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In this work, we propose a thermodynamically consistent phase-field model for the brittle
fracture analysis of thick plates. A hybrid model, which is fast and accurate, is proposed
for the phase-field modeling of fracture in thick plates. Reddy’s third-order shear deforma-
tion theory (TSDT) has been employed to capture the transverse shear deformation effects in
thick plates. Governing equations are derived by seeking the minimization of the free-energy
functional. A staggered solution algorithm with arc length control is used to solve the gov-
erning equations within the finite element framework. The nucleation and propagation of
cracks in the thick plates subjected to uniformly distributed load is presented. The mechan-
ical response corresponding to phase-field models based on both the classical plate theory
and TSDT has been compared for the case of thick plates and a significant difference
between these two models is observed. Parametric studies have been carried out to illustrate
the effects of boundary conditions, shear deformation, and the mesh size.
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1 Introduction
Modeling fracture in structures plays an important role not only

for the efficient and optimal design of structures but also to avoid
catastrophic failures. Early works on fracture modeling were
mainly attributed to Griffith [1], who first gave an energy-based cri-
terion for the crack extension. The phenomenon where all the defor-
mation tends to concentrate in a narrow region is known as
localization. Localization induced by the cracking phenomenon
has been proven to be the potential cause of catastrophic failure
in structures. Hence, it is important to accurately predict the onset
of localization and its effects on the overall response of the struc-
ture. Fracture models for the localized failure can be broadly
divided into two types: (1) discrete (sharp) crack models and
(2) diffuse (smeared) crack models. In discrete crack models, the
localization is represented by discrete discontinuities, whereas in
diffuse models, it is spread over a certain region using a length
scale parameter. Hence, discontinuities are avoided in diffuse
models (for more details, see Ref. [2]). Discrete models such as
the linear elastic fracture mechanics (LEFM) [1] and cohesive
zone model (CZM) which is based on damage mechanics approach
[3–5] invoke techniques such as remeshing, interface element tech-
nique, and XFEM to resolve the discontinuities. On the other hand,
smeared models such as continuum damage models cease to give
meaningful results when the material undergoes softening [6,7].
This leads to loss of ellipticity of the mechanical problem. To cir-
cumvent this, nonlocal damage models [8] and gradient damage
models [9–11] have appeared in the literature.
The phase-field (PF) model was developed as a robust technique

to study problems such as micro-structure evolution in solidification

and image segmentation. The PF models for fracture, which share
many features of non-local models, are gaining the attention of
researchers in the recent years (see Refs. [12–23]). The term
phase in the PF models of fracture refers to the two phases of the
material during the loading process. One is the undamaged phase
and the other is a fully damaged phase. In the PF models of fracture,
the evolution of the fracture is directly obtained from the solution of
coupled governing equations. The popularity of the regularized
models such as the PF model is mainly attributed to their numerical
amenability. In contrast to discrete fracture models, there is no need
of using sophisticated algorithms to track the fracture surface in the
phase-field models. The crack surface can be tracked easily by
solving the coupled governing equations which can be derived
based on the minimization of the free-energy functional. Francfort
and Marigo [24] first proposed the brittle fracture problem as an
energy minimization, which can be viewed as the generalization
of Griffith’s theory of LEFM. The problem of crack nucleation
and its propagation is solved in a variational setting. Later,
Bourdin et al. [25] regularized the above model by approximating
the sharp crack with a diffused crack in a variational framework.
This approximation facilitates the numerical solution of the varia-
tional formulation. This regularized model invokes the length
scale parameter in approximating the crack surface and introduces
the gradient of a damage variable. This model draws the motivation
from Ambrosio-Tortorelli regularization of the Mumford-Shah
functional in image segmentation [26]. Hence, this model abandons
any discontinuities and makes it amicable to the standard finite
element method. This model can be reduced to the discrete model
in the sense of Γ convergence, when the length scale parameter
(l) tends to zero. The counterpart of the Bourdin’s regularized var-
iational model [25], which incorporates finite elasticity, can be
found in Ref. [27]. In the standard PF models, l is considered as a
numerical parameter [28,29]. Since the mesh size must be lesser
than the value of l, the results depend on the choice of the l.
Recently, Wu et al. [14] presented a length scale insensitive phase
field for brittle fracture modeling. This model draws the motivation
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from Barenblatt’s cohesive zone modeling [4], exhibiting Γ
convergence.
Though there are many applications of the phase-field method for

modeling brittle fracture, only a few applied it for modeling ductile
fracture in solids. Ambati et al. [30] proposed a novel model to
bring in the effect of ductility in elasto-plastic solids in the quasi-
static kinematically linear regime. Miehe et al. [31] presented a
coupled PF model of ductile fracture in combination with the gradi-
ent plasticity and gradient damage models for the case of large
strains. Borden et al. [13] introduced a cubic degradation function
unlike a quadratic degradation function found in the literature to
model the ductile fracture. Here, they also presented a mechanism
for the plastic softening by introducing the yield surface degrada-
tion function. This cubic degradation function not only ensures
linear elastic-brittle behavior but also prevents nucleation of
damage in the regions far from the crack tips. PF models are also
employed in a dynamic setting [32,33] and finite strain setting
[12,34].
Since the variational type phase-field description does not require

