An approach to one-bit compressed sensing based on probably approximately correct learning theory

Ahsen, M Eren and Vidyasagar, Mathukumalli (2015) An approach to one-bit compressed sensing based on probably approximately correct learning theory. In: 54th IEEE Conference on Decision and Control, CDC 2015, 15-18 December,2015, Kita-KuOsaka,Japan.

Full text not available from this repository. (Request a copy)

Abstract

This paper builds upon earlier work of the authors in formulating the one-bit compressed sensing (OBCS) problem as a problem in probably approximately correct (PAC) learning theory. It is shown that the solution to the OBCS problem consists of two parts. The first part is to determine the statistical complexity of OBCS by determining the Vapnik-Chervonenkis (VC-) dimension of the set of half-spaces generated by sparse vectors. The second is to determine the algorithmic complexity of the problem by developing a consistent algorithm. In this paper, we generalize the earlier results of the authors by deriving both upper and lower bounds on the VC-dimension of half-spaces generated by sparse vectors, even when the separating hyperplane need not pass through the origin. As with earlier bounds, these bounds grow linearly with respect to with the sparsity dimension and logarithmically with the vector dimension.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Vidyasagar, MathukumalliUNSPECIFIED
Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Complexity theory,Compressed sensing,Measurement uncertainty,Presses,Statistical learning,Support vector machines,Yttrium,Indexed in Scopus
Subjects: Electrical Engineering
Divisions: Department of Electrical Engineering
Depositing User: Library Staff
Date Deposited: 29 Oct 2019 04:29
Last Modified: 29 Oct 2019 04:29
URI: http://raiithold.iith.ac.in/id/eprint/6870
Publisher URL: http://doi.org/10.1109/CDC.2015.7403384
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 6870 Statistics for this ePrint Item