
Streaming Algorithm for k-median Dynamic

Geometric Problem

Jai Mohan Shrivastava

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2012

Acknowledgements

I express my sincere gratitude toward my adviser Dr. Naveen Sivadasan for his constant help,

encouragement and inspiration throughout the thesis work. Without his invaluable guidance, this

work would never have been a successful one. I would also like to thank Prof. Dr. Ravindra N.

Guravannavar and Mr. Sandeep R.B(Phd. Scholar) for their valuable time and suggestions.

iv

Abstract

Many applications such as financial transactions data, customer click stream continuously generates

huge data sets at very rapid rate. This is generally termed as data stream. These data sets are too

huge to store on limited secondary storage. Therefore, it directs us to adopt a technique to maintain

the sketch or summary of the data stream. This will allow us to answer any query, that we wish to

perform on this data sets, approximately. Many applications on data streams such as counting of

distinct items, estimating frequency moments [7, 8], the counting of frequent items [9, 3], clustering

and the computation of histograms are of great interest among researchers. We consider k-median

clustering problem in the geometric data stream. The task of the clustering is to partition a set of

objects into disjoint group wherein the data objects in the same group are similar and objects in

the different groups are dissimilar.

We consider the k-median clustering algorithm in the context of data stream as proposed in [4].

We propose modified algorithm for 2-dimension that achieve improved time and space bounds for

k-median problem in [4]. We run the experiment by implementing the modified algorithm to see

execution time.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

Nomenclature vi

1 Introduction 1

1.1 Overview: Data stream and Streaming algorithm . 1

1.2 Clustering: k-median in Data Stream Model . 1

1.3 Discrete Geometric Space . 2

1.4 Outline: Finding k-median Cost in Data Stream Model 2

1.5 Thesis Outline . 3

2 Preliminaries 4

2.1 Count-Min Sketch . 4

2.1.1 Overview . 4

2.1.2 Point Query . 4

2.1.3 Range Query . 5

3 Streaming Algorithm for k-median Dynamic Geometric Problem 7

3.1 Overview . 7

3.2 Input Format . 7

3.3 Exclusive Count . 7

3.4 Median Cost Evaluation . 8

3.5 Algorithm : Exhaustive Search and Local Search for 2-Dimension 10

4 Improved Space and Time Bounds for K-median Problem 11

4.1 Overview . 11

4.2 Simultaneous Range Query using CM sketch and Dyadic Ranges 11

4.3 Exclusive Count . 13

4.4 Median Cost Evaluation . 15

5 Experimental Results 16

6 Conclusion And Future Work 18

vi

References 19

vii

Chapter 1

Introduction

1.1 Overview: Data stream and Streaming algorithm

A data stream is an ordered sequence of points x1, x2, ..., xn that must be accessed in order and

can be read only once or a small number of times [4]. The data stream model is highly motivated by

applications which involve massive datasets e.g. datasets of computer network traffic, ATM trans-

action, web searches, financial transaction, sensor network. In the data stream model, the whole

input dataset is not readily available to the algorithm, but rather arrives as one or more continuous

data streams at regular interval. Storing the entire data is not possible due to the limitation of

space(main memory). Other applications such as mining of stock price, transactional log analysis,

etc. having huge datasets to be operated on are typically stored in secondary storage devices where

random access is very expensive and the only cost-effective access method is linear scan(although

more than one scan is allowed), these applications can also be modeled as data stream. Owing to

these constraints of space and time, many researchers have focused on designing data structure and

algorithm in data stream model. Since the amount of memory space available to the data stream

algorithm, perhaps in polylogarithmic of input size, is far too small to store the whole input. There-

fore, algorithm must maintain sketches or summaries of data.

Streaming algorithm merely maintains the sketch of the input data, therefore it would be impos-

sible to answer a query precisely and so some approximation is provably needed with usable accuracy

guarantees. Typically, accuracy guarantees will be made in terms of a pair of user specified parame-

ters, ǫ and δ such that the error in answering a query is within a factor of ǫ with probability δ. Many

streaming algorithms and data structures have been proposed for computation of simple numerical

statistics of the input, like finding clusters, number of distinct elements, frequency moments, heavy

hitters, etc.

1.2 Clustering: k-median in Data Stream Model

Clustering algorithm arranges a data set into several disjoint groups such that objects in the

same group are similar to each other and are dissimilar to other groups according to some similarity

measures[10]. Clustering has very rich application in various field such as Social Network Analysis

1

wherein clustering may be used to recognize communities within large groups of people, Market

Research, Image Segmentation wherein Clustering can be used to divide a digital image into distinct

regions for border detection or object recognition.

