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The partial coalescence dynamics of a compound droplet in a liquid pool is numerically
investigated. We study the effect of the ratio of the inner to outer radii (Rr) of the
compound droplet while maintaining a constant volume equals to that of a ‘simple’
droplet of radius, Req. It is observed that for small values of the radius ratio, the
coalescence dynamics is similar to that of a ‘simple’ droplet, but the partial coalescence
is suppressed for large values of Rr. Increasing the value of Rr increases the distance
migrated by the inner bubble in the downward direction inside the pool away from the free
surface. The location of the bubble after coalescence is found to play an important role in
the pinch-off process of the satellite droplet. The influence of the governing dimensionless
parameters on the coalescence dynamics has also been investigated.

1. Introduction

Coalescence dynamics of a droplet in a liquid pool has been a fascinating subject of
research from many century due to its relevance in natural phenomena (Thomson &
Newall 1886; Worthington 1908) and industrial applications (Stone et al. 2004). The
subject caught the attention of many researchers recently due to its complex nature and
rich underlying physics (Thoroddsen & Takehara 2000; Morton et al. 2000; Chen et al.
2006a; Ray et al. 2015; Zhang et al. 2015; Deka et al. 2018). Consequently, different
regimes from partial/complete coalescence (at low impact velocity) to splashing (at high
impact velocity) have been identified. In partial coalescence, a satellite droplet pinches
off, which undergoes a cascading process till the satellite droplet is completely merged in
the liquid pool.

When a droplet comes in contact with the free-surface of a liquid pool at a low velocity,
it floats until the surrounding fluid trapped between the droplet and the free-surface is
drained out. After this, the coalescence occurs forming a neck at the contact point of the
droplet and the free-surface, which expands rapidly due to high capillary pressure near
the contact region. This results in upward moving capillary waves, and thereby forming
a liquid column, followed by a necking process near the contact region. The diameter of
the neck is reduced with time due to the inward pull of the surface tension and a satellite
droplet is detached (Blanchette & Bigioni 2006; Ray et al. 2010). The pinch-off process
is influenced by the competition between the vertical and horizontal collapse rates of
the liquid column. When the vertical collapse is sufficiently delayed by the upward pull
exerted by the capillary waves, the horizontal collapse succeeds in merging the neck
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and producing a satellite droplet. Charles & Mason (1960) reported that the partial
coalescence of a droplet is a consequence of an inviscid instability (Rayleigh 1878) of the
liquid column that forms after coalescence. Later on, it was revealed that the dynamics
of partial coalescence is primarily governed by gravity, viscosity and interfacial tension
(Thoroddsen & Takehara (2000); Chen et al. (2006b)).

Chen et al. (2006b) delineated gravity, inertio-capillary, viscosity dominated regimes
for the coalescence of a droplet in a liquid pool. The coalescence phenomenon is driven by
gravity at higher values of the Bond number, given by Bo = ρ1gD

2/σ, wherein D denotes
the droplet diameter, g represents the acceleration due to gravity, σ denotes the interfacial
tension, and ρ1 is the density of the droplet. The viscous effect becomes dominant at lower
values of Bo. At intermediate values of Bo, the coalescence phenomenon is driven by
inertia and capillary forces. The partial coalescence is primarily observed in the inertio-
capillary regime. The effect of the physical properties of the fluids on the coalescence
process was reviewed by Kavehpour (2015). Yue et al. (2006) also investigated the
coalescence dynamics of a droplet in Newtonian and viscoelastc fluids. All these previous
studies considered ‘simple’ droplets.

The aim of the present study is to investigate the coalescence dynamics of a com-
pound liquid droplet in a liquid pool of the same liquid. Aston (1972) investigated the
dynamics of a gas-filled hollow raindrop in the presence of aerosols. Subsequently, several
researchers (Gulyaev et al. 2009; Kumar et al. 2013; Li et al. 2018) have investigated
the impact of a compound droplet on solid surfaces due to its importance in painting,
coating and printing technologies. The heat transfer characteristics during the impact of
a compound droplet on a heated surface have also been investigated (Zheng et al. 2017;
Li et al. 2018). Gao & Feng (2011) numerically investigated the spreading behaviour of a
compound drop on a partially wetting solid substrate and compared with the dynamics
of a ‘simple’ drop. They observed various flow regimes depending on the radius ratio
of a compound droplet. However, to the best of the authors’ knowledge, the partial
coalescence dynamics of a compound droplet has not been investigated yet, which is the
subject of the present study.

