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A Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
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We report the first detection of gravitational lensing due to galaxy clusters using only the po-
larization of the cosmic microwave background (CMB). The lensing signal is obtained using a new
estimator that extracts the lensing dipole signature from stacked images formed by rotating the
cluster-centered Stokes Q/U map cutouts along the direction of the locally measured background
CMB polarization gradient. Using data from the SPTpol 500 deg2 survey at the locations of roughly
18,000 clusters with richness λ ≥ 10 from the Dark Energy Survey (DES) Year-3 full galaxy cluster
catalog, we detect lensing at 4.8σ. The mean stacked mass of the selected sample is found to be
(1.43± 0.40)× 1014 M�which is in good agreement with optical weak lensing based estimates using
DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is
a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which
CMB polarization will be the primary channel for cluster lensing measurements.

Introduction. — Galaxy clusters are the most massive
gravitationally bound structures in the Universe. Mea-
suring their abundance as a function of mass and redshift
can provide tight constraints on the cosmological parame-
ters that influence the geometry and growth of structures
in the Universe [see 1, for a review] that are complemen-
tary to baryon acoustic oscillations (BAO) or cosmic mi-
crowave background (CMB) datasets. The independent
measurements of cluster abundance, BAO, and CMB,
which have different parameter degeneracies, can be com-
bined to obtain even stronger constraints [2–12]. How-
ever, the cluster abundance measurements rely on precise
mass measurements, which are currently limited by un-
certainties in the conversion of the survey observable to
cluster mass [13]. Upcoming large surveys are forecasted
to detect tens of thousands of galaxy clusters, an order of
magnitude more than current surveys [14–16]. Of these,
CMB surveys, in which galaxy clusters are observed via
redshift-independent Sunyaev-Zel’dovich (SZ) effect, will
return >∼ 10, 000 clusters above z ≥ 1 [16]. Given such
an enormous increase in the sample size compared to the
current surveys, it is crucial to develop robust methods
to measure cluster masses accurately.

In contrast to other cluster observables (optical rich-
ness, SZ flux, and X-ray flux), gravitational lensing of
galaxies or the CMB offers an unbiased mass measure-
ment since lensing exactly traces the underlying mat-
ter distribution. Weak lensing measurements of galaxies
have high signal-to-noise (S/N) at low redshifts, but the
S/N falls steeply at high redshifts with the number of
distant lensed background galaxies observed with suffi-
ciently high S/N to facilitate lensing.

By constrast, since the CMB originates behind all of
the clusters, lensing of the CMB by clusters is a highly
promising tool for measuring masses of clusters above
z ≥ 1 [17]. The CMB-cluster signal can be observed with

both temperature and polarization anisotropies of the
CMB. As the amplitude of the lensing signal is propor-
tional to the local CMB gradient, lensing of the brighter
CMB temperature anisotropies yields a higher S/N com-
pared to polarization. A number of experiments have
now detected the CMB-cluster lensing signal in temper-
ature [9, 18–23], yielding mass constraints at the 10%
level [20]. However, CMB temperature data are suscep-
tible to foregrounds that set an effective noise floor for
future measurements [see Fig. 2 of 24]. CMB polar-
ization, on the other hand, is robust to foregrounds as
contaminating signals from the galaxy cluster itself and
other foregrounds are much lower in polarization than
temperature. As a result, polarized CMB-cluster lensing
will be crucial to the cluster mass constraints from next
generation low-noise surveys [24].

Several polarized CMB-cluster lensing estimators have
been proposed [17, 25, 26], however none have yet been
demonstrated on data. In this work we detect, for the
first time, the CMB-cluster lensing signal from polariza-
tion data alone. We develop a new estimator that ex-
tracts the lensing dipole signature from the CMB maps
by rotating the cluster-centered cutouts along the direc-
tion of the local background CMB polarization gradient.
The method is easy to implement and computationally
much less expensive compared to the traditional maxi-
mum likelihood estimator [17, 19, 24, 27] which models
the lensing signal using a large suite of simulations. We
apply this estimator to the SPTpol 500 deg2 polariza-
tion Stokes Q/U maps at the location of clusters from
the Dark Energy Survey (DES) Year-3 catalog. We re-
ject the null hypothesis of no lensing at 4.8σ in the com-
bined Q/U maps. This result demonstrates the viability
of achieving sub-percent level mass constraints [24] from
next-generation CMB surveys like CMB-S4 [16].

