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Abstract

The use of digital wireless communication systems has become more
and more common during recent years. A multiple-input-multiple-output
(MIMO) system techniques can be implemented to enhance the capacity of
a wireless link. We have investigated the performances of MIMO detectors
: Linear detectors(ZF detector, MMSE detector), SIC(Successive Interfer-
ence Cancellation) signal detectors, Maximum Likelihood detector, Sphere
decoding. In SIC signal detection we use MMSE weight matrix.

The optimal decoder is based on the maximum likelihood princi-
ple. But as the number of the antennas in the system and the data rates
increase, the maximum likelihood decoder becomes too complex to use. Less
complex decoding techniques are zero-forcing and MMSE. at the price of re-
duced performance at the receiver. We have investigated the performance
of the sphere decoding algorithm. As it has shown in the computer simula-
tions, the decoder based on the sphere decoding algorithm has almost the
same performance of a maximum likelihood decoder with much lower com-
plexity. Further simulations of the sphere decoding algorithms has shown,
the decoder with the sphere decoding algorithm has the same performance
as in a ML decoder without increase the decoding complexity.
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Chapter 1

Introduction

1.1 MIMO

In order to meet the demands on higher data rates, better quality
and availability from an ever increasing number of wireless subscribers, new
techniques in signal processing and coding need to be developed and im-
plemented. To achieve high data rate communication, the system has to
overcome problems such as additive noise and channel fading. One way is
to make several replicas of the signal available to the receiver with the hope
that at least some of them are not severely attenuated. This technique is
called diversity [5]. Examples of diversity techniques include time diversity,
frequency diversity and space diversity. As the available bandwidth is finite,
space diversity schemes seem promising, since they do not involve any loss
of bandwidth. The use of multiple antennas at both ends of a wireless link
is illustrated in Figure 1.1. Such a multiple-input-multiple-output (MIMO)
system promises significant improvements in terms of spectral efficiency, link
reliability and also improves the system capacity compared to conventional
systems [2].

Figure 1.1: A multiple input-multiple output system
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1.1.1 Benefits of MIMO

The benefits of MIMO technology that help achieve such significant
performance gains are array gain, spatial diversity gain, spatial multiplex-
ing gain and interference reduction [3][4]. These gains are described in brief
below.

Array gain

Array gain is the increase in receive SNR that results from a coherent
combining effect of the wireless signals at a receiver. The coherent combining
may be realized through spatial processing at the receive antenna array
and/or spatial pre-processing at the transmit antenna array. Array gain
improves resistance to noise, thereby improving the coverage and the range
of a wireless network [7].

Spatial diversity gain

As mentioned earlier, the signal level at a receiver in a wireless system
fluctuates or fades. Spatial diversity gain mitigates fading and is realized
by providing the receiver with multiple (ideally independent) copies of the
transmitted signal in space, frequency or time. With an increasing num-
ber of independent copies (the number of copies is often referred to as the
diversity order), the probability that at least one of the copies is not expe-
riencing a deep fade increases, thereby improving the quality and reliability
of reception. A MIMO channel with MT transmit antennas and MR receive
antennas potentially offers MTMR independently fading links, and hence a
spatial diversity order of MTMR [8].

Spatial multiplexing gain

MIMO systems offer a linear increase in data rate through spatial
multiplexing i.e., transmitting multiple, independent data streams within
the bandwidth of operation. Under suitable channel conditions, such as rich
scattering in the environment, the receiver can separate the data streams.
Furthermore, each data stream experiences at least the same channel qual-
ity that would be experienced by a single-input single-output system, effec-
tively enhancing the capacity by a multiplicative factor equal to the number
of streams. In general, the number of data streams that can be reliably
supported by a MIMO channel equals the minimum of the number of trans-
mit antennas and the number of receive antennas, i.e., min{MT ,MR}. The
spatial multiplexing gain increases the capacity of a wireless network.
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Interference reduction and avoidance

Interference in wireless networks results from multiple users sharing
time and frequency resources. Interference may be mitigated in MIMO sys-
tems by exploiting the spatial dimension to increase the separation between
users. For instance, in the presence of interference, array gain increases the
tolerance to noise as well as the interference power, hence improving the
signal-to-noise-plus-interference ratio (SINR). Additionally, the spatial di-
mension may be leveraged for the purposes of interference avoidance, i.e.,
directing signal energy towards the intended user and minimizing interfer-
ence to other users. Interference reduction and avoidance improve the cov-
erage and range of a wireless network.