any additional criterion to track the crack propagation, the complex
crack topologies such as branching and merging can be easily dealt
without numerical robustness even in three dimensions. Lee et al.
[35] studied the fracture propagation in porous media by demon-
strating an efficient algorithm that can save computational time
for 3D applications. Borden et al. [36] presented a fourth-order
approximation to the crack surface in contrast to the standard
second-order approximation of Bourdin et al. [25] and employed
it to study the crack propagation in three dimensions. Rajagopal
et al. [37] studied the phase separation phenomenon governed by
Cahn–Hilliard phase-field equation. Cahn–Hilliard equation is a
fourth-order partial differential equation which necessitates the
need for piece-wise smooth and globally C1 continuous shape func-
tions. These are achieved in a natural element framework. Pham
et al. [19] developed a three-dimensional finite element code for
the phase-field brittle fracture modeling and validated their results
with that of experimental results under mixed-mode fracture.
The application of the phase-field method to study the cohesive

and adhesive interface fracture is a topic of research in the recent
times. Verhoosel and de Borst [38] extended the PF model of
brittle fracture to cohesive fracture. Vignollet et al. [39] employed
the PF model for a special case of propagative cohesive cracks.
This model also shows the insensitivity toward the length scale
parameter. Alessi et al. [40] developed a regularized variational for-
mulation for the nucleation of cohesive cracks considering the effect
of plasticity. Recently, Rudy et al. [41] presented a phase-field
model for cohesive fracture under dynamic loading. Here, they
also introduced a linear approximation to the crack surface
density and a non-polynomial type degradation function. Hansen-
Dörr et al. [42] modeled the adhesive interface failure using the
PF method. Here, authors have modified the fracture toughness of
the interface material to correct the influence of bulk material on
crack propagation along the interface. Paggi and Reinoso [43]
developed a framework consisting of the PF model and CZM.
This model has been used to solve the problem of crack impinging
on an interface. They also utilized this model to predict the crack
propagation in a bi-material interface system.
The PF method has also seen limited attention so far toward the

application to modeling fracture in composite laminates. Zhang
et al. [44] developed a unified phase-field framework based on
CZM to model different failure mechanisms in heterogeneous mate-
rials such as matrix cracking and debonding of the interface and the
interaction between these two. Here, they used two phase fields one
for regularizing the material properties of the interface and the other
for regularizing the crack. Reinoso et al. [45] compared both the
finite fracture mechanics and PF method in predicting the strength
of new class of composite materials such as thin ply laminates.
Recently, Bleyer and Alessi [46] proposed a novel anisotropic
phase-field fracture model by introducing different damage vari-
ables for different fracture modes for the case of brittle fracture.
This model has been studied to model the fracture phenomenon

in fiber-reinforced composites. Dhas et al. [47] presented a PF
model for modeling fracture in orthotropic materials such as delami-
nation in composites. This model also embeds traction separation
law in order to model the inter-laminar zones.
Some of the very recent research in PF modeling of fracture

includes introducing new degradation functions [48], finding alter-
native approximations to the sharp crack topology especially in the
context of dynamic cohesive fracture [41], and developing length
scale insensitive PF models [14].
Plates are planar structures that are subjected to loads perpendic-

ular to the plane of the plate. Thick plates find wide applications in
Aerospace, Civil, and Mechanical industries. The classical plate
theory (CPT) is more suitable for the analysis of thin plates where
shear deformations will not play a significant role in the mechanical
behavior of the plate. For the analysis of thick plates, one must use
more realistic theories such as shear deformation theories to cor-
rectly capture the mechanical behavior. In this work, we propose
a PF model for the brittle fracture analysis of thick plates subjected
to different boundary conditions. There is a limited literature avail-
able on the application of the phase-field method to model fracture
in plates and shells. Amiri et al. [49] first employed this method to
study the fracture behavior in thin shells using Kirchoff–Love shell
theory. Ambati and De Lorenzis [28] investigated both brittle and
ductile fracture in shells employing isogeometric NURBS-based
solid shell elements. Kiendl et al. [50] presented a more accurate
model for the fracture analysis in thin plates and shells using the
Kirchhoff–Love shell model and isogeometric discretization. The
application of the PF method for the finite strain analysis of
plates and shells can be found in Ref. [51].
The novelty of this work includes proposing a hybrid phase-field

model for the fracture modeling in thick plates by invoking a
higher-order shear deformation theory such as Reddy’s TSDT
[52], which requires no shear correction factors and represents the
transverse shear stresses quadratically through the plate thickness.
The hybrid model proposed here draws the motivation from
Ref. [53], which was originally proposed for plane problems. In
the hybrid model, the effect of damage is applied to the entire
strain energy density when defining the Cauchy stress, that is
without considering a tension–compression split, whereas the
history parameter driving the damage evolution depends only on
the tensile part of the strain energy density. More details on this
model are presented in Sec. 4.
The outline of the paper is as follows. In Sec. 2, we present both

the sharp and phase-field crack topologies and the phase regularized
crack functional. In Sec. 3, we show the variational approach to the
brittle fracture model considering various existing formulations. In
Sec. 4, we present the proposed phase-field formulation along with
the plate kinematics. In Sec. 5, we derive the finite element model
for the governing equations. In Sec. 6, we present the implementa-
tion aspects such as staggered algorithm and arc length method.
Section 7 presents different numerical examples to show the effec-
tiveness of the present model. Finally Sec. 8 presents the conclu-
sions drawn from the work.

