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Abstract

Many applications such as financial transactions data, customer click stream continuously generates
huge data sets at very rapid rate. This is generally termed as data stream. These data sets are too
huge to store on limited secondary storage. Therefore, it directs us to adopt a technique to maintain
the sketch or summary of the data stream. This will allow us to answer any query, that we wish to
perform on this data sets, approximately. Many applications on data streams such as counting of
distinct items, estimating frequency moments [7, 8], the counting of frequent items [9, 3], clustering
and the computation of histograms are of great interest among researchers. We consider k-median
clustering problem in the geometric data stream. The task of the clustering is to partition a set of
objects into disjoint group wherein the data objects in the same group are similar and objects in
the different groups are dissimilar.

We consider the k-median clustering algorithm in the context of data stream as proposed in [4].
We propose modified algorithm for 2-dimension that achieve improved time and space bounds for
k-median problem in [4]. We run the experiment by implementing the modified algorithm to see

execution time.
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Chapter 1

Introduction

1.1 Overview: Data stream and Streaming algorithm

A data stream is an ordered sequence of points x1, o, ..., £, that must be accessed in order and
can be read only once or a small number of times [4]. The data stream model is highly motivated by
applications which involve massive datasets e.g. datasets of computer network traffic, ATM trans-
action, web searches, financial transaction, sensor network. In the data stream model, the whole
input dataset is not readily available to the algorithm, but rather arrives as one or more continuous
data streams at regular interval. Storing the entire data is not possible due to the limitation of
space(main memory). Other applications such as mining of stock price, transactional log analysis,
etc. having huge datasets to be operated on are typically stored in secondary storage devices where
random access is very expensive and the only cost-effective access method is linear scan(although
more than one scan is allowed), these applications can also be modeled as data stream. Owing to
these constraints of space and time, many researchers have focused on designing data structure and
algorithm in data stream model. Since the amount of memory space available to the data stream
algorithm, perhaps in polylogarithmic of input size, is far too small to store the whole input. There-

fore, algorithm must maintain sketches or summaries of data.

Streaming algorithm merely maintains the sketch of the input data, therefore it would be impos-
sible to answer a query precisely and so some approximation is provably needed with usable accuracy
guarantees. Typically, accuracy guarantees will be made in terms of a pair of user specified parame-
ters, € and § such that the error in answering a query is within a factor of € with probability 6. Many
streaming algorithms and data structures have been proposed for computation of simple numerical
statistics of the input, like finding clusters, number of distinct elements, frequency moments, heavy

hitters, etc.

1.2 Clustering: k-median in Data Stream Model

Clustering algorithm arranges a data set into several disjoint groups such that objects in the
same group are similar to each other and are dissimilar to other groups according to some similarity

measures[10]. Clustering has very rich application in various field such as Social Network Analysis



wherein clustering may be used to recognize communities within large groups of people, Market
Research, Image Segmentation wherein Clustering can be used to divide a digital image into distinct

regions for border detection or object recognition.

In this thesis, we are considering k-median clustering problem for dynamic geometric problems,
wherein the goal is to find an efficient algorithm for estimating the median cost repeatedly (or at
particular interval) after each incremental modification of the input data i.e. under the addition
and deletion of input geometric objects. For more clustering problems see [12, 13]. From the data
stream perspective, the stream consist of either Add(p) or Remove(p) operations( adding p object
to the data structure or deleting p object from the data structure). The set of geometric objects
P lie in the discrete 2-dimension space {1...A}2. Only k-median and the cost of the solution are
reported rather than reporting the solution itself. Otherwise, the size of the solution would be linear
of input size which makes it impossible to design algorithms with polylogarithmic space. K-median
clustering objective is to identifying k-centers so that the sum of the distances from each object to
its nearest neighbor is minimized. Let Q and P be the set of medians and set of points respectively
and C(Q,P) be the objective cost then,

C(Q,P) =) minllp—dl

peP

We will assume that the input points P are all distinct and distributed over the 2-dimensional
discrete space {1...A}2. All the theoretical results for the time and space complexity have been
proved under the assumption that dimension d=2 and logn = O(log A), where n is the maximum
number of elements in the set P. All of the algorithms are randomised and use the space polynomial

in logA .