We investigate the effect of radius ratio, Rr (the ratio of the inner radius to the
outer radius of the compound drop) while maintaining a constant volume equals to
that of a simple droplet of radius, Req. The influence of fluid properties on the satellite
droplet formation has been studied in terms of the governing dimensionless numbers. The
mechanism of the coalescence behaviour has also been addressed. We observed that the
location of the inner bubble after the coalescence plays an important role in the pinch-off
process of the satellite droplet.

The paper is organized as follows. The problem is formulated in Section 2, wherein the
governing equations, numerical method and validation of the present solver are discussed
in detail. The results are presented in Section 3 and concluding remarks are given in
Section 4.

2. Formulation

The coalescence dynamics of a compound liquid droplet in a liquid pool is investigated
via axisymmetric numerical simulations using the volume of fluid (VoF) method based
finite-volume flow solver, Gerris (Popinet 2009). The schematic diagram showing the
initial configuration of the droplet is presented in Fig. 1. The droplet and the liquid in
the pool are designated by fluid ‘1’, while the surrounding medium is designated by fluid
‘2’. The dynamic viscosity and density of fluid ‘1’ and fluid ‘2’ are (µ1, ρ1) and (µ2, ρ2),
respectively. The fluids are assumed to be Newtonian and incompressible.
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Figure 1. Schematic diagram showing the initial configuration of a compound droplet is
placed near the free-surface of a liquid pool with zero initial velocity.

A cylindrical coordinate system (r, z) is used to model the flow dynamics, such that
z = 0 represents the bottom of the computational domain and r = 0 is the axis of
symmetry. Gravity (g) acts in the negative z direction. The inner and outer radii of the
compound droplet are Ri and Ro, respectively. The size of the computational domain is
6R0×12R0, such that the initial height of the liquid pool is 6Ro. The bottom of the droplet
is at 0.02Ro from the free surface of the liquid pool. Only half of the domain is considered
as axisymmetric simulations are performed in the present study. The computational
domain considered in the present study is large enough to have negligible boundary
effect.

2.1. Governing equations

The continuity and the Navier-Stokes equations govern the flow dynamics, which are
given by

∇ · u = 0, (2.1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇P +∇ ·

[
µ
(
∇u +∇uT

)]
+ σκn̂δs(r− rf )−ρgêz, (2.2)

where u(u, v) is the velocity field, wherein u and v represent the component of velocity
in the radial (r) and vertical (z) directions, respectively; κ is the mean curvature; n̂ is
the unit normal vector at the interface pointing towards fluid ‘2’; êz is the unit normal
vector in the z direction; δs(r−rf ) is a delta distribution function that is zero everywhere
except at the interface, where r = rf ; t denotes time.

The following advection equation for the volume fraction, c of fluid ‘1’, whose value
can be taken as 1 and 0 for fluid ‘1’ and fluid ‘2’, respectively, is solved in order to track
the interface separating the fluids:

∂c

∂t
+ u · ∇c = 0. (2.3)

The density, ρ and the dynamics viscosity, µ of the fluids are given by

ρ = ρ1c+ ρ2(1− c), (2.4)

µ = µ1c+ µ2(1− c). (2.5)
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0.5 mm

Figure 2. Comparison against the experiment of Blanchette & Bigioni (2006) presenting the
partial coalescence phenomenon of an ethanol droplet of radius 0.535 mm in air. The present
numerical results are shown in red, whereas the background images are the experimental results
of Blanchette & Bigioni (2006). The time (in ms) are written on each image. The corresponding
dimensionless parameters are Oh1 = 1.09×10−2, Oh2 = 2.08×10−4, At = 0.997 and Bo = 0.09.