2 Phase-Field Description of Fracture
In this section, we introduce the phase-field method in the context

of fracture modeling. The PF method serves an approximation to the
discrete fracture models in the sense that the sharp crack surface is
approximated by a diffused crack surface.

2.1 Representation of Crack Topology. Phase-field method
avoids the discontinuities in displacement by ensuring a smooth
transition between the fully damaged and undamaged material.
The variable introduced to represent these two phases and the tran-
sition is called crack phase field or order parameter (ϕ). A crack of
width zero is spread over a region of radius equal to the length scale
parameter l. For one-dimensional case, the order parameter can be
represented in the following way.
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Assume a crack located at x= 0 with fully broken crack surface Γ
in an infinite bar, as shown in Fig. 1(a), the order parameter for the
sharp crack topology can be written as

ϕ(x) =
1, x = 0
0, otherwise

{
(1)

For the case of the diffused crack model as shown in Fig. 1(b), the
order parameter can be written as

ϕ(x) = e−|x|/l, −∞ < x < +∞ (2)

The above approximation of the diffused crack model satisfies the
following boundary conditions:

ϕ(0) = 1 and ϕ(±∞) = 0 (3)

It is observed that, Eq. (2) is the solution of the following homoge-
neous differential equation:

ϕ(x) − l2
d2

dx2
(ϕ(x)) = 0 (4)

subjected to the boundary conditions (3). This differential equation
(4) is the Euler equation of the following variational principle:

ϕ = Arg Inf
ϕ∈ζ

F(ϕ)

{ }
(5)

where ζ= {ϕ|ϕ(0)= 1, ϕ(±∞)= 0}, with the functional

F(ϕ) =
1
2

∫
Ω

(
ϕ2 + l2ϕ′2

)
dΩ (6)

which is the Galerkin type weak form of Eq. (4). The resultant func-
tional for the approximation given in Eq. (2) together with dΩ=
Γ dx gives the following identification:

F ϕ = e−|x|/l
( )

= lΓ (7)

Consequently, we can introduce the functional of the form

Γl(ϕ): =
1
l
F(ϕ) =

1
2l

∫
Ω

(
ϕ2 + l2ϕ′2

)
dΩ (8)

where Γ is the crack surface in the sharp crack topology [25,29].
Equation (8) approximates the surface integral as the volume inte-
gral. This regularized functional Γl can be viewed as the crack
surface itself which serves as the main ingredient of the phase-field
model.
Figure 2 represents both the sharp crack topology and phase-field

regularized crack topology. The crack phase field is approximated
as a finite band as shown in Fig. 2(b). ϕ= 0 corresponds to the
undamaged state and ϕ= 1 represents the fully damaged state.

(a) (b)

Fig. 1 (a) Sharp crack model and (b) diffused crack model

(a) (b)

Fig. 2 2D representation of (a) sharp crack topology and (b) phase-field crack
topology
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In two dimensions, the crack surface functional can be written as

Γl =
∫
Ω
γ(ϕ, ∇ϕ) dΩ (9)

where γ is the crack surface density, which can be expressed in
terms of crack phase field and its gradient within the localization
region as

γ(ϕ, ∇ϕ) =
ϕ2

2l
+

l

2
|∇ϕ|2 (10)

3 Variational Approach to Brittle Fracture
In this section, we present a variational approach to the fracture

model. We also present how the minimization of the free-energy
functional leads to the governing equations that can be solved in
a finite element framework.
Cracking is a dissipative process. The solution for the crack

extension is governed by the minimization of the following free-
energy functional

E = ψv + ψ s (11)

where ψv is the elastic strain energy integrated over the volume and
ψs is the surface energy integrated over the surface. It can be further
written as

E =
∫
Ω
ψe dΩ + Gc

∫
Γ
dΓ (12)

where ψe is the elastic strain energy density and Gc is the material
parameter known as Griffith’s critical energy release rate. Following
thermodynamic principles, the free-energy functional leads to the
following conditions: (

G − Gc

)
Γ̇ = 0 (13)

which is the equation of the conservation of energy. G is the energy
release rate G = −(∂ψ s/∂Γ) and the Kuhn–Tucker loading/unload-
ing conditions read as

Γ̇ ≥ 0, G − Gc ≤ 0, (G − Gc) Γ̇ = 0 (14)

Equations (14) and (13) are equivalent to the Griffith’s theory.

3.1 Regularized Model. The variational approach for brittle
fracture (12) model proposed by Francfort andMarigo [24] is equiv-
alent to the sharp crack model for which robust numerical strategies
have to be used to find the solution. To circumvent this, Bourdin
et al. [25] proposed a regularized variational fracture model. In
this model, the sharp crack is approximated as a diffused crack
invoking a length scale parameter as shown in Eqs. (9) and (10).
The free-energy functional with a regularized crack surface

density can now be written as,

El =
∫
Ω
g(ϕ)ψe dΩ +

∫
Ω
ψϕ dΩ (15)

where

∫
Ω
ψϕ(ϕ, ∇ϕ) dΩ =

∫
A

∫h/2
−(h/2)

ψϕ dA dz

=
∫
A
hGc

ϕ2

2l
+

l

2
|∇ϕ|2

{ }
dA

(16)

where the damage parameter ϕ is assumed to be invariant thorough
the thickness; g(ϕ) is called the degradation function that models the
degradation of elastic stiffness as the damage progresses in the bulk
material. This function also couples the elastic equilibrium equation

with the evolution equation. The degradation function has to satisfy
the following conditions to ensure the thermodynamically consis-
tent variational formulation

• g(0)= 1⇒ no degradation of elastic stiffness when the material
is intact.