1.3 Discrete Geometric Space

As aforementioned, the input points live in a discrete space {1...A}2. The reason behind taking
the discrete space is to ease the computational complexity analysis, for in the real space R? with
the infinite precision, the notion of the storage is not well defined. However, in practice its common
assumption that the input elements in geometric problems take real values. So, we mention that the
algorithm can be easily adapted to work for real space with bounded precision wherein the minimum

inter-point distance is at least 1 and the diameter is bounded by A [4].

1.4 Outline: Finding k-median Cost in Data Stream Model

In a brief, the general idea for estimating the k-median Cost approximately in a data stream
model is implemented as follows. Impose log A randomly shifted, nested square grid over the point
space. The grid cells have side length 2¢ for i = 0...log(A) — 1. For each grid, compute certain
statistic of the distribution of points in the grid. Let np(c) be the number of points in set P falling
into cell c. At level i, given a set of medians Q of size k, consider a ball B(q,r;) of radius r; around
points ¢ € Q. Let B(Q, ;) be the union of all balls. Let XCj = 3" g =9 nr(c) be the number



of points lying outside B(Q,r;) i.e. Exclusive Count . Then the k-median cost is calculated as:

Cost = ZXC’i * (1 —1ic1)

Then we find an approximately optimal set @ C {1...A} 2d via exhaustive search or local search.

1.5 Thesis Outline

The rest of the thesis is outlined as follows: In chapter 2, we briefly discuss the tools like point
query using Count-Min sketch, range query using dyadic range and so on. These tools act as building
blocks to the algorithms. In chapter 3, we give overview of the streaming algorithm for k-median
clustering problem proposed by Piotr Indyk in [4]. In chapter 4, we propose modified algorithm
to the k-median clustering problem [4], that achieves better space and time bounds. In chapter 5,
we perform the experiment for both the algorithms for 2-dimension and compare the results. We

conclude the thesis in chapter 6.



Chapter 2

Preliminaries

2.1 Count-Min Sketch

2.1.1 Overview

Consider a vector A (1...n), which is presented in an implicit, incremental fashion. Initially,
vector A is set to zero; A(i)=0 for 1 < i < n. The vector A is, then, continuously presented with
updates as a stream of pairs (7, ¢), meaning that the value of vector at index i is added by value c i.e.
A(i)=A(i)+c. In some cases, c is be strictly positive and values of A(i) always increase. It is known
as cash register model. In other cases, c is allowed to be negative also and some value A(i) might be
negative. This is called turnstile model. But if no A(i), at any time, is less than zero i.e. A(i) >0
for 1 <i < n, even though c is allowed to be negative, then it is called strict turnstile model. The
term Point Query, denoted Q(i), is defined as the value of A(i) at the particular instant.

Since the space available is merely polynomial in log(n), the algorithm will only be able to store
the sketch or summary of the vector A and hence no function or query, to be computed on A, can
be done precisely. So some approximation is provably needed in answering the query with usable
accuracy guarantees. Typically, accuracy guarantees will be made in terms of a pair of user specified
parameters, € and § such that the error in answering a query is within a factor of € with probability
0. The space and update time will consequently depend on € and §.

Count-Min sketch, [3], is a probabilistic sub-linear space streaming algorithm that has been
extensively used for summarizing data streams. The algorithm was invented in 2003 by G Cormode
and S. M Muthukrishnan. This sketch allows fundamental queries in data stream summarization such
as point, range, and inner product queries to be approximately answered very quickly. Generally,
the accuracy estimates for the queries answered using CM sketch depend on the L1 norm of the
vector. Here we investigate the time, space and Update time complexity for performing the point

query using CM sketch. In order to provide tighter complexity bounds, Markov inequality is used.

2.1.2 Point Query

A Count-Min sketch with parameters (e, §) is represented by a two-dimensional array with width
w and depth d called here count. Given parameters (e, d), set w = [£] and d = [log(3)]. Each entry
of the array is initially zero. Additionally, d hash functions are chosen uniformly at random from a



pairwise-independent hash family, viz, h; for j € {1,...,d}. The CM sketch data structure supports
following operations.

e Update (i,c): Vj, count[j][h;(i)] < count[j][h;(i)] + ¢

e Point Query Q(i): return A; = min; count[j][h;(i)]

The total space used by Count-Min sketches is wd + 2d words, where wd words for storing the array
and 2d words for d hash function each of which requires 2 words. we will only analysis the point

query for the non-negative case(strict turnstile case) i.e. all A(¢) > 0 at any time.

