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Summary

In this work, we solve an open problem re-
lated to the exchange principle of fuzzy im-
plications [Problem 3.1, Fuzzy Sets and Sys-
tems 261(2015) 112-123]. We show that two
important generalizations of the exchange
principle, namely, the generalized exchange
principle(GEP) and the mutual exchange-
ability(ME) are sufficient conditions for the
solution of the problem. We also show that,
under some conditions, these are necessary
too. Finally, we investigate the pairs (I, J)
from different families of fuzzy implications
such that the exchange principle is preserved
under the join and meet operations.
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1 INTRODUCTION

Fuzzy implications are one of the important logical
connectives in fuzzy logic. These operators general-
ize the classical implication from {0, 1}-setting to the
[0, 1]- setting. They are defined as follows:

Definition 1.1 ([1], Definition 1.1.1). A function
I : [0, 1]2 −→ [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the follow-
ing conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), (I1)

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

Let I denote the set of all fuzzy implications defined on
[0, 1]. Fuzzy implications have many applications in
fuzzy logic, approximate reasoning, decision making,

fuzzy image processing, fuzzy control etc. Due to their
applicational value it is always essential to generate
fuzzy implications that satisfy various properties and
functional equations.

However, it is always not straight-forward to gener-
ate fuzzy implications that preserve the desirable basic
properties. For example, the lattice operations pro-
posed by Bandler and Kohout as follows

(I ∨ J)(x, y) := max(I(x, y), J(x, y)),

(I ∧ J)(x, y) := min(I(x, y), J(x, y)),

do not always preserve the exchange principle, which
is defined as follows:

Definition 1.2 ([1], Definition 1.3.1). A fuzzy impli-
cation I is said to satisfy the exchange principle (EP),
if for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(y, I(x, z)). (EP)

For more about the lattice operations of fuzzy impli-
cations and the preservation of the basic properties,
please see Chapter 6 of [1].

Thus this fact has become the main motivation to pro-
pose the following open problem.

Problem 1.3 ([3], Problem 3.1). Characterize the
subfamily of all fuzzy implications ((S,N)-implications,
R-implications, etc.) which preserve (EP) for lattice
operations.

In this paper, we investigate the solutions of Prob-
lem 1.3 in a more general context, i.e., we attempt to
characterize all fuzzy implications which preserve (EP)
under the lattice operations.

Towards this end, in Section 2, we present some ex-
amples of I, J ∈ I such that I ∨ J and I ∧ J pre-
serve (EP) and investigate some basic conditions for
a pair (I, J) to satisfy the same. We also recall some
important generalizations of the exchange principle,



viz., the generalized exchange principle(GEP) and the
mutual exchangeability(ME). Following this, in Sec-
tion 3, we show that either of (GEP) or (ME) is a
sufficient condition for I ∨ J and I ∧ J to preserve
(EP). Later on, in Section 4, we show that the prop-
erties (GEP) and (ME) are also necessary under some
conditions, namely, the Lattice Exchangeability In-
equlaities (LEI). Finally, we present some results per-
taining to the solutions of fuzzy implications I, J that
satisfy (ME) and (GEP) separately in Sections 5 and
6, respectively.

2 PRELIMINARIES

In this section, we first show that there exist solutions
of Problem 1.3. Following this, we investigate the basic
characterizations of pairs (I, J) of fuzzy implications
that become the solutions of Problem 1.3. Finally, we
recall two important generalizations of (EP), namely,
(GEP) and (ME), that will be helpful in obtaining the
solutions of Problem 1.3.

Example 2.1. (i) Let I, J ∈ I satisfy (EP) and
I ≤ J under the usual point-wise ordering of func-
tions. Clearly, I∨J = J and I∧J = I, which sat-
isfy (EP). Thus when I, J are comparable, I ∨ J
and I ∧ J always preserve (EP).

(ii) Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

sin(πy2 ), if x > 0,

and J(x, y) =

{
1, if x = 0,

y2, if x > 0.

Then it is easy to see that the implications I, J, I∨
J , and I ∧J satisfy (EP). Note also that I, J are
not comparable.

