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Abstract

There are numerous assumptions made to define the stability of power system models.

Step-by-Step numerical integrations of power system models are used to simulate the

system dynamic behavior. This type of power system stability analysis is based on the

time-domain approach. The typical simulation period of post-fault system is 10s and can

go beyond 15s if multi-swing instability is of concern. Energy Function theory is a method

to describe the stability of power system and it eliminates the post-fault integration which

reduces the simulation time.

Mechanical power, electrical power, torque, rotor speed of generators, loads are the pa-

rameters which specify the characteristics of stability. An energy function defines the

nature of the system, when system exhibits a highly non-linear behavior. An energy func-

tion gives more accurate prediction when there is a severe disturbance in the system.

This thesis describes the various parameters affecting transient stability and discussed an

energy function for a power system. It works as a general principle model to read stability

in a very accurate and effective way to calibrate the amount of energy in a system during

different rotor angles when the system is in post-fault or after disturbance.

This Thesis provides a general procedure for constructing a classical based energy func-

tions for single machine infinite bus system as well as multi-machine system (using COI

reference and relative rotor angle reference). It gives a theoretical discussion and simula-

tion results for different methods like closest unstable equilibrium point (u.e.p) method,

potential boundary surface method and controlling unstable equilibrium point (u.e.p)

method.
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Chapter 1

Introduction

1.1 Overview

Every engineering department has the impact of computer-aided analysis and design in

the recent years. One of the fundamental subjects in engineering and science is the sta-

bility study of a system.

The stability of a system refers to the ability of a system to return back to its steady

state when subjected to a disturbance. Power is generated by synchronous generators

that operate in synchronism with the rest of the system. A generator is synchronized

with a bus when both of them have same frequency, voltage and phase sequence. We

can thus define the power system stability as the ability of the power system to return to

steady state without losing synchronism [6].

The ability of a power system to maintain stability under continuous small disturbances

is investigated under the name of dynamic stability (also known as small-signal stability).

These small disturbances occur due to random fluctuations in loads and generation levels.

In an interconnected power system, these random variations can lead catastrophic failure

as this may force the rotor angle to increase steadily.

Transient instability is concerned with sudden and large changes in the network condition

due to transmission faults. Sudden load changes, and loss of generating units. Dynamic

and steady state stability is basically the ability of the power system under load condition

to retain synchronism when subject to small disturbance such as the continual changes in

1



load or incremental variations in the operating point [9].

By nature, a power system is continuously experiencing disturbances. These may be

classified as event disturbances and load disturbance. Generator outages, short-circuits

caused by lightning or other fault conditions, sudden large load changes, or a combination

of such events do come under Event disturbances. Event disturbances usually lead to a

change in the configuration of the power system. Load disturbances, on the other hand,

are the small random fluctuations in load demands. The system configuration usually

remains unchanged after load disturbances. Recent trends towards full utilization of ex-

isting generation and transmission systems have increased the effects of these disturbances

on power system security [18].

Transient stability analysis is concerned with a power system’s ability to reach an accept-

able steady-state (operating condition) following an event disturbance. The power system

under this circumstance can be considered as going through changes in configuration in

three stages: from pre-fault, to fault-on, and then to post-fault systems. The pre-fault

system is usually in a stable steady state. The fault occurs (e.g., a short circuit), and the

system is then in the fault-on condition before it is cleared by the protective system op-

eration. Stability analysis is the study of whether the post-fault trajectory will converge

to an acceptable steady-state as time passes.

Direct methods have a long development history spanning over four decades but, until re-

cently, were thought by many to be impractical for large-scale power systems analysis with

detailed models. However, recent developments have made direct methods a more practi-

cal means of solving large-scale power systems with network-preserving models. As seen

in those early applications, direct methods provide several key advantages in performing

on-line stability assessment using the actual power system configuration and on-line state

estimated data. One key advantage is their ability to assess the degree of stability (or

instability). The second advantage is their ability to calculate sensitivities of the stability

margin to power system parameters, allowing for efficient computation of operating limits

[6].

This thesis presents the transient stability assessment for single machine infinite bus

system as well as multi-machine systems. Different energy function methods are used

2



to find the transient stability. Those methods are closest unstable equilibrium point

(u.e.p) method, potential boundary surface method(PEBS), controlling unstable equilib-

rium point (u.e.p) method. Which comes with a simple mathematical model to predict

its stability.

1.2 Literature Survey

At present, stability analysis programs routinely used in utilities around the world are

based on step-by-step numerical integrations of power system stability models used to

simulate system dynamic behaviors. The stability of the post-fault system is assessed

based on simulated post-fault trajectories. The typical simulation period for the post-

fault system is 10s and can go beyond 15s if multi-swing instability is of concern, making

the conventional approach rather time-consuming.

T.Athay, R.Podmore and S.Virmani [1]: This paper presents the development and

evaluation of an analytical method for the direct determination of transient stability. The

method developed is based on the analysis of transient energy and accounts for the na-

ture of the system disturbance as well as for the effects of transfer conductance on system

behavior. The method predicts critical clearing times for first swing transient stability

which agree very closely with the results of simulations.

A.A. Fouad and Vijay Vittal [2]: In this paper, a criterion is presented for determining

the critical energy to be used in direct transient stability assessment of a multi-machine.

The particular criterion provides a method by which the controlling unstable equilibrium

point (u.e.p.), for the disturbance under investigation, can be identified. The methodology

proposed was tested on two medium-size power networks under complex situations. In all

the cases, the correct u.e.p. was identified and verified using detailed system trajectories.

Ahmed H. El-Abaid and K.Nagappan [3]: It gives a new approach to the quantita-

tive study of the transient stability of large power systems, using the second method of

Liapunov. A region of asymptotic stability for the post-fault system is obtained through

Liapunov theorems. If the initial conditions of the post-fault system at the time of switch-

ing (to restore normal operation) lie within this region, the system will be stable. The

3



moment at which the system is at the boundary of the region of asymptotic stability gives

the critical switching time. Liapunov’s direct (second) method for the study of stability

of nonlinear systems has been successfully applied to multi-machine power systems. The

advantages at the particular method include Automatic determination of stability or in-

stability as well as Automatic determination of the critical switching time.

C.L. Gupta and A.H. EL-Abiad [4]: In this paper, an algorithm presented based on

the physical behavior of the power system. The particular method computationally faster

than the previous methods. The algorithm presented in this paper removes one of the dif-

ficulties in the practical application of Liapunov’s direct method to power systems. This

approach provides a systematic method of eliminating the unstable equilibrium points

which are of no interest in the search for the critical region of stability. Thus the exact

determination of the unstable equilibrium point closest to the post-fault stable equilib-

rium point and reduction in the search time are the main contribution of this work.

G.D.Irisarri and G.C.Ejebe and J.G.Waight [5]: This paper presents a new method

for the determination of stable and unstable equilibrium points in the Transient Energy

Function method. Computation of the unstable equilibrium point is one of the funda-

mental steps in determination of the energy margin. The basis of the new method is its

formulation as a power flow problem and the use of well-known power flow algorithms for

its solution.

Hsiao-Dong Chiang, Chia-Chi Chu and Gerry Cauley [6]: This paper presents

a theoretical foundation of direct methods for both network-reduction and network-

preserving power system models. In addition to an overview, new results are offered.

A systematic procedure to construct energy functions for both network-reduction and

network-preserving power system models is proposed. The major breakthroughs pre-

sented in this paper include a solid mathematical foundation for direct methods. Numer-

ical solution algorithms capable of supporting on-line applications of direct methods are

provided. Practical demonstrations of using direct methods and the BCU method for on-

line transient stability assessments on two power systems are described. Further possible

improvements, enhancements and other applications of direct methods are outlined.

M K Khedkar and G M Dhole and V G Neve [7]: In this paper, a study of tran-
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sient stability assessment of a multi-machine power system is presented. The criteria for

identifying the machines likely to separate from the system, by loss of synchronism and

the energy associated with this separation is also developed. A theoretical foundation for

Transient Energy Function (TEF) Method is presented. A complete topological character-

ization of the stability boundary of a stable equilibrium point is derived. Determination

of critical energy by using Closest UEP and Controlling UEP methods is presented.

T.S.Chung, Fang Da-Zhong [8]: In this paper, a new fast algorithm to perform online

transient stability assessment (TSA) in a power system is proposed. The TSA is con-

cerned with finding the critical clearing time (CCT), the stability limit, for a specified

fault. The method possesses the merits of the fast speed of the potential energy boundary

surface method and the accuracy of the conventional time domain simulation technique.

