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Abstract

Consider a set of points P in three dimensional euclidean space. For each point p, the neighbourhood

N(p), is defined as the set of points in P , which are voronoi neighbours. Each point in P represents

a variable and its value is dependent on the value of its neighbourhood. Its value is given by the sum

of the values of points in its neighbourhood scaled by predefined constants. The constants depend

on the spacing between the points. The problem is to solve all the variables. Such representations

arise naturally in solving flow equations in Computational Fluid Dynamics with domains represented

using unstructured meshes. The problem reduces to solve a system of linear equations. In this work

geometric multigrid method is implemented for solving the problem faster. Solving this problem on

very large input is a time consuming process. The inputs considered here are having size of the order

of millions. Graphics Processing Units(GPU) are dedicated parallel processors which serves both as

a programmable graphics processor and a scalable parallel computing platform. The parallelization

of this problem for GPUs is not straight forward because of the irregularity. The CFD problem used

for experiment is the steady and unsteady heat transfer problem in 3D unstructured meshes.The

combination of multigrid algorithm and GPU implementation for the steady problem on a 1.6 million

mesh gives 1630 times speed up compared to non-multigrid CPU implementation.
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Chapter 1

Introduction

Graphical Processing Units (GPUs) are emerged as a main component of the High Performance

Computing (HPC) systems. GPUs are originally designed as dedicated parallel processor for accel-

erating graphics rendering applications used in visual effects, gaming, high resolution display etc.

Recently GPUs are evolved as both a programmable graphics processor and a scalable parallel com-

puting platform, whch can be used for parallelizing general purpose applications. Current GPUs are

incorporated with hundreds of lightweight cores which can accelerate compute intensive applications

substantially. Compared to CPU, GPU architecture dedicates more transistors for creating process-

ing elements than control circuits and as a result the GPUs are less programmable. The GPUs are

efficient for data parallel applications as it has a Single Instruction Multiple Data (SIMD) device

architecture. Scientific computing areas such as Computational Fluid Dynamics (CFD), Computa-

tional Biology and Chemistry, Weather and Climate Forecasting etc. have problems which are highly

data parallel and deals with input of very large size. These applications, that have an ever-growing

demand for the power of high performance computing infrastructure can make use of this power effi-

cient and less expensive GPUs. Recently many programming interfaces for GPU computing in which

Compute Unified Device Architecture(CUDA) introduced by NVIDIA and OpenCL introduced by

Khronos group are mainly used interfaces. In this work we use CUDA programming model for the

GPU implementation.

1.1 3D Unstructured Flow Problem

Consider a set of points P in three dimensional euclidean space. For each point p, the neighbourhood

N(p), is defined as the set of points in P , which are voronoi neighbours. Two points are voronoi

neighbours if there is a common voronoi edge in the voronoi cells of the two points. Voronoi cell of

a point p is the region around the point p such that every point in the region is farther to any other

point in P than p. Each point in P represents a variable and its value is dependent on the value of

its neighbourhood. Its value is given by the sum of the values of points in its neighbourhood scaled

by predefined constants. The constants depend on the spacing between the points. The value at q,

v(q) =
∑

p∈N(q)

aqpv(p) and
∑

p∈N(q)

aqp < 1
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where aqp is the constant by which v(p) is scaled for finding the value of q. The problem is to solve all

the variables. Such representations arise naturally in Computational Fluid Dynamics while solving
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q
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Figure 1.1: Point q with neighbourhood connectivity

flow governing equations with domains represented using unstructured three dimensional meshes.

The problem reduces to solve a system of linear equations. There are many numerical methods to

solve system of linear equations, out of which Gauss-Seidel iterative solver is an efficient solver to get

a good approximation. In Gauss-Seidel method all variables start with an initial guess and solve the

equation at each vertex iteratively using the updated values of neighboring vertices until the mean

change among all the vertices comes below a certain tolerance. Geometric multigrid is a method

to accelerate the iterative solver. In this method the problem is solved in a coarser representation

first and this solution is interpolated back to finer graphs to get better approximation. Solving the

coarser representation is faster because there are lesser number of vertices. This process is done

recursively, which makes the solver converge faster. Solving this problem on very large input is a

time consuming process. The inputs considered here are having size of the order of millions. Since

the problem is data intensive and data parallel, GPUs can be used to accelerate the execution time.

The simple version of this problem is that the points are aligned on a structured grid, in which the

connectivity for every point is regular. In general case the points can be anywhere in the space. The

parallelization of this problem for GPUs is not straight forward because of the irregularity.

1.2 Related Work

The unstructured geometric multigrid for GPUs are less studied and implemented in the past years.

There are several works in which GPUs are used to solve problems on unstructured grids[1, 2]. The

multgrid methods are recived moderate attention in the past years, but most of them are using

structured grid[3, 4]. The multigrid methods for unstructured grids are studied and implemented in

[5, 6, 7, 8, 9]. Among these an efficient method is developed by Miller et. al.[8] in which the multigrid
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levels are created in such a way that the points selected from the fine grid are well spaced. The

work by Brune et. al.[9] simplified the method and improved the preprocessing time. A geometric

multigrid solver on unstructured grid on GPUs is done by Geveler et. al.[10]. This work uses the

Jacobi method for solving, which is very computational intensive compared to Gauss-Seidel iterative

solver.

1.3 Overview of our work

In this work an unstructured geometric multigrid solver is implemented for two and three dimensional

domains. For multigrid implementation on unstructured grids different graph coarsening schemes

are investigated. The graph coarsening scheme used in the final implementation is based on the

works by Miller et. al.[8] and Brune et. al.[9]. Also we implemented and showed the speed up

got in two dimensional geometric multigrid on structured grid. These structured and unstructured

geometric multigrid solver is implemented in GPU using an improved graph representation.The CFD

problem used for experiment is the steady and unsteady heat flow problem in unstructured meshes.