Theorem 2.1.1 ([3]). This estimate has the guarantee that A(i) < A(i) + €||A||, with probability
1-94.

Proof. Fix any j € {1,...,d}, the value stored at count[j|[h; ()],

count[j][h; ()] = A(i) + A
E(A) = > Prih;(t) = h; (1) A(t)

t={1,...,n} and t#i

1 1
< = ==
<= 3 AW =4l

t={1,...,n}

€
-|]A
Al

IN

By Markov inequality,

PriA > ex||A||1] = Pr[A > ex E(A)] <

Q| =

For all j € {1,...,d},

PrivV;A > ex||A|l1] = PrlV;A > ex E(A)] < (%)d =4

Therefore, A(i) < A(i) < A(i) + € % ||A||1 with probability atleast 1 — 4. O

The time to compute the estimate is O(log(3)). The space used is O(¢ *log()). Update time
is O(log(})).

2.1.3 Range Query

Given two end points 1 and r, both positive and less than or equal to n, the range query denoted
as Q(Lr) is defined as sum of all A(t) for I < ¢ < r, which can be obtained by simply computing
point queries for each item in the range, and summing the estimates. However, the error guarantee
could be as large as the factor of ||A|| and n ie. Q(I,r) < Q(I,7) + en||A||1, which is very huge
because n itself is very large. To avoid this, the new technique is adopted wherein the vector A
is stored using log(n) CM sketches with dyadic ranges of length 2¥ each for y = 0,...,log(n) — 1.
Each point in the range [1...n] is a member of log(n) dyadic ranges, one for each y = 0...log(n) — 1.

For each input pair (i,c), update to the data structure is similar to the updation of CM sketch,



except here the updation is done at every level of CM sketch for y = 0...log(n) — 1 after finding
the new index i,, given as i, = 2% Then, given a range query Q(l,r), compute the at most 2log(n)
dyadic ranges which canonically cover the range, and pose that many point queries to the sketches,
returning the sum of the queries as the estimate. For example, consider n = 256, the range [48, 107]
is canonically covered by the non-overlapping dyadic ranges [48...48], [49...64], [65...96], [97...104],
[105...106], [107...107].

Let A[l,r] = >";_; A(k) be the answer to the query Q(l,r) and let fl[l,r] be the approximate

value of A[l,r].

Theorem 2.1.2 ([3]). A[l,r] < A[l,r] and A[l,r] < A[r,1]+ €||A||y with probability at least 1 — & for
= [Llc’f(n)] and d = [log($)] .

Proof. Consider a dyadic level y with hash function h; mapping {1,...,a} — {1,...,w}, a = 3.

Consider i*" subrange, fix any hash function j. The value of A(i) stored at count[j][h;(i)] is,

count[i][h;(i)] = A(i) + A
E[al= ) Priy(i) = hi(k)]A()

t=1...cc and t#7

A
gl
|
N
I

A
ik
S

For total 2log(n) point query,

2log(n)

ElAora) < —[|Allx
w

€
E[Atotal] < EHAHI
hence, by Markov inequality,

Pr[Atotal > 6||A||1 = eE[AtotalH <

Q| =

For all j € 1...d,
1
Pr[vje{l,...,d}Atotal > 6||14||1 - eE[Atotal]] < (E)d ~J

Since Ayora is non-zero, so clearly A[l,r] < A[l,r] and A[l, 7] < A[l, 7] + €||A||; with probability

at least 1 — 4.