In addition, an efficient stopping criterion for the post-fault trajectory simulation is also

suggested in order to speed up the computation.

M A Pai, M Laufenberg and P W Sauer [9]: This paper presents to clarify the

evaluation of path dependent integrals in the energy function method for stability anal-

ysis. Determination of path dependent integrals using trapezoidal method is presented.

Straight line approximation is compared with the trapezoidal method. The equivalent of

the energy function to the equal-area criterion is presented for the single machine system.

For the multi-machine case, the PEBS method explained.

Pravin Varaiya, Felix F. Wu and Rong-Liang Chen [10]: This paper presents a

critical review of research on direct methods carried out since 1970. Considerable theoret-

ical properties of energy functions and the limitations of the classical model and structure

preserving model is discussed. The stability boundary approximation is explained.

1.3 Structure of Thesis

Chapter Two: An overview of power system stability of a small-scale system. The dis-

cussion on stability and instability. This chapter also gives a basic mathematical approach

that required for transient stability assessment. It also describes the single machine infi-

nite bus system and equal area criterion which provides theory and techniques to discuss

5



the stability of system.

Chapter Three: It provides a discussion on non-linear equation solving and load flow

solutions. Energy function derivation for multi-machine system using relative rotor angle

formation, center of inertia formation.

Chapter Four: This chapter gives a energy function methods that are used for finding

transient stability are discussed. Properties of energy function methods and Results are

discussed based on Matlab database.

Chapter Five: This chapter concludes the thesis, by providing summary on the com-

pletion of the thesis.
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Chapter 2

State of The Art of Power System

Stability

2.1 Introduction

Stable operation of a power system depends on the ability to continuously match the

electrical output of generating units to the electrical load in the system. Power system

stability becomes an important issue to power industry. This chapter gives a detailed

description on power system stability, the swing equation and analytical tool for the

study of power system stability.

2.2 Power System Stability

Power systems are vast and heavily interconnected systems with a wide array of devices.

The stability of this complex power system may be broadly defined as its ability to

return to a steady operating condition or thee ability to regain to an acceptable state of

equilibrium after having been subjected to some form of disturbance [9].

When the rotor of a synchronous generator advances beyond a certain critical angle the

magnetic coupling between the rotor and the stator fails. This creates imbalance between

the input and output power. Which make the rotor to be unstable and accelerate without

control. This loss of synchronism between the rotor and the stator magnetic fields results
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in a large fluctuations in power output voltage and current. Which is a common form of

power system instability.

The studies of power instability problems can be generally separated into two main types:

1. Transient stability

2. Dynamic and steady state stability, depending on the magnitude and nature of

disturbance.

Transient instability is concerned with sudden and large changes in the network condition

due to transmission faults. Sudden load changes and loss of generating units. Dynamic

and steady state stability is basically the ability of the power system under load condition

to retain synchronism when subject to small disturbance such as the continual changes in

load or incremental variations in the operating point.

Transient instability problems can be studied in the first swing or multi-swing equation

basis. First swing equation uses a simple generator model without control system and it is

assumed to be stable if machines remain in synchronism within the first second following

a system fault (single machine infinite bus system). Multi-swing equation involves a

sophisticated machine model extending over a long period and the dynamic performance

is influenced by the generator control system(multi-machine system).

2.2.1 Transient stability

The state of transient instability refers to the ability of the system to remain in syn-

chronism when subjected to large disturbances. Transient stability may be applied to a

synchronous machine and multi-machine [10].

When it is applied to a synchronous machine, it can be defined as follows:

If a synchronous machine operating in steady state equilibrium is subjected to a distur-

bance of any kind which results in speed deviations (oscillations) of the machine rotor

from the (synchronously rotating) reference axis. Then the machine is called transient

stable if the rotor ultimately reaches a new stable equilibrium position.

On the other hand, for a multi machine system, it can be defined as:
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If the individual machines in a multi-machine system are operating in steady state equi-

librium and a disturbance of any kind is imposed on the system, then the system is called

transiently stable if each machine oscillates around and ultimately comes to rest at a new

stable equilibrium point.

The disturbances usually considered in transient stability are caused by the more severe

ones such as short circuit on transmission lines, buses or at transformer terminals. These

faults may be symmetrical, three phase to ground, single phase to ground, or two phase

to ground.

When a fault occurs, it is necessary to determine when to clear the fault without any of the

rotating machines losing their synchronism. The maximum time through which the fault

can be left on the system and yet have the system after its clearance is called the ’critical

clearing time’. Determination of critical clearing time therefore constitute an important

facet of transient stability study since such information enables the setting of relays to

clear the fault, and et cera. Other disturbances considered are sudden disconnection of

generating units or loads.

2.2.2 Steady state stability

Assuming that a system is operating in a certain steady state condition. For instance,

if small changes occur in the system, the system returns to steady state as t → ∞, this

particular condition is called steady state stable [1]. The main aim of the power system is,

whether the system is in stable condition or unstable condition. The rotor angle changes

with respect to time. If the rotor angle δ continuously increases with respect to time then

the system is unstable. The rotor angle does’t change with time with respect to reference

then the system is stable [17].

Figure 1.1a and Figure 1.1b shows the rotor stability/instability for multi-machine system.

Figure 1.1a shows that all relative rotor angles are finite, as t → ∞, so system is stable.

Figure 1.1b shows a two machines are going to be unstable. Remaining machines are

stable.
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Figure 2.1: A.Stable and B. Unstable system

2.3 Mathematical Background

Dynamic systems are generally described by a set of nonlinear differential equations of

the form

ẋ = F (x)

Power system can be described by the following equations, when system subjected to

disturbance [9]:

ẋ(t) = fpre(x(t)) −∞ < t ≤ 0 (2.1)

ẋ(t) = fd(x(t)) 0 < t ≤ tcr (2.2)

ẋ(t) = fpf (x(t)) tcr < t ≤ ∞ (2.3)

x(t) is the vector of state variables of the system at time t. At the time t = 0 the system

is experienced a fault the system state will change from pre-fault state to faulted state.

Which is from fpre to fd. During 0 < t ≤ tcr, the system under faulted period, before

fault is clear (tc) in the system there is a several changes. During fault period there is a

10



number of switchings in the system. After fault clearing the system enter into the post

fault fpf region. In the pre-fault period −∞ < t ≤ 0, system is under steady state. So,

now the initial condition x(0) = x0 is known [17]. Therefore, we then have only

ẋ(t) = fd(x(t)) 0 < t ≤ tcr (2.4)

x(0) = x0

and

ẋ = fpf (x(t)) t > tcr (2.5)

The solution of equation(2.4) provides at each instant of time the possible initial conditions

for equation(2.5). Let us assume the equation(2.5) has a stable equilibrium point xs. The

question is whether the trajectory x(t) for equation(2.5) with the initial condition x(tcr)

will converge to xs as t → ∞.The largest value of tcr for which this holds true is called

the critical clearing time tcr [17].

It is clear that if we have an accurate estimate of the region of attraction of the post-fault

stable equilibrium point (s.e.p) xs, then tcr is obtained when the trajectory of equation(2.4)

exits the region of attraction of equation(2.5). figure 2.2 illustrates this concept for a two-

dimensional system. The computation of the region of attraction for a general nonlinear

dynamical system is far from easy. It is not, in general, a closed region. In the case of

power systems with simple machine models, the characterization of this region has been

discussed theoretically in the literature [9].

The stability region consists of surface passing through the unstable equilibrium points

(u.e.p’s) of equation(2.5). For each fault, the mode of instability may be different if the

fault is not cleared in time. We may describe the interior of the region of attraction of the

post-fault system (equation(2.5)) through an inequality of the type V (δ, ω) < Vcr, where

V (δ, ω) is the Liapunov or energy function is shown in equation(2.5). V (δ, ω) is generally

the sum of the kinetic and potential energies of the post-fault system. The computation

of Vcr, called the critical energy, is different for each fault and is a difficult step.
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2.4 Swing Equation

Let us consider a three-phase synchronous alternator that is driven by a prime mover.