The combination of multigrid algorithm and GPU implementation for the steady problem on a 1.6

million mesh gives 1630 times speed up compared to non-multigrid CPU implementation.

1.4 Thesis Outline

The thesis is structured as follows. Section II describes about the GPU architecture, programming

model and performance optimizations. The geometric multigrid solver is explained in Section III. In

Section IV, we describes the GPU implementation of the problem and the data structures used for

this. Section V explains the experiments carried out and the results. Conclusion and future work

are presented in Section VI.
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Chapter 2

GPU Computing Model

Graphics Processing Units (GPU) were specialized device designed to reduce the workload on the

Central Processing Units (CPU) when computing graphic or video intensive tasks. Over the past

few years GPU has evolved from a graphic rendering chip to a parallel programming processor which

can be used for general purpose programming, often called GPU Computing. Initially GPUs had

all its functions hard-wired, but over time it is made programmable by introducing CPU-like light

weight processors. As the processing power increased massively, the research community developed

methodologies to use these resources for compute intensive task called General-Purpose computation

on Graphics Processing Units (GPGPU)[11]. The implementation overhead occurred while using

the graphics accelerator for non-graphics application motivated the GPU manufacturers, Nvidia and

AMD/ATI to modify their hardware and to create APIs for better support to the GPGPU com-

munity. This advancement made the GPUs to change from graphics accelerator to general-purpose

application accelerators, which can accelerate data parallel compute intensive part of any applica-

tion. CUDA is a hardware and software co-processing architecture for parallel computing developed

by NVIDIA. CUDA-C is a programming interface provided by NVIDIA for easy development of

programs to execute on GPUs. It consist of a small set of extensions to C and a runtime library.

The reader is referred to the CUDA programming guide[12] for more details. In GPU computing the

term host is used to refer to the CPU and the term device is used to refer to the GPU. This section

explains the GPU architecture, CUDA programming model and performance considerations.

2.1 Hardware Architecture

The major difference between CPU and GPU is that, CPU is latency oriented while GPU is through-

put oriented. CPU focuses on minimizing the latency of a single sequential task and GPU focuses

on maximizing total throughput. Since GPU is specially designed for compute intensive, highly

parallel applications, more transistors are devoted to data processing rather than data caching and

flow control. A typical GPU consist of same elements as a normal CPU; Arithmetic Logic Unit

(ALU), Control Unit, Cache and DRAM. But the architecture of GPU is different from CPU. GPU

consists of a set of streaming multiprocessors (SM). Each SM contains a number of simpler proces-

sor cores called CUDA cores. An SM is designed to execute hundreds of threads concurrently. To

manage such a large amount of threads, it employs a unique architecture called Single-Instruction
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Multiple-Thread (SIMT). It is based on the Single-Instruction Multiple-Data model (SIMD), which

describes multiple processing elements that perform the same operation on multiple data simulta-

neously. Figure 2.1 shows the layout of a GPU in Nvidia Fermi architecture. It consists of 512

Figure 2.1: Nvidia Fermi Architecture(Source: FERMI White paper[13])

CUDA cores organized in 16 SM of 32 cores each. A CUDA core execute a floating point or integer

instruction per clock for a thread. The GPU has 6 GB of DRAM and the host interface connects

the GPU to the CPU via PCI-Express. The GigaThread global scheduler distribute thread blocks

to SM thread schedulers.

Each streaming multiprocessor contains 32 CUDA cores. The detailed architecture of a streaming

multiprocessor is shown in Fig 2.2. Each SM has 16 load/store units which calculate source and

destination address to be calculated for sixteen threads per clock. The SM contains 4 Special

Function Units (SFU) for computing transcendental function such as trigonometric, exponential

and logarithmic functions. The SM has 64KB of on-chip shared memory which enables threads

within same thread block to co-operate and to reduce off-chip traffic. The SM creates, manages,

schedules, and executes threads in groups of 32 parallel threads called warps. Each SM has two

wrap schedulers and two instruction dispatch units. The SM groups the threads into warps and

each warp gets scheduled by a warp scheduler for execution. The threads in a warp executes one

common instruction at a time. Many warps can reside in a multiprocessor and the warp scheduler

switches between warps to hide latency. The number of clock cycles it takes for a warp to be ready

to execute its next instruction is called latency.

2.2 CUDA Programming Model

The CUDA programming model is designed to overcome the challenges faced in using GPUs for

general purpose programming. The CUDA programming model enforces co-operation between hard-
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Figure 2.2: Fermi Streaming Multiprocessor (SM)(Source: FERMI White paper[13])

ware, software and different tools to compile, link and execute programs on GPU. In the CUDA

programming model, compute-intensive tasks of an application are grouped into an instruction set

and passed on to the GPU such that each core works on different data but executes the same

instruction.

2.2.1 Compiler model

A CUDA source file contains a mixture of host code, the code that execute on the CPU and device

code, the code that execute on the GPU. The CUDA compiler separates the host and device code.

The device code is compiled to an assembly form called Parallel Thread Execution (PTX) code.

This PTX code can either be converted to binary form, which is called a cubin object or loaded

by the application at runtime and get compiled by a mechanism called just-in-time compilation.