In this thesis, we are considering k-median clustering problem for dynamic geometric problems,

wherein the goal is to find an efficient algorithm for estimating the median cost repeatedly (or at

particular interval) after each incremental modification of the input data i.e. under the addition

and deletion of input geometric objects. For more clustering problems see [12, 13]. From the data

stream perspective, the stream consist of either Add(p) or Remove(p) operations(adding p object

to the data structure or deleting p object from the data structure). The set of geometric objects

P lie in the discrete 2-dimension space {1...∆}
2
. Only k-median and the cost of the solution are

reported rather than reporting the solution itself. Otherwise, the size of the solution would be linear

of input size which makes it impossible to design algorithms with polylogarithmic space. K-median

clustering objective is to identifying k-centers so that the sum of the distances from each object to

its nearest neighbor is minimized. Let Q and P be the set of medians and set of points respectively

and C(Q,P) be the objective cost then,

C(Q,P) =
∑
p∈P

min
q∈Q
||p− q||

We will assume that the input points P are all distinct and distributed over the 2-dimensional

discrete space {1...∆}
2
. All the theoretical results for the time and space complexity have been

proved under the assumption that dimension d=2 and log n = O(log∆), where n is the maximum

number of elements in the set P. All of the algorithms are randomised and use the space polynomial

in log∆ .

1.3 Discrete Geometric Space

As aforementioned, the input points live in a discrete space {1...∆}
2
. The reason behind taking

the discrete space is to ease the computational complexity analysis, for in the real space R2 with

the infinite precision, the notion of the storage is not well defined. However, in practice its common

assumption that the input elements in geometric problems take real values. So, we mention that the

algorithm can be easily adapted to work for real space with bounded precision wherein the minimum

inter-point distance is at least 1 and the diameter is bounded by ∆ [4].

1.4 Outline: Finding k-median Cost in Data Stream Model

In a brief, the general idea for estimating the k-median Cost approximately in a data stream

model is implemented as follows. Impose log∆ randomly shifted, nested square grid over the point

space. The grid cells have side length 2i for i = 0... log(∆) − 1. For each grid, compute certain

statistic of the distribution of points in the grid. Let nP (c) be the number of points in set P falling

into cell c. At level i, given a set of medians Q of size k, consider a ball B(q, ri) of radius ri around

points q ∈ Q. Let B(Q, ri) be the union of all balls. Let XCi =
∑

c∩B(Q,ri)=∅ nP (c) be the number

2

of points lying outside B(Q, ri) i.e. Exclusive Count . Then the k-median cost is calculated as:

Cost =
∑
i

XCi ∗ (ri − ri−1)

Then we find an approximately optimal set Q ⊂ {1...∆} 2d via exhaustive search or local search.

1.5 Thesis Outline

The rest of the thesis is outlined as follows: In chapter 2, we briefly discuss the tools like point

query using Count-Min sketch, range query using dyadic range and so on. These tools act as building

blocks to the algorithms. In chapter 3, we give overview of the streaming algorithm for k-median

clustering problem proposed by Piotr Indyk in [4]. In chapter 4, we propose modified algorithm

to the k-median clustering problem [4], that achieves better space and time bounds. In chapter 5,

we perform the experiment for both the algorithms for 2-dimension and compare the results. We

conclude the thesis in chapter 6.

3

Chapter 2

Preliminaries

2.1 Count-Min Sketch

2.1.1 Overview

Consider a vector A (1...n), which is presented in an implicit, incremental fashion. Initially,

vector A is set to zero; A(i)=0 for 1 ≤ i ≤ n. The vector A is, then, continuously presented with

updates as a stream of pairs (i, c), meaning that the value of vector at index i is added by value c i.e.

A(i)=A(i)+c. In some cases, c is be strictly positive and values of A(i) always increase. It is known

as cash register model. In other cases, c is allowed to be negative also and some value A(i) might be

negative. This is called turnstile model. But if no A(i), at any time, is less than zero i.e. A(i) > 0

for 1 ≤ i ≤ n, even though c is allowed to be negative, then it is called strict turnstile model. The

term Point Query, denoted Q(i), is defined as the value of A(i) at the particular instant.

Since the space available is merely polynomial in log(n), the algorithm will only be able to store

the sketch or summary of the vector A and hence no function or query, to be computed on A, can

be done precisely. So some approximation is provably needed in answering the query with usable

accuracy guarantees. Typically, accuracy guarantees will be made in terms of a pair of user specified

parameters, ǫ and δ such that the error in answering a query is within a factor of ǫ with probability

δ. The space and update time will consequently depend on ǫ and δ.