The conversion of mechanical energy to electrical energy of generator depends entirely

on the relative motion of the conductors with respect to the field lines. The dynamics

torque produced in this electromechanical system can be expressed as a function of the

electrical variables and the mechanical displacement. Therefore first swing equation is an

important equation that describes the effect of imbalance between the electromagnetic

torque and mechanical torque of the individual machine [16].

This electromechanical equation is derived from equating the inertia torque to the net

torque causing acceleration (or deceleration) as shown below.

Now we can write

J
dωi
dt

+Dωi = τm − τe (2.6)

Includes some mechanical rotational loss due to windage and friction

τt = τe +Dωm

or

τm = τt −Dωm = τe (2.7)

where τm is the net mechanical shaft torque. If, due to some disturbance,τm > τethen the

rotor accelerates. if τm < τe then it decelerates.

Then the rotor speed expressed as

ωm = ωsm +4ωm = ωsm +
dδm
dt

(2.8)

Where δm is the rotor angle expressed in mechanical radians. 4ωm = dδm
dt

is the speed

deviation in mechanical radians per second.

Substituting equation(2.8) into equation(2.6) gives

J
d2δi

dt2
+Dd

dδi
dt

= τm − τe (2.9)
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Multiplying through by the rotor synchronous speed ωsm gives

Jωsm
d2δi

dt2
+Ddωsm

dδi
dt

= ωsmτm − ωsmτe (2.10)

As power is the product of angular velocity and torque, the terms on the right hand side

of this equation can be expressed in power to give

Jωsm
d2δi

dt2
+Ddωsm

dδi
dt

=
ωsm
ωm

Pm −
ωsm
ωm

Pe (2.11)

where Pm is the net shaft power input to the generator and Pe is the electrical air-gap

power both expressed in watts. During a disturbance the speed of a synchronous machine

is normally quite close to synchronous speed so that ωm ' ωsmand equation(2.11) becomes

Jωsm
d2δi

dt2
+Ddωsm

dδi
dt

= Pm − Pe (2.12)

The coefficient Jωsm is the angular momentum of the rotor at synchronous speed and,

when given the symbol Mm, now equation(2.12) to be written as

Mm
d2δi

dt2
= Pm − Pe −Dm

dδi
dt

(2.13)

Where Dm = ωsmDd is the damping coefficient. Equation(2.13) is called the swing equa-

tion and is the fundamental equation governing the rotor dynamics.

It is commonly practice to express the angular momentum of the rotor in terms of a nor-

malized inertia constant when all generators of particular type will have similar ’inertia’

values regardless of their rating. The inertia constant is given the symbol H defined as the

stored kinetic energy in mega-joules at synchronous speed divided by the machine rating

Sn in megavolt-amperes so that

H =
0.5Jωsm

2

Sn
and Mm =

2HSn
ωsm

(2.14)

The power angle and angular speed can be expressed in electrical radians and electrical
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radians per second respectively, rather than their mechanical equivalent, by substituting

δ =
δm
p/2

and ωs =
ωsm
p/2

(2.15)

Where p is the number of poles. Introducing the inertia constant and substituting equa-

tion(2.15) in equation(2.13) allows the swing equation to be written as

2HSn
ωs

d2δi

dt2
+D

dδi
dt

= Pm − Pe (2.16)

Where D is the damping coefficient (D = 2Dm/p). The equation(2.16) can be rationalized

by defining an inertia coefficient M and damping power PD such that

M =
2HSn
ωsm

and PD = D
dδ

dt
(2.17)

When the swing equation takes the common form

M
d2δ

dt2
= Pm − Pe − PD (2.18)

2.5 Energy Function For Single Machine Infinite Bus

System

The Energy function is always constructed for post-fault system [17]. In the case of Single

Machine Infinite Bus system(Figure 2.2), the post-fault equations are

M
d2δ

dt2
= Pm − Pe − PD (2.19)

Assume there is no damping in the system. Consider classical model.The equation(2.19)

has two equilibrium points (δs;ω = 0) and (δ;ω = 0)

M
dω

dt
= Pm − Pemaxsinδ = f(δ) (2.20)
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Figure 2.2: Single machine infinite bus system

Where Pe
max = E1E2

X
, δ is the rotor relative to the infinite bus, and dδ

dt
= ω is the relative

rotor-angle velocity. Now we can write

dt =
Mdω

f(δ)
and dt =

dδ

ω
(2.21)

By equating two terms in equation(2.22). Now we have

Mdω

f(δ)
=
dδ

ω
(2.22)

Multiply both sides by ω, and integrate both sides.

V (δ, ω) =

∫ ω

0

Mωdω −
∫ δ

δs
(Pm − Pemaxsinδ)dδ = constant (2.23)

Evaluating the integrals gives the Energy function:

V (δ, ω) =
1

2
Mω2 − [Pm(δ − δs) + Pe

max(cosδ − cosδs)] (2.24)
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The quantity V (δ, ω) is sum of Kinetic and Potential energies, and remains constant once

the fault is cleared.

V (δ, ω) = VKE + VPE (2.25)

Where

VKE(ω) =
1

2
Mω2 and VPE(δ) = −Pm(δ − δs)− Pemax(cosδ − cosδs)

Where δs = sin−1( Pm
Pmaxe

), This is a stable equilibrium point surrounded by two unstable

equilibrium points δu = π − δs and δu = −π − δs.

The critical value of the Lyapunov function V at the nearest stationary point which, for

the system considered here, is equal to the second equilibrium point (π − δs, ω = 0).

Substituting these values into equation(2.24), now the energy function will be:

Vcr = 2cosδsPmax
e − Pm(π − 2δs) (2.26)

The generator-infinite busbar system is stable for all initial conditions (δ0, ω0) satisfying

the condition

V (δ0, ω0) < Vcr (2.27)

2.6 Energy Function For Two Machines

A system having two finite machines may be replaced by an equivalent system having one

finite machine and an infinite bus, so that the swing equation and swing curves of angular

displacement between the two machines are same for both the systems. It is necessary to

use an equivalent inertia constant, equivalent input, equivalent output for the equivalent

finite machine. The equivalent inertia constant is a function of the inertia constants of

the two actual machines, and the equivalent input and output are functions of inertia

constants, input, and output of the two actual machines [7] [12].
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Let the swing equation of the two equivalent machines be:

M1
d2δ1

dt2
= Pm1 − Pe1 (2.28)

M2
d2δ2

dt2
= Pm2 − Pe2 (2.29)

Where

Pmi(i = 1, 2) Mechanical inputs

Pei(i = 1, 2) Electrical inputs

Let relative rotor angle be δ = δ1− δ2

Then the equivalent circuit swing equation is:

d2δ

dt2
=
d2δ1

dt2
− d2δ2

dt2
=
Pm1 − Pe1

M1
− Pm1 − Pe2

M2
(2.30)

Multiplying both sides by M1M2/M1 +M2 gives

M1M2

M1 +M2

d2δ

dt2
=

1

(M1 +M2)
[M2(Pm1 − Pe1)−M1(Pm2 − Pe2)] (2.31)

=
1

(M1 +M2)
[M2Pm1 −M1Pm2 − (M2Pe1−M1Pe2)] (2.32)

Where

Pmeq =
1

(M1 +M2)
(M2Pm1 −M1Pm2)

Peeq =
1

(M1 +M2)
(M2Pe1 −M1Pe2)

Meq =
M1M2

(M1 +M2)

Therefore the final equivalent Energy function for two machine system is

Meq
d2δ

dt2
= Pmeq − Peeq (2.33)
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Figure 2.3: Equal area criterion for SMIB case

2.7 Equal Area Criterion and The Energy Function

The pre-fault, faulted, and post-fault power angle curves for the single machine infinite-

bus system are shown in below figure 2.3. The system is initially at δ = δ0. We shall now

show that are A1 represents the kinetic energy injected into the system during the fault.A2

represents the ability of the post-fault system to absorb this energy. By the equal- area

criterion, the system is stable if A1 < A2 [17].

