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Abstract

Data Mining and Machine Learning are in the midst of a “structured revolution” [1]. As we can

represent almost anything using graphs, learning and data mining on graphs have become a challenge

in various applications. The main algorithmic difficulty in these areas, measuring similarity of graphs,

has therefore received significant attention in recent past. Graph kernels proposes a theoretically

sound and promising approach to the problem of graph comparison. These kernels should respect

the information represented by the topology of the graphs, while being efficient to compute. Graph

kernel are used in fields like machine learning, data mining, language processing and bioinformatics.

Some of the existing graph kernel methods doesn’t include topological information or have runtime

issues or they do not scale to large graphs. The primary goal of this thesis is to propose a graph

kernel which is efficient to compute and can work accurately on large graphs.

In this thesis we analyze existing graph kernels and their drawbacks. Then we propose a graph

kernel, based on counting connected size-k graphlets [2]. We conducted experiments on various

graphs to test accuracy of our graph kernel.
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Chapter 1

Introduction

The efficient ways to compare graphs and then classify them into groups has been area of interest

and research since long. Though graphs can represent complex data structure, they were not used

as common data structure for decades because of their high degree of freedom and expressiveness.

Efficient comparison of graphs has become feasible because of introduction of graph kernel. The

main advantage of defining a kernel on graphs is that it allows us to calculate the similarity score

between graphs without explicitly constructing feature space for graphs. Learning from graphs

using the kernel methods has been one of the major topics for years, since Haussler introduced the

R-convolution kernel [3]. Similarity of graphs has applications in bioinformatics, cheminformatics,

language processing, machine learning, sensor network management and social network management.

1.1 Graph comparison problem

The central aim of this thesis is to compare graphs efficiently, known as graph comparison problem.

Definition 1. Given two graphs G and G′ from a graph space, ζ. The graph comparison problem

is to find a function,

f: ζ × ζ → R

where R represent the set of real numbers and f(G,G′) quantifies graph similarity (or dissimilarity)

of G and G′.

Challenges: Similarity of graphs is a well studied problem in various branches of science. There

are two well known strategies to compare graphs, namely graph isomorphism and subgraph

isomorphism.

Definition 2. An isomorphism of graph G and G′ is a bijection between the vertex sets G and G′

f : V (G)→ V (G′)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent

in G′ is known as graph isomorphism.
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Subgraph isomorphism problem is a computational task in which two graphs G and H are given as

input, and one must determine whether G contains a subgraph that is isomorphic to H. For graph

isomorphism problem there is no known polynomial time solution and subgraph isomorphism

problem is NP complete. Graph isomorphism is too restrictive way of comparing graphs. Graph

isomorphism algorithm outputs TRUE for isomorphic graphs, FALSE otherwise. Hence, it is

rarely used in practice, because few graphs completely match in real-world applications.

1.2 kernel based graph comparison

Most of the standard techniques for comparing graphs suffer from exponential runtime in the worst

case. Kernel methods are theoretically well founded in statistical learning theory and shown good

empirical results in many applications. Kernel is a similarity measure between objects. Kernel takes

two objects (at a time) as input and output a real number, which signify similarity of those objects.

Object can be string or vector or graphs.

Kernel which compares similarity of graphs is known as graph kernel. We give two graphs as input

to kernel and it outputs similarity score between those graphs. There are several ways in which

kernel for graphs can be defined, such as counting common random walks on graph [4] or counting

number common subgraphs [2] or counting the number of common cyclic patterns [5], etc.

As kernel compares object in polynomial time, it is preferred over traditional ways to compare graphs.

Kernel can be easily embed into support vector machine to classify graphs based on similarity score

of graphs.

1.3 Thesis outline

In this thesis we study about preliminaries of kernel in chapter 2, followed by survey on existing

graph kernels, which list advantages and drawbacks of existing graph kernels in chapter 3. In chapter

4 we propose modified graph kernel for large graphs based on counting of graphlets [2]. In chapter 5

we show accuracy of our kernel by comparing it with [2]. In chapter 6 we summarize our work and

give an outlook to future challenges.
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Chapter 2

Preliminaries about kernels

To understand graph kernel, we have to define a kernel. Afterwards, we can extend the definition

of kernel to graph kernel.