• g(0)= 1⇒ full degradation of elastic stiffness when the mate-
rial is fully damaged.

• Thermodynamic conjugate force is defined as F=−g′(ϕ)ψe.
This takes the value zero when the material is fully
damaged. Therefore, g′(1)= 0.

The function satisfying the above properties can be taken as

g(ϕ) = (1 − β)(1 − ϕ)2 + β (17)

where β is a very small positive scalar value (≪1) introduced to
avoid the ill conditioning of the stiffness matrix when ϕ= 1. The
variation of g(ϕ) with ϕ is shown in Fig. 3.

3.1.1 Models With Tension-Compression Split. The model
shown in Sec. 3.1 does not differentiate the fracture response in
tension and compression, hence results in physically unrealistic
crack patterns. To avoid such discrepancy, Miehe et al. [54] modi-
fied the Bourdin’s [25] regularized formulation by introducing the
additive decomposition of the elastic strain energy into tensile
and compressive parts. The degradation is applied only on the
tensile part of ψe.
According to Miehe et al. [54], the first term in the Eq. (15) is

replaced by the following expression:

ψe = ψ+
e + ψ−

e (18)

where

ψ±
e =

1
2
λ〈tr(ε)〉2± + μtr(ε2±) (19)

The above split is based on the spectral decomposition of the strain
tensor; ε =

∑3
i=1〈εi〉ni

⊗
ni, ε± =

∑3
i=1〈εi〉± ni

⊗
ni, where ɛi and

ni are the principal strains and their directions, respectively; λ and μ
are Lamés parameters and 〈α〉± = 1

2 (α ± |α|).
Therefore, the regularized free-energy functional with the

tension-compression (T-C) split of the strain energy can be
written as

El =
∫
Ω

(
g(ϕ)ψ+

e + ψ−
)
dΩ +

∫
Ω
ψϕ dΩ (20)

3.1.2 Hybrid Model. The above formulation makes the elastic
equilibrium equation nonlinear because of the split, hence the com-
putational time to solve the governing equations increases.

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3 Variation of g(ϕ) with ϕ
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To avoid this, we propose a hybrid formulation that greatly reduces
the computational time. In the hybrid model, no split is applied on ψe
in the elastic equilibrium equation whereas the positive part of the
history variable based on ψ+

e is supplied to the evolution equation.
Hence, the linearity of the elastic equilibrium equation is preserved.
The hybrid formulation for the analysis of plates is presented in
Sec. 4.

4 Proposed Formulation
In this section, we develop the phase-field formulation for brittle

fracture analysis in thick plates. This formulation can accurately
predict the response of thick plates as we aim to use a higher
order shear deformation theory proposed by Reddy [52].

4.1 Plate Kinematics of Reddy’s TSDT [52]. The transverse
shear deformation plays a major role in the overall behavior of thick
plates. The classical plate theory (Kirchhoff–Love) does not include
shear deformation and thus not suitable for the analysis of thick
plates. On the other hand, the first-order shear deformation theory
requires shear correction factor since it predicts the constant varia-
tion of transverse shear stress through the thickness.
The third-order shear deformation theory of Reddy [52] avoids

any shear correction factors as it correctly predicts the quadratic var-
iation of transverse shear stress through the thickness by expanding
the in-plane displacements up to the third-degree of the thickness
coordinate. The total displacement of a point ‘a’ as shown in
Fig. 4 can be written as

u(x, y, z) = u0(x, y) + zϕx −
4z3

3h2
ϕx +

∂w0

∂x

( )

v(x, y, z) = v0(x, y) + zϕy −
4z3

3h2
ϕy +

∂w0

∂y

( )

w(x, y, z) = w0(x, y)

(21)

where (u0, v0, w0) are in-plane displacements of a point on the mid-
plane (i.e., z= 0). ϕx and ϕy denote the rotations of a transverse
normal line at the mid-plane (ϕx= ∂u/∂z and ϕy= ∂v/∂z). The total
thickness of the laminate is denoted by h. The cubic variation of
the displacement field with the thickness coordinate allows a para-
bolic variation of the transverse shear strains and shear stresses
hence avoids the need for shear correction factors.

