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Abstract

Masonry is a heterogeneous anisotropic continuum. In particular, the inhomogeneity is due to

the different mechanical properties of its constituents. Anisotropy is due to the different masonry

patterns, that can be obtained by variation of geometry, nature and arrangement of mortar and

brick. The behaviour of masonry is very complex and highly non-linear due to the behaviour of

its constituents, which are quasi-brittle in nature and have a large difference in their stiffness. The

structural response of such a composite material derives from the complex interaction between its

constituents.

Many computational studies have been carried out at various scales to understand and simulate

the behaviour of masonry. The modelling of masonry at different scales depends up on the level

of accuracy and simplicity desired. This includes micro-modelling and macro-modelling. In micro-

modelling, the unit and mortar are represented by continuum elements and unit-mortar interface is

represented by a discontinuous interface element. This detailed micro-modelling procedure leads to

very accurate results, but requires an intensive computational effort. This drawback can be partially

overcome in simplified micro-modelling, by making an assumption that mortar and two unit-mortar

interface is lumped into a joint between expended units. The units are expended in order to keep

the geometry of structure unchanged. The computational cost of simplified micro-model can be

further reduced, by replacing expanded units by the rigid element. Using rigid elements decreases

the number of degrees of freedom, which consequently reduces the computational time. In macro-

modelling, masonry is considered as a composite, which does not make any distinction between units

and mortar. The material is regarded as a fictitious homogeneous anisotropic continuum.

In the present work a micro modelling approach is adopted for the detailed failure analysis of

the masonry. This study focuses on plasticity based non-linear analysis of unreinforced masonry

structures at micro-level. In particular, the study focuses on analysis of two-dimensional modelling

of masonry assumed to have plane stress condition. The main objectives of present study are

• to perform a critical review of masonry and computational modelling of masonry structure;

• to perform a computational homogenization of masonry;

• to propose and develop a constitutive micro-model for unreinforced masonry which includes

softening behaviour and incorporates all predominant failure mechanisms;

• to implement the proposed model in commercial software ABAQUS using user defined user

subroutine UMAT;

• to perform a numerical study to validate the model by comparing the predicted behaviour

with the behaviour observed in experiments on different types of masonry.

Masonry shows the softening behaviour in the post peak region. It is typical due to quasi-brittle

in nature of its constituent i.e. brick and mortar. It happened due to the present of progressive

internal micro crack. Such mechanical behaviour is commonly attributed to the heterogeneity of the

material, due to the presence of different phases and material defects, like flaws and voids. Even

prior to loading the structure, brick and mortar contains microcracks. Initially, these microcracks

are stable which means that they grow only when the load is increased. But, around peak load an

acceleration of crack formation takes place and the formation of macrocracks starts. The macrocracks
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are unstable, which means that the load has to decrease to avoid an uncontrolled growth. Thus,

Deformation controlled test of masonry results in softening and localization of cracking in a small

zone while the rest of masonry remains pristine.

The failure of masonry constituent (unit and mortar) in tension and compression loading is

essentially the same and i.e. due to growth of micro level crack in the material. During failure the

inelastic strains result from a dissipation of fracture energy. First, due to sliding or mode II, which

results in a dry friction process between the components once softening is completed. Second, the

split of the head joint and the brick in mode I. Third, the crushing of mortar or brick take place, which

release the compressive fracture energy. If the micro-modelling strategy is used for masonry, then

all these failure mechanisms should be incorporated in the failure model. On the other hand if the

macro-modelling strategy is used, joints are smeared out in an anisotropic homogeneous continuum.

Therefore the interaction between the masonry components cannot be incorporated in these types

of models. Instead, a relation between average stresses and strains should be established through

experiments or homogenization.

As an alternative to difficult experimental tests, continuum parameter are also found in work.

In present study, theory of homogenization for periodic media has been applied in a rigorous way

for deriving the anisotropic elastic characteristics of masonry. The real geometry has been taken

into account (bond pattern and finite thickness of the wall). For the numerical example the two

representative volume element having the same ratio of mortar and unit has been considered and

their equivalent properties have been found. Moreover, a care full examination for different stiffness

ratio between mortar and unit have been done to assess the performance for inelastic behaviour.