2.1 Kernel

The idea of finding some non-linear mapping Φ : χ → H, such that we map x ∈ χ and x′ ∈ χ, in

lower dimensional space, to Φ(x) and Φ(x′) respectively, in some higher dimensional space and then

comparing them by taking dot product of Φ(x) and Φ(x′) is known as kernel.

Definition 3. Suppose 〈x, x′〉 denote dot product of x and x′ then kernel function k is defined as,

k(x, x′) = 〈Φ(x),Φ(x′)〉

Note that as kernel function is defined as dot product of x and x′ in some higher dimensional space,

it is a symmetric function.

Kernel trick: It is a way of mapping observations from a general set χ into an inner product

space H (equipped with its natural norm), without ever having to compute the mapping explicitly,

in the hope that the observations will gain meaningful linear structure in H.

By using kernel trick we save the computation cost of finding explicit mapping function. It can

easily be embedded into standard classification methods which uses dot product to classify objects

like SVM (support vector machine).

2.2 Positive semi-definite kernel

To understand which kernel functions can be used to compare objects we need to define few terms.

Gram matrix: Let R denote set of real numbers and C denote set of complex number. Given

a function k : χ2 → K (where K = C or K = R) and patterns x1, x2, ..., xm ∈ χ, the m×m matrix

K with elements,

Kij = k(xi, xj)
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is called the gram matrix (or kernel matric) of k with respect to x1, x2, ..., xm.

Positive semi-definite matrix: A real m×m matrix K satisfying

m∑
i,j=1

rir̄jKij ≥ 0

for all ri ∈ R is called positive semi-definite matrix, where R denote set of complex numbers.

Positive semi-definite kernel: Let N be the set of natural numbers and χ be a nonempty set. A

symmetric function k on χ× χ which for all m ∈ N and all x1, x2, ..., xm ∈ χ gives rise to a positive

definite Gram matrix is called a positive semi-definite (psd) kernel. From now, often we will refer

psd kernel as a kernel.

If k is a psd kernel function then only we can construct Hilbert space H with

k(x, x′) = 〈Φ(x),Φ(x′)〉.

A Hilbert space is a inner product space, which is complete/closed with respect to inner product.

The Hilbert space associated with a kernel is referred to as a Reproducing Kernel Hilbert Space

(RKHS). It is well known fact that every kernel function is associated with a RKHS and every

RKHS is associated with a kernel function. So, we needn’t find explicit mapping of objects in higher

dimension when we have psd kernel or simply kernel.

Theorem 1. (Mercer’s Theorem) A symmetric function k(.,.) is a kernel if and only if for any

finite sample ς the kernel matrix for ς is psd [7].

2.3 Properties of kernel

Every psd kernel satisfies properties mentioned in [6]. Consider any space ς of samples and kernels

k1(.,.) and k2(.,.) over ς. Then k(.,.) is a kernel with,

• k(x, y) = k1(x, y) + k2(x, y), that is sum of two kernels is a kernel.

• k(x, y) = k1(x, y) · k2(x, y), that is product of kernel is a kernel.

• k(x, y) = αk1(x, y) where α > 0

• k(x, y) = f(x) · f(y) for any function f on x

• k(x, y) = k1(x,y)√
k1(x,x)

√
k1(y,y)

Note that this is not exhaustive list, as you can always combine one or more kernels based on above

listed properties to get new kernel.

2.4 R-convolution kernel

R-convolution kernels provide a generic way to construct kernels for discrete compound objects. Let

x ∈ χ be such an object, and x:= (x1, x2, x3, . . . , xD) denote decomposition of x, with each xi ∈
χi. Define boolean predicate,
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R: χ x χ → {TRUE, FALSE}

where χ = χ1 x χ2 x . . . x χD and R(x́, x) is TRUE whenever x́ is a valid decomposition of x.

R-convolution kernel is defined as,

k(x, x́) :=
∑

x ∈ R−1(x)

x́ ∈ R−1(x́)

µ (x, x́)
∏D
i=1 ki(xi, x́i)

where, R−1(x) := { x|R(x́, x) = TRUE}, that is all valid decomposition of x, assuming that R−1(x)

is countable and µ is a finite measure on χ x χ which ensures that above sum converges.
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Chapter 3

Survey on existing graph kernels

3.1 Graph kernel

A Kernel that operates on graphs to measure their similarity is known as graph kernel. These graph

kernels belong to larger class of R-convolution kernel defined by [3] (discussed in earlier chapter under

R-convolution kernel). In the next section, we discuss various approaches which were proposed in

the past.