Let the faulted and post-fault equations, respectively, be

M
d2δ

dt2
= Pm − PeF sinδ (2.34)

M
d2δ

dt2
= Pm − Pemaxsinδ (2.35)
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Where

Pe
F =

E1E2

XF

and

Pe
max =

E1E2

X

The area A1 is given by

A1 =

∫ δcl

δ0
(Pm − PeF sinδ)dδ

=

∫ δcl

δ0
M
dω

dt
dδ

=

∫ δcl

δ0
M
dω

dt
ωdt

=

∫ ωcl

0

Mωdω =
1

2
Mωcl

2 (2.36)

Hence, A1 is the Kinetic energy injected into the system due to the fault. Area A2 is

given by

A2 =

∫ δu

δcl
(Pe

maxsinδ − Pm)dδ = −Pemax(cosδu − cosδcl)− Pm(δu − δcl)

= VPE(δu)− VPE(δcl)

From equation(2.25) add area A3 to both sides of the criterion A1 < A2, the result is

A1 + A3 < A2 + A3 (2.37)

Now

A3 =

∫ δcl

δs
(Pe

maxsinδ − Pm)dδ = −Pemax(cosδcl − cosδs)− Pm(δcl − δs) (2.38)

Changing δcl, ωcl to any δ, ω and adding A1 to A3, gives

A1 + A3 =
1

2
Mω2 − [Pm(δ − δs) + Pe

max(cosδ − cosδs)] (2.39)
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This is the same as V (δ, ω) as in equation(2.24). Now from Figure 2.3

A2 + A3 =

∫ δπ−δ
s

δs
(Pe

maxsinδ − Pm)dδ

= 2cosδsPmax
e − Pm(π − 2δs) (2.40)

The right hand side of the equation(2.40) is also verified to be the sum of the areas A2

and A3. Equation(2.40) is verified from equation(2.26). Substitute δ = δu and ω = 0 in

energy function we will get

V (δu, 0) = −Pm(π − 2δs) + 2cosδsPmax
e = A2 + A3

= VPE(δu)

∼= Vcr (2.41)

So, the energy function for single machine infinite bus bar system is

V (δ, ω) =
1

2
Mω2 − [Pm(δ − δs) + Pe

max(cosδ − cosδs)] (2.42)

Thus, the equal-area criterion A1 < A2 is equivalent to A1 + A3 < A2 + A3, this system

is stable if

V (δ, ω) < Vcr (2.43)

Where Vcr = VPE(δu). Note that δ, ω are obtained from the faulted equation

Vcr is the critical energy of the synchronous motor closest to the unstable equivalent point

along the faulted trajectory at certain clearing time.

Thus it can be seen that the Single Machine Infinite Bus energy function can be obtained

using the equal area criterion.
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Chapter 3

Energy Function For Multi-machine

System

3.1 Introduction

The classical model for the generator is used to describe the stability of power systems. To

analyze the stability of these power system, normally the direct method is employed. Be-

cause this classical model has the advantage of close relationship between the mechanical

rotor angle deviation and the electrical equivalent circuit, power engineers are described

that this model is sufficient in predicting the stability of power system [3].

To analyze any Multi-machine system, this classical model with the reference bus can be

used to develop the energy function. This can be accomplished by treating the loads as

constant impedance and include non-linear loads.

3.2 Load Flow Studies

Load flow studies are used to ensure that electrical power transfer from generators to

consumers through the grid system is stable, reliable and economic. Conventional tech-

niques for solving the load flow problem are iterative, using the Newton-Raphson or the

Gauss-Seidel methods.It is used to find the magnitude and phase angle of the voltage at

each bus and the real and reactive power flows in the system components.
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3.2.1 Bus classification

In power system each bus having four variables: voltage magnitude, voltage angle, real

power and reactive power. During the operation of power system each bus has two

unknown variable and two known variables. Generally each bus in system classified as

one of the following bus type [16]:

1. Slack or Swing or Float Bus:

This bus is considered as the reference bus. It is connected to the generator whose

rating is high relative to the other generators. During the operation, the voltage

of this bus is always specified and remains constant in magnitude and angle. It

provides if any additional power required to the other generators.

2. Generator or PV Bus:

During the operation the voltage magnitude at this the bus is kept constant. Also,

the active power supplied is kept constant at the value that satisfies the economic

operation of the system. Most probably, this bus is connected to a generator where

the voltage is controlled using the excitation and the power is controlled using the

prime mover control.Sometimes, this bus is connected to a VAR device where the

voltage can be controlled by varying the value of the injected VAR to the bus.

3. Load or PQ Bus:

This bus is not connected to a generator so that neither its voltage nor its real power

can be controlled. On the other hand, the load connected to this bus will change

the active and reactive power at the bus in a random manner. To solve the load

flow problem we have to assume the complex power value (real and reactive) at this

bus.
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3.3 Load Flow Using Newton Raphson Method

3.3.1 General approach

The Newton-Raphson method is an iterative technique for solving systems of simultaneous

equations in the general form:

f1(x1, ...., xn) = K1

f2(x1, ...., xn) = K2

fn(x1, ...., xn) = Kn (3.1)

Where f1, f2, .., fn are differential functions of the variables x1, x2, .., xn and k1, k2, .., kn

are constants. Applied to the load flow problem, the variables are the nodal voltage

magnitudes and phase angles, the functions are the relationships between power, reactive

power and node voltages, while the constants are the specified values of power and reactive

power at the generator and load nodes.

Power and reactive power functions can be derived by starting from the general expression

for injected current at node n:

In = Σn
k=1YnkVk (3.2)

so the complex power input to the system at node n is:

Sn = VnI
∗
n (3.3)

where the superscript ∗ denotes the complex conjugate. Substituting In into Sn with all

complex variables written in polar form:

Sn = VnΣn
k=1Y

∗
nkV

∗
k = Σn

k=1|Vn||Vk||Ynk|∠(δn − δk − θnk) (3.4)

The power and reactive power inputs at node n are derived by taking the real and imag-

inary parts of the complex power:

Pn = Real(Sn) = Σn
k=1|Vn||Vk||Ynk|cos(δn − δk − θnk) (3.5)
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Qn = imag(Sn) = Σn
k=1|Vn||Vk||Ynk|sin(δn − δk − θnk) (3.6)

The load flow problem is to find values of voltage magnitude and phase angle, which,when

substituted into above two equations, produce values of real power and reactive power

equal to the specified set values at that node, Pns and Qns.

The first step in the solution is to make initial estimates of all the variables: |V 0
n |, δ0n

where the superscript 0 indicates the number of iterative cycles completed. Using these

estimates, the power and reactive power input at each node can be calculated from above

equations. These values are compared with the specified values to give a real power and

reactive power error. For node n:

∆P 0
n = Pns − Σn

k=1|V 0
n ||V 0

k ||Ynk|cos(δ0n − δ0k − θnk) (3.7)

∆Q0
n = Qns − Σn

k=1|V 0
n ||V 0

k ||Ynk|sin(δ0n − δ0k − θnk) (3.8)

The power and reactive power errors at each node are related to the errors in the voltage

magnitudes and phase angles, e.g.∆|V 0
n |,∆δ0n, by the first order approximation:



.

.

.

∆P
(0)
n

−−−

.

.

.

∆Q
(0)
n



=



. . . . . . . .

. . . . . . . .

. . . . . . . .

∂Pn
∂δ2

∂Pn
∂δ3

. ∂Pn
∂δn

. . ∂Pn
∂|Vn−1|

∂Pn
∂|Vn|

−−− −−− − −−− − − − −−−

. . . . . . . .

. . . . . . . .

. . . . . . . .

∂Qn
∂δ2

∂Qn
∂δ3

. ∂Qn
∂δn

. . ∂Qn
∂|Vn−1|

∂Qn
∂|Vn|





∆δ
(0)
2

∆δ
(0)
3

.

∆δ
(0)
n

−−−

.

.

∆|V (0)
n−1|

∆|V (0)
n |


where the matrix of partial differentials is called the Jacobian matrix, [J ]. The elements

of the Jacobian are calculated by differentiating the power and reactive power expressions

and substituting the estimated values of voltage magnitude and phase angle.

At the next stage of the Newton-Raphson solution, the Jacobian is inverted. Matrix inver-
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sion is a computationally-complex task with the resources of time and storage increasing

rapidly with the order of [J ]. This requirement for matrix inversion is a major drawback of

the Newton-Raphson method of load flow analysis for large-scale power systems.However,

with the inversion completed, the approximate errors in voltage magnitudes and phase

angles can be calculated by pre-multiplying both sides of above expression.



∆δ
(0)
2

∆δ
(0)
3

.

∆δ
(0)
n

−−−

.

.

∆|V (0)
n−1|

∆|V (0)
n |



=
[
J (0)

]−1



.

.

.

∆P
(0)
n

−−−

.

.

.