In general, it may not be possible to exploit simultaneously all the ben-
efits described above due to conflicting demands on the spatial degrees of
freedom. However, using some combination of the benefits across a wireless
network will result in improved capacity, coverage and reliability [6].

1.1.2 System Model

MIMO system model is shown in Figure 1.2. MIMO system typically
consists of MT transmit and MR receive antennas. By using the same chan-
nel, every antenna receives not only the directed components intended for
it, but also the indirect components intended for the other antennas. The
direct connection from antenna 1 to 1 is specified with h11, direct connection
from antenna 2 to 2 is specified with h22 etc., while the indirect connection
from antenna 1 to 2 is identified as cross component h21 , indirect connection
from 2 to 1 is identified as h12 etc. [5]. From this the channel transmission
matrix H with the dimensions MR ×MT can be obtained as

h11 h12 h1. h1MT

h21 h22 h2. h2MT

h.1 h.2 h.. h.MT

hMR1 hMR2 hMR. hMRMT



Figure 1.2: MIMO System model
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The following formula is the transmission formula results from receive
vector y, transmit vector x, and noise n.

y = Hx+ n (1.1)

1.1.3 MIMO Detection

In MIMO detection we have Linear detection methods, Successive In-
terference Cancellation(SIC) detection methods, Maximum Lkelihood de-
tection, Sphere decoding.

Linear detection methods

In this channel matrix is inverted using a zero-forcing(ZF) or mini-
mum mean squared error(MMSE) criterion. The received vectors are then
multiplied by the channel inverse, and then demodulate.

Successive Interference Cancellation

Instead of jointly detecting signals from all the antennas, the strongest
signal is detected first and its interference is cancelled from each received
signal in the SIC receiver. Then the second strongest signal is detected and
cancelled from the remaining signals and so on. The detection method is
called successive nulling and interference cancellation.The strongest signal
is determined from the weight matrix based on ZF, MMSE.

ML detection

Maximum Likelihood detection solves

x̂ =
arg

x ∈ OMT
min‖y −Hx‖2 (1.2)

A straightforward approach to solve above equation is an exhaustive
search. The search space increases with the number of antennas increasing.

Sphere decoding

The Sphere decoder reduces the search space. It only searches the
lattice points only inside the sphere of certain radius.
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Chapter 2

Linear Signal Detection

Linear signal detection method treats all transmitted signals as in-
terferences except for the desired stream from the target transmit antenna.
Therefore, interference signals from other transmit antennas are minimized
or nullified in the course of detecting the desired signal from the target
transmit antenna. To facilitate the detection of desired signals from each
antenna, the effect of the channel is inverted by a weight matrix W such
that

x̂ = [x̂1x̂2 . . . x̂MT
]T = Wy (2.1)

that is, detection of each symbol is given by a linear combination of the
received signals. The standard linear detection methods include the zero-
forcing (ZF) technique and the minimum mean square error (MMSE) tech-
nique [6].

2.1 ZF Signal Detection

The zero-forcing (ZF) technique reduces the interference by the fol-
lowing weight matrix:

WZF =
(
HHH

)−1
HH (2.2)

where (.)H denotes the Hermitian transpose. We detect the received signal
y by multiplying it with the weight matrix WZF to get the estimated signal
x̂ZF [9].

x̂ZF = WZF y

= x+
(
HHH

)−1
HHn

= x+ n̂ZF

10



where n̂ZF = WZFn =
(
HHH

)−1
HHn. Error performance is directly con-

nected to the power of n̂ZF (i.e., ‖n̂ZF ‖22).
By demodulating the x̂ZF we will get the estimated transmitted vector

x̂.