Count-Min sketch, [3], is a probabilistic sub-linear space streaming algorithm that has been

extensively used for summarizing data streams. The algorithm was invented in 2003 by G Cormode

and S. MMuthukrishnan. This sketch allows fundamental queries in data stream summarization such

as point, range, and inner product queries to be approximately answered very quickly. Generally,

the accuracy estimates for the queries answered using CM sketch depend on the L1 norm of the

vector. Here we investigate the time, space and Update time complexity for performing the point

query using CM sketch. In order to provide tighter complexity bounds, Markov inequality is used.

2.1.2 Point Query

A Count-Min sketch with parameters (ǫ, δ) is represented by a two-dimensional array with width

w and depth d called here count. Given parameters (ǫ, δ), set w = ⌈ eǫ ⌉ and d = ⌈log(1δ)⌉. Each entry

of the array is initially zero. Additionally, d hash functions are chosen uniformly at random from a

4

pairwise-independent hash family, viz, hj for j ∈ {1, ..., d}. The CM sketch data structure supports

following operations.

• Update (i,c): ∀j, count[j][hj(i)]← count[j][hj(i)] + c

• Point Query Q(i): return Âi = minj count[j][hj(i)]

The total space used by Count-Min sketches is wd+2d words, where wd words for storing the array

and 2d words for d hash function each of which requires 2 words. we will only analysis the point

query for the non-negative case(strict turnstile case) i.e. all A(i) > 0 at any time.

Theorem 2.1.1 ([3]). This estimate has the guarantee that Â(i) ≤ A(i) + ǫ||A||1 with probability

1− δ.

Proof. Fix any j ∈ {1, ..., d}, the value stored at count[j][hj(i)],

count[j][hj(i)] = A(i) + ∆

E(∆) =
∑

t={1,...,n} and t 6=i

Pr[hj(t) = hj(i)]A(t)

≤
1

w

∑
t={1,...,n}

A(t) =
1

w
||A||1

≤
ǫ

e
||A||1

By Markov inequality,

Pr[∆ ≥ ǫ ∗ ||A||1] = Pr[∆ ≥ e ∗ E(∆)] ≤
1

e

For all j ∈ {1, ..., d},

Pr[∀j∆ ≥ ǫ ∗ ||A||1] = Pr[∀j∆ ≥ e ∗ E(∆)] ≤ (
1

e
)d = δ

Therefore, A(i) ≤ Â(i) ≤ A(i) + ǫ ∗ ||A||1 with probability atleast 1− δ.

The time to compute the estimate is O(log(1δ)). The space used is O(eǫ ∗ log(
1
δ)). Update time

is O(log(1δ)).

2.1.3 Range Query

Given two end points l and r, both positive and less than or equal to n, the range query denoted

as Q(l,r) is defined as sum of all A(t) for l ≤ t ≤ r, which can be obtained by simply computing

point queries for each item in the range, and summing the estimates. However, the error guarantee

could be as large as the factor of ||A|| and n i.e. Q̂(l, r) ≤ Q(l, r) + ǫn||A||1, which is very huge

because n itself is very large. To avoid this, the new technique is adopted wherein the vector A

is stored using log(n) CM sketches with dyadic ranges of length 2y each for y = 0, ..., log(n) − 1.

Each point in the range [1...n] is a member of log(n) dyadic ranges, one for each y = 0... log(n)− 1.

For each input pair (i,c), update to the data structure is similar to the updation of CM sketch,

5

except here the updation is done at every level of CM sketch for y = 0... log(n) − 1 after finding

the new index iy, given as iy = i
2y . Then, given a range query Q(l,r), compute the at most 2 log(n)

dyadic ranges which canonically cover the range, and pose that many point queries to the sketches,

returning the sum of the queries as the estimate. For example, consider n = 256, the range [48, 107]

is canonically covered by the non-overlapping dyadic ranges [48...48], [49...64], [65...96], [97...104],

[105...106], [107...107].

Let A[l, r] =
∑r

k=l A(k) be the answer to the query Q(l,r) and let Â[l, r] be the approximate

value of A[l, r].

Theorem 2.1.2 ([3]). A[l, r] ≤ Â[l, r] and Â[l, r] ≤ A[r, l] + ǫ||A||1 with probability at least 1− δ for

w = ⌈ 2e log(n)ǫ ⌉ and d = ⌈log(1δ)⌉ .

Proof. Consider a dyadic level y with hash function hj mapping {1, ..., α} → {1, ..., w}, α = n
2y .