Just-in-time compilation increases application load time, but allows application to benefit from

latest compiler improvements. The compiler then replaces the CUDA constructs for device code

invocations used in the host code with necessary CUDA C runtime function calls to load and launch

the device code from PTX code or cubin object. The host code is then compiled and linked by the

programmers C/C++ compiler.
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2.2.2 Execution Model

The core of the CUDA programming model is the special user defined functions called kernels,

that, when called, are executed N times in parallel by N different CUDA threads using different

data streams. The number and organization of the threads to be created can be determined at

compile time or runtime and is called the execution configuration of that kernel. The threads are

organized into a two level hierarchy block and grid as shown in Fig 2.3. At the first level threads

Figure 2.3: CUDA thread organization(Source: CUDA Programming Guide[12])

are grouped into thread blocks. The size of the thread block is determined by the programmer and

is arbitrary. Each block run independent of each other, so that they can be scheduled across any

streaming multiprocessor. Thread blocks are in turn grouped into grids. The number of blocks

in a grid is determined by the size of data the application dealt with. The blocks and grids can

have one- or two- or three-dimensional organization. This organization allows the programmer to

easily map the threads to multi-dimensional data structures. Each block within the grid is given

a unique blockID and is identified through the built in blockIdx variable, from the kernel. Also

each thread in a thread block is given a unique threadID and is identified through the built in

threadIdx variable, from the kernel. Both blockIdx and threadIdx is a 3-component vector describes

the index in three-dimensions. The dimension of the grid and thread block are available in the

built in gridDim and blockDim variables respectively. The kernel invocation is accompanied by the

execution configuration and has the following syntax: kernel name <<<grid size, block size>>>().

All the threads in a particular thread block is executed in a single multiprocessor. The maximum

number of threads that a thread block can contain depends on GPU model, since all threads of
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a block are expected to reside on the same multiprocessor and must share the limited memory

resources of that multiprocessor. All the threads from a particular thread block have access to the

same shared memory and can synchronize together through syncthread() function call. On the

other hand, threads from different thread blocks cannot synchronize and can exchange data only

through the global memory. The data that the kernel functions access is needed to be transferred

to the device global memory before the kernel is invoked. CUDA API provide two functions for this

purpose, cudaMalloc() and cudaMemcpy(). These functions allocate memory on the GPU and copy

data from the CPU memory into the device memory respectively. cudaFree() function is used to

free memory on the device.

2.2.3 Memory Model

CUDA threads use a seperate memory space which resides on GPU. The GPU memory is organized

into a three level hierarchy as shown in Fig 2.4.

Figure 2.4: CUDA memory model(Source: CUDA Programming Guide[12])

Device Memory

This is the largest memory in the GPU and also the memory with the highest latency. It can be

compared with the DRAM of a normal CPU. The device memory is virtually divided into global

memory, local memory, constant memory and texture memory. The global memory is the memory
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which every thread can access and it is the only part of the device memory CPU can read and write.

The local memory space resides in device memory and is a private unit for each thread processor.

Variables are automatically placed in local memory by the compiler if they do not fit in register. The

constant memory provides faster and more parallel data access paths for CUDA kernel execution

than the global memory. The texture memory on the other hand is optimized for 2D spatial locality

and should be preferred over global device memory when coalesced read cannot be achieved. The

GPU can only read from constant and texture memory while CPU can only write.

Shared Memory

Every SM has its own shared memory that is shared between all threads in a block. Because shared

memory resides on-chip, it is much faster than global memory. The data that is reused by the

threads in a thread block can be loaded to shared memory for improving the performance. It can

also be used to share the data between threads in same thread block.

Registers

Every thread has its own set of registers. This is the fastest memory in the memory hierarchy.

Basically, every access to a register by the thread processor is immediate, ie, it takes zero extra clock

cycles per instruction.

2.3 Performance Optimizations

The challenge for a CUDA developer is not only the parallelization of the code, but also the optimiza-

tion of the code for best performance[14]. The important optimization strategies are maximizing

processor utilization, maximizing memory throughput and maximizing instruction throughput. De-

tailed performance optimization practices are given in Nvidia’s Best Practices Guide[15].

The GPU takes on the order of hundreds of clock cycles to fetch a single element from global

memory. The massively threaded architecture of GPU is used to hide this memory latency by

switching between warps. Once a warp stalls for a memory fetch, the GPU switches to the next

warp which is ready to execute. So a good strategy is to create a lot of threads to completely

hide the memory latency, which in turn maximize the processor utilization. When all threads in a

warp execute a load instruction, the hardware detects whether the threads access consecutive global

memory locations. In that case, the hardware combines all of these accesses into a consolidated

access to the device global memory. This is called memory coalescing. If the threads in a warp

access data scattered in the memory, then more unused data are transferred between global memory

and the cache in addition to the data accessed by the threads. So a good strategy is to store data

accessed by threads in a warp, in consecutive global memory locations to maximize the memory

throughput. The GPU executes instructions in such a way that same instruction is simultaneously

executed by threads in a warp. If there is any branching instruction in the kernel, it affect the

instruction throughput by causing the threads of the same warp to diverge, ie, to follow different

execution paths. If this happens, the threads in a warp execute different execution path in serial.

One technique to avoid expensive branching is to arrange the elements according to the branch and

thus make sure the threads within each warp will execute them without branching.