∆Q
(0)
n


The approximate errors from above expression are added to the initial estimates to pro-

duce new estimated values of node voltage magnitude and angle. For node n:

|V 1
n | = |V 0

n |+ ∆|V 0
n | and δ1n = δV 0

n + ∆δ0n (3.9)

The new estimates are not exact solutions to the problem. However, they can be used in

another iterative cycle. The process is repeated until the differences between successive

estimates are within an acceptable tolerance band.

The description above relates specifically to a load node, where there are two unknowns

(the voltage magnitude and angle) and two equations relating to the specified real power

and reactive power. For a generator node the voltage magnitude Vn and real power Pn

are specified, but the reactive power Qn is not specified. The order of the calculation can

be reduced by 1. There is no need to ensure that the reactive power is at a set value

and only the angle of the node voltage needs to be calculated, so one row and column are

removed from the Jacobian. For the floating bus, both voltage magnitude and angle are
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specified, so there is no need to calculate these quantities.

3.4 Energy Function For Multi-Machine System

The swing equations for n machines system:

Hi

πf

d2δi

dt2
+Di

dδi
dt

= Pmi − Pei, i = 1, 2, .., n (3.10)

where

Hi inertia constants of the ith machine

Di damping constant in sec/radian of the ith machine

Pmi mechanical input to the ith machine(assumed constant) in per unit

Pei electrical power output of the ith machine in per unit

δi rotor angle of the ith machine with respect to a synchronously rotating reference frame

in radians

3.4.1 Classical model

The Figure 3.1 shows a classical model of a 3-machine 9-bus system. It represents 3

generators (machines) and 9 bus. The first generator is a swing generator while the 2nd

and 3rd can be referred as the P.V bus which provides a real power and small amount

of reactive power. The objective of this thesis will be fulfilled using this system and its

energy function which will be discussed as follows [1].

3.4.2 Methods to obtain energy function for multi-machine sys-

tem

Multi-Machine equation can be derived similarly to the single machine system [2]. The

complexity of transient stability analysis can be reduced by similar simplifying assump-

tions made as that of the single machine as follows:
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Figure 3.1: 3-Machine 9-Bus System

1. Each synchronous machine is represented by a constant voltage source behind the

direct axis transient reactance. This representation neglects the effect of saliency

and assumes constant flux linkages.

2. Damping or asynchronous power are ignored.

3. The governor’s actions are neglected and the input powers are assumed to remain

constant during the entire period of simulation.

4. Machines belonging to the same station swing together and are said to be coherent.

This group of coherent machines can be grouped as one equivalent machine.

5. Using pre-fault bus voltages, all loads are converted to equivalent admittances to

ground and assumed to be constant.
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6. the angle of voltage behind the machine reactance.

The swing equation shown below which is already derived. Energy function for multi-

machine bus system based on the

1. Network Reduction Technique

a) Relative rotor angle formation

b) Center of inertia formation

Hi

πf

d2δi

dt2
+Di

dδi
dt

= Pmi − Pei, i = 1, 2, .., n (3.11)

Let Hi
πf

= Mi, Pi = Pmi − |E2
i |Gii

Then

Mi
d2δi

dt2
+Di

dδi
dt

= Pi − Σn
j=16=i

(Cijsinδij +Dijcosδij) (3.12)

It can be write in another form as:

Mi
d2δi

dt2
+Di

dδi
dt

= Pi − Pei(δ1, ..., δn), i = 1, 2, .., n (3.13)

3.5 Network Reduction Technique

3.5.1 Center of inertia formation

The alternative method uses the center of inertia (COI) as the reference angle since it

is a representation of the ’mean motion’ of the system. The resulting energy function

V (δ, ω) obtain from this method is similar that of the relative rotor angle formation [3]

[9] [19]. Assuming the transfer conductance (Dij) to be zero. The center of inertia for

whole system is:

δ0 =
1

MT

Σn
i=1Miδi (3.14)

with the center of speed as:

ω0 =
1

MT

Σn
i=1Miωi (3.15)

where

MT = Σn
i=1Mi
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Next, transform the variable δi and ωi to the COI variables as:

θi = δi − δ0 (3.16)

ω̃i = ωi − ω0 (3.17)

Then the swing equation becomes with Di = 0 can be depicted as:

Mi
d2θi

dt2
= Pi − Σn

j=16=i
[Cijsinθij +Dijcosθij]−

Mi

MT

PCOI (3.18)

∼= fi(θ) i = 1, 2, .., n (3.19)

where

Pi = Pmi− |E2
i |Gii

PCOI = Σn
i=1Pi − 2Σn−1

i=1 Σn
j=i+1Dijcosθij

Corresponding to the post-fault which is the area of our interest, we have the differential

equation:

Mi
dω̃i
dt

= fi(θ) (3.20)

dθi
dt

= ω̃i, t ≥ tcl i = 1, 2, ..., n (3.21)

Let the post-fault system have the stable equilibrium point at θ = θs, ω̃ = 0. Which can

be obtained by solving the non linear algebraic equations

fi(θ) = 0, i = 1, 2, ..., n (3.22)

Since Σi=1nMiθi = 0, θn can be expressed in terms of other θi’s and used in above equation.

Therefore the above equation becomes

fi(θ1, ...., θn−1) = 0, i = 1, 2, ..., n (3.23)

There is general agreement that the first integral of motion[13]. The proper energy func-

tion is derived as follows.

29



We have, for i=1,2,..,n

dt =
M1dω̃1

f1(θ)
=
dθ1
ω̃1

=
M2dω̃2

f2(θ)
=
dθ2
ω̃2

= ....
Mndω̃1

fn(θ)
=
dθn
ω̃n

(3.24)

Integrating the pairs of equation for each machine between (θsi , 0), the post-fault s.e.p to

(θi, ω̃i) result in

V (θ, ω̃) =
1

2
Σn
i=1Miω̃2

i − Σn
i=1

∫ δi

δsi

fi(θ)dθi (3.25)

Adding these function for all the machines, we obtain the first integral of motion for the

system as(omitting the algebra):

V (θ, ω̃) =
1

2
Σn
i=1Miω̃2

i − Σn
i=1Pi(θi − θsi )− Σn−1

i=1 Σm
j=i+1[Cij(cosθij − cosθsij)

−
∫ δi+δj

δsi+δ
s
j

Dijcosθijd(θi + θj)] (3.26)

= VKE(ω̃) + VPE(θ) (3.27)

The above equations contains path-dependent integral terms. In view of this, we cannot

assert that Vi and V are positive-definite. If Dij ≡ 0, it can be shown that V (θ, ω̃)

constitutes a proper Lyapunov function.

3.5.2 Relative rotor angle formation

The method employs the idea of choosing the machine with heavy inertia to be the

reference machine, for instance in the case of a 3 machine 9 bus system. Choose Generator

1 as the reference bus [18].

We know
dδi
dt

= ωi (3.28)

dωi
dt

= −Di

Mi

ωi +
Pi
Mi

− Pei
Mi

(3.29)

Let us take generator 1 as the reference bus, now the above equation becomes:

d(δi − δ1)
dt

= (ωi − ω1) (3.30)
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d(ωi − ω1)

dt
= −D

M
(ωi − ω1) +

Pi
Mi

− P1

M1

− Pei
Mi

+
Pe1
M1

(3.31)

The electrical power output will be

Pei = Σn
j=16=i

|Vi||Vj||Yij|cos(θij+δj−δi) = Σn
j=16=i

|Vi||Vj||Yij|cos(θij+δj−δ1−δi+δ1) (3.32)

Now

Pe1 = Σn
j=1|V1||Vj||Y1j|cos(θ1j + δj − δ1) = Σn

j=1|V1||Vj||Y1j|cos(θ1j + δj − δ1) (3.33)

Let us take

δi − δ1 = δ̃i (3.34)

ωi − ω1 = ω̃i (3.35)

Now the first order differential equations by using δi with respect to a synchronous ro-

tating frame δ1 and introducing the state variables δ̃i and ω̃i. Now the dynamic equation

becomes:
dδ̃i
dt

= ω̃i i = 2, 3, .., n (3.36)

dω̃i
dt

= −D
M
ω̃i +

Pmi
Mi

− Pm1

M1

− 1

Mi

Σn
j=16=i

|Vi||Vj|Bijsin(δ̃i− δ̃j) +
1

M1

Σn
j=1|V1||Vj|B1jsin(δ̃j)

(3.37)

Now the above equation we write as:

dω̃i
dt

= fi(θ) (3.38)

dθi
dt

= ω̃i, t ≥ tcl i = 2, ..., n (3.39)

Let the post-fault system have the stable equilibrium point at θ = θs, ω̃ = 0. Which can

be obtained by solving the non linear algebraic equations

fi(θ) = 0, i = 2, ..., n (3.40)
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There is general agreement that the first integral of motion. The proper energy function

is derived as follows.

