
AdvGAN++ : Harnessing latent layers for adversary generation

Puneet Mangla∗

IIT Hyderabad, India
cs17btech11029@iith.ac.in

Surgan Jandial∗

IIT Hyderabad, India
jandialsurgan@gmail.com

Sakshi Varshney∗

IIT Hyderabad, India
cs16resch01002@iith.ac.in

Vineeth N Balasubramanian
IIT Hyderabad, India
vineethnb@iith.ac.in

Abstract

Adversarial examples are fabricated examples, indistin-
guishable from the original image that mislead neural net-
works and drastically lower their performance. Recently
proposed AdvGAN, a GAN based approach, takes input im-
age as a prior for generating adversaries to target a model.
In this work, we show how latent features can serve as bet-
ter priors than input images for adversary generation by
proposing AdvGAN++, a version of AdvGAN that achieves
higher attack rates than AdvGAN and at the same time gen-
erates perceptually realistic images on MNIST and CIFAR-
10 datasets.

1. Introduction and Related Work

Deep Neural Networks(DNNs), now have become a
common ingredient to solve various tasks dealing with clas-
sification, object recognition, segmentation, reinforcement
learning, speech recognition etc. However recent works
[18, 4, 15, 13, 19, 6] have shown that these DNNs can be
easily fooled using carefully fabricated examples that are in-
distinguishable to original input. Such fabricated examples,
knows as adversarial examples mislead the neural networks
by drastically changing their latent features, thus affecting
their output.

Adversarial attacks are broadly classified into White box
and Black box attacks. White box attacks such as FGSM
[2] and DeepFool [12] have access to the full target model.
In contrary to this black box attacks like Carlini and Wag-
ner. [1], the attacker does not have access to the structure
or parameters of the target model, it only has access to the
labels assigned for the selected input image.

Gradient based attack methods like Fast Gradient Sign
Method (FGSM) obtains an optimal max-norm constrained

∗Authors contributed equally

perturbation of

η = εsign(OxJ(θ, x, y)) (1)

where J is the cost function and gradient is calculated w.r.t
to input example.

Optimization-based methods like Carlini Wagner [1] op-
timize the adversarial perturbations subject to several con-
straints. This approach targets L0, L2, L∞ distance metrics
for attack purpose. The optimization objective used in the
approach makes it slow as it can focus on one perturbation
instance at a time.

In contrary to this, AdvGAN [17] used a GAN [3] with
an encoder-decoder based generator to generate perceptu-
ally more realistic adversarial examples, close to original
distribution. The generator network produces adversarial
perturbation G(x) when an original image instance (x) is
provided as input. The discriminator tries to distinguish
adversarial image (x + G(x)) with original instance (x).
Apart from standard GAN loss, it uses hinge loss to bound
the magnitude of maximum perturbation and an adversar-
ial loss to guide the generation of image in adversarial way.
Though, AdvGAN is able to generate the realistic examples,
it fails to exploit latent features as priors which are shown to
be more susceptible to the adversarial perturbations recently
[14].

Our Contributions in this work are:

• We show that the latent features serve as a better prior
for adversarial generation than the whole input image
for the untargeted attacks thereby utilizing the observa-
tion from [14] and at same time eliminating the need
to follow encoder-decoder based architecture for gen-
erator, thus reducing training/inference overhead.

• Since GANs are already found to work well in a con-
ditioned setting [7, 11], we show that we can directly
make generator to learn the transition from latent fea-
ture space to adversarial image rather than from the
whole input image.

ar
X

iv
:1

90
8.

00
70

6v
1 

 [
cs

.C
V

] 
 2

 A
ug

 2
01

9



In the end, through quantitative and qualitative evalua-
tion we show that our examples look perceptually very sim-
ilar to the real ones and have higher attack success rates
compared to AdvGAN.

2. Methodology
2.1. Problem definition

Given a modelM that accurately maps image x sampled
from a distribution pdata to its corresponding label t, We
train a generator G to generate an adversary xadv of image
x using its feature map (extracted from a feature extractor)
as prior. Mathematically :

xadv = G(z|f(x)) (2)

such that
M(xadv) 6= t, (3)

‖x− xadv‖p < ε, (4)

where 1 ≤ p < ∞, ε > 0, f represents a feature extractor
and ε is maximum magnitude ‖.‖p perturbation allowed.