9



Chapter 3

Geometric Multigrid Solver

The generally used neumerical methods to solve system of linear equation are direct methods like

Gaussian elimination, LU factorization etc and iterative methods like Jaccobi method, Gauss-Seidel

method, Conjugate gradient method etc. Direct method compute the solution in a finite number of

operations. In iterative, starting from an initial guess the solution is improved step by step until it

reaches the sufficient accuracy. Iterative methods are not expected to terminate in a fixed number of

steps. For large systems the direct methods are inefficient where the iterative methods perform very

well. Multigrid (MG) offer an alternative to these methods for efficiently solving large sparse linear

systems of equations, in particular for those arising in the finite element, finite difference and finite

volume discretization of partial differential equations (PDEs). Multigrid methods enable solution to

be obtained in a given level of convergence in O(N) operations, where N represents the number of

unknowns[16, 17, 18]. The theoretical foundation of multigrid methods is that high-frequency error

components can be eliminated quickly using elementary iterative methods (like Jacobi or Gauss-

Seidel), while low-frequency error components are more persistent.The iterative methods mentioned

above are good in relaxing highly oscillating errors efficiently but it will relax the smooth errors very

slowly. However, low-frequency errors on a fine mesh resolution appear as high-frequency errors

on a coarser mesh. Multigrid is thus an inherently recursive defect correction method acting on a

hierarchy of different mesh resolutions: Starting on a fine mesh, the error is smoothed with a few

iterations of an elementary iterative scheme. Then, the resulting defect is restricted to a coarser mesh,

where the algorithm is recursively applied. At the coarsest mesh, the so-called coarse grid problem

is solved exactly, and the resulting defect correction is prolongated to the next finer level where

any remaining high-frequency errors are eliminated by post-smoothing. One such solver iteration is

called a multigrid cycle, and different cycle types exist, depending on the order in which different

mesh resolutions are traversed. Thus multigrid strategies are generally considered as convergence

accelerator technique rather than solution methods.

Two fundamentally different multigrid schemes exist, Algebraic multigrid (AMG) and Geometric

multigrid (GMG). In algebraic multigrid no information concerning the grid is used on which the

governing partial differential equations are discretized. In geometric multigrid, coarse grids are

constructed from the given fine grid and coarse grid corrections are computed using discrete systems

constructed on the coarse grid. Although the GMGs applicability is difficult as it requires explicit

information on the hierarchy of the discrete system, when it can be applied, GMG is far more
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efficient than its algebraic version, the AMG method. GMG method comprise a group of algorithms

for solving differential equations using a hierarchy of discretizations. The key steps in the multigrid

method are as follows:

• Relaxation or Smoothing: Reduce high-frequency errors using one or more smoothing steps

based on a simple iterative method, like Jacobi or Gauss-Seidel.

• Restriction: Restrict the residual on a finer grid to a coarser grid.

• Prolongation: Represent the correction computed on a coarser grid to a finer grid.

3.1 Structured and Unstructured Multigrid

The important part of geometric multigrid is the creation of hierarchy of grids. Each coarser grid

should approximate the topology of the higher level finer mesh. In CFD the domains are represented

in two ways: one is using structured grid, where every interior node is connected to same number of

nodes and other is using unstructured grid, which has no regularity in the connectivity. In structured

grid the creation of topologically approximated coarse grids is easy. For a coarse grid, select alternate

nodes in each dimension as shown in Fig 3.1.

Figure 3.1: Structured Multigrid Levels

Figure 3.2: Unstructured Multigrid Levels

For unstructured grids the generation multigrid levels is difficult. Unless the coarser grid topologi-

cally approximates the finer grid the multigrid algorithm does not give large improvement. Figure 3.2
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shows the multigrig levels for an unstructured grid. Different schemes can be used to create coarser

grid for unstructured grids.

3.2 Unstructured Multigrid Level Generation Schemes

The different levels for geometric multigrid is generated by coarsening the initial fine grid using a

graph coarsening algorithm recursively. The general method is to select a subset of vertices from

the fine graph and triangulate(2D) or tetrahedralize(3D) to create the next level coarse graph. The

effectiveness of the geometric multigrid depends heavily on the vertices which are selected for coarser

level. The vertices selected for the coarser level should approximate the topology of the finer level

graph. Once the vertices for the coarse level is selected it is re-meshed to generate the coarse level

grid. The remeshing method used here is delaunay tetrahedralization of the coarse subset of vertices.

In a delaunay tetrahedralization of a set P of points, no point in P is inside the circumsphere of

any tetrahedron of the tetrahedralization. Delaunay method maximize the minimum angle and

they tend to avoid skinny triangles or tetrahedrons. The TetGen[19] library is used for delaunay

tetrahedralization. In this section different schemes for selecting the coarse level vertices is discussed.

3.2.1 Maximal Independent Set

The vertices are selected with the goal of reducing graph size while maintaining a good distribution of

vertices. The most widely used method for this purpose is Maximal Independent Set (MIS)[7, 6, 5].

Given an undirected graph G(V,E), a set V ′ ⊆ V is an independent set if u, v ∈ V ′ ⇒ (u, v) /∈ E. An

independent set is maximal if no node in V −V ′ can be added to V ′ without violating independence

property. This scheme select coarse vertex set such that no two vertices in the coarse grid are

adjacent in the fine grid. This can be implemented using a simple linear time algorithm where at

each stage a vertex is selected for inclusion in MIS and its neighbours are marked for exclusion.

Figure 3.3: Maximal Independent Set(MIS)

In this coarsening scheme all vertices which are not selected for coarse grid has at least one

adjacent vertex in the coarse grid so that every non selected vertex can get interpolated with the
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correction from the coarse grid while prolongation. The maximal independent set of the graph is a

good choice for selecting coarse graph vertices as it is simple to implement and gives good results.