We have, for i=2,..,n

dt =
Midω̃i
fi(θ)

=
dδi
ω̃i

(3.41)

Integrating the pairs of equation for each machine between (θsi , 0), the post-fault s.e.p to

(θi, ω̃i) result in

V (δ, ω̃) =
1

2
Miω̃2

i −
∫ δ̃i

δ̃si

fi(θ)dδi (3.42)

Now

V (δ, ω̃) =
1

2
Miω̃2

i −
∫ δ̃i

δ̃si

(Pi − P1
Mi

M1

)dδ̃i −
∫ δ̃i

δ̃si

Σn
j=16=i

|Vi||Vj|Bijsin(δ̃i − δ̃j)dδ̃i

−Mi

M1

∫ δ̃i

δ̃si

Σn
j=1|V1||Vj|B1jsin(δ̃j)dδ̃i (3.43)

Now the energy function is

V (δ, ω̃) =
1

2
Σn
i=2Miω̃2

i −Σn
i=2P̃i(δ̃i− δ̃si )−Σn−1

i=1 Σn
j=i+1|Vi||Vj|Bij[cos(δ̃i− δ̃j)− cos(δ̃si − δ̃sj )]

−Σn
i=1

Mi

M1

|V1||Vi|sin(δ̃i) (3.44)

where

P̃i = (Pi − Mi

M1
P1)

n = number of machines

ωi = angular velocity of the rotor

ωs = synchronous speed in radians per second

δin = rotor angle of ithmachine expressed with respect to a synchronous rotating reference

time in radians

δjn = rotor angle of jth machine expressed with respect to a synchronous rotating refer-

ence time in radians
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Pmi = mechanical power input to the ith machine

Pi = Pmi − |E2
i |Gii, power injected into ith machine

Pj = Pmj − |E2
j |Gjj, power injected into jth machine

To obtain an energy function, Di must be equal to zero so that it can be represent as

a sum of a path independent integral between VKE(ω̃) + VPE(δ) , together with a path

dependent integral Vd(δ).

Therefore the energy function using the relative rotor angle formation is:

V (δ, ω̃) = VKE(ω̃) + VPE(δ) (3.45)

V (δ, ω̃) = VKE(ω̃) + VP (δ) + Vd(δ) (3.46)

where

VKE(ω̃) kinetic energy of machine VPE(δ) overall potential energy of machine

VP (δ) potential energy of machine at initial state

Vd(δ) change in potential energy of machines due to path dependent of Dij terms
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Chapter 4

Energy Function Techniques

4.1 Introduction

The theoretical basis of direct methods for power system transient stability assessment is

the knowledge of the stability region. We are presenting analytical results of stability re-

gion of a non-linear systems can be completely characterized. For this non-linear systems,

which have energy functions, a complete characterization of the stability boundary will

be derived and optimal schemes to estimate its stability regions via an energy function

will be presented [6].

Power system stability analysis is concerned whether the post-fault system is settle to

an acceptable considerable operating conditions. The direct methods for stability analy-

sis use algorithms procedure to asses, without performing post-fault integration, System

post-fault stability property by comparing the system energy at the initial state of the

post-fault trajectory to a critical energy value. Direct methods not only eliminate time

consuming procedure of numerical integration of post-fault system but also provide a

quantitative measure of the degree of system stability.

The following steps are composed for transient stability using direct methods.

1. Simulate the fault on trajectory.

2. Find the initial point of the post-fault system.

3. Compute an energy function for the post-fault power system.
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4. Compute the energy function value at the initial point of the post-fault system.

5. Compute the critical energy for the fault on trajectory.

6. Perform stability analysis by comparing the system energy V (δ, ω) at the initial state

of post fault system with the critical energy Vcr. If system energy is less than the

critical energy then the post-fault trajectory will be stable; otherwise,it is unstable.

4.1.1 Properties of energy function

We consider a general non-linear autonomous dynamical system described by following

equation

˙x(t) = f(x(t)) (4.1)

We say a function f(x(t)) is an energy function for the system. if the following three

conditions are satisfied:

1. dV
dt
≤ 0 across any trajectory

2. ˙V (x) = 0 only if x is an equilibrium point

3. V (x(t)) is bounded means x(t) is also bounded

Three methods are methods are explained in these thesis. These methods are:

4.1.2 Closest u.e.p method

Vcr = V (xuc), where xuc is the unstable equilibrium point (u.e.p) resulting in the low-

est value of Vcr among the u.e.p’s inside in the stability boundary. This requires the

computation of many u.e.p’s of the post-fault system and, hence, is not computationally

attractive. It gives conservative results, it is explained in controlling u.e.p method [4].

If a post-fault system trajectory at point (δ3, ω3), whose energy function is V (δ3, ω3). If

this is less than Vcr, then the system state is inside the stability region (δs, 0). The figure

4.2 shows the both stable and unstable system. The closest u.e.p method gives some con-

servative results. The figure 4.2(a) shows the stable system, whose Post-fault trajectory
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of this system is inside the stability boundary. Figure 4.2(b) shows the unstable system,

whose post-fault trajectory of this system is outside the boundary [18].
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Figure 4.1: (a).Stable system using closest u.e.p method (b).Unstable system using closest
u.e.p method

4.1.3 Determination of the critical energy

1. Find the all equilibrium points [5].

2. Arrange these type of equilibrium points according to the values of energy function.

3. The equilibrium point with lowest energy function, ie, inside the stability boundary

is the closest u.e.p [12].

4. The critical energy Vcr is the value of V (δ, ω) at the closest u.e.p, ie, Vcr = V (xuc).

4.1.4 Determination of stability

1. Calculate the value of V (δ, ω) at the time of fault cleared.

2. If V (δ, ω) < Vcr then the post-fault system is stable, otherwise it is unstable.
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4.1.5 Controlling u.e.p method

Vcr = V (xu), at which xu is the relevant or controlling u.e.p, i.e., the u.e.p closest to the

point where the fault on trajectory exits that is the region of attraction. This is called

the controlling u.e.p method. If the fault on trajectory (δ(t), ω(t)) moves towards δ1,

the controlling u.e.p method uses the constant energy surface passing through the u.e.p

(δ1, 0), which is {(δ, ω) : E(δ, ω) = Vcr(δ1)}, if the fault on trajectory (δ(t), ω(t)) moves

towards δ2, the controlling u.e.p method uses the constant energy surface passing through

the u.e.p (δ2, 0), which is {(δ, ω) : E(δ, ω) = Vcr(δ2)} is the local approximation [1].

The figure 4.4 shows that the comparison between the both closest u.e.p method and

controlling u.e.p method. The post-fault trajectory (δ(t), ω(t)) starts at point P which is

inside the boundary according to controlling u.e.p method but according to closest u.e.p

method it is outside the boundary. So, the system is stable if the method is used is

controlling u.e.p method. The system is unstable if the method is used is closest u.e.p

method [18].

)0,( s

Figure 4.2: The approximated controlling u.e.p. method

4.1.6 Determination of critical energy

1. Find all the equilibrium points [5].
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Figure 4.3: The pre-fault trajectory ends at point P. which is lies inside the controlling
u.e.p boundary. So, this is stable

2. The equilibrium point with highest energy function, ie, inside the stability boundary

is the controlling u.e.p.

3. The critical energy Vcr is the value of V (δ, ω) at the closest u.e.p, ie, Vcr = V (xco).

4.1.7 Determination of stability

1. Calculate the value of V (δ, ω) at the time of fault cleared.

2. If V (δ, ω) < Vcr then the post-fault system is stable, otherwise it is unstable.

4.1.8 Potential energy boundary surface method

The controlling u.e.p method has one problem. That is, it is very difficult to find the

u.e.p(controlling) in the controlling u.e.p method. Vcr is the value of potentia energy

along the fault-on trajectory (δ, ω). The PEBS method gives the approximation of the

boundary. No need to find unstable equilibrium points. This is the one of the advantage of
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the PEBS method compared to controlling u.e.p method. It takes very less computational

time [17].