Consider ith subrange, fix any hash function j. The value of A(i) stored at count[j][hj(i)] is,

count[i][hj(i)] = A(i) + ∆

E[∆] =
∑

t=1...α and t 6=i

Pr[hj(i) = hj(k)]A(t)

≤
1

w

∑
t={1,...,α}

A(t)

≤
1

w
||A||1

For total 2 log(n) point query,

E[∆total] ≤
2 log(n)

w
||A||1

E[∆total] ≤
ǫ

e
||A||1

hence, by Markov inequality,

Pr[∆total ≥ ǫ||A||1 = eE[∆total]] ≤
1

e

For all j ∈ 1...d,

Pr[∀j∈{1,...,d}∆total ≥ ǫ||A||1 = eE[∆total]] ≤ (
1

e
)d ≈ δ

Since ∆total is non-zero, so clearly A[l, r] ≤ Â[l, r] and Â[l, r] ≤ A[l, r] + ǫ||A||1 with probability

at least 1− δ.

The space used is O(log
2(n)
ǫ log 1

δ). The time to estimate the query is O(log n log 1
δ).

6

Chapter 3

Streaming Algorithm for k-median

Dynamic Geometric Problem

3.1 Overview

In this chapter, we give the overview of k-median clustering algorithm proposed by Piotr Indyk

in [4] for 2-dimension. K-median clustering objective is to identifying k-centers Q so that the sum

of the distances from each point to its nearest neighbor is minimized. Let Q ⊂ {1, ...,∆}2.

C(Q,P) =
∑
p∈P

min
q∈Q
||p− q||

The main focus is on estimating the cost of the solution, rather than reporting the solution itself,

because the solution size could be as large as input size which makes it impossible to design algorithm

with poly-logarithmic space. To be precise, the algorithm only provides the k-median cost to the

given k Centres. Subsequently, this algorithm can be used as a subroutine to the various approaches

such as exhaustive search, local search, greedy algorithm, etc. to find the best k Centres. Note that

the k centres could belong, not just from the set P, also from the space {1, ...,∆}2.

3.2 Input Format

The algorithm sees the input in the following format:

input(id, old-coordinate, new-coordinate)

3.3 Exclusive Count

It is low-space data structure that maintains the vector x[1...M] using data structure akin

to Min-Count sketches [3] using a pair-wise independent hash function h : {1, ...,M} → {1, ..., w},

for w = 2t(1 + 1/ǫ) and an array count[1...w], where t is the maximum number of point query i.e.

|Q| ≤ t . It supports the following operations:

7

• Update(i,c): count[i] += c

• XCount(Q): return R =
∑

i/∈h(Q) count[i]

LEMMA 1 ([4]). Any XCount query reports a correct (approximate) value R with probability

at least 1/2.

Proof. Let XC =
∑

i/∈Q x[i] be the original value for Exclusive Count and ∆ =
∑

j /∈Q and h(j)∈h(Q)

x[j].

Clearly XC = R+∆.

E(∆) =
∑

j /∈Q and h(j)∈h(Q)

Pr[h(j) ∈ h(Q)] ∗ x[j]

E(∆) ≤ t ∗
1

w
XC

=
ǫ

2(1 + ǫ)
XC

≤
ǫ

2
XC

Using Markov inequality,

Pr[∆ ≥ ǫXC] = Pr[∆ ≥ 2E[∆]] <
1

2

Therefore, R ≥ (1− ǫ)XC with probability at least 1
2 .

3.4 Median Cost Evaluation

This tool called MediEval provides the function to calculate k-median cost by using the un-

derlying data structure XCount(Q), under the addition and deletion of points. It also supports an

operation EVAL(Q), that returns cost C such that C = (1 ± O(ǫ))C(Q,P). The data structure

is parametrized by l and |Q| ≤ l. Let Gi be the grid of size length ǫ√
2
(1 + ǫ)i imposed on space

{1, ...,∆}2. Let ni is the vector which is stored by the XCount data structure to solve Exclusive

Count problem and ni(c) to be number of points in P that fall into cell c of grid Gi. Remember,

the range of the hash function in XCount(Q) is a function of t, set t = Θ(l
ǫ2). Let B(q, ri) be a set

of points from the space {1, ...,∆}2 within the radius ri from q. Let B(Q, ri) =
⋃

q∈Q B(q, ri). Set

ri = (1 + ǫ)i. Let i0 = O(log(1/ǫ)/ǫ) such that r−i0 < ǫ. Let Gi(B(Q, ri)) be the set of grid cells

that contain points in B(Q, ri), observe that for any i,

B(Q, ri) ⊂ Gi(B(Q, ri)) ⊂ B(Q, ri+1)

Note that |Gi(B(Q, ri))| = O(l
ǫ2) ≤ t. To achieve this, divide the area of ball B(q, ri) ∀q ∈ Q

with area of one cell. Let R̂i(Q) be the value of XCount for Gi(B(Q, ri)) and let Ri(Q) be the

approximation of R̂i(Q) and that Ri(Q) ≥ (1− ǫ)R̂i(Q), and

8

|P −B(Q, ri(1 + ǫ))| ≤ R̂i(Q) ≤ |P −B(Q, ri)|

.

