can infer PL-Combiner gives very good approximation to the

ML Detector. We observed from the figure 2.3 for PL combiner at different locations,

at high SNR , BER performance is best when relay is closer to the source.

ML Detector is very difficult to implement when compared to PL combiner,so

our further analysis consider the PL combiner for multiple relays.All the simulation

further use the same fading power, BPSK modulation and signal power.
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Figure 2.2: Comparison of Exact, PL Analytical and Simulations for L = 0.3

2.2 Algorithmic Approach for PL-DF cooperative

system for multiple relays

2.2.1 Algorithm

From the analysis in [2], [3], we find it very difficult to obtain expression for BER

analytically for three relays, hence an algorithmic approach is much feasible for mul-

tiple relays. The algorithm is similar to the analysis provided in [2], [3], using contour

integral and residue calculus.

Using Gil-Pelaez theorem,
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Figure 2.3: Comparison of BER for BPSK with relay located at L = 0.3,0.5 and 0.8

P

(

X +
N
∑

r=1

f(Yr) < 0|xs = 1,x

)

=
1

2
− 1

2πj

∫

∞

−∞

ΦX(t)

t
ΠN

r=1ΦVr
(t)dt

= A(ΦV1
, ....,ΦVN

) (2.14)

where φX(t) and φf(Yr)(t) are the characteristic functions of X and Vr = f(Yr) and

Vr=f(Yr) given by

φX(jw) =
g(α+ β)

(β − jw)(α+ jw)
(2.15)

ΦVr
(jw) = [1− gφ(α, jw)− gφ(β,−jw)] (2.16)

φ(x, t) =
t(1− δx+t)

x(x+ t)
, (2.17)
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αi =
1

2

(√

1 +
1

γd,i
+ 1

)

,

βi =
1

2

(√

1 +
1

γd,i
− 1

)

g =
αβ

α + β
(2.18)

BER analysis can be done using contour integration.

φ(.,.)
w

function has removable singularity and does not contribute any poles.

|φ(α1, jw)| =
|w||1− δα1+jw|
α1|α1 + jw| (2.19)

=
R|1− δα1−Rsinθ+jRcosθ|
α1

√

R2 − α2
1 − 2α1R

This becomes infinite when R → ∞ on the contour w = Rejθ, 0 < θ < π and is

finite for w = Rejθ,−π < θ < 0. Therefore the integrals are evaluated based on the

pole location and the contour.This is the main principle in the implementation of the

algorithm.

There is a recursive relation existing for the conditional BER for systems with N

relays [3] which can be expressed as

A(ΦV1
, ....,ΦVN

) = (−1)N−1[
1

2
− 1

2πj

∫

∞

−∞

ΦX(jw)

w
dw +

1

2πj

∫

∞

−∞

ΦX(jw)εN(φ)

w
dw

+
N−1
∑

r=1

N
∑

l1<...<lr l1,..,lr=1

(−1)rA(Φl1 , ..,Φlr)] (2.20)

where

εr(φ) = Πr
l=1gl

2r
∑

p=1

Πi∈Ik,j∈Jkφ(αi, jw)φ(βj,−jw)

Ik ∪ Jk = 1, 2, .., r, Ik ∩ Jk = {}

For every additional relay, we need to evaluate the integral εr(φ).
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Converting this recursive into iterative relation,we have

A(ΦV1
, ....,ΦVN

) =

N−1
∑

r=1

A(ΦVr
)− (N − 1)

(

1

2
− 1

2πj

∫

∞

−∞

ΦX(jw)

w
dw

)

+

N
∑

r=2

NCr
∑

k=1

(−1)r−1ink
r (2.21)

where

ink
r =

1

2πj

∫

∞

−∞

ΦX(jw)ε
k
r(φ)

w
dw

=
2r
∑

p=1

1

2πj

∫

∞

−∞

ΦX(jw)Wp

w
dw

εkr(φ) = Πr
l=1gl

2r
∑

p=1

Πi∈Ik,j∈Jkφ(αi, jw)φ(βj,−jw)

=

2r
∑

p=1

Wp

Ik ∪ Jk = Zk, Ik ∩ Jk = {}.

The algorithm for N multiple relays for different SNR’s proceeds as:

Es = 0.5, Er =
(1−Es)

M

for i=1:snr

Step 1: Calculate αr, βr, gr as in (2.18)

sum1=0;

for r=1:N

Step 2: Go to step 5 and evaluate Ar

sum1=sum1+Ar

end

sum3=0;

for r=2:N

sum2=0;

11



Step 3: Form NCr combinations of relays

eg. : N = 3, r = 2

Zk = {{1, 2}, {1, 3}, {2, 3}}

for k=1:NCr

Step 4: Go to step 6 and evaluate ink
r

sum2=sum2+ink
r

end

sum3=sum3+(−1)(r−1)∗sum2

end

final sum=sum1+sum3-(N-1) g
α

end

Step 5: Ar =
g

α
+ ggr

[

φ(αr ,β)
β

− φ(βr,α)
α

]

.

Step 6: To evaluate the ink
r ,

i. Find poles in the integrand as described

ΦX(jw) in (2.15) has two poles, one in upper and the other in lower half of S-

plane.