4.2 Strain–Displacement Relations. The strain components
for the linear strains of third-order shear deformation theory are

εxx

εyy

γxy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ =

ε(0)xx

ε(0)yy

γ(0)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ + z

ε(1)xx

ε(1)yy

γ(1)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ + z3

ε(3)xx

ε(3)yy

γ(3)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (22)

γyz
γxz

{ }
=

γ(0)yz

γ(0)xz

{ }
+ z2

γ(2)yz

γ(2)xz

{ }
(23)

where

ε(0)xx

ε(0)yy

γ(0)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ =

∂u0
∂x
∂v0
∂y

∂u0
∂y

+
∂v0
∂x

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

ε(1)xx

ε(1)yy

γ(1)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ =

∂ϕx

∂x
∂ϕy

∂y
∂ϕx

∂y
+
∂ϕy

∂x

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(24)

ε(3)xx

ε(3)yy

γ(3)xy

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ = −c1

∂ϕx

∂x
+
∂2w0

∂x2

∂ϕy

∂y
+
∂2w0

∂y2

∂ϕx

∂y
+
∂ϕy

∂x
+ 2

∂2w0

∂x∂y

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(25)

γ(0)yz

γ(0)xz

{ }
=

ϕy +
∂w0

∂y

ϕx +
∂w0

∂x

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭,

γ(2)yz

γ(2)xz

{ }
= −c2

ϕy +
∂w0

∂y

ϕx +
∂w0

∂x

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭ (26)

As can be seen in Eq. (23), the transverse shear strains vary quadrat-
ically through the thickness.

4.3 Hybrid Phase Field Model of Brittle Fracture for
Plates. The plate theories dimensionally reduce the continuum for-
mulation to 2D using the mid surface and the thickness. The dis-
placements are evaluated on the mid surface of the plate and the
thickness-wise variations of stresses and strains can be calculated
based on the strain–displacement and stress–strain relations. There-
fore, the free-energy functional can be written as

El =
∫
A

g(ϕ)ψ + hGc
ϕ2

2l
+

l

2
|∇ϕ|2

{ }( )
dA (27)

where ψ is the elastic strain energy density obtained after integrating
through the thickness. The thickness-wise integration is done using
the Simpson’s rule.

ψ =
∫h/2
−(h/2)

ψe (z) dz (28)

One can derive the governing equations by seeking the minimiza-
tion of the free-energy functional (27). This is achieved by invoking
the Euler equation. For a given functional J of the form,

J =
∫
Ω
L(α, ∇α) dΩ (29)

the Euler equation is written as

δJ

δα
=
∂L
∂α

− ∇ · ∂L
∂∇α

= 0 (30)

Therefore, the functional derivative of the free-energy functional
w.r.t to displacement and damage variable is made zero, which
results in the following governing equations:

δEl

δu
= 0 ⇒ ∇ · σ = 0 (31a)

δEl

δϕ
= 0 ⇒ 2(1 − β)(1 − ϕ)H+ =

hGc

l

(
ϕ − l2∇ · ∇ϕ

)
(31b)

Fig. 4 Deformation of transverse normal according to TSDT
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with the boundary conditions

u = �u on ∂Ωu (32a)

σ · n̂ =�t on ∂Ωt (32b)

∇ϕ · n̂ = 0 on ∂Ω (32c)

where σ (u, ϕ)= g(ϕ)(∂ψe/∂ɛ), H+

t∈[0, τ]
=max ψ+(ε, t),�t is the traction

force vector, and n̂ is the unit outward normal vector to the bound-
ary. ∂Ωu and ∂Ωt are the Dirichlet and Neumann boundaries, respec-
tively, with ∂Ωu ∪ ∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅. The history
parameter H+ is equal to the maximum value of accumulated ψ+

within the loading history. This can be viewed as the driving
force for the phase-field evolution. This history variable not only
ensures the crack irreversibility condition but also facilitates the
decoupling of two governing equations. This history field satisfies
the loading and unloading conditions defined as(

H+ − ψ+
)
≥ 0, Ḣ+ ≥ 0, Ḣ+

(
ψ+ −H+

)
= 0 (33)

The positive energy calculation is done as follows:

ψ+
e =

1
2
λ
(
〈tr(ε)〉+

)2
+ μtr

(
ε+
)2

−
λ2

2(λ + 2μ)

(
〈tr(ε)〉+

)2

+
1
2
μ(γ2xz + γ2yz)

(34)

The above formula draws the motivation from the works of
Kiendl et al. [50] who derived it without accounting for transverse
shear strains.

5 Galerkin Finite Element Formulation
In this section, we develop the finite element formulation for the

governing equation (31b). The weak form and the discretized weak
form for the evolution equation are presented. The weak forms for
the evolution equation (31b) can be obtained as follows:∫

A
δw

hGc

l
(ϕ − l2△ϕ) − 2(1 − β)(1 − ϕ)H+

( )
dA = 0 (35)

where δw is the weighting function. The use of divergence theorem
further leads to the following:∫
A

δw
hGc

l
ϕ + hGcl∇ϕ · ∇δw − 2(1 − β)(1 − ϕ)H+δw

{ }
dA

−
∮
∂Ω

hGcl δw∇ϕ · n̂ dS = 0 (36)

5.1 Finite Element Approximation. From the above weak
form, it can be deduced that the primary variable ϕ can be approx-
imated using Lagrangian interpolation functions in a given finite
element:

ϕ =
∑n
j=1

ϕjNj (37)

where n is the number of degree-of-freedom (DOF) in a given
element and Nj are the Lagrange interpolation functions. Substitut-
ing the above approximation, i.e., Eq. (37) in the weak form, i.e.,
Eq. (36), we can arrive at the following discretized form of the
weak form:

[K]{ϕ} = f (38)