Algorithm 1 Arbitrary MIS

Require: Graph G(V,E)

Output: MIS

1: for all v ∈ V do

2: if all Adj(v) /∈MIS then

3: MIS ←MIS ∪ {v} {Include v in MIS}

4: end if

5: end for

Another method for finding MIS is using a greedy heuristic algorithm. This algorithm uses a

particular ordering of the vertices for finding the MIS. In this method the vertex with minimum

degree is removed from the graph and added to a stack. This operation is repeated until all vertices

are added to the stack. Then the vertices are considered for inclusion into MIS in the popping order

from the stack.

Algorithm 2 Greedy MIS

Require: Graph G(V,E)

Require: Stack S

Output: MIS

1: MIS ← φ

2: while V 6= φ do

3: v ← Minimum degree vertex in G

4: Push v onto stack S

5: V ← V − {v} {Remove v from graph G}

6: end while

7: while S 6= φ do

8: v ← Pop from stack S

9: V ← V ∪ {v} {Add v to graph G}

10: if all Adj(v) /∈MIS then

11: MIS ←MIS ∪ {v} {Include v in MIS}

12: end if

13: end while

The greedy MIS algorithm gives better multigrid result compared to the arbitrary MIS.

3.2.2 Dominating Set

In this scheme the concept of domination[20, 21] in graph theory is used for coarsening. The idea

behind in the scheme is to improve the interpolation during the prolongation operation and thus to

improve the performance of multigrid. This scheme gives a lower bound on the number of nodes

adjacent to a node in a coarser grid from a node in the finer grid which is not selected. There are

two versions of this scheme, k-dominating set and α-dominating set[22].
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k-Dominating Set

A set X is called a k-dominating set if every vertex not in X has at least k neighbours in X. The

vertices in the k-dominating set is selected as the coarser vertex set. So every dropped nodes has at

least k adjacent nodes in the coarser grid.

≥k

k-dominating set

Figure 3.4: k-Dominating Set

α-Dominating Set

Let α be a real number satisfying 0 < α ≤ 1. A set X ⊆ V (G) is called an α-dominating set of G if

|N(v) ∩X| ≥ αdv for every vertex v ∈ V (G)X, i.e. v is adjacent to at least ⌈αdv⌉ vertices of X. he

vertices in the α-dominating set is selected as the coarser vertex set. In k-dominating set fixing a k

value is difficult. So by using α-dominating set α fraction of a dropped node’s adjacent nodes will

be there in the coarser grid.

α-dominating set

v

≥ α d(v)

Figure 3.5: alpha-Dominating Set

This coarsening scheme fails to give a good topological approximation to the finer grid.
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3.2.3 Function Based Coarsening

For getting good multigrid performance the observation is that the coarse representation should

topological approximate the finer level structure. The coarse level points should be a well spaced

subset of fine level points. In the above mentioned schemes the coarse node selection is solely based

on the node connectivity in the fine grid. The geometric spacing of the points are not considered in

the coarse points selection.

This graph coarsening algorithm was developed by Miller et. al.[8] considering the geometric

spacing of nodes. This method defines a spacing function, Sp(v), for describing the size and spacing

of the grid. This function is defined at the grid points. In practice the nearest neighbour distance

to each node is a good spacing function. It then defines a constant C, 1 < C ≤ 2, by which the

spacing function at each point is multiplied for coarsening the fine grid. A conflict graph is created

for the fine grid such that, the vertex set is same as the vertex set of the grid and the edge set as,

Ec = {(i, j) : C(Sp(i) + Sp(j)) > ‖i− j‖, ∀i, j ∈ V }

where V is the vertex set. The coarse vertex set is found by selecting maximal independent set on

the conflict graph. The complexity for constructing conflict graph is O(|V |2) because all pairs of

vertices should be compared.

Brune et. al.[9] modified the conflict graph definition and improved the running time. The

conflict condition is simplified in such a way that the spacing condition is restricted to take into

account only distance between vertices connected by graph edges rather than all pairs of vertices.

In this method the conflict graph edge set is given by,

Ec = {(i, j) : C(Sp(i) + Sp(j)) > ‖i− j‖, ∀(i, j) ∈ E}

where E is the edge set of fine graph. The The complexity for constructing conflict graph in this

method is O(|V | + |E|). In both case the MIS is found in an arbitrary way together with the

construction of conflict graph.

In this work the conflict graph is explicitly computed and the MIS is found using the greedy MIS

algorithm. The use of this algorithm shows improvement in the multigrid performance compared

to arbitrary MIS algorithm. A hierarchy of graphs then be created by recursively applying the

coarsening procedure to each newly created coarse graph with constant C and some recalculated

Sp. This may be done until the graph fits some minimum size requirement, or until the creation of

a desired number of graphs for the hierarchy.

3.3 Gauss Seidel Iterative Method for Relaxation

At each level in the multigrid a smoothing operator is needed for reducing high-frequency errors.

For matrices resulting from unstructured grids we must use general update methods than direct

methods such as Gauss elimination, LU decomposition etc. The simplest of these are the Jacobi and

Gauss-Seidel methods. In both cases, the nodes are visited in sequence and at each node the value

is updated. The two methods differ in the values of the neighboring nodes that are employed. In

case of the Jacobi method, the old values of all the neighbors are used whereas in the Gauss-Seidel
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method, the latest values of all the neighbours that have already been updated during the current

sweep and old values of the neighbours that are yet to be visited are used. In general the Gauss-

Seidel method has better convergence characteristics than the Jacobi method and is therefore most

widely used. For vector and parallel hardware Jacobi method is generally used due to the ease of

parallelization. In this work we are using Gauss-Seidel method smoothing operator. In Gauss-Seidel

method all nodes cannot be updated simultaneously because of the dependency of a node to its

neighbours that are updated in the current sweep. By using graph coloring technique the nodes are

divided into independent sets such that nodes in same set can be updated simultaneously.
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Chapter 4

GPU Implementation

This chapter explains the methods used to implement the problem in structured and unstructured

grids.