Similarly, φ(αi, β) and φ(βi, α) in (2.17) has a pole in lower and upper half of S-

plane respectively.

eg. : N = 3, r = 2, k = 2; p = 2

integrand =

g′

jw

(α + β)

(α + jw)(β − jw)

jw
(

1− δ
α1+jw
1

)

α1(α1 + jw)

−jw
(

1− δ
β3−jw
3

)

β3(β3 − jw)

Here the poles are jα,−jβ, jα1,−jβ3
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ii. Expand the integrand as a polynomial of δ as power of ’jw’.

eg. : N = 3, r = 2, k = 2; p = 2

integrand =

−g′(α + β)(jw)
(

1− δα1

1 δ
jw
1 − δ

β3

3 ( 1
δ3
)jw + δα1

1 δ
β3

3 ( δ1
δ3
)jw
)

α1β3(α + jw)(β − jw)(α1 + jw)(β3 − jw)

iii. In each term, consider ajw,

Separate the integrand into two functions a

flower

≶

fupper

1

This is needed for identifying the contour and considering the pole location the

residues are evaluated.

Without loss of generality consider δ1 < δ3

eg. : flower =
−g′(α + β)(jw)

(

1− δα1

1 δ
jw
1 + δα1

1 δ
β3

3 ( δ1
δ3
)jw
)

α1β3(α+ jw)(β − jw)(α1 + jw)(β3 − jw)

fupper =
g′(α+ β)(jw)

(

δ
β3

3 ( 1
δ3
)jw
)

α1β3(α + jw)(β − jw)(α1 + jw)(β3 − jw)

iv.Find residues of these functions.

For the flower(fupper) function use poles in lower(upper) half of s-plane to find the

residues

eg. : Res [flower;−jβ,−jβ3]

Res [fupper; jα, jα1]

v.Using residue theorem, 2πj×[sum of residues] is the value of integral ink
r

2.2.2 Computaional complexity

Eg: integrand =

g′(α + β)z2
1

β1α2α3

[sumterms]

(β − z)(β1 − z)(α + z)(α2 + z)(α3 + z)

13



commonfactor combinationfactor
sumterm

sumfactor

Derivation of Complexity :

For each pole :

Computations for sum terms

≤ r2r−1 + 2r − 1 Additions

2r−1(r − 2) + 1 Multiplications

Computations for sum factors

r + 1 Additions

r + 1 Multiplications

For each pole combination :

The above has to be evaluated for r+2 poles in each combination.

Computations for Combination factors

r Multiplications

For r relay

There are 2r such pole combinations

Computation for common factor

1 Addition

2(r + 1) Multiplications

Plugging this into (2.21) results in complexity of algorithm as

5N−2
(

8N2 + 42N + 50
)

+ 3N−2
(

4N2 + 14N + 9
)

− 16N − 4 Additions

5N−2
(

8N2 + 2N − 50
)

+ 3N−2
(

4N2 + 38N + 63
)

+ 2N (N + 2)− 17N Multiplications

14



2.2.3 Simulation Results

Figure 2.4 shows the analytical results for the arbitrary relays located at the L=0.5,

and also the algorithm is validated with the simulation results indicates as circles.Also

we can say that there is an increase in diversity order with the number of relays.

Figure 2.5 gives the comparison of central limit theorem approximation for multiple

relays with the algorithmic approach.It is observed that at high SNR the algorithmic

approach gives upper bound over CLT approximation.

2.2.4 Diversity Order

Antenna gain is the gain in signal to noise ratio.It tells how the signal strength is

improved with multiple antennas. Diversity order tells how many independent copies

are available.Diversity gains tells the improvement in the power for certain BER.

Here for the system with N multiple relays the diversity order should be N+1 ,for

PL Combiner acheives half the diversity i.e N+1
2

.

Diversity order D is defined as

Pe ∝
1

SNRD

or

D = lim
SNR→∞

− log(Pe)

log(SNR)

As D is real,we expect the log-log plot of BER vs SNR is linear function in diversity

system. Therefore, D is the slope of the BER curve vs SNR in log-log plot.

From the figure 2.5, the diversity order is found graphically, and indicated as (re-

lays,diversity order).we have (1,1.48), (2,1.59), (3,1.91), (4,2.17), (5,2.55), (6,2.96),(7,3.3)

and (8,3.8).We can observe from the CLT approximation that every two relays have

almost same slope at high SNR. We can infer that the diversity order is N
2
for large

values of N.For small values of N, where the diversity order is observed to be same,

then the use of number of relays depends on the coding gain.
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Figure 2.5: Comparison of BER for multiple relays located at L=0.5
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Chapter 3

Conclusion

We found the exact closed form expressions for BER for ML-DF cooperative sys-

tem.From the simulations we observe that PL combiner gives good approximation to

the ML detector.An algorithm is implemented to evaluate the BER for multiple relays

analytically. We also provide the complexity of the algorithm. From the analytical

results, we observe that there is an increase in diversity order with the number of

relays.At high SNR,we observe that our algorithmic approach when compared with

CLT approximation [1] gives upper bound on diversity order.

This work is extended to optimization of algorithm in terms of fast execution. For

this we implement the algorithm in OpenCL which is heterogeneous programming

which execute the applications across devices like CPU and GPU .It is optimized by

identifying different forms of parallelism present in the algorithm.Other factor that

helps in reduction of time is load balancing on the devices.

In future, Channel state information at transmitter helps in increasing the band-

width efficiency.With this, only one relay can be selected from multile relays based

on the new contributing factor and all the relays convey the decision at that relay to

destination. This also should perform comparably well with the existing scenario.
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