The space used is O('25®) Jog $). The time to estimate the query is O(lognlog 3). O

€



Chapter 3

Streaming Algorithm for k-median

Dynamic Geometric Problem

3.1 Overview

In this chapter, we give the overview of k-median clustering algorithm proposed by Piotr Indyk
in [4] for 2-dimension. K-median clustering objective is to identifying k-centers Q so that the sum

of the distances from each point to its nearest neighbor is minimized. Let Q C {1, ..., A}

C(Q,P) =D minllp— 4

peP

The main focus is on estimating the cost of the solution, rather than reporting the solution itself,
because the solution size could be as large as input size which makes it impossible to design algorithm
with poly-logarithmic space. To be precise, the algorithm only provides the k-median cost to the
given k Centres. Subsequently, this algorithm can be used as a subroutine to the various approaches
such as exhaustive search, local search, greedy algorithm, etc. to find the best k Centres. Note that

the k centres could belong, not just from the set P, also from the space {1, ..., A}2.

3.2 Input Format

The algorithm sees the input in the following format:

input(id, old-coordinate, new-coordinate)

3.3 Exclusive Count

It is low-space data structure that maintains the vector x[l...M] using data structure akin
to Min-Count sketches [3] using a pair-wise independent hash function h : {1,..., M} — {1,...,w},
for w = 2t(1 4+ 1/€) and an array count[l...w], where ¢ is the maximum number of point query i.e.

|Q| <t . It supports the following operations:



e Update(i,c): count[i] +=c¢
® XCount(Q): return R =3, o) count|d]

LEMMA 1 ([4]). Any XCount query reports a correct (approximate) value R with probability
at least 1/2.

Proof. Let XC =3, z[i] be the original value for Exclusive Count and A = > x[j].
J¢Q and h(j)eh(Q)
Clearly XC = R+ A.

E(A) = > Prlh(j) € h(Q)] * z[j]
Jj¢Q and h(j)€h(Q)

E(A) <+ %XC
2(1+¢)

xc

XC

<

|

Using Markov inequality,

Pr[A > eXC] = Pr[A > 2E[A]] <

N | =

Therefore, R > (1 — €)X C with probability at least 1.

3.4 Median Cost Evaluation

This tool called MediEval provides the function to calculate k-median cost by using the un-
derlying data structure XCount(Q), under the addition and deletion of points. It also supports an
operation FVAL(Q), that returns cost C such that C' = (1 £ O(e))C(Q, P). The data structure
is parametrized by ! and |Q| < I. Let G; be the grid of size length %(1 + ¢€)® imposed on space
{1,...,A}2. Let n; is the vector which is stored by the XCount data structure to solve Exclusive
Count problem and n;(c) to be number of points in P that fall into cell ¢ of grid G;. Remember,
the range of the hash function in XCount(Q) is a function of ¢, set t = ©(%). Let B(q,r;) be a set
of points from the space {1,..., A}? within the radius r; from ¢. Let B(Q,r;) = quQ B(g,r;). Set
r; = (1 +€)". Let ig = O(log(1/€)/e) such that r_;, < e. Let G;(B(Q,r;)) be the set of grid cells

that contain points in B(Q,r;), observe that for any i,

B(Q,r:) C Gi(B(Q,7:)) € B(Q,ri41)

Note that |G;(B(Q,r;))| = O(%) < t. To achieve this, divide the area of ball B(q,r;) Vg € Q
with area of one cell. Let R;(Q) be the value of XCount for G;(B(Q,r;)) and let R;(Q) be the
approximation of R;(Q) and that R;(Q) > (1 — €)R;(Q), and



[P = B(Q,ri(1+ )| < Ri(Q) < |P - B(Q,r)]

Define C(Q,P) = > (ri — o) Ri(Q)
—ip<i<log(2A)

LEMMA 2 ([4]). The quantity C(Q, P) provides a good approximation of C(Q,P) [4]. That is
C(Q,P)=(1£0(e)C(Q, P)

Proof. In paper [4], only < inequality is given. Here, we give the proof for both < and > inequality.