The stiffness matrix and force vector are given as

Kϕϕ
ij =

∫
A

hGc

l
NiN j + hGcl

∂Ni

∂x
∂Nj

∂x
+
∂Ni

∂y
∂Nj

∂y

( ){

+ 2(1 − β)H+ NiNj

}
dx dy

(39)

f ϕi =
∫
A
2(1 − β)H+Ni dx dy (40)

The discretized weak form of the elastic equilibrium equation (see
Ref. [55] for more details) using TSDT suggests that the finite
element should possess eight degree-of-freedom at each node.
These DOFs are approximated in the following manner:

u(x, y) ≈
∑m
j=1

UjN
(1)
j (x, y) (41)

v(x, y) ≈
∑m
j=1

VjN
(1)
j (x, y) (42)

w(x, y) ≈
∑n
j=1

�Δjφj(x, y) (43)

ϕx(x, y) ≈
∑n
j=1

X jN
(2)
j (x, y) (44)

ϕy(x, y) ≈
∑n
j=1

YjN
(2)
j (x, y) (45)

where u and v are inplane displacements, w is the transverse deflec-
tion that also includes the rotations (∂w/∂x, ∂w/∂y, ∂2 w/∂x∂y) and
ϕx, ϕy are the shear deformations. N(α) represents the linear
Lagrange interpolation function and φ represents the Hermite inter-
polation (which are C1 continuous) function. In this work, N(1) is
taken equal to N(2).

6 Numerical Implementation
This section presents the numerical treatment of the governing

equations. The governing equations in the phase-field approach
can be solved either in a monolithic manner or in a staggered
manner. In the monolithic approach, both the displacement and
phase field are solved concurrently, whereas in the staggered
approach, they are solved alternatively. The following staggered
algorithm is adopted in this work. This algorithm renders the equa-
tions to solve in a rather straight forward way. In order to capture the
softening behavior, arc length control has been adopted. Below we
present the staggered algorithm to solve the phase-field fracture
(The notation n and i are used to represent the load steps and itera-
tions, respectively.).

(1) Loop on load steps (n= 1 to nmax)
(2) Loop on iterations (i= 1 to imax)
(3) Freeze ϕ and solve for u using Eq. (31a)
(4) Using the calculated u obtain ϕ from Eq. (38)
(5) If error ≤ tolerance, go to step 1 else, go to step 2

6.1 Arc Length Method. Arc length method is a powerful
incremental iterative solution technique to trace the equilibrium
path. The idea of arc length to trace the subsequent equilibrium
point was first given by Riks [56] for the solution of snapping
and buckling problems. Riks proposed this solution technique
based on the constant arc length. Later, Crisfield [57] proposed
the arc length method based on the cylindrical arc length. This
method involves choosing one root of the second-order equation
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to find the increment or decrement in the load. This causes problems
in cases where the equation does not have a real root. To avoid this,
we use the combination of the Crisfield and Ramm arc length
method. The algorithm for the same is presented below.
Let the nonlinear equation to be solved be given by

[K(u)]{u} = {F} (46)

The linearized version of above equation using Newton Raphson
iteration can be written as

[T(ui−1)]{Δu} = {R(ui−1)} (47)

where T is the tangent stiffness matrix defined as [T ]=−[∂R/∂u]
and i represents the iteration number. The following quantities are
used in the arc length algorithm.

{ΔuRi} = [Ti]
−1{Ri} (48)

{ΔuFi} = [Ti]
−1{F} (49)

where

R(ui−1) = λ{F} − [K(ui−1)]{ui−1} (50)

and F is the total load to be applied and λ is the load increment
factor.
The increment in the displacement is calculated as follows:

{Δuni } = {ΔunRi
} + δλni {Δu

n
Fi
} (51)

The load increment factor λ is updated in the following manner:

λni+1 = λni + Δλni+1 (52)

where

Δλni+1 = Δλni + δλni (53)

For the first iteration, the value of δλni (i.e., δλ
n
1) is zero. The flow-

chart and the graphical interpretation of arc length method are pre-
sented in Figs. 5 and 6, respectively.
unc represents the converged displacement in the nth load step.

The length of the arc length is calculated as follows:

ΔS = Δλ
���������������
(ΔunFi

)t(ΔunFi
)

√
(54)

Other quantities used in the arc length method are as follows:

A = (un−1c − un−2c )t (ΔunF1
) (55)

sign(A) =
|A|
A

(56)

7 Numerical Examples
In this section, we present numerical examples to study the

damage evolution in thick and thin plates subjected to uniformly
distributed load. The difference in the PF models of the classical
plate theory and TSDT has been brought out. Different boundary
conditions as shown in Figs. 7 and 8 are applied. In SS-1 boundary
conditions, the following quantities are constrained on the edges
parallel to the x-axis. The inplane displacement along the x-axis,

Fig. 5 Flowchart of Crisfield–Ramm arc length algorithm

Fig. 6 Graphical interpretation of the Arc length method

x

y

a

b

SS-1

y = 0 and y = b

u0 = w0 = φx = 0

Nyy = M̄yy = 0

x = 0 and x = a

v0 = w0 = φy = 0

Nxx = M̄xx = 0

Fig. 7 SS-1 boundary conditions
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transverse deflection, shear deformation (rotation along the
y-axis), Nyy and �Mxx. Whereas on the edges parallel to y-axis, the
inplane displacement along the y-axis, transverse deflection, shear
deformation (rotation along the x-axis), Nxx and �Myy are con-
strained. In SS-3 boundary conditions, on all the edges the