3.2 Random walk kernel

Random Walk Kernel [4], abbreviated as RWK, compares number of common random walks in

given graphs. The trick to calculate number of common random walk of length k is by taking direct

product graphs (random walk on this graph is equivalent to simultaneous random walk in the two

graphs). After direct product raise the adjacency matrix A, of resultant graph, by power of k to get

number of common walk.

Direct product graph: Gartner proposed calculating random walk on direct product of graphs is

equivalent to common random walk on graphs individually. Direct product graph is also known as

tensor product or categorical product.

Definition 4. The direct product of two graphs G(V,E) and G′ (V′,E′) shall be denoted as Gx = G

× G′. The node and edge set of the direct product graph are respectively defined as,

Vx = { (vi,v
′
r) : vi ∈ V,v′r ∈ V′ }

Ex = { ((vi,v
′
r),(vj,v

′
s)) : (vi,vj) ∈ E ∧ (v′r,v

′
s) ∈ E′ }

An example of direct product graph is shown in figure 3.1. Random walk kernel is defined as

follows using the definition of direct product graph.

Definition 5. Let G and G′ be two graphs, let Ax denote the adjacency matrix of their product

graph Gx, and Vx denote the node set of the product graph Gx. With a sequence of weights (also

known as decaying factor) λ = λ1, λ2, ..(λi ∈ R, λi ≥ 0 for all i ∈ N) the product graph kernel is

defined as,
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Figure 3.1: Pictorial Representation of Direct product graph

kx(G,G′) =
∑|Vx|
i,j=1 (

∑∞
k=1 λk A

k
x)
ij

Drawbacks:

High Runtime: O(n6)

If we set λk= λk then, the kernel equation, kx(G,G′) =
∑|Vx|
i,j=1 (

∑∞
k=1 λk A

k
x)
ij

will be reduced

to,

kx(G,G′) =
∑|Vx|
i,j=1 [(I − λAx)

−1
]ij

As Ax is n2 by n2 matrix (assuming G and G′ are of size n) the inverse would take O(n6).

Tottering

Some vertex might get visited over and over again or walk going back and forth, as walk allows

repetition of nodes. This can result in high similarity between two graph because of one edge

in common.

Halting

We have to choose decaying factor too small (in most of the cases) for convergence. By choosing

small λ we are down-weighing the random walk of length more than 1 significantly, and by

that I mean we are almost neglecting the random walk of length more than 1.

Fast computation of RWK: In [8] time complexity of RWK was reduced from O(n6) to O(n3).

They used Sylvester equation to speed-up the process of finding the inverse of matrix, the term in

Summation in above equation.

3.3 Shortest path kernel

Graph kernels based on walk suffer from tottering and halting. Unlike walks, path don’t suffer from

tottering as there is no repetition of nodes in path. So, [9] proposed a new kernel based on path.

The challenge they faced while proposing a kernel on path was computing all paths is a NP-hard
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problem. To overcome this difficulty they came up with a kernel based on shortest path distance

(as it is unique for a graph and can be computed in polynomial time).

Definition 6. (Shortest path distance matrix) Let G = (V, E) be a graph of size |G |= n. Let

d(vi, vj) be the length of the shortest path between vi and vj. The shortest path matrix D of G is

then a n× n matrix defined as

Dij =

{
d(vi, vj) if vi and vj are connected

∞ otherwise

}

Definition 7. (Shortest path graph) Let G = (V, E) be a graph, and let D be its shortest path

distance matrix. Then the shortest-path graph S of G has the same set of nodes V as G, and its set

of edges is defined via the adjacency matrix A(S)

A(S)ij =

{
1 if D(vi, vj) < ∞
0 otherwise

}

where D(vi, vj) is edge label of edge (vi, vj) in S.

To compute SPK we have to transform graphs G and G′ into shortest path graphs S and S′ using

Floyds algorithm. After transformation (we refer it as Floyd-transformation), we can now define

SPK.