In fact, one can generalize Example 2.1(ii) to obtain
further solutions of Problem 1.3 as in the following.

Remark 2.2. Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

ϕ(y), if x > 0,

and J(x, y) =

{
1, if x = 0,

ψ(y), if x > 0,

where ϕ,ψ : [0, 1] −→ [0, 1] are increasing bijections
such that ϕ(0) = 0 = ψ(0) and ϕ(1) = 1 = ψ(1). Then
it is easy to see that the implications I, J, I ∨ J, I ∧ J
satisfy the exchange principle. In the case, if ϕ,ψ are
incomparable then I, J are also incomparable.

From Example 2.1, it follows that lattice operations of
comparable fuzzy implications always preserve (EP)
and there exist some incomparable fuzzy implications
whose lattice operations also preserve the same.

Now, in the following we present some important re-
sults that will be useful in the investigations of pairs
(I, J) of fuzzy implications such that I ∨ J and I ∧ J
preserve (EP).

Proposition 2.3 ([1], Propositions 7.2.15 and 7.2.26).
For a function I : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) I is increasing in the second variable, i.e., I sat-
isfies (I2).

(ii) I satisfies I(x,min(y, z)) = min(I(x, y), I(x, z))
for all x, y, z ∈ [0, 1].

(iii) I satisfies I(x,max(y, z)) = max(I(x, y), I(x, z))
for all x, y, z ∈ [0, 1].

From the above result the following Lemma follows
directly.

Lemma 2.4. Let I, J ∈ I satisfy (EP). Then the
following statements are equivalent:

(i) Ai(I, J) satisfies (EP), where A1(I, J) = I ∧ J
and A2(I, J) = I ∨ J .

(ii) Ai(I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))) =
Ai(I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z))),
for i = 1, 2, where A1 = min and A2 = max.

In the following, we recall two important generaliza-
tions of (EP) proposed in different contexts, which
play an important role in the sequel.

Definition 2.5 (cf. [4], Proposition 5.5). A pair (I, J)
of fuzzy implications is said to satisfy the generalized
exchange principle (GEP), if for all x, y, z ∈ [0, 1],

I(x, J(y, z)) = I(y, J(x, z)),

J(x, I(y, z)) = J(y, I(x, z)).

}
(GEP)

Remark 2.6. Note that, in the original definition of
(GEP) in [4], the pair (I, J) satisfies (GEP) if only the
first of the above two conditions, viz., I(x, J(y, z)) =
I(y, J(x, z)), is true. In that sense, given I, J ∈ I, our
definition requires both the pairs (I, J) and (J, I) to
satisfy (GEP). However, to avoid cumbersome repeti-
tions, we continue to consider the definition given in
Definition 2.5 in this work.

Example 2.7. Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

y3, if x > 0,



and J(x, y) =

{
1, if x = 0,

y4, if x > 0.

Then it is easy to see that the pair (I, J) satisfies
(GEP).

Definition 2.8 ([8], Definition 3.9). A pair (I, J) of
fuzzy implications is said to be mutually exchangeable,
if for all x, y, z ∈ [0, 1],

I(x, J(y, z)) = J(y, I(x, z)). (ME)

From Remark 3.10 in [7], it follows that (GEP) is dif-
ferent from (ME).

3 SUFFICIENT CONDITIONS ON
I, J SUCH that I ∨ J, I ∧ J
PRESERVE (EP)

In this section, we show that either of (GEP) and
(ME) is a sufficient condition for a pair (I, J) to be
a solution of Problem 1.3.

Theorem 3.1. Let I, J ∈ I satisfy (EP). If the pair
(I, J) satisfies either (GEP) or (ME), then both I ∨J
and I ∧ J satisfy (EP).

Proof. Let I, J ∈ I satisfy (EP).

(i) Let the pair (I, J) satisfy (GEP). Let K1 = I ∨J
amd x, y, z ∈ [0, 1]. Now, from (EP), (GEP) of
I, J and Lemma 2.4, it follows that

K1(x,K1(y, z)) = max(I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z)))

= max(I(y, I(x, z)), I(y, J(x, z)),

J(y, I(x, z)), J(y, J(x, z)))

= K1(y,K1(x, z)),

or equivalently, K1 = I ∨ J satisfies (EP). Simi-
larly, one can show that I ∧ J also satisfies (EP).