4.1 Structured grid

In Gauss-Seidel iterative method each node is dependent on the adjacent nodes. So all nodes

cannot updated at the same time. In structured grid the red-black scheme can be used to solve this

issue[23, 24]. The nodes are alternatively colored with as red and black as shown in Fig 4.1.

Figure 4.1: Red-Black scheme

All red nodes have only black nodes as adjacent and for black nodes have only red nodes as

adjacent. So the nodes with same color can be updated simultaneously. One Gauss-Seidel iteration

will happen in two steps. This method of parallelizing structured grid for GPU is used for accelerating

single and two phase CFD flow solvers[25, 26].

4.2 Unstructured grid

Solving graph processing problems in GPUs are challenging because that require highly irregular

data access.Graph problems represent a worse case scenario for coalescing parallel memory access.

on GPUs. The GPU memory layout is optimized for graphics rendering and cannot support user

defined data structures efficiently. However in CUDA programming model the memory is treated

17



as general arrays and can support more efficient data structures. It is critical for the efficiency of

GPU method that parallel data coalescing is maximized and that number of conditional breaking

point in the algorithm is minimized. In the implementation three different GPU kernel functions

are created. First one is KERNEL ITERATE, which updates all points of the graph once. Second

one is KERNEL PROLONGATE, which transfers the coarse graph corrections to fine graph. The

third kernel is KERNEL SUM which finds the sum of values in an array and is used for finding root

mean square value of error, which is used in the convergence condition.

4.3 Graph Coloring

Coloring of a graph is labelling of the graph’s vertices with colors such that no two vertices sharing

the same edge have the same color. A subset of vertices assigned to the same color is called a color

class, every such class forms an independent set, ie, no two of which are neighbours. A coloring using

at most k colors is called a k-coloring. The smallest number of colors needed to color a graph G is

called its chromatic number, and is often denoted χ(G). Since the updates of nodes can be carried

out in any order in Gauss-Seidel method, the order can be of the color classes, ie, each color class

one after other. In a color class all nodes are independent to each other. So all nodes in a particular

color class can be updated in parallel.

The choice of the coloring algorithm is determined only by practical considerations. Among

these are the performance of the algorithm, ie, the number of colors being used, and its efficiency,

ie, the time needed to color the graph. A χ(G)-coloring might be the optimal solution for the given

problem. But the determination of χ(G) is known to be a NP-complete problem for general graphs.

Practically, one is interested in finding good approximations for χ(G) in polynomial time. One can

try to use a simple coloring procedure known as greedy coloring, which is a coloring of the vertices

of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and

assigns each vertex its first available color. A commonly used heuristic ordering strategy for greedy

coloring is to choose a vertex v of minimum degree, order the remaining vertices, using same strategy

and then place v last in the ordering. For a graph of maximum degree ∆, any greedy coloring will

use at most ∆ + 1 colors.

Algorithm 3 Greedy graph coloring algorithm

Require: Graph G(V,E)

Require: Stack S

1: while V 6= φ do

2: v ← Minimum degree vertex in G

3: Push v onto stack S

4: V ← V − {v} {Remove v from graph G}

5: end while

6: while S 6= φ do

7: v ← Pop from stack S

8: V ← V ∪ {v} {Add v to graph G}

9: Assign lowest numbered color to v which is not same as that of its neighbors

10: end while
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4.4 Graph Representation

The memory representation of graph heavily affects the performance of GPU implementation. There

are two types of data needed to be stored in the device memory. One is data for each vertex such

as value at the vertex, degree of the vertex etc. and other is data for each edge such as the

adjacent vertex indexes, scale factor for each neighbour, distance to each neighbour etc. The vertex

data is reordered according to the color of the vertices, ie, the vertices with same color is kept

adjacent in the memory. A set of pointers are kept for storing the starting of each color. The

KERNEL ITERATE function takes the start index and end index of each color and is repeatedly

invoked for each color. The implementation creates as many threads as the number of vertices in the

particular color class. The reordering of vertex data according to the color is needed for coalesced

memory access. Otherwise the vertex data of a particular color class will be scattered in the memory

resulting the un-coalesced memory access by thread warp. The reordering also makes the mapping

of threads to the data easy. The data access for non-reordered and reordered array is shown in

Fig 4.2 and Fig 4.3 respectively.

1 1 1 1 123 34 45 52 1

thread warp

Figure 4.2: Un-coalesced memory access

11 1 1 1 221 2 9 9

thread warp

Figure 4.3: Reordered for coalesced memory access

For storing data at edges, commonly used data structure is adjacency matrix. It is not suitable

for large sparse graphs because of O(|V |2) space requirements. Adjacency list is a more practical

representation for sparse graphs requiring O(|V | + |E|) space. A graph representation found in

[27, 28, 29, 30, 31] is using a compact adjacency list representation, with edge data lists packed into

a single large array. A pointer array of O(|V |) is also kept, which stores for each vertex the index in

compact adjacency list where its adjacency list starts.

But in the compact adjacency list representation the memory access is highly un-coalesced. All

threads in a warp executes the same instruction at a time. While iterating through the edge data, all

threads access the respective edge list. So the access to the memory by these threads are scattered
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as shown in Fig 4.4.