2.2 MMSE Signal Detection

The MMSE technique reduces the interference by the following weight
matrix:

WMMSE =
(
HHH + σ2nI

)−1
HH (2.3)

where σ2n is the statistical information of the noise. We detect the received
signal y by multiplying it with the weight matrix WMMSE to get the esti-
mated signal x̂MMSE [10].

Using the MMSE weight matrix in Equation (2.3), we obtain the follow-
ing relationship:

x̂MMSE = WMMSEy

=
(
HHH + σ2nI

)−1
HHy

= x̂+
(
HHH + σ2nI

)−1
HHn

= x̂+ n̂MMSE

where n̂MMSE = WMMSEn =
(
HHHσ2n

)−1
HHn. Error performance is

directly connected to the power of n̂MMSE(i.e., ‖n̂MMSE‖22).
By demodulating the x̂MMSE we will get the estimated transmitted vec-

tor x̂.

2.3 Results

2.3.1 ZF detection

Figure 2.1 is the graph resulting the BER performance of the ZF
detector for a 2× 2 MIMO system with QPSK modulation.
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Figure 2.1: BER performance of the ZF detector for a MIMO system with
QPSK modulation.

2.3.2 MMSE detection

Figure 2.2 is the graph resulting the BER performance of the MMSE
detector for a 2× 2 MIMO system with QPSK modulation.

Figure 2.2: BER performance of the MMSE detector for a MIMO system
with QPSK modulation.
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Figure 2.3 is the comparison of BER performance of the detectors ZF
and MMSE. By observing the Figure 2.3 MMSE detector is giving better
BER performance than ZF detector.

Figure 2.3: Comparison of BER performance of the ZF and MMSE detectors
for a MIMO system with QPSK modulation.
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Chapter 3

Successive Interference
Cancellation

Instead of jointly detecting signals from all the antennas, the strongest
signal is detected first and its interference is cancelled from each received
signal in the SIC receiver. Then the second strongest signal is detected and
its interference cancelled from the remaining signals and so on. The detec-
tion method is called successive nulling and interference cancellation (SIC)
[1].

SIC is also called as ordered successive interference cancellation
(OSIC) method. It is a bank of linear receivers, each of which detects
one of the parallel data streams, with the detected signal components suc-
cessively cancelled from the received signal at each stage. More specifically
the detected signal in each stage is subtracted from the received signal so
that the remaining signal with the reduced interference can be used in the
subsequent stage.

Figure 3.1: SIC signal estimation
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The Figure 3.1 illustrates the OSIC signal detection process for
four spatial streams. Let x(i) denote the symbol to be detected in the ith
order, which may be different from the transmited signal at the ith antenna,
since x(i) depends on the order of detection. Let x̂(i)denote a sliced value of
x(i) [6].

3.1 MMSE based SIC detection

MMSE method is used for symbol estimation. The MMSE weight
matrix is given by

WMMSE =
(
HHH + σ2nI

)−1
HH (3.1)

Where σ2n is the noise variance.

The (1)st stream is estimated with the (1)st row vector of the
MMSE weight matrix. After estimation and slicing to produce x̂(1), the re-
maining signal in the first stage is formed by subtracting it from the received
signal, that is,

ŷ(1) = y − h(1)x̂(1)
= h(1)

(
x(1) − x̂(1)

)
+ h(2)x(2) + . . .+ h(MT )x(MT ) + n

If x(1) = x̂(1), then the interference is successfully canceled in the
course of estimating x(2); however, if x(1) 6= x̂(1), then error propagation is
incurred because the MMSE weight that has been designed under the con-
dition of x(1) = x̂(1) is used for estimating x(2).

Due to the error propagation caused by erroneous decision in the
previous stages, the order of detection has significant influence on the over-
all performance of OSIC detection. So we use the post-detection signal-to
interference-noise-ratio (SINR) for order.