Definition 8. Let G and G′ be two graphs that are Floyd-transformed into S and S′. We can then

define our shortest-path graph kernel, k(G,G′)=k(S,S′), on S = (V,E) and S′ = (V′,E′) as

kshortestpath(S, S′) =
∑
vivj∈G

∑
v′kv′l∈G′ klength

(
d
(
vi, vj

)
, d (v′k, v

′
l)
)

where klength(.,.) is any psd kernel (can be a delta kernel or linear kernel) to compare lengths of

shortest path.

Linear kernel can be defined as the product of d
(
vi, vj

)
and d (v′k, v

′
l). Delta kernel can be a kernel

whose value is Equal to 1 if and only if d
(
vi, vj

)
= d (v′k, v

′
l) otherwise 0. It can be easily proved

SPK is a psd kernel.

Advantages: SPK doesn’t suffer from tottering, serves as better classification kernel (accuracy

wise) and time complexity is O(n4).

Drawback: O(n4) is too slow for large Graphs.

3.4 Other kernels

• Cyclic Pattern Kernel [5] decompose a graph into cyclic patterns, then count the number

of common cyclic patterns which occur in both graphs. It is computationally expensive as

computing the cyclic pattern kernel on a general graph is NP-hard.

• Edit Distance based kernel [10] computes the minimum cost c incurred over all sequences

S of edit operations that transform graph G into G′. It is not psd kernel and worst case time

complexity can be exponential and hence not used in practice.
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• Optimal assignment kernel [11] finds a best match, an optimal assignment between the

substructures from G and G′. It is not a psd kernel, hence can’t be used in machine learning

problems.

• Subtree-Pattern Kernel [12] compares subtree-patterns. It suffers from tottering and can

have exponential time complexity with respect height of the sub-tree patterns considered.

• Weighted decomposition kernel [13] decompose a graph into small subparts and reward

similarity of these subparts with different weights. It works efficiently only for highly simplified

representation of graph.

Note that the kernels discussed/listed till now work efficiently for smaller graph and are quite useful

in cheminformatics, that is useful for molecule comparison. As comparing two large graphs has wide

range of applications, like we can compare two groups in social networking, friend circle, etc. we

need efficient graph kernel for large graphs. So, from now we discuss graph kernel based on large

graphs.

3.5 A linear time graph kernel for large graphs

Linear time graph kernel [14] is also named as neighbourhood hash kernel (NHK) was proposed for

labelled nodes, simple, unweighted and undirected graph. Later on it can be extended to other types

of graphs. As name suggest the similarity score is calculated in O(n) time. In NHK we map each

label of a node to a D-bit array (same labels will have same representation in D-bit array) randomly,

typically D is chosen as 16. To compute NHK we compute neighbourhood hash (NH) value for every

node and then run simple algorithm to find similarity score.

Bit rotation: We need to rotate bits in specific manner to find NH value of a node and for that

we define Bit rotation (ROT) operation. A ROTo operation for B = {b1, b2, .., bD} shifts the last o

bits to the left by o bits, and moves the first o bits to the right end, that is,

ROTo(B) = {bo+1, bo+2, ..., bD, b1, b2, ..., bo}.

Definition 9. Suppose for a node v, l(v) denote bit mapped label of v. If x
⊕

y represent XOR of

bit array x and y then, NH of a node v is defined as,

NH(v) = ROT1(l(v))
⊕

(l(vadj1 )
⊕
l(vadj2 )

⊕
..
⊕
l(l(vadjd ))

where vadji is ith neighbour of node v and d is number of neighbours of v

Figure 3.2 shows an example of how the neighbourhood hash works for a node given a set of

connected nodes and labels.

But when we use NH technique there is a possibility of collision, depicted in figure 3.3 To reduce

possibility of collision they came up with another technique, known as Count-sensitive Neighbourhood

Hash (CS-NH). We get better accuracy in terms of similarity between two graphs when we use CS-

NH instead of NH.