4.1.9 Determination of the critical energy

1. Computing all the stable equilibrium points [5].

2. Formulating the energy function V (δ, ω). Generally, V (δ, ω) is the sum of kinetic

and potential energies of the post-fault system, i.e., V (δ, ω) = VKE(ω) + VPE(δ).

3. Computing of Vcr.

The fault-on trajectory (δ(t), ω(t)) integrates until the potential energy VPE(δ)

reaches a maximum potential energy. This maximum potential energy (V max
PE ) is

called the critical energy of the PEBS method.

4. Calculating the time instant tcr when V (δ, ω) = Vcr on the faulted trajectory. The

faulted trajectory has to be integrated for all the three methods to obtain tcr. In

the PEBS method, the faulted trajectory is already available while computing Vcr.

The computation time is least for the PEBS method.

4.1.10 Determination of stability

1. Compare the energy obtained from solving the power flow of the system with Vcr.

a. If Vcr is smaller than the energy function value V (δ, ω) using the energy function,

the system is stable.

b. If Vcr is larger than the energy function value V (δ, ω) using the energy function,

the system is unstable.

4.2 Results and Discussion

4.2.1 Introduction

Based on the stability criterion energy function already discussed in previous chapters,

a mathematical database was created using the Matlab software. This database defines
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the energy function. It can also standard if any small-scale power system is stable in

accordance to the energy function of that particular system examined.

4.2.2 Input parameters

The input parameters for the energy function are the electrical power, mechanical power,

rotor angle, speed of machines, real power, reactive power. These parameters are used to

find the critical clearing time and stability of power system. Figure 2.2 shows the single

machine infinite bus system and Figure 3.1 shows the 3-machines 9-bus system.

4.3 Single Machine Infinite Bus System

For transient stability assessment consider single machine infinite bus system is shown in

figure 2.2. Fault occur on one of the transmission line. Critical clearing time using clos-

est u.e.p method is found by comparing critical energy(Vcr) with system energy(V (δ, ω))

continuously. When the critical energy(Vcr) and system energy(V (δ, ω)) are equal(Vcr =

V (δ, ω)) the time at that instant is called critical clearing time. Whose critical clearing

time for closest u.e.p method is 0.57s is shown in figure 4.4. Controlling u.e.p method is

also same as closest u.e.p method. Whose critical clearing time is 0.59s is shown in figure

4.5.

To find the critical value V (δ, ω) the fault on trajectory is monitored until it crosses

the PEBS at a point θ∗. In many cases, θu the controlling u.e.p is close to θ∗, so that

VPE(θu) ≈ VPE(θ∗) ∼= Vcr. This crossing is also approximately the point at which VPE(θ)

is maximum along the faulted trajectory. Hence, Vcr can be taken as equal to V max
PE (θ)

along the faulted trajectory. The PEBS crossing is also the at which fT (θ).(θ − θs) = 0.

f(θ) is the accelerating power in post-fault system. That this is the same point at which

VPE(θ) is maximum as shown in figure 4.6 and figure 4.7. The figure 4.7 is shown that

the PEBS function crossing horizontal(zero axis) axis at the time 0.77s. The potential

energy value at 0.77s as shown in figure 4.6(b) corresponding time value of system energy
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Figure 4.4: Single machine infinite bus system using closest u.e.p method whose critical
clearing time is Tcr = 0.57s

is 0.58s is shown in figure 4.6(a). So, the critical clearing time for PEBS method is 0.58s.

The simulation results of proposed strategy, i.e., closest u.e.p, controlling u.e.p and

potential energy boundary surface methods are given in table 4.1. Comparison of three

methods is done with time domain simulation (given in table 4.2) whose critical clearing

time is 0.61s. If fault clearing time is 0.57s then all the three methods are stable. If

fault clearing time is 0.58s closest u.e.p method is unstable remaining two methods are

in stable. If fault clearing time is 0.59s controlling u.e.p method is stable remaining two

methods are unstable. From this comparison we can say that controlling u.e.p method is

close to the time domain simulation.

After finding critical clearing time test the stability of the system. Clear the fault at

Tc = 0.2s whose transient energy is Vtot = 0.2670 and critical energy is Vcr = 1.2135.
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Figure 4.5: Single machine infinite bus system using controlling u.e.p method whose
critical clearing time is Tcr = 0.59s

Figure 4.6: Single machine infinite bus system using PEBS method (a). V (δ, ω) green
line; (b). VPE(θ) blue line
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Figure 4.7: Single machine infinite bus system using PEBS method.The monitoring of the
PEBS crossing by fT (θ).(θ − θs)

Table 4.1: Critical Clearing Time of Three Methods for Single Machine Infinite Bus
System

S.No. Method Name δs δu Vcr Tcr

1 Closest u.e.p 0.5513 2.5903 1.2135 0.57

2 Controlling u.e.p 0.5513 -3.6929 7.4967 0.59

3 PEBS method 0.5513 no need -0.9642 0.58

4 Time domain 0.5513 no need no need 0.61

δs: Stable equilibrium point; δu: Unstable equilibrium point;
Tcr: Critical clearing time; Vcr: Critical energy

Table 4.2: Comparison of Three Methods for Single Machine Infinite Bus System
S.No. Tc Closest u.e.p Controlling u.e.p PEBS Method

(Tcr = 0.57s) (Tcr = 0.59s) (Tcr = 0.58s)
1 0.57s stable stable stable

2 0.58s unstable stable stable

3 0.59s unstable stable unstable

4 0.60s unstable unstable unstable

Tc: Fault clearing time; Tcr: Critical clearing time
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Figure 4.8: Single machine infinite bus system is stable for Tc = 0.2s, whose critical
clearing time is Tcr=0.61s

Figure 4.9: Single machine infinite bus system is unstable for Tc = 0.62s, whose critical
clearing time is Tcr=0.61s

Vcr > Vtot so the system is stable is shown in figure 4.8. Clear the fault at Tc = 0.62s

whose transient energy is Vtot = 1.4053 and critical energy is Vcr = 1.2135. Vcr < Vtot, so

the system is unstable is shown in figure 4.9.

4.4 Multi-machine System

Consider 3-machine 9-bus multi-machine system shown in figure 3.1. Transient Energy

Function method gives the results very fast; only it requires the calculation of critical

transient energy Vcr, and system transient energy Vtot at the last instant of fault clearance.

Considering the 3-phase to ground fault at different locations, the simulation results of
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proposed strategy, ie, closest u.e.p are given in Table 4.3. The critical energy calculated

by Closest u.e.p approach is denoted by Vcr, which is determined by using the transient

energy function (TEF) given in equation (3.51), while Vtot represents the system transient

energy evaluated at the last instant of fault clearance.

From table 4.3, for the fault line number 7 and bus number 4; using closest u.e.p approach,

the critical transient energy Vcr = 2.2683. Critical clearing time is Tcr = 0.28s. This is

shown that the system is stable up to clearing time Tc = 0.28s. Controlling method is also

same as closest u.e.p method, is shown in table 4.4, for the fault line number 8 and bus

number 5;controlling u.e.p approach, the critical transient energy Vcr = 3.9752. Critical

clearing time is Tcr = 0.32s. This is shown that the system is stable up to clearing time

Tc = 0.32.

In multi-machine system also same as like single machine infinite bus system for finding

Figure 4.10: Multi-machine system using PEBS method (a). V (δ, ω) blue line; (b). VPE(θ)
red line. Fault occur at 4-5

critical clearing time using PEBS method. To find the critical value V (δ, ω) the fault on

trajectory is monitored until it crosses the PEBS at a point θ∗. In many cases, θu the

controlling u.e.p is close to θ∗, so that VPE(θu) ≈ VPE(θ∗) ∼= Vcr. This crossing is also

approximately the point at which VPE(θ) is maximum along the faulted trajectory. Hence,

Vcr can be taken as equal to V max
PE (θ) along the faulted trajectory. The PEBS crossing is

also the at which fT (θ).(θ − θs) = 0. f(θ) is the accelerating power in post-fault system.

The fault occur on line number 7 and bus number 4; The figure 4.11 is shown that the

PEBS function crossing horizontal(zero axis) axis at the time 0.37s, which is the critical
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transient energy(Vcr). The potential energy value at 0.37s as shown in figure 4.10(b)

corresponding time value of system transient energy(V (δ, ω)) is 0.30s is shown in figure

4.10(a). So, the critical clearing time for PEBS method is 0.30s. Critical clearing times

for different lines are shown in table 4.5.