Define Ĉ(Q,P) =
∑

−i0≤i≤log(2∆)

(ri − ri−1)R̂i(Q)

LEMMA 2 ([4]). The quantity Ĉ(Q,P) provides a good approximation of C(Q,P) [4]. That is

C(Q,P) = (1±O(ǫ))Ĉ(Q,P)

Proof. In paper [4], only ≤ inequality is given. Here, we give the proof for both ≤ and ≥ inequality.

For ≤ inequality:

C(Q,P) =

∫ ∞

0

|P −B(Q, r)|dr

≤
∑
i

|P −B(Q, ri+1)|(ri+2 − ri+1)

≤
1

1− ǫ

∑
i≥−i0

|P −B(Q, ri+1)|(ri+2 − ri+1)

≤
(1 + ǫ)2

1− ǫ

∑
i≥−i0

|P −B(Q, ri+1)|(ri − ri−1)

≤
(1 + ǫ)2

1− ǫ

∑
i≥−i0

R̂i(Q)(ri − ri−1)

≤
(1 + ǫ)2

1− ǫ

∑
−i0≤i≤log(2∆)

R̂i(Q)(ri − ri−1)

For ≥ inequality:

C(Q,P) =

∫ ∞

0

|P −B(Q, r)|dr

≥
∑
i

|P −B(Q, ri)|(ri+1 − ri)

≥
1

1− ǫ

∑
i≥−i0

|P −B(Q, ri)|(ri+1 − ri)

≥
1 + ǫ

1− ǫ

∑
i≥−i0

|P −B(Q, ri)|(ri − ri−1)

≥
1 + ǫ

1− ǫ

∑
i≥−i0

R̂i(Q)(ri − ri−1)

The total space required to estimate median cost is O(k
ǫ3 (log∆+ log(1/ǫ)

ǫ)). The query time,

given Q ⊂ {1, ...,∆}2, is O(k
ǫ2 (log∆ + log(1/ǫ)

ǫ)). Update time is O(log∆ + log(1/ǫ)
ǫ).

9

3.5 Algorithm : Exhaustive Search and Local Search for

2-Dimension

The data structure MediEval keeps the information about the distribution of the points P ∈

{1, ...,∆}2. The MediEval data structure also provides the function to approximately estimate the

median Cost C(Q,P) to any Q ⊂ {1, ...,∆}2, probability atleast 1
2 . This data structure can be used

in several approaches, such as Exhaustive Search or Local Search, to find the best k-medians. The

total space used by MediEval is O(k
ǫ3 (log∆ + log(1/ǫ)

ǫ)). The time to estimate the k-median Cost,

given Q ⊂ {1, ...,∆}2, is O(k
ǫ2 (log∆ + log(1/ǫ)

ǫ)).

The Exhaustive Search algorithm solves the K-median problem by enumerating all sets

Q ⊂ {1, ...,∆}2 and choosing the best. Although the time taken is in the factor of ∆O(k) which

is prohibitively expensive, but it shows that, it is possible to get (1 + ǫ)-approximate solution

to the k-median problem. The time needed to report the solution, i.e. optimal k centre’s, is

O(∆
kk
ǫ2 (log∆ + log(1/ǫ)

ǫ)).

The Local Search algorithm initially chooses an arbitrary set Q of size k. Then, at any step,

it enumerates all sets Q′ = Q − {q}{p} for q ∈ Q, p /∈ Q. If C(Q′, P) < (1 − α)C(Q,P), then Q

becomes Q′. The algorithm ends when there is no Q′ satisfying the above condition. The time

needed to report the solution, i.e. optimal k centre’s, is O(∆
2k
ǫ2 (log∆ + log(1/ǫ)

ǫ)). Arya [11] et al

show that for the case α = 0, the algorithm provides a 5-approximation.

10

Chapter 4

Improved Space and Time Bounds

for K-median Problem

4.1 Overview

In this chapter, we propose a modified algorithm to the Median Cost Evaluation function of

k-median algorithm in [4] for 2-dimension. Using the modified Median Cost Evaluation algorithm,

we achieve asymptotically better time and space bounds for k-median clustering problem.