Definition 10. Suppose for a node v, l(v) denote bit mapped label of v and l′(v) = ROTo(l(v)
⊕
o),

where o is number of times a label is repeated then CSNH for a node v is defined as,

9



Figure 3.2: A example of neighbourhood hashing

Figure 3.3: Collision of NH value for different graphs

CSNH (v) = ROT 1(l(v))
⊕

(l′(vadj1 )
⊕
l′(vadj2 )

⊕
...
⊕
l′(vadjd′ ))

where vadji is ith neighbour of node v and d′ is number of distinct neighbours of v.

After calculating NH or CSNH value for nodes algorithm compares all node pair labels and based

on it it gives a similarity score. Similarity score is equal to number times a node label is matched

with another node in other graph. If you are looking for similarity upto some depth, R then repeat

above procedure for R times.

Time Complexity: O(DRdn)

where D is a fixed constant (as described above), R is maximum order of neighbourhood to compare

and d is average number of neighbours in a graph.

Space Complexity: O(n2)

Other types of Graphs

For edged labelled graph convert each edge (which is labelled) into a node and connect the nodes to

which that label was connect by unlabelled edges. For directed graph, rotate 2-bit of neighbour for

incoming edge and for outgoing edge do 3-bit rotation of neighbour to distinguish between them to

find NH(v) or CSNH (v). For unlabelled graph apply label enrichment technique like Morgan index

to make it a labelled graph. For weighted graph discretize the weights by binning which segments

the continuous values into set of bins corresponding to different ranges of values, as long as the

orders between the ranges can be ignored. This kernel is scalable and efficient but doesn’t accurately

compare large graphs.
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Figure 3.4: All size-4 modulo isomorphic graphlets

3.6 Graphlet kernel for large graph comparisons

Graphlet kernel for large graph [2] is based on counting size-k graphlets. Graphlets are small induced

subgraphs of a large graph. The basic idea of graphlet kernel is to count number of matching

graphlets of size-k in both graphs. No. of graphlets of size-k are exponential with respect to k. But

number of modulo isomorphic graphlet of size-k will be far less than exponential.

Example: No. of possible graphlet of size-4 = 64 but no. of modulo isomorphic graphlets are only

11 (we call it as N4), as seen in figure 3.4.

Frequency vector: For a given graph G, define a N4 dimensional vector fG whose ith component

corresponds to the frequency of occurrence of graphlet(i), shown in figure 3.4, in graph G.

Definition 11. Given two graphs G and G′, and their frequency vectors fG and fG′ , we can compute

the value of graphlet kernel as,

Kg(G,G′)=fTGfG′

In brief, it means to compute a graph kernel matrix on a set of graphs, we have to determine the

frequency vector of each graph by enumerating its graphlets. To obtain the similarity score for two

graphs, we take dot product of their frequency vectors.

To find fG exactly using naive algorithm we have to consider nCk graphlets of size-k for a graph of

size n, that is O(nk). O(nk) is too expensive in practice, therefore they came up with two speed-up

schemes, sampling and specifically designed scheme for bounded degree graph.

3.6.1 Sampling

We do sampling of graphlets from graph with hope that if sufficient samples are drawn from a graph

then the approximate similarity score is close to actual similarity score. We sample some graphlets

and with some confidence in a error bound we can calculate kernel value.

Theorem: Let D be a probability distribution on finite set A = {1, 2, . . .,a}. Let X = {Xj}mj=1

be a iid multiset, with Xj ∼ D. For a given ε > 0 and δ > 0,

m =
⌈

2(a log 2 +log( 1
δ ) )

ε2

⌉
samples suffice to ensure that, P {

∥∥∥D − D̂m
∥∥∥ 1 ≥ ε } ≤ δ, where D̂m(i) = 1

m

∑m
j=1 δ (Xj = 1) for

i ∈ A and δ(Xj = i) =

{
1, Xj = i

0, otherwise

Explanation: For comparing graphs, assume A to be set of all size-k graphlets and are distributed

according to an unknown distribution D. Let m be the number of graphlets randomly sampled from

graph. Then from above formula, the value of m gives number of randomly selected samples needed

11



to ensure that D̂m is atmost ε distance away from the actual distribution D with confidence of 1 - δ.

Example: Consider size-4 graphlets then we have, a = 11 (No. of distinct isomorphic graphs).