Micro-models are best tool to understand the behaviour of masonry. This requires the consider-

ation of the failure mechanisms of the masonry and its constituent. These failure mechanisms are

lumped into an interface element, with the assumption that all the inelastic behaviour occurs in

interface element, which leads to robust type of modelling, capable of tracing complete load path.

The interface element shows the failure mechanism as potential crack, slip and crushing. In this

work, a plasticity based composite interface model is proposed for failure analysis of unreinforced

masonry. A hyperbolic composite interface model consisting of a single surface yield criterion, which

is a direct extension of Mohr-Coulomb criteria with cut in tension region and a cap in compression

region. The model is developed by using a fully implicit backward-Euler integration strategy. It is

combined with a local/global Newton solver, based on a consistent tangent operator compatible with

an adaptive sub stepping strategy. The model is implemented in standard finite element software

(ABAQUS) by using user defined subroutine and verification is conducted in all its basic modes.

During the verification, it has been found that sub stepping is required to ensure the convergence

and accuracy of the final solution at both local and global level.

Finally, the composite interface model is validated by comparing numerical result with experi-

mental results available in the literature. A masonry shear wall is modelled with simplified micro-

modelling strategy and behaviour has been studied, particularly post peak behaviour of masonry.

At last it has been showed that present model is capable of representing the cyclic shear behaviour

of masonry mortar joints.
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Nomenclature

σ Stress vector

ǫ Strain vector

σij Second-order stress tensor

ǫij Second-order strain tensor

δij Kronecker delta

Eij Symmetric second-order tensor for the strain

upi Periodic displacement field

xi Spatial parameters

Ω Domain

Ω̂ Unit cell

Σ Macroscopically homogeneous stress state

E Macroscopically homogeneous strain state

S Fourth order compliance tensor

C Fourth order stiffness tensor

Eb Youngs modulus of brick unit

Eu Youngs modulus of mortar

Gb Shear modulus of brick unit

Gu Shear modulus of mortar

ν Poissons ratio

hm Actual thickness of mortar joint

σnn Normal stress component

σtt Tangential stress component

unn Normal displacement component

utt Tangential displacement component

K Elastic stiffness matrix

knn, ktt Component of elastic stiffness matrix

F Yield function

Q Potential function

fc Compression cap-off function

ft Tension-cut function

αc Positive integer controls curvature of compression cap

αt Positive integer controls curvature of tension-cut

q Hardening Parameter

C,Cq Apparent cohesion

φ Friction angle

ψ Dilation angle

ξ Tension strength

ζ Compression strength

Ẇ p Plastic work hardening per unit of volume

ẇp1 , ẇ
p
2 , ẇ

p
3 , ẇ

p
4 Work hardening variables
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σttr1 Tangential strength at zero tensile strength

σttr2 Minimum tangential strength for zero tensile strength and minimum cohesion and friction angle

C0, Cq0 Initial apparent cohesion

Cr, Cqr Residual apparent cohesion

φ0 Initial friction angle

φr Residual friction angle

ψ0 Initial dilation angle

ψr Residual dilation angle

ξ0 Initial tension strength

ζ0 Initial compression strength

ζp Peak compression strength

ζm Intermediate compression strength

ζr Residual compression strength

GIf Mode I fracture energy

GIIf Mode II fracture energy

ǫe Elastic strain

ǫp Plastic strain

λ̇ Constant slip rate or plastic multiplier

Kep Elasto-plastic tangent modulus

P Pressure

ix



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Nomenclature viii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of computational modelling for Masonry structures . . . . . . . . . . . . . . 3

1.2.1 Micro-modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Macro-modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Masonry: Material Description 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Softening behaviour aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Tensile strength softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Compressive strength softening . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Shear strength softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Property of masonry constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Masonry units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Mortar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Property of unit-mortar interfaces . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Property of masonry as a composite material . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Uniaxial behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Bi-axial behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Homogenization of masonry 26