2.2. Boundary conditions

The governing equations (Eqs. (2.1) - (2.3)) are solved using the following boundary
conditions. The symmetry boundary condition is used at r = 0 and the free slip boundary
condition is employed at the side boundary (r = 6R0). No-slip and no-penetration
boundary conditions are used at the bottom wall (z = 0) and the Neumann boundary
condition is used at the top of the computational domain (z = 12R0).

2.3. Non-dimensionalisation

The governing equations and the boundary conditions are non-dimensionised using
the equivalent radius of the compound droplet, Req

(
≡ (R3

o −R3
i )1/3

)
as the length scale,

Vs

(
≡
√
σ/ρ1Req

)
as the velocity scale, and ts

(
≡
√
ρ1R3

eq/σ
)

as the time scale, such

that

(z, r) = Req(z̃, r̃), (u, v) = Vs(ũ, ṽ), µ = µ2(µ̃), ρ = ρ1(ρ̃),

P = σ/Req(P̃ ), t = ts(t̃), (2.6)

where, tildes designate the dimensionless variables, which are dropped hereafter while pre-
senting the results. The dimensionless numbers used to describe the results are the Bond
number, Bo

(
≡ ρ1gR2

eq/σ
)
, the Ohnesorge numbers associated with fluid ‘1’ and fluid ‘2’,

which are given by Oh1
(
≡ µ1/

√
ρ1σReq

)
and Oh2

(
≡ µ2/

√
ρ1σReq

)
, respectively, the

Atwood number, At (≡ (ρ1 − ρ2)/(ρ1 + ρ2)), and the radius ratio, Rr (≡ Ri/Ro).

2.4. Numerical method and validation of the solver

A VoF method based open source solver, Gerris (Popinet 2009) that incorporates
a height-function based balanced-force continuum-surface-force formulation for the in-
clusion of the surface tension term in the Navier-Stokes equations is used. A dynamic
adaptive grid refinement is incorporated that provides a large number of grid points/cells
in the interfacial region and regions with velocity gradient. The numerical scheme is
second order accurate in space and time. Extensive validation exercises of the current
numerical methodology have been performed in our previously studies (see for instance,
Tripathi et al. (2015)). In addition, we have also validated the present solver by comparing
with the experimental result of Blanchette & Bigioni (2006) for a ‘simple’ droplet.

Fig. 2 shows the comparison of the coalescence dynamics of a ‘simple’ ethanol droplet
of radius, Req = 0.535 mm obtained from the present numerical simulation (top row)
with the experiment of Blanchette & Bigioni (2006) (bottom row). The corresponding
dimensionless numbers are Oh1 = 1.09 × 10−2, Oh2 = 2.08 × 10−4, At = 0.997 and
Bo = 0.09. In the experiment of Blanchette & Bigioni (2006), an ethanol droplet was
deposited onto the surface of a pool containing ethanol and the dynamics was captured
using a high-speed camera. In our computation for this case, initially the droplet with
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(a) (b)
t = 0.0 t = 1.62t = 1.0 t = 0.0 t = 1.62t = 1.0

(c) (d)
t = 0.0 t = 1.0 t = 1.62 t = 0.0 t = 1.0 t = 1.62

Figure 3. Grid convergence test for the coalescence dynamics of an ethanol compound droplet
of radius ratio, Rr = 0.5: (a) ∆ = 0.049 (b) ∆ = 0.023, (c) ∆ = 0.012 and (d) ∆ = 0.006. The
rest of the parameters are the same as those used to generate Fig. 2.

zero velocity is placed at a distance 0.02Req over the free-surface of the liquid pool. For
t > 0, the interstitial air layer drains and the droplet starts to move into the pool (see
t = 0.53, 1.15 and 1.4 ms). This generates a cylindrical column whose height is higher
than that of the initial droplet (t = 2.62 ms). The neck of this column narrows down due
to the inward pull of the surface tension, and a satellite droplet is pinched off (t = 3.57
ms). It can be seen in Fig. 2 that the dynamics obtained from our numerical simulation
at different times are in excellent agreement with the experiment of Blanchette & Bigioni
(2006). Note that the Gerris solver does not use any separate pinch-off criterion, and the
pinch-off of satellite droplet is only decided by the smallest cell size. However, it is shown
below that after a certain refinement level the results would not change.