And if we set,

• ε = 0.05 and δ = 0.05 then m = 8,497

• ε = 0.01 and δ = 0.01 then m = 244,596

3.6.2 Bounded degree graph

There is a large portion of graphs where complete counting of graphlets can be performed efficiently,

that is the class of graphs with bounded degree d. In other words, a BDG (bounded degree graph)

with bounded degree d will not have any node which have degree more than d. They proposed two

algorithms for counting graphlets efficiently in low degree graph and those are as follows,

• Counting all connected graphlets

• Counting all graphlets for a fixed node v1

Counting all connected graphlets

Here the assumption is that we are given graphs in adjacency list representation. They constructed

a data structure that supports checking of existence of edge in O(1).

Theorem: Let G be a BDG, and let d denote maximum degree. Then all connected graphlets of

G with size k ∈ {3,4,5} can be enumerated in O(ndk−1) [2].

Counting all graphlets

Theorem: For a fixed node v1, we can compute the distribution of subgraphs of size 3 in time

O(d2), d is the maximal degree of any node [2].

Advantages: Graphlet kernel is scalable and time Complexity is O(ndk−1), where d is the maxi-

mum degree of a graph and k is the size of the graphlet considered for comparing graphs.

Drawbacks:

Maximum degree of a graph can be atmost n − 1, implies worst case time complexity will be

O(nk−1), which is expensive.

Undesired similarity

This kernel considers non-connected components as well for calculating kernel value, which

can unwantedly increase the similarity score between graphs.

The algorithms/techniques discussed till now are already developed. We came up with a new tech-

nique for comparing large graphs which is found to be more accurate than existing graph kernels in

classifying graphs. We named it as modified Graphlet Kernel or sub-graph kernel (SGK). In the next

chapter we explain about the new technique which we proposed for measuring similarity of graphs.
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Chapter 4

Modified graphlet kernel on large

graphs

As existing kernels based on counting number of graphlets has few drawbacks, we proposed a new

graph kernel based on counting of graphlets to overcome those drawbacks. After conducting ex-

periment on various graphs our kernel is found to be more efficient, accuracy-wise, than existing

graph kernels. Before understanding how modified graphlet graph kernel works, we need to know

few aspects which will be used in further sections.

4.1 Graphlet vector

Graphlet vector is synonymous to frequency vector, but it is calculated for every node in a graph.

Definition 12. For a given k let Nk denote number of modulo isomorphic graph of size-k. Let

G1,G2,..,GNk denote the subgraphs of size k modulo isomorphism. Let G be a graph. For vertex v of

G let the corresponding graphlet vector v̄ = <F0,F1,..,FNk−1> is a frequency vector of the size Nk

where ith component Fi is the number of subgraphs in G containing v and isomorphic to Gi.

Graphlet vector for all the nodes in a graph are calculated in pre-processing step of modified

graphlet kernel. We calculate graphlet vector for every node based on counting all graphlets

mentioned in sub-section 3.6.2. For size-4 graphlet, Nk = 11 and in vector component Fi, where

0≤i≤10 suffix i denote number edges in that graphlet. The vector component, Fi is pictorial shown

in figure 4.1

Averaging effect: Existing graphlet kernel for large graphs [2] does averaging of graphlet vectors

to compare similarity score. For two graphs G(V,E) and G′(V′,E′) graphlet kernel is expressed as

Figure 4.1: Graphlet vector dimensions
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Figure 4.2: All connected size-4 graphlets

Kg(G,G′)=fTGfG′ = c
∑
v̄∈V v̄

∑
v̄′∈V ′ v̄′

where, c is some constant, v̄ and v̄′ are graphlet vectors of nodes for graph G and G′ respectively.

As it does averaging of graphlet vector by simply aggregating them and then multiplying it with

some constant, we named it as averaging effect. It is one of the drawbacks of [2]. Our graphlet

kernel neither violate the topology of graph nor does simple averaging of frequency vector of nodes.

Instead it does a weighted average of graphlet vectors.

Dimensions Considered: Before defining sub-graph kernel, we observed considering only con-

nected components of graphlet vector are important for computing better similarity score. Consid-

ering non-connected components for similarity can distort/disturb similarity score, as they can be

huge in number for large graphs. Pictorially, we are considering only graphlets shown in figure 4.2

for calculating kernel value of two graphs.