Fig. 11 Evolution of damage at different stages of loading in thin plate (full plate is
visualized) subjected to SS-1 boundary conditions

L
oa

d
×

10
−2

(N
/m

m
2 )

ū (mm)

Fig. 12 Load versus deflection diagram

Fig. 10 Plate subjected to uniformly distributed load

x

y

a

b

SS-3

y = 0 and y = b

u0 = v0 = w0 = 0

M̄xy = M̄yy = 0

x = 0 and x = a

u0 = v0 = w0 = 0

M̄xy = M̄xx = 0

Fig. 8 SS-3 boundary conditions

(u, v, w, ∂w
∂x

, ∂w
∂y

, ∂2w
∂x∂y

, φx, φy)
x

y

Fig. 9 Four-noded rectangular element
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inplane displacement along the x- and y-axes, transverse deflection,
and �Mxy are constrained and �Myy and �Mxx are constrained on the
edges parallel to x- and y-axes, respectively.
Where �Mαβ and Nαβ represent the stress resultants defined as

Nαβ

Mαβ

Pαβ

⎧⎨
⎩

⎫⎬
⎭ =

∫h/2
−(h/2)

σαβ

1
z
z3

⎧⎨
⎩

⎫⎬
⎭ dz (57)

�Mαβ =Mαβ − c1Pαβ, c1= 4/3h2. For more details, see Ref. [55].

Only the quarter plate is modeled wherever symmetry is present
and the results are assembled to see the full plate visualization.
Four-noded conforming rectangular finite elements are used to
model the geometry of the plate. Each node of the element has 8
degree-of-freedom (along with the damage variable) as shown in
Fig. 9. In all the examples, the plate is subjected to uniformly dis-
tributed load as shown in Fig. 10. The selective integration
scheme is used to evaluate the stiffness matrix.
The following material properties are used: E= 190 × 103 Mpa,

ν = 0.29,Gc= 0.295 N/mm. The normalized deflection is calculated
as follows: �u =

������������
(ut × u)/un

√
, where un is the total number of dis-

placements. In all the simulations, the phase-field parameter ϕ is
taken as zero in the first step of the analysis and a tolerance value
of 10−3 is used.

7.1 Example 1: Thin Square Plate Analysis. In this example,
a thin square plate of dimensions 2 mm×2 mm and a/h equal to 100
is considered. SS-1 boundary conditions as shown in Fig. 7 are con-
sidered. A uniform mesh of 10,000 elements is considered, and the
value of the length scale is fixed as 0.04 mm. A total load of 15N is
applied with an initial λ value in the arc length method equal to 55 ×
10−6. The number of load steps used is 320.
Figure 11 shows the nucleation and propagation of the damage in

the plate. The full plate has been assembled for visualization. It is
observed that the damage initiates at the center of the plate as the
bending moment is maximum at the center and propagates toward
the corners of the plate. Similar trends are observed by Kiendl
et al. [50] whose model is based on the classical plate theory.
Figure 12 shows the load versus the normalized deflection. The

L
oa

d
N

/m
m

2

ū (mm)

Fig. 14 Load versus deflection diagram

Fig. 13 Evolution of damage at different stages of loading in a thin rectangular plate subjected to
SS-3 boundary conditions

(a) (b)

Fig. 15 Damage evolution profile corresponding to (a) hybrid model and (b) model
with no T-C split at a given load step
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plate shows the softening behavior after a peak load of 0.11 N is
reached.

7.2 Example 2: Thin Rectangular Plate Analysis. In this
example, a thin rectangular plate of dimensions 2 mm(length) ×
1 mm(width) and a/h equal to 100 (a being the length) is consid-
ered. SS-3 boundary conditions as shown in Fig. 8 are considered.
A uniform mesh of 10,000 elements is considered, and the value of
the length scale is fixed as 0.01 mm. A total load of 15 N is applied
with initial λ value in the arc length method equal to 4 × 10−4. The
number of load steps used is 175.
Figure 13 shows the evolution of damage in the rectangular plate

subjected to SS-3 boundary conditions. As it can be seen, the
damage nucleates at the center of the plate and gradually propagates
in the direction parallel to the length of the plate and then moves
toward the corners. Figure 14 shows the load versus deflection
graph.

7.3 Example 3: Comparison of Hybrid Model and the
Model With No Tension-Compression Split. In this example, a
square plate of dimensions 2 mm×2 mm is considered for the anal-
ysis. SS-3 boundary conditions are applied and a/h is taken as 20.
The value of the length scale is taken as 0.02 mm. A uniform
mesh of 10,000 elements is used. A total load of 100 N is applied
with an initial λ value in the arc length method equal to 4 × 10−4.
The number of load steps used are 175.
Figure 15 shows the damage profile associated with the hybrid

and the model with no tension-compression split at the same
value of the load step. It can be observed that the later model under-
predicts the damage compared with the hybrid model. Figure 16
shows the load deflection graph. It is found that the model with
no tension-compression split overpredicts the peak load.