(ii) Let the pair (I, J) satisfy (ME). Now, from (ME)
it follows that

I(y, J(x, z)) = J(x, I(y, z)), x, y, z ∈ [0, 1].

Now let x, y, z ∈ [0, 1]. Then, once again, by using
(EP) and (ME) of I, J and Lemma 2.4, we get

K1(x,K1(y, z)) = max(I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z)))

= max(I(y, I(x, z)), J(y, I(x, z)),

I(y, J(x, z)), J(y, J(x, z)))

= K1(y,K1(x, z)).

Thus K1 = I ∨ J satisfies (EP). Similarly, one
can show that I ∧ J also satisfies (EP).

4 NECESSARY CONDITIONS ON
I, J SUCH THAT I ∨ J, I ∧ J
PRESERVE (EP)

In Theorem 3.1, we have shown that either (GEP) and
(ME) of I, J is a sufficient condition for I∨J and I∧J
to preserve (EP). In this section, we show that these
properties also become necessary under some condi-
tions.

Towards this end, we define the following:

Definition 4.1. Let I, J ∈ I satisfy (EP). Then we
say that the pair (I, J) satisfies Lattice Exchange-
able Inequalities (LEI) if it satisfies the following
inequalities: For all x, y, z ∈ [0, 1],

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(x, J(y, z)), J(x, I(y, z))), (LEI-1)

min(I(x, I(y, z)), J(x, J(y, z))) ≥
min(I(x, J(y, z)), J(x, I(y, z))). (LEI-2)

Example 4.2. It can be easily verified that the pair
of fuzzy implications (I1, J1) does satisfy the (LEI) in-
equalities, while the pair (I2, J2) does not:

I1(x, y) =


1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

0.4, otherwise,

J1(x, y) =


1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

0.6, otherwise,

I2(x, y) =

{
1, if x ≤ 0.4,

y2, if x > 0.4,

J2(x, y) =

{
1, if x ≤ 0.6,

y4, if x > 0.6.

Lemma 4.3. Let I, J ∈ I satisfy (EP). (LEI-1) is
equivalent to (LEI-1’):

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))), (LEI-1’)

and (LEI-2) is equivalent to (LEI-2’):

min(I(x, I(y, z)), J(x, J(y, z))) ≥
min(I(y, J(x, z)), J(y, I(x, z))). (LEI-2’)



Proof. Let I, J ∈ I satisfy (EP). In the following we
show that (LEI-1) is equivalent to (LEI-1’), since the
proof for the other can be similarly obtained.

(LEI-1) =⇒ (LEI-1’): Let the pair (I, J) satisfy
(LEI-1). From (LEI-1), one can always write

max(I(y, I(x, z)), J(y, J(x, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))). (1)

Since I, J satisfy (EP), the inequality (1) becomes

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))),

which is equal to (LEI-1’).

(LEI-1’) =⇒ (LEI-1): Follows similarly.

Theorem 4.4. Let I, J, I ∨ J, I ∧ J ∈ I satisfy (EP).
If the pair (I, J) satisfies (LEI) then it also satisfies
the following equations:

max(I(x, J(y, z)), J(x, I(y, z))) =

max(I(y, J(x, z)), J(y, I(x, z))), (2)

min(I(x, J(y, z)), J(x, I(y, z))) =

min(I(y, J(x, z)), J(y, I(x, z))). (3)

Proof. Let I, J, I ∨ J, I ∧ J ∈ I satisfy (EP). Let the
pair (I, J) also satisfy (LEI). In the following, we prove
only the equation (2), since the proof for (3) can be
obtained similarly. Let x, y, z ∈ [0, 1]. Since I ∨ J
satisfies (EP), from Lemma 2.4, the pair (I, J) satisfies
the equation in Lemma 2.4(ii), with i = 2. Thus we
have, for all x, y, z ∈ [0, 1],

max
{
I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z))
}

= max
{
I(y, I(x, z)), I(y, J(x, z)),

J(y, I(x, z)), J(y, J(x, z))
}
. (∗)

Since the pair (I, J) also satisfies (LEI), from (LEI-1),
we get

L.H.S. of (∗) = max(I(x, J(y, z)), J(x, I(y, z)))

= L.H.S. of (2).