By considering only connected components we overcome one of the drawback of graphlet kernel [2].

After calculating all the graphlet vectors of the graphs, which are to be compared, we have to deal

only with comparison of set of vectors. As those set of vectors implicitly capture topology of graph,

we defined modified graphlet kernel on them.

4.2 Modified graphlet kernel

In modified graphlet kernel we divide set of vectors into set of groups or clusters. We can divide

set of vectors (a graph) into groups based on any criteria. The comparison of graphs using modified

graphlet kernel is independent of the method used for dividing a graph into sub-graph. We tried

dividing graph into sub-graphs based on following approaches,

• BFS upto depth-d

• Clustering

We will discuss each of these technique in detail in following sections. For simplicity we will assume

the graphs which are to be compared are of same size, that is they have equal number of nodes, say

n. The methods which we proposed can easily be extended for graphs of different sizes. We also

assume that we are given with two graphs, G(V,E) and G′(V′,E′) in adjacency matrix format and

graphlet vectors of both the graphs G and G′, that is n graphlet vectors for each graph (as both

graphs has n nodes).

4.2.1 BFS upto depth-d

As we are given with ‘n’ graphlet vector and adjacency matrix of graphs G and G′, we can easily

traverse graph using standard BFS from a node. We group nodes using this approach as follows.

14



Start from a node and traverse graph using bfs upto depth d. Then create a group Ai (1≤i≤n),

which consists of nodes captured in traversal. Continue this process for all the nodes in a graph.

After grouping process is completed, we will have ‘n’ groups/sub-graphs (A1, A2, .., An) for a graph

G and n groups/sub-graphs (B1, B2, .., Bn) for graph G′.

The advantage of this method is that the node with high degree will appear in many groups/sub-

graphs. Thus that node will contribute to similarity score those many times. Another advantage of

this technique is that, it will help us capturing local similarity between two graphs efficiently.

Definition 13. (Group Vector) Let v̄1, v̄2, .., v̄d be the graphlet vectors in group A then group

vector for A denoted as Ā, is defined as

Ā =
∑d
i=1 v̄i

In simple words sum of all the graphlet vectors in a group is known as group vector.

Definition 14. Let A1, A2, .., An and B1, B2, .., Bn denote groups of graph G and G′ respectively.

Let Ā1, Ā2, .., Ān and B̄1, B̄2, .., B̄n denote group vectors of graph G and G′ respectively. Sub-graph

kernel based on BFS upto depth-d is defined as,

Ksgk(G,G′)=DT
GDG′

where, DT
G =

∑n
i=1 Āi and DG′ =

∑n
i=1 B̄i.

In other words graphlet kernel based on BFS upto depth-d is pair-wise dot product of group

vectors from G and G′.

4.2.2 Clustering

As we are given with ‘n’ graphlet vector, we can easily cluster nodes based on euclidean distance of

graphlet vector by using any of the standard clustering algorithm, like k-means or k-median.

Definition 15. After clustering assume we have ‘k’ groups (A1, A2, .., Ak) in graph G and ‘l’ groups

(B1, B2, .., Bl) in graph G′. Let Ā1, Ā2, .., Āl and B̄1, B̄2, .., B̄k denote group vectors of graph G and

G′ respectively, ni denote number of nodes in ith group. Sub-graph kernel based on clustering is

defined as

Ksgk(G,G′)=DT
GDG′

where, DT
G =

∑k
i=1

ni
n Āi and DG′ =

∑l
j=1

nj
n B̄i

Above kernel definition makes sure that we are not doing simple averaging of graphlet vector.

Instead we are doing weighted average of graphlet vectors.

Clustering technique is faster than BFS upto depth-d, as we over count many nodes while grouping

them in BFS. As you don’t need to store graph adjacency matrix for clustering nodes, you save

memory in clustering technique. In general BFS technique is more accurate in comparing graphs.

In clustering technique for number of clusters k = blog nc the results are found to be much better.

Lemma: Sub-Graph kernel is a psd Kernel.
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Proof: As positive semi-definite kernel indicate dot product of vectors in high dimensional space

and as our kernel function is defined as dot product of two vectors, sub-graph kernel is a positive

semi-definite kernel. The class of p.s.d kernels is closed under non-negative linear combinations and

point wise limits [15]. Positive definiteness of this kernel follows from this as well.