Signals with a higher post-detection SINR are detected first [12]. Con-
sider the linear MMSE detection with the following post-detection SINR:

SINRi =
Ex|Wi,MMSEhi|2

Ex
∑

l 6=i |Wi,MMSEhl|+ σ2n‖Wi,MMSE‖2
, i = 1, 2, . . . ,MT (3.2)

Where Ex is the energy of the transmitted signals, hi is the ith column
vector of the channel matrix H.
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Once MT SINR values are calculated by using the MMSE weight
matrix, we choose the corresponding layer with the highest SINR. In the
course of choosing the second-detected symbol, the interference due to the
first detected symbol is cancelled from the received signals. Suppose that
(1)=l (i.e., the lth symbol has been cancelled first). Then, the channel
matrix is modified by deleting the channel gain vector corresponding to the
lth symbol as follows:

H(1) = [h1h2 . . . hl−1hl+1 . . . hN ] (3.3)

Using the modified channel matrix H(1) in place of H the MMSE
weight matrix is recalculated. Now (MT -1) SINR values, [SINRi]

MT
i=1,i 6=l ,

are calculated to choose the symbol with the highest SINR. The same pro-
cess is repeated with the remaining after cancelling the next symbol with
the highest SINR.

3.2 ZF based SIC dtection

In this ZF weight matrix is used for symbol estimation, that is given
by

WZF =
(
HHH

)−1
HH (3.4)

The (1)st stream is estimated with the (1)st row vector of the ZF
weight matrix. After estimation and slicing to produce x̂(1), the remaining
signal in the first stage is formed by subtracting it from the received signal,
that is,

ŷ(1) = y − h(1)x̂(1)
= h(1)

(
x(1) − x̂(1)

)
+ h(2)x(2) + . . .+ h(MT )x(MT ) + n

If x(1) = x̂(1), then the interference is successfully canceled in the
course of estimating x(2); however, if x(1) 6= x̂(1), then error propagation is
incurred because the ZF weight that has been designed under the condition
of x(1) = x̂(1) is used for estimating x(2).

Due to the error propagation caused by erroneous decision in the
previous stages, the order of detection has significant influence on the over-
all performance of OSIC detection. So we use the post-detection signal-to
interference-noise-ratio (SINR) for order.

Signals with a higher post-detection SINR are detected first. Once
MT SINR values are calculated by using the ZF weight matrix, we choose
the corresponding layer with the highest SINR. In the course of choosing the
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second-detected symbol, the interference due to the first detected symbol is
cancelled from the received signals. Suppose that (1)=l (i.e., the lth symbol
has been cancelled first). Then, the channel matrix is modified by deleting
the channel gain vector corresponding to the lth symbol as follows:

H(1) = [h1h2 . . . hl−1hl+1 . . . hN ] (3.5)

Using the modified channel matrixH(1) in place ofH the ZF weight
matrix is recalculated. Now (MT -1) SINR values, [SINRi]

MT
i=1,i 6=l , are cal-

culated to choose the symbol with the highest SINR. The same process is
repeated with the remaining after cancelling the next symbol with the high-
est SINR [11].

3.3 Results

3.3.1 ZF-SIC

Figure 3.2 is the BER performance of the SIC detector for a 2 × 2
MIMO system with QPSK modulation.

Figure 3.2: BER performance of the ZF based SIC detector for a MIMO
system with QPSK modulation.

3.3.2 MMSE-SIC

Figure 3.3 is the BER performance of the SIC detector for a 2 × 2
MIMO system with QPSK modulation.
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Figure 3.3: BER performance of the MMSE based SIC detector for a MIMO
system with QPSK modulation.

By observing Figure 3.4, we can say that SIC is giving better BER
performance than the Linear signal detection methods. In SIC detection,
MMSE based SIC is giving good BER performance.

Figure 3.4: Comparison of BER performance of SIC detectors and Linear
detectors for a MIMO system with QPSK modulation.