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Homogenization theory for periodic media . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Description of periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

x



3.2.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Finite element Analysis for determining the homogenizes properties . . . . . . . . . . 31

3.3.1 Stress prescribed analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Displacement prescribed analysis . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The Composite Interface Model 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Masonry failure mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 The Composite Interface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Plastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Evolution laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.4 Elastic-plastic tangent modulus . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.5 Algorithmic aspect of local and global solver . . . . . . . . . . . . . . . . . . 51

4.4.6 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.7 Verification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.8 Sub stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Validation of composite interface model 66

5.1 Micro Modelling of Masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Masonry shear wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Shear wall without opening (SW) . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Shear wall with opening (SWO) . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Masonry bed joints in direct cyclic shear loading . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Summary and conclusions 79

List of Figures 81

List of Tables 84

Appendix 85

Appendix-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References 87

xi



Chapter 1

Introduction

1.1 Introduction

Masonry is one of the oldest building material. It have been still in use due to simplicity in construc-

tion and other characteristics like aesthetics, solidity, durability and low maintenance, versatility,

sound absorption and fire resistance. The technique of masonry constructions was very old and is

same as developed thousand year ago. For the example masonry has being used as a Load bearing

wall, infill panels to resist the seismic and wind loads for many years. whereas, many new devel-

opment in material, and advancement in it′s applications have occurred in recent years. The use

of masonry as pre-stressed masonry cores and low rise building is presently competitive. However,

these innovative application of masonry are hindered by lack of insight and complex behaviour of

masonry as a composite material.

Figure 1.1: Photo of Prag Mahal (Bhuj, Gujarat, India) damaged in 2001 Gujarat Earthquake,
Photo courtesy: Randolph Langenbach / UNESCO.
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Many buildings are masonry construction through out the world, more so in India and many

countries of the Europe. These include building of huge architectural and historical values. Many

of them are situated in the earthquake prone area, which is one of the main cause of the damage on

the buildings and their collapse. For the instance, the Gujarat earthquake (2001) damaged many

historical heritage buildings in Gujarat, such as Prag Mahal in Bhuj, which is more then 150 year old,

see Figure 1.1, and Umbria-Marche earthquake (1997) damaged many important historical heritage

buildings in Italy, such as the Basilica of Saint Francis in Assisi and more than 200 ancient churches,

see Figure 1.2.

Figure 1.2: Photo sequence of the transept vault partial collapse occurred in the Basilica of Saint
Francis in Assisi, Italy, during the Umbria-Marche earthquake (1997), Photo courtesy: [1].

Therefore, it becomes very important to evaluate the existing building in order to guarantee the

safety of people as well as to conserve the architectural heritage. Thus, failure analysis of masonry

becomes important to evaluate strength of the existing building and to provide their strengthening

solutions. Masonry represents a very particular mechanical behaviour, which is principally due to the

lack of homogeneity and standardization. The structural response of such a composite material can

be derived from the complex interaction between its constituents i.e. units, mortar and unit-mortar

joints.

Numerical approach using powerful techniques such as FEM offers cheap and effective solution

for the analysis of masonry in comparison to experimental work, which are expensive and time

consuming. Many such methods are available to study the mechanical behaviour of masonry at

different level of complexity and cost associated with it. There strategies are still in an experimental

phase, hence problem is still open.
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1.2 Review of computational modelling for Masonry struc-

tures

In the last two decades, the masonry research community has been showing a great interest in sophis-

ticated numerical tools. Because it is opposite to tradition of rules-of-thumb and empirical formulae.

Several difficulties arose from adopting existing numerical tools, namely from the mechanics of con-

crete, rock and composite materials [2–6]. Due very particular nature of masonry [7, 8]. All the

aforementioned factors led to the need for developing appropriate and specific tools for the analysis

of masonry structures. Several numerical models have been proposed for the structural analysis of

masonry constructions. These numerical models could be characterized as

• different theoretical backgrounds and levels of detail, such as information required for service-

ability, damage, collapse, failure mechanisms, etc;

• the level of accuracy desired i.e. local or global behaviour of the structure;

• the necessary input data we have (detailed or rough information about material characteris-

tics);

• the costs of numerical simulation (time permissible for the analysis).