Figure 4.11: Multi-machine system using PEBS method. The monitoring of the PEBS
crossing by fT (θ).(θ − θs). Fault occur at 4-5

Table 4.3: Critical Clearing Time Using Closest u.e.p Method for Multi-machine System
Using Relative Rotor Angle Reference Model

S.No. FB FL Fault clearing type Tcr Vcr

1 4 7 Line trip 0.28s 2.2683
2 6 6 Line trip 0.24s 4.1447
3 5 8 Line trip 0.27s 2.3068
4 6 5 Line trip 0.26s 3.8710
5 7 9 Line trip 0.29s 3.6048
6 9 4 Line trip 0.28s 3.6629

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy

The fault occur on line number 6 and bus number 6; The figure 4.13 is shown that the

PEBS function crossing horizontal(zero axis) axis at the time 0.41s, which is the critical

transient energy(Vcr). The potential energy value at 0.41s as shown in figure 4.12(b)

corresponding time value of system transient energy(V (δ, ω)) is 0.30s is shown in figure

4.12(a). So, the critical clearing time for PEBS method is 0.30s. Critical clearing times

for different lines are shown in table 4.5.
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Table 4.4: Critical Clearing Time Using Controlling u.e.p Method for Multi-machine
System Using Relative Rotor Angle Reference Model

S.No. FB FL Fault clearing type Tcr Vcr

1 4 7 Line trip 0.32s 5.8996
2 6 6 Line trip 0.30s 3.9752
3 5 8 Line trip 0.32s 6.7811
4 6 5 Line trip 0.33s 5.0408
5 7 9 Line trip 0.32s 2.6064
6 9 4 Line trip 0.31s 2.6681

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy

Table 4.5: Critical Clearing Time Using PEBS Method for Multi-machine System Using
Relative Rotor Angle Reference Model

S.No. FB FL Fault clearing type Tcr

1 4 7 Line trip 0.30s
2 6 6 Line trip 0.30s
3 5 8 Line trip 0.28s
4 6 5 Line trip 0.28s
5 7 9 Line trip 0.31s
6 9 4 Line trip 0.29s

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy

Figure 4.12: Multi-machine system using PEBS method (a). V (δ, ω) blue line; (b). VPE(θ)
red line. Fault occur at 4-6

The fault occur on line number 8 and bus number 5; The figure 4.15 is shown that the

PEBS function crossing horizontal(zero axis) axis at the time 0.35s, which is the critical

transient energy(Vcr). The potential energy value at 0.35s as shown in figure 4.14(b)
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Figure 4.13: Multi-machine system using PEBS method. The monitoring of the PEBS
crossing by fT (θ).(θ − θs). Fault occur at 4-6

Figure 4.14: Multi-machine system using PEBS method (a). V (δ, ω) blue line; (b). VPE(θ)
red line. Fault occur at 5-7

corresponding time value of system transient energy(V (δ, ω)) is 0.31s is shown in figure

4.14(a). So, the critical clearing time for PEBS method is 0.31s.

Table 4.6: Critical Clearing Time Using PEBS Method by COI Reference Model
S.No. FB FL Fault clearing type Tcr

1 4 7 Line trip 0.28s
2 6 6 Line trip 0.31s
3 5 8 Line trip 0.28s
4 6 5 Line trip 0.31s
5 7 9 Line trip 0.27s
6 9 4 Line trip 0.29s

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy
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Figure 4.15: Multi-machine system using PEBS method. The monitoring of the PEBS
crossing by fT (θ).(θ − θs). Fault occur at 5-7

Figure 4.16: Multi-machine system using PEBS method (a). V (δ, ω) blue line; (b). VPE(θ)
red line. Fault occur at 4-6

The fault occur on line number 6 and bus number 6; The figure 4.17 is shown that the

PEBS function crossing horizontal(zero axis) axis at the time 0.35s, which is the critical

transient energy(Vcr). The potential energy value at 0.35s as shown in figure 4.16(b)

corresponding time value of system transient energy(V (δ, ω)) is 0.28s is shown in figure

4.16(a). So, the critical clearing time for PEBS method is 0.28s. Critical clearing times

for different lines are shown in table 4.5.

From table 4.7, for the fault line number 5 and bus number 6; using closest u.e.p approach,

the critical transient energy Vcr = 3.5133 and Critical clearing time is Tcr = 0.34s. This

is shown that the system is stable up to clearing time Tc = 0.34s.

From table 4.8, for the fault line number 4 and bus number 9; using closest u.e.p approach,

49



Figure 4.17: Multi-machine system using PEBS method. The monitoring of the PEBS
crossing by fT (θ).(θ − θs). Fault occur at 4-6

Table 4.7: Critical Clearing Time Using Controlling u.e.p Method for Multi-machine
System Using COI Reference Model

S.No. FB FL Fault clearing type Tcr Vcr

1 4 7 Line trip 0.31s 4.3721
2 6 6 Line trip 0.30s 2.4477
3 5 8 Line trip 0.31s 5.2536
4 6 5 Line trip 0.34s 3.5133
5 7 9 Line trip 0.34s 2.0789
6 9 4 Line trip 0.31s 5.1221

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy

Table 4.8: Critical Clearing Time Using Closest u.e.p Method for Multi-machine System
Using COI Reference Model

S.No. FB FL Fault clearing type Tcr Vcr

1 4 7 Line trip 0.26s 3.1673
2 6 6 Line trip 0.24s 6.1137
3 5 8 Line trip 0.27s 3.1065
4 6 5 Line trip 0.27s 4.5721
5 7 9 Line trip 0.28s 5.2248
6 9 4 Line trip 0.24s 4.3129

FB:Fault bus; FL: Fault line; Tcr: Critical clearing time; Vcr: Critical energy

the critical transient energy Vcr = 4.3129 and Critical clearing time is Tcr = 0.24s. This

is shown that the system is stable up to clearing time Tc = 0.24s.

Table 4.9 shows that comparison of all the three methods with time-domain approach.
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Table 4.9: Comparison of All the Three Methods for Multi-machine System With Time-
domain Approach

S.No. FB FL Time-domain LUEP method CUEP method PEBS Method

1 4 7 0.32s 0.28s 0.32s 0.30s
2 6 6 0.32s 0.24s 0.30s 0.30s
3 5 8 0.33s 0.27s 0.32s 0.28s
4 6 5 0.34s 0.26s 0.33s 0.28s
5 7 9 0.36s 0.29s 0.32s 0.31s
6 9 4 0.27s 0.28s 0.31s 0.29s

FB:Fault bus; FL: Fault line;

By observing the results, we can say that controlling unstable equilibrium point (u.e.p)

method is close to the time-domain approach.
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Chapter 5

Conclusion and Future Scope of

Research

5.1 Conclusion

The present thesis attempts to investigate the transient stability of power system using

energy functions. Normally, step-by-step numerical integrations are used to evaluate the

transient stability of power system. This step-by-step (time-domain) simulation approach

is, however, an extremely time consuming process. Hence, an alternative approach to tran-

sient stability assessment can use the energy functions. These energy functions eliminates

the post-fault integration and, thus, reduces the simulation time.

The thesis presents a procedure for finding stable equilibrium points, critical energy (Vcr)

and critical clearing time (CCT). The methods like closest unstable equilibrium point

(u.e.p) method, controlling unstable equilibrium point (u.e.p) method and potential en-

ergy boundary surface method (PEBS) are discussed to determine the transient stability

of power system. These methods are studied using center of inertia technique and relative

rotor angle technique.

Simulation results are discussed for both single machine infinite bus system and multi-

machine system using center of inertia technique and relative rotor angle technique. Com-

parison is done for all the three methods with time-domain approach. The method of

controlling unstable equilibrium point is used to estimate the critical clearing time. It is
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observed that the CUEP method does produce a more accurate result compared to other

energy function-based methods.

5.2 Future Scope of Research

The thesis presents the study of different energy function methods to estimate the critical

clearing time (CCT). The present work is based on the classical multi-machine power

system model. The loads are assumed to be constant impedances. The critical clearing

time (CCT) resulting from the present work is an approximate one. Hence, there is a

need to model the elements of power system in a greater detail to get more precise CCT.

A robust energy function algorithm for analysing the detailed model may lead to a more

stable and robust power system operation.
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