Throughout this work, we use the Planck 2015 best-
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fit ΛCDM cosmology [28] with h = 0.67, and assume
the absence of primordial B-modes. The lensed CMB
power spectra were obtained using CAMB [29]. All the halo
quantities are defined with respect to a sphere within
which the average mass density is 200 times the mean
density of the Universe at the halo redshift.
Dataset I: The SPTpol 500 deg2 survey. — We use two

datasets in this work. The first is the 150GHz Stokes
Q/U polarization maps of a 500 deg2 region (R.A. = 22h
to 2h; Decl. = -65◦ to -50◦) from the SPTpol sur-
vey. The South Pole Telescope (SPT) is a 10-m tele-
scope located at the Amundsen-Scott South Pole sta-
tion [30, 31] and SPTpol was the second camera on the
SPT. It has 1176 polarization-sensitive transition-edge-
sensor bolometers [32] and roughly a 1.′2 FWHM beam
at 150GHz. The white noise level of the polarization
maps is ∆P ∼ 7µK-arcmin. The maps used in this anal-
ysis were made in the Sanson-Flamsteed flat-sky projec-
tion with a pixel resolution of 1′. From these Stokes
Q/U maps, we remove an estimate of the temperature-
to-polarization leakage (T → P ) as X = X − εXT where
X ∈ [Q,U ], εQ = 1.65%, and εU = 0.71%. Unaccounted
for, T → P would introduce temperature signal from
the galaxy clusters, such as the SZ effects [33, 34] or
emission from radio galaxies and dusty galaxies, into the
polarization maps. More details about the map making
procedure can be found in Henning et al. [35].
Dataset II: DES cluster catalog. — The second data

product used in the analysis is a sample of optically
selected clusters from the DES, which is an optical to
near-infrared survey from the Atacama region in north-
ern Chile. In this work, we use a cluster catalog selected
by the redMaPPer (RM) algorithm [36] using DES Year-3
observations of ∼ 3000 deg2, specifically we use the full
flux-limited catalog version: y3_gold:v6.4.22+2. We
select all clusters with richness λ ≥ 10 within the SPT-
pol survey area, where we exclude any cluster within 30′
of the survey boundary or within 10′ of a source with
S150GHz > 6.4 mJy. In total we work with 17,661 clus-
ters, of which 3,868 have richness λ ≥ 20. The cluster
redshifts are estimated photometrically with uncertain-
ties of σ̂z = 0.01(1 + z) [37]. We neglect redshift uncer-
tainties in this work since the impact of photo−z errors
on CMB-lensing masses is negligible [24]. The redshifts
span 0.1 ≤ z ≤ 0.95 with a median value of zmed = 0.72.

The low-richness (λ < 20) haloes are included to im-
prove the lensing S/N as the goal here is only to make the
first measurement of the polarized CMB-cluster lensing
signal. Since these low mass objects are not well charac-
terized by the RM algorithm, we caution the reader when
using results from the low-richness objects in this work
for any cosmological analysis.
Lensing estimator. — On scales corresponding to the

angular size of a galaxy cluster, the primordial CMB is
exponentially damped [38] and the field can be well ap-
proximated by a gradient. When a galaxy cluster lenses

this CMB gradient field, it produces a dipole-like pattern
[17, 39] that is oriented along the direction of the gradi-
ent [see Fig. 1 of 17]. This is the basis for the lensing
estimator developed here which uses the following steps
to extract the lensing dipole and constrain the cluster
masses:

1. Extract 10′ × 10′ Nclus cluster-centered or Nrand

random cutouts d̃ from the Stokes Q/U maps.

2. Determine the median value of the gradient direc-
tion θ∇ = tan−1(∇y/∇x) in every Q/U cutout.

3. Rotate ith cluster cutout d̃i along θ∇,i to obtain di.

4. Determine weights w (see below) for each cutout
and stack the mean-subtracted cutouts to obtain
the weighted stacked signal sc (sr) at the cluster
(random) locations.

5. Obtain the final lensing dipole signal as: s = sc−sr.

The gradient direction determination in step 2 is lim-
ited to a 6′ × 6′ region in each cutout and to reduce
the noise penalty in the gradient estimation, we apply a
Wiener filter of the form

W` =

{
C`(C` +N`)

−1 , ` ≤ 2000
0 , otherwise

(1)

where N` is the noise spectrum and C` correspond to
CQQ` , CUU` calculated from CEE` , CBB` . Note that we use
Eq.(1) only for the gradient angle determination and the
stack is obtained from the unfiltered, rotated 10′ × 10′

cutouts. We observe no significant change in our results
when we replace N` in Eq.(1) by the full 2D noise power
spectral density.