Figure 1.3: Macro-elements proposed by Brencich and Lagomarsino [9].

The simplest approach for modelling of the masonry structure is representing the structure as

a combination of structural elements such as truss, beam, plate or shell elements. This is the

case of the simplified methods via macro-elements. Brencich and Lagomarsino [9] developed a two-

dimensional finite macro-elements model for masonry panel. This model can takes into account

the main damage and dissipative mechanism, that has been observed in real and are include by

detail theoretical model, see Figure 1.3). Several approaches based on the concept of the equivalent

frame method (Magenes and Dalla Fontana [10]; Roca et al. [11]) are also being proposed. In which

building walls are idealized as equivalent frames made by pier elements, spandrel beam elements and

3



joint elements, Figure 1.4). All these cited approaches required very less computational effort, since

each macro-element represents a structural element (entire wall or masonry panel). Thus, they have

very less degrees of freedom. Nevertheless, such approaches provide a coarse description of the real

masonry behaviour and are generally used for very huge masonry structure.

Figure 1.4: Application of the simplified method proposed by Roca et al. [11] to the study of the
Gauds Casa Botines.

Masonry is an orthotropic composite material that consists of units and mortar joints. In general,

numerical representation of masonry can focus on the micro-modelling of the individual components

(unit, mortar and unit-mortar interface), or the macro-modelling of masonry as a composite, see

Figure 1.5.

Figure 1.5: Modelling strategies for masonry structures [12]: (a) masonry sample; (b) detailed
micro-modelling; (c) simplified micro-modelling; (d) macro-modelling.
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1.2.1 Micro-modelling

Micro-modelling is the best tool available to analyse and understand the real and accurate behaviour

of masonry. Particularly, when the local response of the structure is important. Such an approach

includes distinct representations of units, mortar and the unit-mortar interface. The unit and mortar

are represented by continuum elements and unit-mortar interface is represented by discontinuous in-

terface elements. Elastic and inelastic properties of both unit and mortar can be taken into account.

The interface represents a potential crack, potential slip and crushing plane. This detailed micro-

modelling procedure leads to very accurate results, but requires an intensive computational effort.

This drawback is partially overcome by making an assumption that mortar and two unit-mortar

interface is lumped into joint between expended units. The units are expended in order to keep

the geometry of structure unchanged. Thus in this simplified micro-models (Lofti and Shing [13];

Tzamtzis [14]; Loureno and Rots [15] ; Gambarotta and Lagomarsino [16, 17]) masonry is considered

as a set of elastic blocks bonded by potential crack, potential slip and crushing plane at the joints,

Figures 1.6 - 1.7.

Figure 1.6: Micro-modelling of masonry shear walls [12]: (a) load-displacement diagrams; (b) de-
formed mesh at peak load; (c) deformed mesh at collapse.

Figure 1.7: Micro-modelling of masonry as per [16, 17].
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The micro-modelling approaches are suitable for small structural elements, with particular in-

terest in strongly heterogeneous states of stress and strain. The primary aim is to closely represent

masonry from the knowledge of the properties of each constituent and the interface. The necessary

experimental data must be obtained from laboratory tests of the constituents. Nevertheless, the high

level of refinement required to obtain accurate results, means an intensive computational effort (i.e.

large number of degrees of freedom in the numerical model), which limits micro-models applicability

to the analysis of small elements (e.g. laboratory specimens) or, at least, to small structural details.

A effort has been made by authors (Dolatshahi KM and Aref AJ [18]) to further simplify the

micro-modelling by replacing the expended units by rigid element, and it has been shown that using

rigid elements along with non-linear line interfaces leads to a reduced number of degrees of freedom,

which consequently reduces the computational time (see Figure 1.8). Hence increase the applicability

of the micro-models.