2.2. Harnessing latent features for adversary gen-
eration

We now propose our attack, AdvGAN++ which take la-
tent feature map of original image as prior for adversary
generation. Figure 1 shows the architecture of our proposed
network. It contains the target model M , a a feature ex-
tractor f , generator network G and a discriminator network
D. The generator G receives feature f(x) of image x and
a noise vector z (as a concatenated vector) and generates
an adversary xadv corresponding to x. The discriminator D
distinguishes the distribution of generator output with actual
distribution pdata. In order to fool the target modelM , gen-
erator minimize Mt(xadv), which represents the softmax-
probability of adversary xadv belonging to class t. To bound
the magnitude of perturbation, we also minimize l2 loss be-
tween the adversary xadv and x. The final loss function is
expressed as :

L(G,D) = LGAN + αLadv + βLpert (5)

where

LGAN = Ex[logD(x) + Exlog(1−D(G(z|f(x)))], (6)

Ladv = Ex[Mt(G(z|f(x)))], (7)

Lpert = Ex‖x−G(z|f(x))‖2 (8)

Here α , β are hyper-parameters to control the weight-
age of each objective. The feature f(.) is extracted from one
of the intermediate convolutional layers of target model M .
By solving the min-max game argminGmaxD L(G,D)
we obtain optimal parameters for G and D. The training

Figure 1: AdvGAN++ architecture.

procedure thus ensures that we learn to generate adversarial
images close to input distribution that harness the suscepti-
bility of latent features to adversarial perturbations. Algo-
rithm 1 summarizes the training procedure of AdvGAN++.

Algorithm 1: AdvGAN++ training

for number of training iterations do
Sample a mini-batch of m noise samples { z(1), ...
z(m) } from noise prior pg(z) ;

Sample a mini-batch of m examples {x(1), ... x(m)

} from data generating distribution pdata(x);

Extract latent features {f(x(1)), ... f(x(m)) };

Update the discriminator by ascending its
stochastic gradient. ;
OθD

1
m

∑m
i=1 log(D(x(i))) + log(1−

D(G(z(i)|f(x(i)))));

Sample a mini-batch of m noise samples { z(1)
,z(2) ... z(m) } from noise prior pg(z);

Update the generator by descending its stochastic
gradient. ;
OθG

1
m

∑m
i=1 log(1−D(G(z(i)|f(x(i))))

+‖x(i) −G(z(i)|f(x(i)))‖2 +
Mt(G(z

(i)|f(x(i))))
end

3. Experiments
In this section we evaluate the performance of Adv-

GAN++, both quantitatively and qualitatively. We start
by describing datasets and model-architectures followed by
implementation details and results.



Data Model Defense AdvGAN AdvGAN++

MNIST Lenet C
FGSM Adv. training 18.7 20.02
Iter. FGSM training 13.5 27.31
Ensemble training 12.6 28.01

CIFAR-10

Resnet-32
FGSM Adv. training 16.03 29.36
Iter. FGSM training 14.32 32.34
Ensemble training 29.47 34.74

Wide-Resnet-34-10
FGSM Adv. training 14.26 26.12
Iter. FGSM training 13.94 43.2
Ensemble training 20.75 23.54

Table 1: Attack success rate of Adversarial examples generated AdvGAN++ when target model is under defense.

Data Target Model AdvGAN AdvGAN++
MNIST Lenet C 97.9 98.4

CIFAR-10 Resnet-32 94.7 97.2
Wide-Resnet-34-10 99.3 99.92

Table 2: Attack success rate of AdvGAN and AdvGAN++
under no defense

Datasets and Model Architectures: We perform exper-
iments on MNIST[10] and CIFAR-10[8] datasets wherein
we train AdvGAN++ using training set and do evaluations
on test set. We follow Lenet architecture C from [16] for
MNIST[10] as our target model. For CIFAR-10[8], we
show our results on Resnet-32 [5] and Wide-Resnet-34-10
[20].

3.1. Implementation details

We use an encoder and decoder based architecture of dis-
criminator D and generator G respectively. For feature ex-
tractor f we use the last convolutional layer of our target
model M . Adam optimizer with learning rate 0.01 and β1
= 0.5 and β2 = 0.99 is used for optimizing generator and
discriminator. We sample the noise vector from a normal
distribution and use label smoothing to stabilize the train-
ing procedure.