4.2 Simultaneous Range Query using CM sketch and Dyadic

Ranges

Consider a matrix A of size ∆ × ∆. Assume that ∆ is power of 2. Each entry A(i, j) is a

non-negative value i.e. strict turnstile model. Let r1, r2, ..., rm be the m non overlapping ranges

along y-axis defined by the end points {(ui, vi), (ui, v
′
i)} over the matrix A (see figure 4.1). Also

given the width of any ri is at most L, that is |vi− v′i| ≤ L. Let Ri be the range sum for ri given as,

Ri =

v′

i∑
j=vi

A(ui, j)

It is required to support the following operations:

• Update(u,v): Update operation could be either insertion or deletion.

Insert(u,v): perform A(u,v) = A(u,v)+1

Delete(u,v): perform A(u,v) = A(u,v)-1

• Simultaneous Range Query given r1, r2, ..., rm: return R =
∑m

i=1 Ri

This can be implemented using O(n) space which is large, where n = ||A||1. So the task is to

compute the value of R using low-space, more precisely in polylogarithmic space. Here we give a low-

space data structure(we name it as SRQ data structure) that computes the value R approximately

11

Figure 4.1: Non-overlapping ranges r1, r2, ...rm defined over Matrix A

by maintaining the sketch of matrix A. This is accomplished using CM sketch [3] and dyadic range

technique. Let R̂ be the approximation of R. It is implemented as follows. Consider a vector C

defined as follows.

C =< A(0, 0), A(0, 1)...A(0,∆− 1), A(1, 0), A(1, 1)...A(1,∆ − 1), A(∆− 1, 0),

A(∆− 1, 1)...A(∆− 1,∆− 1) >

Now define a dyadic range of up to ⌈logL⌉+1 level over the vector C of the form [j2k...(j+1)2k−1]

for level 0 ≤ k ≤ ⌈logL⌉ and index 0 ≤ j ≤ ⌈∆
2

2k
⌉−1. Let Ck be the vector for 0 ≤ k ≤ ⌈logL⌉, such

that Ck(j) =
∑(j+1)2k−1

l=j2k
C(l) for 0 ≤ j ≤ ⌈∆

2

2k
⌉ − 1. Each such Ck is then stored using CM sketch.

It consists of an array count [1...w] and d hash function, each hash function is chosen from pair-wise

independent hash family, hj{1, ..., |Ck|} → {1, ..., w} for 1 ≤ j ≤ d. Note that |Ck| ≤ ∆ × ∆ for

any k. The operations, insertion and deletion is performed at every dyadic level, are implemented

as follows.

• Insert (u,v): map (u,v) → i and perform countj [hj(i)] = countj [hj(i)] + 1

• Delete (u,v): map (u,v) → i and perform countj [hj(i)] = countj [hj(i)]− 1

• Simultaneously Range Query given r1, r2, ..., rm: Consider any level l and CM sketch with

hash function hk. By [3], each ri corresponds to at most 2 point queries in l. Let X denote the

set of all buckets of hk to where r1, r2, ..., rm mapped. Let C[l] = min
k=1,...,d

(
∑
i∈X

countk[i]). Return

R̂ =
∑

l=0,...,⌈logL⌉
C[l].

LEMMA 1. R ≤ R̂ ≤ R+ ǫ(||C||1 −R) with probability at least 1− δ for w = em logL
ǫ .

Proof. Consider R̂ =
∑m

i=1 R̂i where R̂i is the range sum for ri.

R̂ =

m∑
i=1

Ri +

m∑
i=1

∆i

12

Let ∆ =
∑m

i=1 ∆i

E[∆] =
m∑
i=1

E[∆i]

≤

m∑
i=1

2 logL

w

≤
2m logL

w
(||C||1 −Ri)

≤
ǫ

e
(||C||1 −Ri)

By Markov inequality, we have

Pr[∆ > ǫ(||C||1 −Ri)] ≤
1

e

For R̂ is taken as minimum of d estimates, we have

Pr[∆ > ǫ(||C||1 −Ri)] ≤ (
1

e
)d ≈ δ

R ≤ R̂ ≤ R + ǫ(||C||1 − R) with probability at least 1 − δ using O(m log2 L
ǫ log(1δ)) space. The

estimate time is O(m logL log(1δ)). Update time is O(logL log(1δ)).

4.3 Exclusive Count

This is a tool which uses the SRQ data structure and provides a function XCount(Q) to estimate

the exclusive count for the following problem.

Consider a matrix of size ∆×∆. Assume ∆ is power of 2. Let Qi = {(x, y)|ui ≤ x ≤ u′
i and vi ≤

y ≤ v′i} be the ith square region defined by a diagonally end points {(ui, vi), (u
′
i, v

′
i)} for 1 ≤ i ≤ k.