(a) (b)

Figure 1.8: Micro-modelling of masonry shear walls with rigid elements [18]: (a) load-displacement
graph (Based on the model 2PB); (b) crack path in different stages of loading.

1.2.2 Homogenization

On-going to macro-modelling, continuum parameters must be assessed by experiments on specimens

of sufficiently large size, under homogeneous states of stress or strain [19–21]. As an alternative to

difficult experimental tests, it is possible to assess experimentally the individual components (or

simple wallets and cores, see Benedetti et al. [22]). This obtained data for individual components

are considered as input parameters for the numerical homogenization technique.

The homogenization theory allows the global behaviour (macro-constitutive) to be derived from

the behaviour of its constitutive materials or micro-constitutive laws (Anthoine [24], Luciano and

Sacco [25]; Gambarotta and Lagomarsino [16, 17]); Zucchini and Lourenco [23, 26]). Such method-

ologies requires to identifying a basic cell, which generates an entire panel by it′s regular repetition,

see Figure 1.9. In this way by exploiting periodicity of the masonry average macro-constitutive law

can be obtained from a single basic unit cell. Initially, the homogenization technique had been per-

formed in several successive steps, head joints and bed joints were being introduced successively. In

later work homogenization theory for periodic media is rigorously applied to the basic cell to carry

out a single step homogenization, with adequate boundary conditions and exact geometry. Finite
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Figure 1.9: Basic cell for masonry and objective of homogenisation [23].

element method was used to obtain numerical solution as exact solutions is not possible [24, 27].

Zucchini and Lourenco [28] proposed an improved micro-mechanical homogenization model for

masonry analysis in non-linear domain. The model was coupled with damage and plasticity models,

by suitably chosen deformation mechanisms. Moreover, the model was capable of simulating the

behaviour of a basic periodic cell up to complete degradation and failure, see Figure 1.10.

Figure 1.10: Minimum principal stresses for test: (a) interface model at d = 4.1 mm; (b) homogeni-
sation model coupled with damage and plasticity at d = 3.1 mm [28].

1.2.3 Macro-modelling

In large and practical-oriented analyses, the interaction between units and mortar is negligible with

respect to the global structural behaviour. Thus in these cases macro-modelling can be used, see

Figure 1.5. It does not make any distinction between units and joints and the material is regarded as a

fictitious homogeneous anisotropic continuum. A complete macro-model must account for different

tensile and compressive strengths along the material axes. It should also account for inelastic

behaviour for each material axis. This is clearly a phenomenological approach, and the continuum

parameters must be assessed by experiments or homogenization technique. Macro-modelling is

more practice oriented due to the reduced time and memory requirements. This type of modelling

is most valuable when a compromise between accuracy and efficiency is possible. The macro-models
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also termed continuum mechanics finite element models. It can be relate to plasticity or damage

constitutive laws.

Many research has been conducted on the macro modelling of the masonry through plasticity

constitutive laws. In which non-reversibility is govern by internal variables. An example of the

former approach is the work of Lourenco [12], see Figure 1.11 - 1.12, which proposed a non-linear

constitutive model for in-plane loaded walls based on the plasticity theory (multi surface plasticity).

The author proposed an anisotropic plasticity continuum modelling that includes a Rankine type

yield surface for tension and Hill type yield surface for the compression. Another example is work

of Lofti and Shing [29], the authors used a smeared-crack finite element formulation by adopting the

J2 plasticity model for uncracked masonry and non-linear constitutive models for cracked masonry.

The constitutive models admissible field is bounded by a Von-Mises type yield surface in the com-

pression region and the Rankine type yield surface in the tensile region.

Figure 1.11: Composite yield surface with iso-shear stress lines. Different strength values for tension
and compression along each material axis proposed by [12].

(a) (b)

Figure 1.12: Results of the analysis at a displacement of 12.0 [mm]: (a) deformed mesh; (b) cracks
[12].
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Another approach based on Continuum Damage Mechanics. In which damage is control by

a scalar or vector or tensor damage variables. Many research has been carried out to developed

continuum damage model for masonry. Papa [30] proposed a model based on the introduction of

three damage variables, that describes the behaviour of brittle materials subjected to alternating

tensile and compressive cyclic loads. It was an extension of a damage model originally developed

for isotropic material to the orthotropic case. Berto et al. [31] developed a specific damage model

for orthotropic brittle materials with different elastic and inelastic properties along the two material

directions, see Figure 1.13.