The weight wi = wi,nwi,g assigned to cluster i while
stacking in step 4 can be decomposed into two pieces:
one based on the inverse noise variance σ2

i at the loca-
tion i; and the other using the median value of the mag-
nitude of the local gradient

√
∇2
yi +∇2

xi
since the lensing

amplitude is proportional to the gradient amplitude.
The stack sc from cluster locations, however, is domi-

nated by the mean large-scale CMB polarization gradient
that we call the background. We estimate and subtract
the background sr from a similar set of operations on
Nrand = 50, 000 random locations. The final rotated,
background subtracted signal stack is constructed as

s ≡ sc−sr =

∑Nclus

c wc [dc − 〈dc〉]∑Nclus

c wc
−
∑Nrand

r wr [dr − 〈dr〉]∑Nrand

r wr
(2)

where d represents the Q/U cutout at a cluster loca-
tion c or a random location r. Along with the lensing
dipole, s includes contribution from other sources: fore-
grounds, instrumental noise, and the residual large-scale
CMB gradient.
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FIG. 1. Example lensing dipole signal extracted from low-
noise simulated Q/U stacks. The stack includes contributions
from 10,000 clusters. The background, estimated from ran-
dom locations, has been subtracted to remove the large-scale
CMB gradient signals from both the panels.

For visualization purposes, in Fig. 1 we show the re-
covered lensing dipole signal Q/U stack for low-noise
(∆P = 0.1 µK-arcmin) simulations. The stack contains
signal from Nclus = 10, 000 clusters with (M200m, z) fixed
at (2× 1014 M�, 0.7). The presence of the dipole signal
in the stacked Q/U maps is the evidence for lensing. In
the absence of lensing, the stacks will be consistent with
null signals.

Using the signal stack s, we build a likelihood function

− 2 lnL(M|s) =
∑

pixels

(s−m) Ĉ−1 (s−m)
T
. (3)

where m represents the model and the covariance matrix
Ĉ is estimated using a jackknife re-sampling technique.
Ĉ properly captures all sources of noise since it is esti-
mated from the data itself.
Lensing dipole models. — For Eq.(3) we construct a

model stack, m ≡ m(M), using the above steps, except
at step 1 we replace the data vector, d, with no-noise
cluster-lensed simulations described below.

For each mass, M, in the parameter grid we gener-
ate Nclus cluster-lensed realizations of the Stokes Q/U
maps. This is done by generating convergence profiles at
each of the measured DES cluster redshifts for each mass.
We follow steps 2-4 to obtain the stacked model mc(M).
The mean background gradient CMB in this case simply
corresponds to mr ≡ mc(M = 0) and we remove that
from models calculated at all the other masses in the pa-
rameter grid. We use a flat prior for mass in the range
M ∈ [0, 4] × 1014 M� and divide the parameter grid lin-
early in bins ∆M = 0.1× 1014 M�. From the likelihood,
we measure the median mass and 1σ uncertainty, defined
by the 16 to 84 percent confidence range.

Note that the uncertainties δθ∇ in step 2 will be lower
in no-noise models compared to the data. These errors
lead to suboptimal stacking of the lensing dipole and will
result in a bias towards low mass if not accounted for

in the model. Subsequently, we add noise in the simula-
tions similar to that of the data only when determining
θ∇. This ensures that the uncertainties δθ∇ caused by
instrumental noise in the data are also replicated in the
models.
Simulations. — The simulations used to create the

lensing dipoles and mock datasets follow our previ-
ous work [24]. Briefly, the Stokes Q/U simulations
are created from Gaussian realizations of the CMB E-
and B-mode maps using flat-sky approximations and
span 200′ × 200′. The convergence profile used to lens
the E- and B-mode maps includes contributions from
κtot(M, z)= κ1h(M, z)+ κ2h(M, z). We use Navarro-
Frenk-White (NFW) [40] profile to model the one-halo
term κ1h(M, z) [41] and follow the prescription given in
Oguri and Hamana [42] for the lensing contribution from
correlated structures κ2h(M, z) [43, 44]. We also correct
κ1h(M, z) to account for uncertainties in the cluster cen-
troids as [45]

κ̃(`) = κ(`)

[
(1− fmis) + fmis exp

(
−1

2
σ2
s .`

2

)]
(4)

We set the fraction of mis-centered clusters to fmis =
0.22 [46] and σs = σR/DA(z). The amount of mis-
centering σR, which is a fraction of the cluster radius
(Rλ = (λ/100)0.2h−1 Mpc) is modeled as a Rayleigh dis-
tribution with σR = cmisRλ where ln cmis = −1.13±0.22
[46]. DA(z) in the above equation is the angular diameter
distance at the cluster redshift z.