There might be over lapping regions as shown in fig 4.2. Let Q = ∪
i=1...k

Qi. Let R be the range sum

for Q and R̂ be the approximation of R. The exclusive count XCount(Q) is given as,

XC =
∑

(i,j)/∈Q

A(i, j)

We use SRQ data structure to maintain a sketch of matrix A which provides the functionality to

answer the exclusive count XC approximately. Let X̂C be the approximate value of XC given as,

X̂C = ||A||1− R̂ where R̂ is range sum returned by SRQ data structure for Q. We claim that the Q

can be reduced to at most kL non-overlapping ranges r1, r2...rm where m ≤ kL and |ri| ≤ L. It is

straight forward to verify that m ≤ kL. Note that in order to compute kL non-overlapping ranges,

we need additional O(kL) space and O(k2L) time.

Theorem 4.3.1. (1− ǫ)XC ≤ X̂C ≤ XC with probability at least 1− δ for w = e2kL logL
ǫ .

13

Figure 4.2: Over-lapped region ri and rj with ranges (vi, v
′

i) and (vj , v
′

j) respectively

Proof. Consider R̂ =
∑m

i=1 R̂i where R̂i is the range sum for ri.

R̂ =

m∑
i=1

Ri +

m∑
i=1

∆i

Let ∆ =
∑m

i=1 ∆i

E[∆] =
m∑
i=1

E[∆i]

≤

m∑
i=1

2 logL

w
(||A||1 −Ri)

≤
2kL logL

w
XC

≤
ǫ

e
XC

By Markov inequality, we have

Pr[∆ > ǫXC] ≤
1

e

For R̂ is taken as minimum of d estimates, we have

Pr[∆ > ǫXC] ≤ (
1

e
)d ≈ δ

Hence, (1 − ǫ)XC ≤ X̂C ≤ XC with probability at least 1 − δ using O(kL log2 L
ǫ log(1δ)) space.

The time to estimate XC is O(kL logL log(1δ)). Update time is O(logL log(1δ)).

14

4.4 Median Cost Evaluation

The main tool is Median Cost Evaluation data structure. The data structure maintains a set

P ⊂ {1, ...,∆}2, under addition and deletion of points. This tool provides the function to estimate

the median cost C for any set Q ⊂ {1, ...,∆} of size k, such that C = (1±O(ǫ))C(Q,P).

The data structure is implemented as follows. Define Gi to be a square grid imposed on space

{1, ...,∆}2, with side length ǫ√
2
(1 + ǫ)i. Clearly Gi can be considered as Matrix A of size N × N

where N = ⌈
√
2∆

ǫ(1+ǫ)i ⌉ and let ni(c) be the number of points from P falls into cell c ∈ Gi. We now

show how to estimate median cost for any Q. Let ri = (1 + ǫ) and B(q, ri) be the set of points in

{1, ...,∆}2 with distance less than ri from q. Let B(Q, ri) = ∪q∈QB(q, ri). Let Gi(B(q, ri)) be the

set of grid cells that are superimposed by B(q, ri). Observe that |Gi(B(q, ri))| = O(1
ǫ2). To achieve

this, divide the area of a ball with radius ri to the area of one cell. Set L = O(1ǫ) since the number

of cell in a row is O(1ǫ). Let Gi(B(Q, ri)) = ∪q∈QGi(B(q, ri)). Note that Gi(B(Q, ri)) corresponds

to the query region. The sketch of grid Gi is maintained by our SRQ data structure. Let R̂i(Q) be

the estimated exclusive count returned by XCount for Gi(B(q, ri)). The median cost for any Q is

given as,

Ĉ(Q,P) =
∑

−i0≤i≤log∆

(ri − ri−1)R̂i(Q)

Therefore, by [4] Ĉ(Q,P) = (1±O(ǫ))C(Q,P) with probability at least 1−δ usingO(k log2(1/ǫ)
ǫ2 log(1/δ)(log∆+

log(1/ǫ)
ǫ)) space. The estimate time is O(kǫ log(1/ǫ) log(1/δ)(log∆ + log(1/ǫ

ǫ)). Update time is

O(log(1/ǫ) log(1/δ)(log∆ + log(1/ǫ
ǫ)).

15

Chapter 5

Experimental Results

In this section we present some of the implementation details of the algorithms described in

the previous two chapters. For comparison, we focus on d=2 i.e. the set of points P live in discrete

plane {1, ...,∆}2 .

All the programs were compiled using g++ version 5.4.2. and all the computations were per-

formed on a DELL PRECISION T1600 machine with intel(R) xeon(R) CPU @ 3.40 GHz and 8 GB

main memory, using Linux 2.6.38-8-generic kernel.