18



Chapter 4

ML Detection and Sphere
Decoding

4.1 ML Detection

The ML detection method minimizes the average error Probability
and it is the optimal method for finding the closest lattice point. The ML
detector calculates the Euclidean distances (EDs) between the received sig-
nal vector and lattice points Hx, and returns the vector with the smallest
distance, i.e., it minimizes

x̂ML =
arg

x ∈ XMT
min‖y −Hx‖2 (4.1)

Out of all MQ
T (Q is the order of modulation type) Euclidean dis-

tances between the received vector and the candidate symbol vectors, the
symbol with the minimum Euclidean distance is the estimated transmitted
vector x̂ML.Thus, the ML detector chooses the message x̂ML which yields
the smallest distance between the received vector y, and lattice point Hx̂ML

[13].

As the order of MIMO system and order of modulation increases,
the search space of ML detector increases, i.e. it has to calculate many Eu-
clidean distances of search space. So, it becomes difficult to detect as the
search space increases and it becomes complex. We can reduce this complx-
ity with sphere decoding method, which reduces the search space [17].

4.2 Sphere decoding

Maximum-likelihood decoding requires an exhaustive search over all
the possible codewords, and so the computational complexity of the decod-
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ing scheme is exponential in the length of the codeword. Sphere decoding
algorithm [14] is proposed to lower the computational complexity. The prin-
ciple of the sphere decoding algorithm is to search the closest lattice point
to the received signal within a sphere radius, where each codeword is repre-
sented by a lattice point in a lattice field [15][16].

The ML detection problem of Equation(4.1), i.e.

x̂ML =
arg

x ∈ XMT
min‖y −Hx‖2 (4.2)

By performing QR decomposition to H, we will get H = QR. By putting
H = QR into Equation(4.2),

x̂ML =
arg

x ∈ XMT
min‖y −QRx‖2 (4.3)

Where Q is an Orthogonal matrix and R is an Upper triangular matrix.
So, Equation(4.3) becomes

x̂ML =
arg

x ∈ XMT
min‖y′ −Rx‖2 (4.4)

Where y′ = QHy

The idea behind the sphere decoder is to solve Equation(4.4) by
enumerating all points which belong to a hypersphere of radius r around the
received point y′. That is, all x ∈ XMT which satisfy a criterion:

‖y′ −Rx‖2 ≤ r2 (4.5)

Choosing suitable r is the main thing in Sphere decoding method. If
we choose very small r no lattice point(candidate symbol vector) may be
present inside the sphere. If we choose very large r many lattice points
lie inside the hyper sphere, i.e. search space increases then complexity in-
creases. So, optimal r should be choosed. We can take r = y−H+y, where
H+ =

(
HHH

)−1
HH

If we build a tree such that the leaves at the bottom correspond to
all possible vector symbols and the possible values of the entry xMT

define
its top level, we can uniquely describe each node at level i (i = 1, 2, . . . ,MT )
by the partial vector symbols x(i) = [xi xi+1 . . . xMT

]T , as illustrated in
Figure 4.1 for a 4× 4 MIMO system with BPSK modulation.

We start at level i = MT and set TMT+1

(
x(MT+1)

)
= 0. The

partial (squared) Euclidean distances (PEDs) Ti
(
x(i)
)

are then given by

Ti

(
x(i)
)

= Ti+1

(
x(i+1)

)
+ |ei

(
x(i)
)
|2 (4.6)
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Figure 4.1: Tree search of the Sphere decoder for a 4×4 MIMO system with
BPSK modulation.

with i = MT ,MT−1, . . . , 1, where the distance increments |ei
(
x(i)
)
|2 can

be obtained as

|ei
(
x(i)
)
|2 = |y′i −

MT∑
j=i

Rijxj |2 (4.7)

We can make the influence of xi more explicit by writing

|ei
(
x(i)
)
|2 = |bi+1

(
x(i+1)

)
−Riixi|2 with (4.8)

bi+1

(
x(i+1)