Since I, J satisfy (EP) from Lemma 4.3, it follows that
(LEI-1) is equivalent to (LEI-1’), from whence we ob-
tain that

R.H.S. of (∗) = max(I(y, J(x, z)), J(y, I(x, z)))

= R.H.S. of (2).

Let I ∨ J, I ∧ J preserve (EP) and I, J satisfy (LEI).
Then from Theorem 4.4, it follows that the pair (I, J)
satisfies (2) and (3). In other words, this fact implies
that the solutions of the equations (2), (3) also become
the solutions of Problem 1.3. In the following, we in-
vestigate the solutions of (2) and (3). Before doing so,
we recall the following important result which is useful
in the sequel.

Lemma 4.5 ([2], page. 366). Let L be any distributive
lattice. Let a, b, c ∈ L satisfy

max(a, b) = max(a, c), (4)

min(a, b) = min(a, c). (5)

Then b = c.

Remark 4.6. Since ([0, 1],≤,∨,∧) is also a distribu-
tive lattice, Lemma 4.5 is also true for all a, b, c ∈
[0, 1].

Remark 4.7. Let a, b, c, d ∈ [0, 1] satisfy

max(a, b) = max(c, d), (6)

min(a, b) = min(c, d). (7)

Then either a = c or a = d. Further,

(i) if a = c then b = d.

(ii) if a = d then b = c.

Lemma 4.8. Let the pair (I, J) ∈ I satisfy the equa-
tions (2) and (3). Then it satisfies either (GEP) or
(ME).

Proof. Follows from Remark 4.7.

Theorem 4.9. Let I, J, I∨J, I∧J ∈ I satisfy (EP) and
let the pair (I, J) satisfy (LEI). Then the pair (I, J)
satisfies either (GEP) or (ME).

Proof. Follows from Theorem 4.4 and Lemma 4.8.

Theorem 4.10. Let I, J ∈ I satisfy (EP) and (LEI).
Then the following statements are equivalent:

(i) I ∨ J, I ∧ J satisfy (EP).

(ii) The pair (I, J) satisfies either (GEP) or (ME).

Proof. Follows from Theorems 4.9 and 3.1.

Remark 4.11. Let I, J ∈ I satisfy (EP). If the pair
(I, J) satisfies (LEI) then from Theorem 4.10, it fol-
lows that I ∨ J, I ∧ J satisfy (EP). However, the con-
verse need not be true. For example, take I = I2 and
J = J2 of Example 4.2.



Since (ME) and (GEP) play an important role in the
characterizations of solutions of Problem 1.3, it is of
interest to know the pairs (I, J) of fuzzy implications
that do satisfy (ME) or (GEP). We take up this in-
vestigation in the following sections.

5 PAIRS OF FUZZY
IMPLICATIONS SATISFYING
(ME)

Due to the variety of fuzzy implications and the com-
plexity of the functional equation, it is not an easy task
to investigate the pairs of fuzzy implications that do
satisfy (ME). However, Vemuri [5] has investigated the
solutions of (ME), but only for the families of fuzzy im-
plications whose characterizations are well established.
In the following, we recall some of the most impor-
tant results that give the solutions of (ME) and thus
the solutions of Problem 1.3. For details about def-
initions, properties, characterizations and representa-
tions of different families of fuzzy implications, please
see [1].

5.1 (S,N)-implications satisfying (ME)

Proposition 5.1 ([5], Proposition 4.1). Let I be an
(S,N)-implication whose negation N has trivial range,
i.e., N(x) ∈ {0, 1} for all x ∈ [0, 1]. Then I satisfies
(ME) with every J ∈ I.

From Proposition 5.1, it follows that if at least one of
I, J is an (S,N)-implication with trivial range nega-
tion N then the pair (I, J) satisfies (ME) and hence
becomes the solution of Problem 1.3.