Above discussion can easily be extended for other size graphlets, that is for size-3 and size-5 graphlets.
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Chapter 5

Experimental results

In this chapter we evaluate performance of our kernel in terms of scalability and accuracy of classi-

fication or comparing graphs.

Dataset: We performed experiments on G(n,p) model [16], a graph G(V,E) is constructed by con-

necting nodes randomly, where |V | = n. Each edge is included in the graph with probability p

independent from every other edge. We tested our kernel using different variants of graphs and

graphlet size, that is for graphlet of sizes 3 and 4. In this chapter we show results obtained when

we performed detailed experiments on 1000 node graphs and size-4 graphlets.

Experimental Setup: We generated a 1000 node graph, G1, using G(n,p) model [16], and then

we removed some edges randomly from that graph, and named the resultant as graph G2, and then

we removed few more edges from G2 in similar fashion to get G3 and continued similar process upto

G11. As we generated graphs such that G1 is more similar to G2 than G3 or G4 or any other graph,

the similarity score should be in decreasing order. Based on these graphs, we generated gram matrix

after running modified graphlet kernel on these 11 graphs and we observed that the similarity score

in rows are in decreasing order, after diagonal entry, as expected. Note that we took depth, d=2 for

BFS upto depth-d and number of clusters k=9 in our experiments.

Results: In following figures, X-axis denotes graphs (G1, G2,..,G11) numbered as 1, 2, 3, .., 11 and

Y-axis denote kernel value or similarity score between graph G1 and other graphs (that is values of

first row in gram matrix).

When we performed sub-graph kernel experiments on 1000 node graph (generated using G(n,p)

model) taking only connected graphlet of size-4 into consideration with edge probability as 0.005

and 0.1 we get the graph pattern as shown in figure 5.1.

In figure 5.2, we show the values of first row in gram matrix generated using graphlet kernel [2],

when we took only connected graphlets. Though the actual paper doesn’t talk about considering

only connected components, we plotted graph to show when we take only connected components

the results are better than considering all components.

In figure 5.3, we show comparison of our kernel (sub-graph kernel) with graphlet kernel of [2].We

took graphlet vector of size 11, that is considering all the components of graphlet vector. We took

edge probability for generating G1 as 0.005, number clusters as 9 for clustering and depth d=2 in
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Figure 5.1: In (a),(b) we used BFS upto depth-d technique and in (c),(d) we used clustering technique
to calculate kernel value. In (a), (c) the edge probability for generating G1 is 0.005 and in (b), (d)
the edge probability for generating G1 is 0.1

bfs upto depth-d.

Clearly from comparison shown in figure 5.3, we can state that for G(n,p) model our kernel out-

perform existing graph kernel in terms of accuracy in measuring similarity of large graphs.

18



Figure 5.2: In (a) edge probability is 0.005 and in (b) edge probability is 0.1 for generating graph
G1

Figure 5.3: Graph kernel Comparison on size-11 graphlet vector. (a) shows kernel values based on
[2], (b) shows kernel values based on modified graphlet kernel when we use bfs upto depth-d and (c)
shows kernel values based on modified graphlet kernel when we use clustering technique.
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Chapter 6

Discussion

We proposed a graph kernel for large graphs which is more accurate than existing graph kernels on

randomly generated graphs, generated using G(n,p) model. We have overcome the problems like

averaging effect by taking weighted average and problem of counting non-connected graphlets by

considering only connected components in our graph kernel. Our graph kernel is more accurate in

classification of large graphs, can capture local similarity, scalable and doesn’t disturb topology of

graph.

Though our graph kernel is more accurate for large graphs, the central challenge for future is to

speed-up pre-processing step by calculating graphlet vector for all nodes approximately. Another

challenge is to check for the efficiency of the graph kernel if the graphlet of size more than 5 are

considered for comparing graphs. We have to try for accuracy and efficiency of our graph kernel on

real world classification problem on real data. As the modified graphlet kernel is based on set of

vectors we can use other kernels, like [17] or [18] for measuring similarity of graph. Then we can

compare the results of these kernel with sub-graph kernel to check accuracy of our kernel.
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