0 2 1 134 45 52 1

thread warp

130 3 7 9 17 21 72

0 32 58

index array for edglist starting

Figure 4.4: Un-coalesced memory access for compact adjacency list

In this work we are using a modified edge data representation, a column major matrix represen-

tation. In this representation the edge data is stored in a matrix of size ∆ × |V |. The first edge

data of all the vertices is stored in the first row of the matrix, second edge data in second row of

the matrix and so on. The memory access to this representation is coalesced as the concurrently

accessed edge data are co located as shown in Fig 4.5. This graph representation can be used for

memory coalescing in GPU implementation of other graph algorithms. The space requirement for

this representation is O(∆V ), which is higher compared to compact adjacency list representation.

This can be reduced to O(|V |+ |E|) by storing vertices in the descending order of degree and storing

the rows as separate arrays. But in this work the vertices are ordered according to the color. So

the sorted representation is not possible to implement. Also practical problems that uses this model

have very small ∆ value.

thread warp

∆

|V |

2

4

1

0

5

2

1

5

4

1

- -

- --

Figure 4.5: Coalesced memory access for column major adjacency list
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4.5 Multigrid Implementation

The multigrid levels are created in the preprocessing part as described in section III.A. All grid data

is stored in the device global memory in series as described in the previous section. For vertices

which are present in the next coarser level, a index for the corresponding vertex in the coarser graph

is stored in the finer graph for restriction and prolongation.

4.5.1 Restriction

The restriction is implemented in the KERNEL ITERATE function. While updating the value of

a vertex, if the vertex is present in the next coarser graph it find the residual for that vertex and

store it in the coarser graph vertex.

4.5.2 Prolongation

The prolongation operation is done by the KERNEL PROLONGATE function. The number of

thread created for prolongation operation is equal to the number of vertices in finer graph. For a

finer graph vertex if that vertex is present in the coarser graph, its correction is directly added to

the finer graph vertex. Otherwise the corrections of its selected neighbours are added up in the ratio

of its distance to the correcting vertex.
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Chapter 5

Experiments and Results

In this work the steady and unsteady heat transfer problem is used for the experiments. Heat

transfer is the transfer of thermal energy from a body at a high temperature to another at a lower

temperature. In unsteady heat transfer problem the temperature within the system vary with time.

The unsteady heat transfer problem is important in CFD as other physical processes like potential

flow, mass diffusion, flow through porous media etc. are governed by similar mathematical equations.

Electromagnetic field theory, diffusion models of thermal radiation and lubrication flows are further

examples of phenomena governed by this type equation.

5.1 Steady and unsteady heat transfer problem

The steady heat transfer is governed by the equation,

∇.k∇T = 0

where T is the temperature and k is conductivity. The discretization for the above governing equation

is,

apTp =
∑

i∈N(p)

apiTi

api =
kpispi
dpi

ap =
∑

i∈N(p)

api

where, kpi = mean conductivity of p and i, spi = interface area between p and i and dpi = distance

between p and i

The unsteady heat transfer is governed by the equation,

ρc
∂T

∂t
= ∇.k∇T

where T is the temperature, ρ is the density, c is specific heat and k is conductivity. The discretization

for the above governing equation is,

apTp =
∑

i∈N(p)

apiTi + a0pT
0
p
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a0p =
ρcvp
∆t

api =
kpispi
dpi

ap =
∑

i∈N(p)

api

where, kpi = mean conductivity of p and i, spi = interface area between p and i, dpi = distance

between p and i and vp = control volume around p and ∆t is the time step size[32].

The steady problem is solved on structured and unstructured unit square grid in two dimension

and unstructured unit cube in three dimension. All sides or faces except one is set constant at 300

and one side or face is set constant at 600. The unsteady problem is solved on unstructured unit

cube in three dimension. All sides or faces except one is set constant at 300 and one side or face is

kept sinusoidally varying, starting from 600 at time zero. The time step size given is 0.01 and the

experiment is run for 24000 time. The temperature variation given for each time step is

T = 600 + 100 sin
2πt

24

5.2 Experimental setup

The CPU configuration used for executing serial implementation is Intel Xeon CPU X5675 3.07

GHz. The GPU used is Nvidia GeForce GTX 480 with CUDA driver version 5.0. Its clock rate is

1.40 GHz and having 480 CUDA cores.

5.3 Results

In this section the speed up results of the problem in different settings is discussed. The different

settings are steady state problem on 2D structured grid, steady state problem on 2D ustructured

grid, steady state problem on 3D ustructured grid and unsteady problem on 3D unstructured grid.

In the results both the performance improvement by multigrid method and GPU implementation

is compared. The multigrid performance got by using different graph coarsening scheme is also

compared. The output of our implementation is validated with the output of a standard commercial

software.

The metric used to compare the performance of multigrid is work units [33]. In normal case the

number of iterations can be used as the metric. But in the multigrid method the number of iterations

will not be a good metric because the size of grids in different levels are different. So instead of

number of iterations, total number of updates normalized to the size of fine grid, called work units

is used as the metric. The work units are calculated by,

work units =
Total number of updates

Number of points in fine grid

The work units taken for solving the problem with multigrid and without multigrid are compared

separately.

Steady state 2D structured multigrid

The steady state problem is solved on a structured 2D grid and the speed up results are shown below.

Table 5.1 compares the work units for implementation with out multigrid and with multigrid and
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the speed up achieved by both GPU implementation and multigrid algorithm as shown in Table 5.2.