A grid convergence test is conducted in Fig. 3 for a compound ethanol droplet of Rr =
0.5 coalescing into an ethanol pool. The volume of the compound ethanol droplet is kept
the same as that of the ‘simple’ droplet as considered in Fig. 2. Thus the dimensionless
numbers are the same as those used to generate Fig. 2. The simulations are performed
using four different meshes using the adaptive mesh refinement feature of Gerris. This
provides the finest cells in the interfacial region and in the region with velocity magnitude
greater than 10−2. The rest of the computational domain are refined based on the velocity
magnitude (Popinet 2009). The smallest (dimensionless) cell size, ∆ used are 0.049 (Fig.
3(a)), 0.023 (Fig. 3(b)), 0.012 (Fig. 3(c)), and 0.006 (Fig. 3(d)). The corresponding values
of Rs/Req, Rs being the radius of the satellite droplet, are 0.617, 0.61, 0.607 and 0.606. It
can also be seen in Fig. 3 that the coalescence dynamics obtained using different meshes
are qualitatively similar. The percentage difference between the values of Rs/Req for
∆ = 0.012 and 0.006 is about 0.13 %. Thus, ∆ = 0.012 has been used to generate the
rest of the results presented in the present study.

3. Results and discussion

We begin the presentation of our results by discussing the mechanism of the coalescence
dynamics of a compound droplet in a liquid pool. It is observed that for small radius ratio,
Rr, the coalescence dynamics of the compound droplet is similar to that of a ‘simple’
droplet, where the primary droplet produces a satellite droplet after pinch off. Such a
dynamics is presented in Fig. 2. On the other hand, the partial coalescence phenomenon
(i.e. the formation of satellite droplet) is not observed in case of a compound droplet with
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t = 0.01 t t t t t t= 0.25 = 0.50 = 0.75 = 1.0 = 1.25 = 1.75t = 1.5

Figure 4. The coalescence sequence of a compound ethanol droplet. The radius ratio in the top
and bottom row are Rr = 0.5 and Rr = 0.7, respectively. The rest of the dimensionless numbers
are same as those used to generate Fig. 2. Arrow marks indicate the direction of the momentum
acting on the interface.

large radius ratio, Rr. The coalescence dynamics of compound droplets with Rr = 0.5
and Rr = 0.7 are discussed in Fig. 4.

It can be seen in Fig. 4 that at the early stage (as the droplet comes in contact with
the free surface), the curvature near the contact region becomes sharp, which in turn
generates large capillary pressure near the contact region leading to the rapid expansion
of the neck. The uneven curvature of the coalescing droplet creates a pressure difference
between the regions above and below the bubble (blob of fluid ‘2’ at the interior of the
compound droplet), such that pressure is high above and low below the bubble. As a
result, a downward force acts on the bubble and it starts to move in the downward
direction, as shown at t = 0.25 in Fig. 4. Due to this movement of the bubble in the
downward direction, the neck tends to expand in order to create a passage for the bubble,
and the resultant capillary waves propagate in the upward direction along the interface
of the coalescing droplet as shown by the arrow makes at t = 0.25 and 0.5. When these
waves reach the top part of the droplet, an upward thrust is generated at the droplet tip
as shown at t = 0.75. The momentum exerted by the capillary waves delays the vertical
collapse of the droplet (forming a column of fluid ‘1’), while the bubble continues to move
in the downward direction due to the pressure difference at the top and bottom portions
of the bubble, and the push induces by the drainage of the droplet liquid. The buoyancy
opposes the motion of the bubble of fluid ‘2’ (which is lighter than fluid ‘1’). For the
parameter values considered, the abovementioned process is mostly similar till t = 0.75
for all values of Rr as shown in the top and bottom rows of Fig. 4. The influence of the
propagating capillary waves along the interface was extensively studied by Blanchette &
Bigioni (2006); Ding et al. (2012); Thoroddsen et al. (2007); Ray et al. (2010) in case of
‘simple’ droplets.