Figure 1.13: Cyclic behavior of plastic-damage model proposed by [31].

The Luca et al. [1, 32] proposed a continuum damage model for orthotropic materials. In

which, two stress transformation tensors are used to related tensile and compressive stress states.

The transformation relate orthotropic space to fictitious isotropic space, by one-to-one mapping

relationships. The constitutive model was adopted in the mapped space, see Figure 1.14. which

makes use of two scalar variables which monitor the local damage under tension and compression

respectively, see Figure 1.15.

Figure 1.14: Comparison of threshold or yield surfaces available in literature and the one proposed
by [32].
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(a) Tensile damage contour (b) Compressive damage contour

Figure 1.15: Damage contour for a smeared damage model [1].

Figure 1.16: Analysis of Kucuk Ayasofya Mosque in Istanbul [33].
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Figure 1.17: Pushover analysis of a masonry arch bridge [34].

Among all the Modelling strategies, the macro-modelling have been extensively used for analysing

the seismic response of complex and big masonry structures, such as arch bridges (Pela et al. [34]),

historical buildings (Mallardo et al. [35]), mosques and cathedrals (Massanas et al. [33]; Martnez

et al. [36]; Murcia [37]), see Figures 1.16 and 1.17. However, micro-modelling gives only coarser

idea of masonry analysis. whereas, in micro-modelling detail of masonry failure mechanism at local

level can be obtained. Thus, in the present work micro modelling is adopted for the detailed failure

analysis of the masonry.

1.3 Objectives

In the present work a micro modelling approach is adopted for the detailed failure analysis of

the masonry. This study focuses on plasticity based non-linear analysis of unreinforced masonry

structures at micro-level. In particular, the study focuses on analysis of two-dimensional modelling

of masonry assumed to have plane stress condition. The main objectives of present study are

• to perform a critical review of masonry and computational modelling of masonry structure;

• to perform a computational homogenization of masonry;

• to propose and develop a constitutive micro-model for unreinforced masonry which includes

softening behaviour and incorporates all predominant failure mechanisms;

• to implement the proposed model in commercial software ABAQUS using user defined user

subroutine UMAT.

• to perform a numerical study to validate the model by comparing the predicted behaviour

with the behaviour observed in experiments on different types of masonry.
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It is further noted that the model proposed in this study have a much broader applicability

than masonry structures. It can be can be used in the micro modelling of the adhesives, joints

in rock and stone works etc. The proposed model is applicable to contact in general, all types of

interface behaviour where bonding, cohesion and friction between constituents comes form the basic

mechanical behaviour.

1.4 Outline of the thesis

This thesis consists of six Chapters

Chapter 1 provides an introduction and the modelling strategies for masonry structures available

in literature. Finally, it states the aim and objectives of the research.

Chapter 2 characterizes masonry behaviour. In particular, it addresses the need of a thorough

material description in order to develop accurate numerical models.

Chapter 3 presents simple homogenization techniques to derive the global anisotropic behaviour

of the masonry. First, the theory of homogenization is presented in a very generic way [3D], by using

basic mechanics and mathematics. Then two basic unit cell of the half brick thick masonry wall are

considered for numerical application of the theory and compression has been done for the two unit

cell. As close form solution is not possible thus FE analysis is done to get the solution.

Chapter 4 introduces an interface failure criterion for the micro-modelling of masonry. A single

surface plasticity model is proposed, which is a simple extension of the Mohr-Coulomb criteria with

cut-off in tension and cap-off in compression. The inelastic behaviour includes tensile strength

softening, cohesion softening, compressive strength hardening and softening, friction softening or

hardening, dilatancy softening.

Chapter 5 validates the proposed model in Chapter 4 by means of the FE analysis of an engi-

neering practice case study. Comparison between the calculated numerical results and experimental

results have been made in the literature.