For < inequality:

C(Q.P) = / P~ B(Q,r)|dr
<Y 1P = B(@ris)|(rive — i)

3

1
= 1—¢ Z |P — B(Q,ri+1)|(rit2 — riy1)

i>—1ig
1 2
= (1%66) 1P =B(Q,ris1)|(ri —ri1)
1> —1ig
2 .
< 0T S R@n )
i>—ig
1 2 ~
<UET Y R@E e
—ig<i<log(24)

For > inequality:

cQ.p)= [ IP-B@nar
> Z |P — B(Q,r:)|(rit1 — 1)

1
2 ﬁigo\P—B(Q,ﬁ)KHH — i)

1+e€ <
> T Z |P = B(Q,r:)|(ri —ri—1)
i>—10
1+e .
> _
1 761_;() R’L(Q)(TZ 7"171)

O

The total space required to estimate median cost is O(Eﬁ3 (log A+ M)) The query time,

€

given @ C {1,...,A}?, is O(£ (log A + M)) Update time is O(log A + M)



3.5 Algorithm : Exhaustive Search and Local Search for

2-Dimension

The data structure MediFval keeps the information about the distribution of the points P €
{1,...,A}2. The MediEval data structure also provides the function to approximately estimate the
median Cost C(Q,P) to any @ C {1,..., A}2, probability atleast % This data structure can be used
in several approaches, such as Exhaustive Search or Local Search, to find the best k-medians. The
total space used by MediEval is O(% (log A + M)) The time to estimate the k-median Cost,
given Q C {1,..., A}?, is O(% (log A + 18U1/e)yy.

The Exhaustive Search algorithm solves the K-median problem by enumerating all sets

Q c {1,...,A}? and choosing the best. Although the time taken is in the factor of A?*) which

is prohibitively expensive, but it shows that, it is possible to get (1 + €)-approximate solution

to the k-median problem. The time needed to report the solution, i.e. optimal k centre’s, is
O(23E (log A + 10el/a)y),

The Local Search algorithm initially chooses an arbitrary set QQ of size k. Then, at any step,

it enumerates all sets Q7 = Q — {¢}{p} for ¢ € Q,p ¢ Q. If C(Q1,P) < (1 — )C(Q, P), then Q

becomes Q. The algorithm ends when there is no Q) satisfying the above condition. The time

needed to report the solution, i.e. optimal k centre’s, is O(Ae—zk(logA + M)) Arya [11] et al

show that for the case a = 0, the algorithm provides a 5-approximation.

10



Chapter 4

Improved Space and Time Bounds

for K-median Problem

4.1 Overview

In this chapter, we propose a modified algorithm to the Median Cost Evaluation function of
k-median algorithm in [4] for 2-dimension. Using the modified Median Cost Evaluation algorithm,

we achieve asymptotically better time and space bounds for k-median clustering problem.

4.2 Simultaneous Range Query using CM sketch and Dyadic
Ranges

Consider a matrix A of size A x A. Assume that A is power of 2. Each entry A(i,7) is a
non-negative value i.e. strict turnstile model. Let rq,7s2,...,7; be the m non overlapping ranges
along y-axis defined by the end points {(u;,v;), (us, v})} over the matrix A (see figure 4.1). Also

given the width of any r; is at most L, that is |v; —v}| < L. Let R; be the range sum for r; given as,

R; = 27: Alui, j)

J=vi

It is required to support the following operations:

e Update(u,v): Update operation could be either insertion or deletion.
Insert(u,v): perform A(u,v) = A(u,v)+1

Delete(u,v): perform A(u,v) = A(u,v)-1

e Simultaneous Range Query given r1,79, ..., 7y, return R=3"" | R;

This can be implemented using O(n) space which is large, where n = [|A||;. So the task is to
compute the value of R using low-space, more precisely in polylogarithmic space. Here we give a low-

space data structure(we name it as SRQ data structure) that computes the value R approximately

11



(-1, A-1)

|
§
(0,0) Uy U,

Matrix A

Figure 4.1: Non-overlapping ranges 1,72, ...Tm defined over Matrix A

by maintaining the sketch of matrix A. This is accomplished using CM sketch [3] and dyadic range

technique. Let R be the approximation of R. It is implemented as follows. Consider a vector C'

defined as follows.