In case of a compound droplet with small Rr (i.e. when the inner bubble is small), the
pressure difference at the top and bottom portions of the bubble acting in the downward
direction dominates the buoyancy force acting in the upward direction. Thus the bubble
moves a longer distance in the downward direction as compared to a bigger bubble, i.e.
for large Rr. It can be seen in Fig. 4 that for Rr = 0.5 (top row) the inner bubble
moves far below the neck region of the droplet (see at t = 1 and 1.25). Then due to the
inward pull of the surface tension, the neck of the column narrows down (t = 1.5), and
a secondary or satellite droplet is pinched off (t = 1.75).

On the other hand, for Rr = 0.7, as the size of the inner bubble is big enough, the
buoyancy force that acts in the upward direction can not be dominated by the pressure
difference acting in the downward direction. Thus the bubble does not move far away
from the neck of the fluid ‘1’ column. Another way to compare the dynamics for the
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Figure 5. The temporal evolution of contours of the radial (u), the vertical (v) components
of velocity and the pressure field (P ) for a compound droplet with Rr = 0.5. The rest of the
dimensionless numbers are same as those used to generate Fig. 2.
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Figure 6. The variations of (a) Rs/Req and (b) tp versus Rr. The rest of the parameter values
are same as those used to generate Fig. 2.

small and large values of Rr is as follows. A big bubble (large Rr) spends more energy to
expand the neck in order to make its passage as compared to a small bubble (small Rr).
Due to the competition between the buoyancy and the pressure difference acting in the
opposite direction, the bubble deforms significantly, which opposes the narrowing of the
neck (see the outward arrows on the bubble surface at t = 1 and 1.25 in the bottom row
of Fig. 4). As a result, the neck does not become thin enough for the pinch-off to occur
like in case of Rr = 0.5, and finally expands leading to the complete coalescence of the
droplet without forming any satellite droplet.

In oder to understand the flow field in the partial coalescence process of a compound
droplet, in Fig. 5, we presents the contours of the radial (u) and the vertical (v)
components of the velocity, and pressure field (P ) for Rr = 0.5. It can be seen at the
early times (t 6 0.5) in the P field (bottom row) that a pressure-difference is created
at the top and bottom of the bubble due to the drainage of the droplet into the liquid
pool. This pushed the bubble in the downward direction as evident by the development
of the negative v velocity at t 6 0.5 in the middle row of Fig. 5. During this period,
the change in curvature and deformation of the bubble to an oblate shape accompanying
by the development of the outward u velocity near the neck and non-zero u velocity
contours near the interfacial regions can be seen (top row at t = 0.5). As the bubble
moves downward, away from the neck region, negative u velocity develops near the neck
region as evident at t > 1. The negative radial velocity component becomes sharper at
t = 1.5 which makes the neck thinner and subsequently leading to the pinch-off of the
satellite droplet.

Fig. 6 (a) and (b) present the variations of the ratio between the equivalent radii of
the secondary and primary droplets (Rs/Req) and the pinch-off time, tp with Rr. Here,
Rs represents the equivalent radius of the satellite droplet. The pinch-off time is defined
as the time taken from the starting of the coalescence to the pinch-off of the satellite
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1.701.681.651.5 1.90

1.931.911.871.5 1.95

2.01.951.751.5 2.02

Figure 7. Different partial coalescence processes observed for Rr = 0.55 (top row), Rr = 0.56
(middle row) and Rr = 0.58 (bottom row). The rest of the dimensionless numbers are same as
those used to generate Fig. 2.