We name the algorithm as A1 and A2 described in Chapter 3 and 4 respectively. For comparison,

our implemented algorithms only estimate median cost for a given k centres. Subsequently, these

algorithm can be used as a subroutine by the various approaches explained in section 3.5, to obtain

the best k-centres. Here, we compare the quality of the algorithms A1 and A2 in terms of estimated

median cost and the CPU execution time taken. We also compare the quality of the algorithms A1

and A2 with the accurate cost, calculated as the sum of the distance for all points p ∈ P to the

nearest q ∈ Q, given as:

Accurate Cost =
∑
p∈P

min
q∈Q
‖ p− q ‖

Figure 5.1 and 5.2 summarizes cost of the clustering and the average running time for various k.

Since all the algorithms are randomized, we run both the algorithms several time (mostly 5 times)

and then taking the average value. We set the parameter for both the algorithms as specified by the

author [4]. For comparison, we fix the value of ∆ = 1000, |P | = 500 and ǫ = 0.1.

In this experiment, we observe that the quality of the median costs were quite promising and lies

within the constant factor(±5%) from each other. In terms of running time, it turns out that our

algorithm A1 outperforms the algorithm A2 and hence provides a good alternative to the algorithm

A2. Figure 5.2 summarizes the CPU execution time taken by both the algorithms in milliseconds.

16

Figure 5.1: Median Cost results.

Figure 5.2: Median Cost results.

17

Chapter 6

Conclusion And Future Work

In this thesis we developed new methods to solve O(1 ± ǫ)-approximation k-median clustering

problem for geometric data stream. We have shown results for 2-dimensions only. But this approach

can easily be extended for higher dimensions.

Our new technique partitions the space very effectively and reduces it to high dimensional vec-

tors which in turn is stored by CM sketches using dyadic range scheme. Our algorithm takes

O(kǫ log
4(1ǫ)(log∆+ log(1/ǫ)

ǫ)) space and O(k log2(1ǫ)(log∆+ log(1/ǫ)
ǫ)) time to estimate median cost

for a given k centers. Our algorithm improves the previous best known space and time bounds in

[4].

The main disadvantage of both the algorithms is the dependency of the space and time complexity

on ∆, which affects the performance significantly for large ∆.

As we mention that time and space bounds for our algorithm has been provided for 2-dimension.

So our future work would be to provide the bounds for higher dimension i.e. for arbitrary d. we

also mentioned that time and space bounds depend on ∆. Hence, it has become an interesting area

of research to provide a method such that the time and space bounds be independent of ∆.

18

References

[1] Sumit Ganguly and Graham Cormode. “On Estimating Frequency Moments of Data Streams”.

vol. 57, (2007).

[2] Graham Cormode and Marios H.. “Finding frequent items in data streams”. Proceedings of the

VLDB Endowment . vol. 1, Pages 1530-1541 (2008) .

[3] Graham Cormode and S. Muthukrishnan. “An Improved Data Stream summary: the Count-

Min Sketch and its Applications”. Proceedings of the 6th Latin American Theoretical Informatics

(LATIN), April 2004.

[4] Piotr Indyk. “Algorithms for Dynamic Geometric Problems over Data Streams”. ACM , (2,

August 2008.)

[5] Graham Cormode and Marios H. “Finding Frequent Items in Data Streams”. VLDB , (2004).

[6] Guha, Meyerson, A. Mishra, N. Motwani, O.C. “Clustering Data Streams: Theroy and Practice”.

IEEE Transactions on Knowledge and Data Engineering , vol. 15, Pages 515-528, (2008).

[7] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approximating the Frequency

Moments”. J. Comput. Syst. Sci., vol. 58(1), Pages 137147, (1999).

[8] P. Indyk and D. Woodruff. “Optimal Approximations of the Frequency Moments of Data

Streams”. Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC),

(2005).

[9] M. Charikar, K. Chen, and M. Farach-Colton. “Finding Frequent Items in Data Streams”. Pro-

ceedings of the 29th Annual International Colloquium on Automata, Languages and Programming

(ICALP), Pages 693703, (2002).

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data clustering: a review”. ACM Computing

Surveys (CSUR), (1999).

[11] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit. “Local search

heuristic for k-median and facility location problems”. Proceeding STOC ’01 Proceedings of the

thirty-third annual ACM symposium on Theory of computing , (2001).

[12] M. R. Ackermann, C. Lammersen, M. Martens, C Raupach, C. Sohler and K. Swierkot.

“StreamKM++: A Clustering Algorithm for Data Stream”. SIAM , (2010).

19

[13] YI-HONG LU and YAN HUANG. “Mining Data Streams Using Clustering”. Proceedings of

the Fourth International Conference on Machine Learning and Cybernetics , (2005).

20