C =< A(0,0), A(0,1)...A(0, A — 1), A(1,0), A(1,1)...A(1, A — 1), A(A — 1,0),
AN - 1,1 AA—1,A 1) >

Now define a dyadic range of up to [log L]+1 level over the vector C of the form [j2%...(j+1)2%F —1]
for level 0 < k < [log L] and index 0 < j < [%—;] — 1. Let Cy be the vector for 0 < k < [log L], such
that Cx(j) = Zl(:;;,)fkfl C)for0<j< fé—:} — 1. Each such C} is then stored using CM sketch.
It consists of an array count[l...w] and d hash function, each hash function is chosen from pair-wise
independent hash family, h;{1,...,|Cx|} — {1,...,w} for 1 < j < d. Note that |C}x| < A x A for
any k. The operations, insertion and deletion is performed at every dyadic level, are implemented
as follows.

o Insert (u,v): map (u,v) — i and perform count;[h;(i)] = count;[h;(i)] + 1
e Delete (u,v): map (u,v) — i and perform count;[h;(i)] = count;[h;(i)] — 1
e Simultaneously Range Query given ry,79,...,7,: Consider any level [ and CM sketch with
hash function hi. By [3], each r; corresponds to at most 2 point queries in . Let X denote the

set of all buckets of hy to where rq,rg, ..., 7, mapped. Let C[l] = i d( > county[i]). Return
= iex

.....

LEMMA 1. R < R < R+ ¢(||C|| — R) with probability at least 1 — § for w = %.

Proof. Consider R= 27;1 Ez where Ri is the range sum for ;.

R= iRi + iAi
i=1 i=1

12



Let A = Z;ﬂ;l AZ

B[A] =) E[A]

m

i=1
2mlog L
w

IN

(lIClly = Ri)

IN

(ICIh — Ry)

€
(&

By Markov inequality, we have

PriA>e((|Clh = Ry)] <

| =

For R is taken as minimum of d estimates, we have

Pria > e(IClh ~ R) < () ~ 5

O

R < R < R+ €¢(||C||1 — R) with probability at least 1 — & using O(%ﬁ log($)) space. The
estimate time is O(mlog Llog(%)). Update time is O(log Llog(3)).

4.3 Exclusive Count

This is a tool which uses the SRQ data structure and provides a function XCount(@)) to estimate

the exclusive count for the following problem.
Consider a matrix of size A x A. Assume A is power of 2. Let Q; = {(z,y)|u; <z < u} and v; <
y < vi} be the i'" square region defined by a diagonally end points {(u;,v;), (u},v})} for 1 <i < k.

There might be over lapping regions as shown in fig 4.2. Let Q = ‘_&J in. Let R be the range sum

for Q and R be the approximation of R. The exclusive count XCount(Q) is given as,

XC= > A(i,j)

(1,5)¢Q
We use SRQ data structure to maintain a sketch of matrix A which provides the functionality to
answer the exclusive count X C approximately. Let XC be the approximate value of XC' given as,
XC = [|A|]1 — R where R is range sum returned by SRQ data structure for ). We claim that the @
can be reduced to at most kL non-overlapping ranges r,7s...r, where m < kL and |r;| < L. Tt is

straight forward to verify that m < kL. Note that in order to compute kL non-overlapping ranges,
we need additional O(kL) space and O(k?L) time.

Theorem 4.3.1. (1 —€)XC < XC < XC with probability at least 1 — & for w = 762kL€10gL,
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(-1, 8-1)

(0,0)

Matrix A

Figure 4.2: Over-lapped region r; and r; with ranges (v, v;) and (v;, v};) respectively

Proof. Consider R= 27;1 IAL where RZ is the range sum for ;.

R=> "R+ A
i=1 i=1
Let A = ZZI Az
E[A] = Z E[A]

" 2log L
SZ " ([lAl[x = R:)

By Markov inequality, we have

PriA > eXC] <

Q| =

For R is taken as minimum of d estimates, we have
Lig
PriA > eXC] < (=)=
e
O

Hence, (1 — €)XC < XC < XC with probability at least 1 — ¢ using O(% log(§)) space.
The time to estimate XC is O(kLlog Llog(})). Update time is O(log Llog(%)).

14



4.4 Median Cost Evaluation

The main tool is Median Cost Evaluation data structure. The data structure maintains a set
P c {1,...,A}?, under addition and deletion of points. This tool provides the function to estimate
the median cost C for any set Q C {1, ..., A} of size k, such that C' = (1 + O(¢))C(Q,P).