We smooth the Q/U maps using the measured beam
function for SPTpol [35] and account for the informa-
tion lost during the map-making process due to the fil-
tering applied to the data. We approximate the filter-
ing as a 2D transfer function [21, 23] given as F¯̀ =

e−(`1/`x)6e−(`x/`2)6 with `1 = 300, and `2 = 20,000. The
two terms can be understood as high-pass and low-pass
filters in the scan direction respectively. To generate
mock datasets for pipeline validation, we also add Gaus-
sian realizations of the instrumental noise at the desired
level. The central 10′ × 10′ cutouts are extracted from
the simulated maps and passed through the rest of the
pipeline steps described earlier to obtain the model or
the mock datasets for the pipeline validation.
Pipeline validation. — We now validate the lens-

ing pipeline and estimate the expected lensing S/N
for the DES clusters. To the lensed simulated Q/U
maps we add instrumental noise using the noise power
N` measured from the SPTpol Q/U maps. The num-
ber of simulated clusters and their redshifts and rich-
nesses match the real values in the DES redMaPPer
Year-3 full sample. The richnesses and redshifts are
converted to cluster masses using the M− λ relation:

M = A
(
λ
30

)α ( 1+z
1+0.5

)β
where A is a normalization, and

the exponents α and β are richness and redshift evolution
parameters, respectively. We use the the best-fit values
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for these parameters obtained from DES weak-lensing
analysis [47], namely A = 3.08 × 1014 M�, α = 1.36,
and β = −0.3. The mean mass of the simulated sam-
ple is M200m= 0.96× 1014 M�. We note that the DES
M− λ relation has been calibrated only using clusters
with λ ≥ 20 and the relation cannot be fully trusted for
lower richness objects. However, we employ the relation
here only to obtain a rough estimate of the final lensing
S/N .

Next we extract the lensing dipole from the simu-
lated maps by following the steps 1-5 described in the
methods section. We combine the data from Q/U into
a single QU map vector. The covariance in this case
Ĉ ≡ ĈQU also includes the covariance between the
Q and U cutouts. The results for this QU estima-
tor are presented in the top panel of Fig. 2. Each
light shaded curve represents one simulation run for
the DES cluster sample. The combined result from 25
runs, M200m= 0.94 ± 0.07 × 1014 M�, plotted as the
thicker black curve, is within 0.25σ of the input mass
(red dash-dotted line). We evaluate the likelihood of the
null hypothesis of no lensing using the statistic, S/N =√

∆χ2 =
√
−2 lnL(M200m = Mfit) + 2 lnL(M200m = 0)

and obtain an average lensing S/N of 4.3σ from these
simulations translating to roughly 25% constraints in the
stacked cluster mass.
Systematics. — Systematics in our measurement arise

from the following sources: (a) assumption of a back-
ground cosmology for model generation; (b) incorrect
cluster profile; and (c) the uncertainties in the DES mis-
centering model. The biases are quantified using the
mock datasets for 10× more clusters, but after includ-
ing the modifications described below. In all these cases,
the models remain fixed to the fiducial Planck 2015 cos-
mology and the standard NFW profiles.

We quantify the bias due to the mis-match between
the underlying and the assumed cosmology by re-running
the simulations using a different C` within the 1σ errors
of the cosmological parameters obtained by Planck (ig-
noring the correlations between the parameters). This
change modifies the power in Q/U and also the lensing
convergence profiles. To quantify the errors due to the
assumption of a NFW profile for DES clusters, we replace
the NFW profile in the mock dataset generation with an
Einasto profile [48]. Finally, to assess the effect of uncer-
tainties in mis-centering, we create a new mis-centering
distribution by increasing the values of fmis and ln cmis

by their 1σ uncertainties and use the result to calculate
the smeared convergence κ′1h.

In all cases the shifts in the inferred lensing mass are
negligible compared to the 25% constraints on the masses
that we expect. Specifically we obtain the following bi-
ases: 1.5% (0.15σ), 0.5% (< 0.1σ), and 1.1% (0.12σ)
for the three cases with a combined error budget of 2%
(0.22σ). Given that the sample size in this work is much
smaller than for the tests considered here, we expect the

TABLE I. Recovered lensing masses of the DES RM cluster
sample.