In the case if I, J are two (S,N)-implications with
continuous negations and satisfy (ME) then as the fol-
lowing result suggests the two t-conorms involved in
the definition must be the same.

Theorem 5.2 ([7], Theorem 6.7). Let I(x, y) =
S1(N1(x), y), J(x, y) = S2(N2(x), y) be two (S,N)-
implications such that N1, N2 are continuous nega-
tions. Then the following statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) S1 = S2.

5.2 R-implications satisfying (ME)

Theorem 5.3 ([5], Theorem 5.1). Let I = IT1
and

J = IT2
be two R-implications generated from left-

continuous t-norms T1, T2 respectively. Then the fol-
lowing statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) I = J .

Before presenting the solutions of f and g-implications
that satisfy (ME), we recall two important definitions
that will be useful in the sequel.

Definition 5.4 ([6, 7]). For any I, J ∈ I, we define
I ~ J : [0, 1]2 → [0, 1] as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1].

Definition 5.5 ([8], Definition 5.1). Let I ∈ I. For
any n ∈ N, we define the n-th power of I w.r.t. the
binary operation ~ as follows: For n = 1,

I
[n]
~ = I,

and for n ≥ 2,

I
[n]
~ (x, y) = I

(
x, I

[n−1]
~ (x, y)

)
= I

[n−1]
~ (x, I(x, y)) ,

for all x, y ∈ [0, 1].

5.3 f-implications satisfying (ME)

Theorem 5.6 ([5], Theorem 6.6). Let I, J be two f -
implications. Then the following statements are equiv-
alent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

5.4 g-implications satisfying (ME)

Theorem 5.7 ([5], Theorem 7.4). Let I, J be two g-
implications. Then the following statements are equiv-
alent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

6 PAIRS OF FUZZY
IMPLICATIONS SATISFYING
(GEP)

In this section, we attempt to find the pairs (I, J)
of fuzzy implications that do satisfy (GEP). Once
again keeping the complexity of the functional equa-
tion (GEP) in mind, we restrict ourselves to do so for
the families (S,N)-, R-, f - and g- of fuzzy implica-
tions.

Note that all of these families of fuzzy implications
satisfy the following left neutrality property (NP):



Definition 6.1 (cf. [1], Definition 1.3.1). An I ∈ I is
said to satisfy the left neutrality property (NP) if

I(1, y) = y, y ∈ [0, 1]. (NP)

Lemma 6.2. Let I, J ∈ I satisfy (NP). If the pair
(I, J) satisfies (GEP) then I = J .

Proof. The substitution of x = 1 in (GEP) and (NP)
of I, J ∈ I will yield I = J .

From the above results, it is clear that if I, J ∈ I belong
to one of the following families of fuzzy implications,
viz.,(S,N)-, R-, f -, g- implications, and satisfy (GEP),
then I = J and hence it trivially follows that both I∨J
and I ∧ J preserve (EP).

7 CONCLUSIONS

In this paper, we have investigated the solutions of an
open problem [Problem 3.1, Fuzzy Sets and Systems
261(2015) 112-123] related to the preservation of the
exchange principle (EP) of fuzzy implications under
lattice operations. Our study has shown the impor-
tance of two of the generalizations of (EP), viz., (GEP)
and (ME) in obtaining the solutions of the problem.

While (GEP), (ME) are independently sufficient for
the lattice operations of fuzzy implications to preserve
(EP), these conditions are not necessary. However, the
newly proposed pair of inequalities, namely the Lattice
Exchangeable Inequalities (LEI-1) and (LEI-2) make
(GEP) and (ME) also a necessity for a pair of fuzzy
implications to be a solution of Problem 1.3.

Since the pairs (I, J) of fuzzy implications satisfying
either (GEP) or (ME) are the most general solutions of
the problem, we have investigated them but for some
well known families of fuzzy implications. However,
this problem has to be investigated in the most general
setting. Further, the solutions of (LEI) are worthy of
study. We intend to explore these in detail in the near
future.
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