The data structure is implemented as follows. Define G; to be a square grid imposed on space
{1,..., A}?, with side length S+ €)!. Clearly G; can be considered as Matrix A of size N x N
where N = (e(\{—?-e)i] and let n;(c) be the number of points from P falls into cell ¢ € G;. We now
show how to estimate median cost for any Q. Let r; = (1 + €) and B(q,r;) be the set of points in
{1, ..., A}? with distance less than r; from q. Let B(Q,7;) = UgeqB(g,7i). Let Gi(B(q,r;)) be the
set of grid cells that are superimposed by B(q,r;). Observe that |G;(B(g,7;))| = O(Z%). To achieve
this, divide the area of a ball with radius r; to the area of one cell. Set L = O(%) since the number
of cell in a row is O(1). Let Gi(B(Q, 7)) = UgeqGi(B(gq,r)). Note that G;(B(Q,r;)) corresponds
to the query region. The sketch of grid G; is maintained by our SRQ data structure. Let ]%Z(Q) be

the estimated exclusive count returned by XCount for G;(B(g,7;)). The median cost for any Q is

given as,
é(Q7P) = Z (TZ‘ - ri,1)Ri(Q)
—ip<i<log A
Therefore, by [4] C(Q, P) = (1£0(¢))C(Q, P) with probability at least 1—J using O(% log(1/5)(log A+
M)) space. The estimate time is O(%log(1/e)log(1/5)(log A + %)) Update time is
O(log(1/€)log(1/6)(log A + %))
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Chapter 5

Experimental Results

In this section we present some of the implementation details of the algorithms described in
the previous two chapters. For comparison, we focus on d=2 i.e. the set of points P live in discrete
plane {1,...,A}? .

All the programs were compiled using g++ version 5.4.2. and all the computations were per-
formed on a DELL PRECISION T1600 machine with intel(R) xeon(R) CPU @ 3.40 GHz and 8 GB
main memory, using Linux 2.6.38-8-generic kernel.

We name the algorithm as A1l and A2 described in Chapter 3 and 4 respectively. For comparison,
our implemented algorithms only estimate median cost for a given k centres. Subsequently, these
algorithm can be used as a subroutine by the various approaches explained in section 3.5, to obtain
the best k-centres. Here, we compare the quality of the algorithms Al and A2 in terms of estimated
median cost and the CPU execution time taken. We also compare the quality of the algorithms A1l
and A2 with the accurate cost, calculated as the sum of the distance for all points p € P to the
nearest g € (), given as:

Accurate Cost = Z;Z”gg lp—qll

Figure 5.1 and 5.2 summarizes cost of the clustering and the average running time for various k.
Since all the algorithms are randomized, we run both the algorithms several time (mostly 5 times)
and then taking the average value. We set the parameter for both the algorithms as specified by the
author [4]. For comparison, we fix the value of A = 1000, |P| = 500 and € = 0.1.

In this experiment, we observe that the quality of the median costs were quite promising and lies
within the constant factor(+£5%) from each other. In terms of running time, it turns out that our
algorithm A1 outperforms the algorithm A2 and hence provides a good alternative to the algorithm

A2. Figure 5.2 summarizes the CPU execution time taken by both the algorithms in milliseconds.
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Figure 5.1: Median Cost results.
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number of centre’s k

Figure 5.2: Median Cost results.
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Chapter 6

Conclusion And Future Work

In this thesis we developed new methods to solve O(1 % ¢)-approximation k-median clustering
problem for geometric data stream. We have shown results for 2-dimensions only. But this approach
can easily be extended for higher dimensions.

Our new technique partitions the space very effectively and reduces it to high dimensional vec-
tors which in turn is stored by CM sketches using dyadic range scheme. Our algorithm takes
O(% log4(%)(logA + W)) space and O(k logg(%)(log A+ M)) time to estimate median cost

for a given k centers. Our algorithm improves the previous best known space and time bounds in
[4].

The main disadvantage of both the algorithms is the dependency of the space and time complexity
on A, which affects the performance significantly for large A.

As we mention that time and space bounds for our algorithm has been provided for 2-dimension.
So our future work would be to provide the bounds for higher dimension i.e. for arbitrary d. we
also mentioned that time and space bounds depend on A. Hence, it has become an interesting area

of research to provide a method such that the time and space bounds be independent of A.
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