3.2. Results

Attack under no defense We compare the attack suc-
cess rate of examples generated by AdvGAN and Adv-
GAN++ on target models without using any defense strate-
gies on them. The results in table 2 shows that with much
less training/inference overhead, AdvGAN++ performs bet-
ter than AdvGAN.

Attack under defense We perform experiment to com-
pare the attack success rate of AdvGAN++ with AdvGAN
when target model M is trained using various defense
mechanism such as FGSM[2] , iterative FGSM [9] and en-
semble adversarial training [16]. For this, we first gener-

Data Target Model Other Model Attack Success rate
MNIST LeNet C LeNet B [16] 20.24

CIFAR-10 Resnet-32 A Wide-Resnet-34 48.22
Wide-Resnet-34 Resnet-32 89.4

Table 3: Transferability of adversarial examples generated
by AdvGAN++

ate adversarial examples using original model M as tar-
get (without any defense) and then evaluate the attack suc-
cess rate of these adversarial examples on same model, now
trained using one of the aforementioned defense strategies.
Table 1 shows that AdvGAN++ performs better than the
AdvGAN under various defense environment.

Visual results Figure 2 shows the adversarial images
generated by AdvGAN++ on MNIST[10] and CIFAR-10[8]
datasets. It shows the ability of AdvGAN++ to generate
perceptually realistic adversarial images.

Transferability to other models Table 3 shows attack
success rate of adversarial examples generated by Adv-
GAN++ and evaluated on different model M

′
doing the

same task. From the table we can see that the adversaries
produced by AdvGAN++ are significantly transferable to
other models performing the same task which can also be
used to attack a model in a black-box fashion.

4. Conclusion

In our work, we study the gaps left by AdvGAN [17]
mainly focusing on the observation [14] that latent features
are more prone to alteration by adversarial noise as com-
pared to the input image. This not only reduces training
time but also increases attack success rate. This vulnerabil-
ity of latent features made them a better candidate for being
the starting point for generation and allowed us to propose
a generator that could directly convert latent features to the
adversarial image.



Figure 2: Adversarial images generated by AdvGAN++ for MNIST and CIFAR-10 dataset. Row 1: Original image, Row 2:
generated adversarial example.

References
[1] N. Carlini, David, and Wagner. Towards evaluating the ro-

bustness of neural networks. In Security and Privacy (SP),
2017 IEEE Symposium on, page 3957, 2017. 1

[2] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In International Confer-
ence on LearningRepresentations,, 2015. 1, 3

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks, 2014. 1

[4] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel. Adversarial examples for malware detection. In
S. N. Foley, D. Gollmann, and E. Snekkenes, editors, Com-
puter Security – ESORICS 2017, pages 62–79, Cham, 2017.
Springer International Publishing. 1

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015. 3

[6] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and
P. Abbeel. Adversarial attacks on neural network policies.
CoRR, abs/1702.02284, 2017. 1

[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks, 2016. 1

[8] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian
institute for advanced research). 3

[9] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial ex-
amples in the physical world. CoRR, abs/1607.02533, 2016.
3

[10] Y. LeCun and C. Cortes. MNIST handwritten digit database.
2010. 3

[11] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets, 2014. 1

[12] Seyed-Mohsen, Moosavi-Dezfooli, A. Fawzi, and
P. Frossard. deepfool: a simple and accurate method
to fool deep neural networks,. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),, 2016. 1

[13] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-
the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’16, pages 1528–1540, New York, NY, USA,
2016. ACM. 1

[14] M. Singh, A. Sinha, N. Kumari, H. Machiraju, B. Krishna-
murthy, and V. N. Balasubramanian. Harnessing the vulner-
ability of latent layers in adversarially trained models, 2019.
1, 3

[15] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri. Targeted
adversarial examples for black box audio systems. CoRR,
abs/1805.07820, 2018. 1

[16] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble adversarial train-
ing: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017. 3

[17] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Gen-
erating adversarial examples with adversarial networks. IJ-
CAI, 2018. 1, 3

[18] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.
Adversarial examples for semantic segmentation and object
detection. In International Conference on Computer Vision.
IEEE, 2017. 1



[19] X. Yuan, P. He, and X. A. Li. Adaptive adversarial attack on
scene text recognition. CoRR, abs/1807.03326, 2018. 1

[20] S. Zagoruyko and N. Komodakis. Wide residual networks,
2016. 3