Table 5.1: With multigrid vs Without mutigrid (work units)
Grid Size Without MG With MG
512 x 512 205520 1781.48

1024 x 1024 674693 2917.46
2048 x 2048 2109429 4563.45

Table 5.2: 2D structured grid time comparison
Grid Size CPU CPU-MG GPU GPU-MG Speed up

512 x 512 46 min 37 sec 26 sec 1 min 63 sec 1.26 sec 2219x

1024 x 1024 10 hr 18 min 41 sec 2 min 53 sec 18 min 40 sec 7 sec 5303x

2048 x 2048 128 hr 57 min 15 sec 19 min 3 hr 46 min 10 sec 39.42 sec 11776x
(estimated)

Graph Coarsening Scheme Comparison

The different methods based on function based coarsening is compared in Fig 5.1. The method by

Brune et. al. improves the preprocessing time compared to the Miller et. al. algorithm and the

multigrid performance is same. The method used in this work improves the multigrid performance.
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FBC - Our work

Figure 5.1: Graph Coarsening Comparison
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Steady state 2D unstructured multigrid

The steady state problem is solved on a unstructured 2D grid and the speed up results are shown

below. Table 5.3 compares the work units for implementation with out multigrid and with multigrid

and the speed up achieved by both GPU implementation and multigrid algorithm as shown in

Table 5.4.

Table 5.3: With multigrid vs Without mutigrid (work units)
Grid Size Without MG With MG
145537 51772 772.68
1866609 61843 504.1

Table 5.4: 2D unstructured grid time comparison
Grid Size CPU CPU-MG GPU GPU-MG Speed up
145537 29 min 46 sec 32 sec 1 min 3 sec 595x
1866609 10 hr 9 min 5 sec 5 min 39 sec 12 min 39 sec 9 sec 4060x

Correctness Comparison

The results of steady and unsteady problem implementation in this work is compared with the

results of a commercial software as shown in Fig 5.2 and Fig 5.3 respectively. Figure 5.2 compares

the temperature in a line along z dimension at x = 0.1 and y = 0.5. Figure 5.3 compares the

temperature at point x = 0.01, y = 0.5 and z = 0.5. The implementation in this work suffers an

average error of 1.5%.
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Figure 5.2: Steady state problem correctness
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Figure 5.3: Unsteady state problem correctness

Steady state 3D unstructured multigrid

The steady state problem is solved on a unstructured 3D grid and the speed up results are shown

below. Table 5.5 compares the work units for implementation with out multigrid and with multigrid

and the speed up achieved by both GPU implementation and multigrid algorithm as shown in

Table 5.6. The speed up shown in Table 5.6 is the speed up in computation time.

Table 5.5: With multigrid vs Without mutigrid (work units)
Grid Size Without MG With MG
416483 1799 66.36
701161 6510 99.63
1699751 10919 119

Table 5.6: 3D unstructured grid time comparison (computation time + preprocessing time)
Grid Size CPU CPU-MG GPU GPU-MG Speed up

416483 3 min 54 sec + 11.7 sec + 7.5 sec + 0.68 sec + 344x
46.8 sec 58.1 sec 65.6 sec 83.64 sec

701161 20 min 5 sec + 27.5 sec + 36.45 sec + 1.31 sec + 919x
1 min 57 sec 2 min 22 sec 2 min 39 sec 3 min 27 sec

1699751 1 hr 15 min 20 sec + 1 min 15 sec + 2 min 23 sec + 3.14 sec + 1630x
10 min 14 sec 11 min 50 sec 32 min 45 sec 33 min 25 sec
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Speed up comparison between GPU, Multigrid, GPU and Multigrid

The speed up given by multigrid method and GPU implementation is compared separately in Ta-

ble 5.7.

Table 5.7: Speed up comparison of using Multigrid method and GPU implementation
Grid Size Multigrid only GPU only Multigrid and GPU
416483 20x 30x 344x
701161 43x 33x 919x
1699751 68x 35x 1630x

Unsteady state 3D unstructured multigrid

The unsteady state problem is solved on a unstructured 3D grid and the speed up results are shown

below. Table 5.8 shows the speed up achieved by both GPU implementation and multigrid algorithm

compared to non-multigrid CPU algorithm. The speed up shown in Table 5.8 is the speed up in

computation time. Once the solution reaches steady state the multigrid method has less effect on

the convergence because the solution convergence in a few iterations in each time step.

Table 5.8: Unstructured grid time comparison (computation time + preprocessing time)
Grid Size CPU CPU-MG GPU GPU-MG Speed up

416483 2 hr 27 min 40 sec + 2 hr 26 min 10 sec + 6 min 9 sec + 6 min 6 sec + 24x
46.8 sec 58.1 sec 65 sec 83 sec

701161 5 hr 12 min 29 sec + 4 hr 41 min 28 sec + 9 min 46 sec + 9 min 19 sec + 33x
1 min 57 sec 2 min 22 sec 2 min 39 sec 3 min 27 sec

1699751 14 hr 28 min 12 sec + 13 hr 2 min 45 sec + 26 min 41 sec + 24 min 40 sec + 35x
10 min 14 sec 11 min 50 sec 32 min 45 sec 33 min 25 sec
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Chapter 6

Discussion

In this work a GPU based unstructured geometric multigrid solver is implemented in two and three

dimensions. Different schemes for creating coarse level grids for unstructured grids are investigated

and a improved coarsening implementation is proposed. The GPU implementation in this work

uses a better graph representation which perform well in GPU architecture. Steady and unsteady

heat transfer problem from CFD is solved and evaluated the speed up given by multigrid GPU

implementation.

The current multgrid implementation works only for convex domains. In future this can be

extended to concave domains. In this work the speed up given is focused only on computation

time. The preprocessing time is given less attention because it is a one time process. In future the

preprocessing time can be improved because for very large input it may take long time and one can

think about a better coarse vertex set which improve the multigrid performance. Another future

expansion is implementing the solver for multiple GPUs.
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