Chapter 6 presents an extended summary and the final conclusions which can be derived from

this study. Suggestions for future work are also pointed out here.
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Chapter 2

Masonry: Material Description

2.1 Introduction

Masonry is the building of structures from individual units laid in and bound together by mortar.

The term masonry can also refer to the units themselves. The common materials of masonry

construction are brick, stone, marble, granite, travertine, limestone, cast stone, concrete block, glass

block, stucco, and tile. Generally, masonry is highly durable form of construction. However, the

materials used, the quality of the mortar and workmanship, and the pattern in which the units are

assembled can significantly affect the behaviour and durability of the overall masonry construction.

Figure 2.1: Variability of masonry: brick masonry [1].

Masonry is a heterogeneous anisotropic continuum. In particular, the inhomogeneity is due to

the different mechanical properties of its constituents. Anisotropy is due to the different masonry

patterns, that can be obtained by variation of geometry, nature and arrangement of mortar and brick.

Some of the different possible combination of masonry are shown in Figure 2.1. The behaviour of

masonry is very complex and highly non-linear due to the behaviour of its constituents, which
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are quasi-brittle in nature. Thus for micro-modelling, a material description must be obtained

from experimental tests on the masonry constituents. For macro-modelling, a small tests must be

performed on masonry specimens of sufficient size under homogeneous states of stress or strain, to

obtain average stress-strain relationship (Importance is given to deformation controlled test, because

it is capable of capturing the entire load-displacement diagram). As a alternative to experiments,

these average stress-strain relationships can be obtained from the homogenization. The complete

description of the material is not pursued in this study. The readers are referred to Drysdale et al.

[7] and Hendry (1990) [8] for more description.

The property of masonry depends up on the large no of factor, such as material properties of

the units and mortar; arrangement of units; anisotropy of units; dimension of units; joint thickness;

quality of workmanship; degree of curing; environment and age etc. Because of these large number

of variable, the masonry research community showing the interest in the sophisticated numerical

models from last two decades. Moreover, numerical models required the reliable experimental data.

The experimental data are required for test parameters and for the comparisons and conclusions.

It is a usual practice to report and measure only strength values. In particular, masonry shows

the softening behaviour after peak value. Thus it is very important to retrieve the information of

post-peak or softening regime. But very rare information was available in the literature about the

softening regime of the masonry and its constituents. Thus, in the following chapter the aspects of

softening behaviour is explain before the brief description of masonry and its constituent is given.

2.2 Softening behaviour aspects

Masonry shows the softening behaviour in the post peak region. It is typical due to quasi-brittle in

nature of its constituent i.e. brick and mortar. Softening defined as a gradual decrease of mechanical

resistance under a continuous increase of deformation. It happened due to the present of progressive

internal micro crack. Such mechanical behaviour is commonly attributed to the heterogeneity of the

material, due to the presence of different phases and material defects, like flaws and voids. Even prior

to loading the structure, mortar contains microcracks due to the shrinkage during curing and the

presence of the aggregate. The clay brick contains inclusions and microcracks due to the shrinkage

during the burning process. Initially, these microcracks are stable which means that they grow only

when the load is increased. During the initial loading the cracks remains stable and number of new

crack formation is very less. But, around peak load an acceleration of crack formation takes place

and the formation of macrocracks starts. The macrocracks are unstable, which means that the load

has to decrease to avoid an uncontrolled growth. In a deformation controlled test the macrocracks

growth results in softening and localization of cracking in a small zone while the rest of the specimen

unloads. It is assumed that the inelastic behaviour can be described by the integral of the σ − δ

diagram. These crack can opened in different mode i.e. fracture energy mode I for tensile loading,

fracture energy mode II for shear loading and compressive fracture energy.

2.2.1 Tensile strength softening

The phenomenon of tensile failure has been well identified, see Figure 2.2. The inelastic behaviour

of tensile strength degradation is described by the integral of the σ − δ diagram. This quantity is
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the tensile fracture energy (Gf ), and it is defined as the amount of energy to create a unitary area

of a crack opening.