Sample Lensing mass M200m×1014 M�

This work DES SPTpol-T
λ ≥ 10 1.43± 0.40 0.96± 0.07 0.85± 0.16

λ ≥ 20 3.23± 1.01 2.06± 0.14 1.80± 0.33

effects of systematics to be minimal and our results to be
dominated by statistical errors.
Polarization lensing measurement. — In this analysis,

we constrain the mass of a sample of clusters selected
from the DES Year-3 data set using the RM algorithm.
The lensing masses for two samples, λ ≥ 10 and λ ≥ 20,
are given in Table I. The table also contains the compar-
isons to the weak-lensing measurements from DES [47]
and SPTpol temperature results [23] by converting the
richness estimates into mass using the M− λ scaling rela-
tion reported in those works. The posterior distribution
for the weighted mean of the cluster masses is shown
as the black solid curve in the bottom panel of Fig. 2.
The recovered cluster mass from polarization is within
1.3−1.5σ of both the results. Note that the contribution
from κ2h(M, z) is included in the model here. Ignoring
the κ2h(M, z) term moves the lensing mass higher, as ex-
pected, by 9%.

As a further systematics test, we test whether re-
sults are dominated by either Q or U by obtaining
mass estimates from Q and U separately. We obtain
(1.30 ± 0.57) × 1014 M� and (1.56 ± 0.54) × 1014 M�
for Q and U respectively. Furthermore, we perform a
null test with by differencing the signals from Q and
U , to check if it is consistent with random fluctuations.
The lensing mass of (−0.51 ± 0.57) × 1014 M� shown
as the dashed curve in the bottom panel of Fig. 2 con-
firms the null signal. Another test performed by stacking
18,981 random locations, also returns a lensing mass of
(0.15± 0.39)× 1014 M�, consistent with M200m= 0.

For visual illustration, the rotated cluster stacks are
presented in Fig. 3. Since the noise levels of the SPTpol
maps are much higher than in Fig. 1, we apply additional
filtering to remove the small-scale noise in the figure. We
adopt a Wiener filter similar to Eq.(1) but after replacing
C` by the power spectra of the Q/U lensing dipole signal
corresponding to the lensing mass obtained above, scaling
N` by

√
Nclus in the stack, and low-pass filtering the stack

below ` ≤ 4000. This filter is not used in the actual
analysis.

Finally, we find that the no-lensing hypothesis is dis-
favored at 4.8σ (4.1σ) for the λ ≥ 10 ( λ ≥ 20) sample
which is in good agreement with the expectations from
simulations. This represents the first detection of the
CMB-cluster lensing signal in polarization data.
Future prospects. — The estimator developed in this

work can also be applied to temperature data. When



7

N
o
r
m

a
li
z
e
d
L

Simulations

DES RM Year-3 full (λ ≥ 10)

True

QU

0 2 4

M200m [1014 M�]

N
o
r
m

a
li
z
e
d
L

Data

Clusters

(Q− U)

SPTpol T

DES

FIG. 2. Lensing mass constraints of DES RM clusters using
polarization-only data from the SPTpol survey at the location
of 17,661 clusters. In the top panel, the light shaded curves are
for 25 individual simulations and their combined likelihood
is the thicker solid curve. The true mass from DES weak
lensing measurements is given as the red dash-dotted line.
The result from stacked SPTpol data (bottom panel) is in
good agreement with the weak lensing measurements from
DES (red region) and the SPTpol temperature result (yellow
region). The (Q − U) null test is shown as the dashed curve
in the bottom panel.
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FIG. 3. Rotated, background-subtracted Q and U stacks
from the SPTpol data showing the cluster lensing dipole sig-
nals. Unlike in Fig. 1, these images have been filtered to
remove the small-scale noise for illustrative purposes.

using the temperature data, however, we must addition-
ally fit for the rotationally invariant thermal SZ signal in
the stacked cutouts and other possible sources of cluster
correlated foregrounds. Similarly, the performance of the
estimator must be compared to other lensing estimators
[24–26] to determine the optimal method of CMB-cluster
lensing reconstruction both in terms of the computational
requirements and the sensitivity. We defer a detailed in-
vestigation of these to a future work.

For future experiments, CMB polarization-based re-
sults will be increasingly important for CMB-lensing
based cluster mass estimates. The CMB polarization
signal is less sensitive to systematics from astrophysical
foregrounds, which are largely unpolarized. For exam-
ple, sources in CMB maps have been measured to have
a fractional polarization of ∼ 3% with random polariza-
tion angles [recently, 49, 50]. In Raghunathan et al. [24],
we showed that polarized point sources cause negligible
bias in CMB-cluster lensing even at polarization fractions
higher than this. The polarization of the SZ effect should
also have negligible impact, and is expected to be two or-
ders of magnitude smaller [51–53] than the lensing signal
expected from the clusters.

This measurement is the first step towards achieving
precise mass constraints [24] from next-generation CMB
surveys like CMB-S4 [16] and SPT-3G [54], and will
be important to maximize the cosmological constraining
power of future cluster surveys.
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