)
= y′i −

MT∑
j=i+1

Rijxj . (4.9)

Since the distance increments |ei
(
x(i)
)
|2 are nonnegative, it follows im-

mediately that whenever the PED of a node violates the (partial) SC(Sphere
Constraint) given by

Ti

(
x(i)
)
< r2 (4.10)

then the PEDs of all of its children will also violate the SC. Conse-
quently, the tree can be pruned above this node. This approach effectively
reduces the number of transmit vector symbols (i.e., leaves of the tree) to be
checked.When the tree traversal is finished, the leaf with the lowest T1 (x)
corresponds to the ML solution [18].

4.3 Results

Figure 4.2 is the BER performance of the ML detection for a 2 × 2
MIMO system with QPSK modulation. ML detection is giving good BER
performance.Figure 4.3 is the BER performance of the Sphere decoder for a
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2× 2 MIMO system with QPSK modulation. BER curve of Sphere decoder
is matching with that of ML detection.

Figure 4.2: BER performance of the ML detector for a MIMO system with
QPSK modulation.

Figure 4.3: BER performance of the Sphere decoder for a MIMO system
with QPSK modulation.

By observing the Figure 4.4 we can say that ML detection and Sphere
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decoder are having the best BER performance.

Figure 4.4: BER performances of ZF, MMSE, SIC, ML and Sphere detectors
for a MIMO system with QPSK modulation.
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Chapter 5

Complexity Comparison of
detection schemes

Before determining the complexity of the MIMO SM algorithms, a
number of general rules will be introduced, namely, the complexity of a ma-
trix multiplication, the conversion from complex complexity figures to real
complexity figures, the complexity of a slicer, and the complexity of finding
a minimum value from a set of values.

The complexity of a matrix product is determined as follows. Sup-
pose two matrices A and B (real or complex) with dimensions C × E and
D × E are multiplied, then the (i, j)th element of the resulting matrix is
given by

aibj =
D∑

k=1

aikbkj (5.1)

where ai represents the ith row of matrix A , bj denotes the jth column
of B and aik and bkj stand for the kth element of this row and column,
respectively. Thus, in order to obtain one element of the resulting matrix,
D− 1 additions and D multiplications need to be performed. The resulting
matrix is C×E dimensional and, therefore, a total of C (D − 1)E additions
and CDE multiplications are needed to multiply the two A and B.

To write complex additions and complex multiplications in terms of
real additions and real multiplications, it is easily verified that one complex
addition consists of two real additions; the real and the imaginary part of
the two complex numbers are added. Furthermore, a complex multiplication
can be rewritten in the following two ways:

(a+ jb) (c+ jd) = (ac− bd) + j (bc+ ad) (5.2)
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(a+ jb) (c+ jd) = (ac− bd) + j ((a+ b) (c+ d)− ac− bd) (5.3)

The first option consists of 4 real multiplications, ac , bd , bc and ad ,
and 2 real additions, ac − bd and bc − ad. A subtraction is counted as an
addition and the addition before the j does not count because the real and
imaginary parts are stored separately. The second option has only three real
multiplications (ac, bd, (a+ b) (c+ d)), plus five real additions. Compared
with the first case, the total operations count is higher by two, but in a
number of hardware implementations, a multiplication is a more complex
operation. However, the first option will be used.

The complexity of a slicer is minimal in terms of additions and/or
multiplications. For an M-PSK constellation scheme, the phase range [−π, π]
is divided in M equal parts. In such a regular structure, a recursive search
is done in which half of the (remaining) range the phase of the estimated
symbol best fits. This results in a complexity equivalent to log2 (M) compar-
isons. For an M-QAM constellation diagram, the real and imaginary parts
are split. Each of these parts is regularly divided in

√
M slicing ranges.