droplet. It can be observed that Rs/Req remains nearly constant for all the values of Rr

considered. The pinch-off time, tp also remains approximately the same for Rr 6 0.4 (see
Fig. 6 (b)), which increases sharply for Rr > 0.4. For the parameter values considered, we
observe that the partial coalescence is completely suppressed for Rr > 6 (approximately),
which is termed as the critical radius ratio (Rcr). The sharp increase in the value of tp
for 0.4 > Rr > 0.6 can be understood as follows. Near the critical radius ratio, the size of
the bubble is enough to create sufficient buoyancy force to oppose its downward motion.
This in turn opposes the inward movement of the neck to make it sharper leading to a
pinch-off, rather it pushes the interface of the droplet in the outward direction (as also
discussed in Fig. 4). This effect is increased at a faster rate with the increase in the
value of Rr for Rr > 0.4 for this set of parameters. The drainage also slows down due
to the presence of the bubble which acts like an obstacle and resists the drainage. As
the volume of the compound droplet is kept constant in the present study, although the
drainage time of the liquid droplet increases with an increase in the value of Rr, the value
of Rs/Req remains almost constant.

Next, we discuss different types of partial coalescence dynamics observed in case of a
compound droplet. We observed three different types of partial coalescence for different
values of Rr, namely, (i) pinch off of a satellite droplet without bursting of the bubble,
(ii) pinch-off of a satellite droplet before the bursting of the bubble, and (iii) pinch-off
of a satellite droplet after bursting of the bubble. These processes are demonstrated in
Fig. 7 (a), (b) and (c), which are associated with Rr = 0.55, 0.56 and 0.58, respectively.
In the last case, it can be seen in Fig. 7 (c) that the detachment of the satellite droplet
occurs as a reason of the bubble bursting itself and not because of the pinching of the
neck. The different partial coalescence phenomena observed for different values of Rr can
be attributed to the decrease in the penetration depth of the bubble with the increase in
the the value of Rr, as explained in Fig. 4.

Finally a parametric study is conducted by varying different dimensionless numbers.
Fig. 8(a) and (b) presents the variations of Rs/Req and tp with the Atwood number, At.
Increasing At, i.e. increasing the density contrast between fluid ‘1’ and fluid ‘2’, increases
the drainage rate due to the increase in the effective gravitational force, and increases
the tendency of the bubble migration in the downward direction. This in turn speeds up
the thinning of the neck and decreases the pinch-off time, tp of the satellite droplet. It
can be argued that although increasing At increases the drainage rate, a decrease in the
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pinch-off time decreases the total drainage leading to the decrease in the satellite droplet
volume as evident in Fig. 8 (a). Also, increasing At increases the penetration distance of
the bubble inside the pool, thereby facilitating the inward movement of the neck resulting
in an easer pinch-off. As a result the critical radius ratio, Rrc decreases with increasing
At, as shown in Fig. 9 for three values of Bo. Inspection of Fig. 9 reveals that for a fixed
At, as expected, increasing Bo (decreasing the surface tension over gravitational force)
decreases the value of Rcr. We observe (not shown) that increasing Oh1 and Oh2 has a
negligible effect on the critical radius ratio, Rcr for the range of parameters considered.

4. Concluding remarks

The partial coalescence dynamics of a compound drop in a liquid pool is investigated
via axisymmetric numerical simulations using an open source VoF based flow solver,
Gerris. The validation of the solver is done by comparing with the experimental result of
Blanchette & Bigioni (2006) for a ‘simple’ drop. The effect of the radius ratio (Rr) of the
compound droplet while maintaining a constant volume is studied. We observed that for
small Rr, the partial coalescence dynamics is similar to that of a ‘simple’ drop. However,
for the parameters considered, the partial coalescence is suppressed for Rr > 0.6 as the
inner bubble remains near the free surface and thereby preventing the inward movement
of the neck. Three different types of coalescence have been observed for different values
of Rr, namely, (i) pinch off of a satellite droplet without bursting of the bubble, (ii)
pinch-off of a satellite droplet with the simultaneous bursting of the bubble, and (iii)
bubble bursting before the pinch-off. A parametric study is conducted by varying other
dimensionless numbers, such as the Atwood and the Bond numbers to identify the critical
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radius ratio, Rcr, above which partial coalescence is suppressed. The location of the inner
bubble in the pool is found to play an important role in the pinch-off process.
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