L
oa

d
N

/m
m

2

ū (mm)

Hybrid model
No T-C split model

Fig. 16 Load versus deflection diagram

Fig. 17 Evolution of damage at different stages of loading in the plate subjected to
SS-3 boundary conditions

Fig. 18 Load versus deflection diagram of the plate subjected to
SS-3 boundary conditions with different mesh sizes
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7.4 Example 4: Mesh Objectivity of the Phase Field Model.
A square plate of dimensions 2 mm×2 mm is considered. Two
meshes of 10,000 and 40,000 elements are considered. The value
of the length scale is chosen as 0.04 mm and a/h is taken as 20.
A total load of 100 N is applied with an initial λ value in the arc
length method equal to 8 × 10−4. The number of load steps used
is 100. The load-deflection diagram for the case of SS-3 boundary
conditions corresponding to both meshes is shown in Fig. 18. A
comparison of the load-deflection behavior between SS-1 and
SS-3 boundary conditions is shown in Fig. 19. The comparison of
force–displacement response (for the mesh size of 10,000 elements)
associated with CPT and TSDT is shown in Fig. 20.
Figure 17 shows the evolution of damage in the plate at various

load steps subjected to SS-3 boundary conditions for the mesh cor-
responding to 40,000 elements. It is seen that the damage initiates at

Fig. 20 Comparison of force-displacement response of CPT
and TSDT for SS-3 boundary conditions

Fig. 21 Boundary conditions and dimensions of the plate

Fig. 19 Load versus deflection diagram

Fig. 22 Evolution of damage at different stages of loading
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the center of the plate and propagates toward the corners of the
plate.
Figure 18 shows the load versus deflection diagram associated

with two different meshes. Mesh A and Mesh B correspond to
the discretization of 10,000 and 40,000 elements, respectively. It
is clearly seen that the proposed phase-field model does not show
mesh dependency in the load-deflection behavior unlike standard
continuum damage models. Figure 19 shows the load deflection
diagram corresponding to SS-1 and SS-3 boundary conditions. It
is observed that SS-3 boundary conditions render the plate to
carry a higher peak load compared with SS-1 boundary conditions.
Figure 20 shows the load–displacement graph of PF models based
on both CPT and TSDT. As it can be seen, there is a significant dif-
ference between the two graphs, especially after the peak load. The
two theories predict almost the same value of peak load but at a dif-
ferent value of displacement.

7.5 Example 5. In this example, the boundary conditions as
shown in Fig. 21 are considered for the analysis. The dimensions
of the plate are taken as 1 mm×1 mm. All the DOFs along the
line y= 1 and x= 0 are constrained. The value of a/h and the
length scale parameter are taken as 10, 0.04 mm respectively. A
total load of 100 N is applied with an initial λ value in the arc
length method equal to 3 × 10−4. The number of load steps used
is 400.
Figure 22 shows the damage evolution. It can be seen that the

damage nucleates at the fixed edges of the plate and propagates
toward the corner meeting the two fixed edges of the plate.
Figure 23 shows the load versus normalized deflection diagram cor-
responding PF models based on CPT and TSDT. In this case, the
peak load predicted by CPT significantly differs from that predicted
by TSDT.

7.6 Example 6. In this example, we aim to understand the frac-
ture patterns in a square cantilever plate of dimensions 1 mm×1 mm
as shown in Fig. 24. The value of a/h is taken as 10. A total load of
100 N is applied with an initial λ value in the arc length method
equal to 5 × 10−4. The number of load steps used is 100.Fig. 24 Cantilever plate

Fig. 23 Comparison of force–displacement response of CPT
and TSDT

Fig. 25 Evolution of damage at different stages of loading in the cantilever plate
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Figure 25 shows the damage evolution in the cantilever plate.
As it can be seen, the damage initiates at the center of the fixed
edge and propagates toward the corners of the fixed edge.
Figure 26 shows the load-deflection graph for both CPT and
TSDT phase field models. Similar to the previous example, CPT
predicts the higher value of peak load compared with PF model
based on TSDT.

8 Conclusions
A new phase-field model based on the hybrid formulation has

been developed for the brittle fracture analysis of thick plates.
Third-order shear deformation theory of Reddy has been employed
to correctly capture the effect of shear deformation on the mechan-
ical behavior of the plate. The elastic and the phase-field governing
equations are derived based on the minimization of the free-energy
functional that accounts for the shear deformation effects. The dis-
cretized weak forms of both the equations are developed using the
finite element method. Staggered solution algorithm with arc length
control has been used to find the evolution of damage. It is seen that
the hybrid model significantly differs from the model with no
tension-compression split of the strain energy, in predicting the
peak load of the structure. This is because the history parameter
is calculated based on the positive part of the strain energy in the
hybrid formulation. The proposed model also shows the mesh
objectivity in the post-peak regime. The difference in the mechan-
ical response of PF models based on both CPT and TSDT has
been shown for the case of thick plates and a significant difference
between the two models is observed. In all the cases, CPT predicts a
slightly higher value of peak load but at much lesser value of displa-
cement compared with TSDT. This concludes the importance of
choosing TSDT over CPT to analyze thick plates. Different numer-
ical examples that are presented show the nucleation and propaga-
tion of the damage in the thick plate subjected to different boundary
conditions. A parametric study has been conducted to illustrate the
effect of boundary conditions, mesh size on the damage patterns,
and load-deflection behavior.
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