Also in this case, a recursive search is achieved in which half of the (remain-
ing) range the real or imaginary part of the estimated symbol best fits, and

the complexity is equal to log2

(√
M
)

comparisons for the real and for the

imaginary part, or 2log2

(√
M
)

comparisons in total. It is reasonable to as-

sume that a comparison is as complex as a real addition and, therefore, the
slicing of theNt-dimensional vector xext requires at mostNtlog2 (M) R-adds.

In order to find the minimum of N numbers in hardware, the eas-
iest thing to do is start with the first two elements, subtract the second
number from the first, and compare the result with zero. If the result is
larger than zero, the second number is the smallest; otherwise the first num-
ber is the smallest, etc. Obviously, finding the minimum between two real
numbers has the complexity of one real addition. As a result, determining
the minimum of N values has a complexity of N − 1 real additions [19].

5.1 Complexity of Detection schemes

Consider a Nt×Nr MIMO system of Nt transmitting antennas and Nr

receiving antennas. Let M-PSK modulation is employed at the transmitting
side.
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Complexity of ZF

The complexity of the ZF algorithm per transmitted vector x in terms
of real operations equals

CZF (flops) = 7N3
t + 7N2

t Nr − 2Nt + 4NtNr +
1

2
Nrlog2 (M) (5.4)

Complexity of MMSE

The complexity of the MMSE algorithm per transmitted vector x in
terms of real operations equals

CMMSE (flops) = 7N3
t + 7N2

t Nr −Nt + 4NtNr +
1

2
Nrlog2 (M) (5.5)

Complexity of ZF-SIC

The complexity of the ZF-SIC algorithm per transmitted vector x in
terms of real operations equals

CZF−SIC (flops) = N4
t +

5

3
N3

t +
8

3
N3

t Nr+
3

4
N2

t +
7

2
N2

t Nr+
55

6
NtNr−

17

12
Nt+

1

2
Ntlog2 (M)

(5.6)

Complexity of MMSE-SIC

The complexity of the MMSE-SIC algorithm per transmitted vector
x in terms of real operations equals

CMMSE−SIC (flops) = N4
t +

5

3
N3

t +
7

3
N3

t Nr+N
2
t +

7

2
N2

t Nr+
7

6
NtNr−

1

6
Nt+

1

2
Ntlog2 (M)

(5.7)

Complexity of ML

The complexity of the ML detection[20] per transmitted vector x in
terms of real operations equals

CML = 4N2
t (M + 1) + 4NtNrT (M + 1) + 6Nt (2M + 1) (5.8)
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Complexity of Sphere Decoder

The complexity of the Sphere decoding[16][21] per transmitted vector
x in terms of real operations equals

CSD =
1

6

(
2N3

t + 3N2
t − 5Nt

)
+

1

2

(
N2

t + 12Nt − 7
)((

2
[√

r2t
]

+ 1
)( [

4r2t
]

+Nt − 1[
4r2t

] )
+ 1

)
(5.9)

Where [.] denotes rounding to the nearest smaller value.
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Chapter 6

Conclusion

We have discussed and simulated the Linear detection methods, SIC
detection methods, ML detection and Sphere decoding for MIMO systems.
In Linear detection schemes we just multiplied the weight matrix(ZF and
MMSE) with the received signal vector and then demodulated that signal
to get the estimated transmitted vector. Linear signal detection scheme is
a simple detection scheme. It is easy to implement this scheme. BER per-
formance is poor in Linear detection methods.

In SIC detection we detect the strogest signal first and it’s interfer-
ence is cancelled from each received signal, then the second strongest signal
is detected and it’s interference cancelled from the remaining signals and
so on. SIC is also a simple detection scheme but it is slight complex to
implement than Linear detection methods.

ML detection is the optimal detection scheme of MIMO systems.
It’s BER performance is better than other detection scheme. But it is com-
plex to implement since it is doing an exaustive search over the entire lattice
space. Sphere decoding scheme is the ML solution with reduced search space.
It searches the closest lattice point to the received signal within a sphere
radius. Sphere decoder reduces the search space by tree pruning. Since it
need not search the whole lattice space it is less complex than ML decoder.
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