σ

σ

σ

δ

ft

Gf

Figure 2.2: Behaviour of quasi-brittle material under uniaxial tensile loading and definition of tensile
fracture energy (ft denotes tensile strength) [12].

2.2.2 Compressive strength softening

In the compressive failure, softening behaviour is highly dependent upon the boundary conditions

in the experiments and the size of the specimen. Experimental concrete data provided by Vonk

[38] indicated that the behaviour in uniaxial compression is governed by both local and continuum

fracturing processes. Similar to tension, the inelastic behaviour of compression strength is described

by the integral of the σ − δ diagram, see Figure 2.2. Now, this quantity is the compressive fracture

energy (Gc). It has the same notion as the tensile fracture energy (Gf ), because the underlying

failure mechanisms are identical, viz. continuous crack growth at micro-level.

σ

σ

σ

δ

fc

Gc

Figure 2.3: Behaviour of quasi-brittle material under uniaxial compressive loading and definition of
compressive fracture energy (fc denotes compressive strength) [12].
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2.2.3 Shear strength softening

In the shear failure, a softening behaviour is observed as degradation of the cohesion in Coulomb

friction models. it represents the mode II failure mechanism, that consists of slip of the unit-mortar

interface under shear loading. Again, it is assumed that the inelastic behaviour is described by the

mode II fracture energy GIIf , defined by the integral of the τ − δ diagram in the absence of normal

confining load, see Figure 2.4.

τ

τ

τ

δ

C

GIIf
σ

σ

σ = 0

σ > 0

Figure 2.4: Behaviour of masonry under shear and definition of mode II fracture energy (C denotes
cohesion) [12].

2.3 Property of masonry constituents

The property of masonry dependants up on the property of its constituents. Thus, it is important to

know the property of brick, mortar and unit-mortar interface for studying the masonry. Generally,

compression strength test are used for indication the quality of the material.

2.3.1 Masonry units

For the masonry units, a standard tests with solid platens have being done for compressive strength

as per IS 3495 part 1. The test results in an artificial compressive strength due to the restraint effect

in its lateral direction. The effect can be minimizes by normalizing the compressive strength, by

multiplying with appropriate shape/size factor. No experiments in the uni-axial post-peak behaviour

of compressed bricks and blocks exists, therefore, no information about the compressive fracture

energy Gc can be obtain.

Even though, It is difficult to relate the tensile strength of the masonry unit to its compressive

strength due to the different shapes, materials, manufacture processes and volume of perforations.

Many researcher conducted extensive testing to obtained a ratio between the tensile and compressive

strength. Schubert [39] find ratio ranges from 0.03 to 0.10 for clay, calcium-silicate and concrete

units. For the fracture energy Gf of solid clay and calcium-silicate units, both in the longitudinal
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and normal directions. Van der Pluijm [40] found fracture energy values ranging from 0.06 to 0.13

[Nmm/mm2] for tensile strength values ranging from 1.5 to 3.5 [N/mm2].

2.3.2 Mortar

The compressive strength of is obtained from standard tests carried out on the cube of 75 [mm] as

per IS 4031 part-7 1998. Moreover, investigations in mortar disks extracted from the masonry joints

has being carried out to fully characterize the mortar behaviour, Bierwirth et al. (1993), Schubert

and Hoffman (1994) and Stckl et al.(1994). Nevertheless, there is still a lack of knowledge about the

complete mortar uni axial behaviour in tension and compression.

2.3.3 Property of unit-mortar interfaces

The bond between the unit and mortar is most critical part of the masonry and governs most non-

linear response of the joints. Moreover, it is the weakest link in masonry assemblages. Predominately

two failure phenomena can be considered for unit-mortar interface, one associated with tensile failure

(mode I) and the other associated with shear failure (mode II).

Mode I failure

Van der Pluijm [40, 41] carried out deformation controlled tests in series. The test was conducted

on small masonry specimens made up of solid clay and calcium-silicate units. These tests resulted

in an exponential tension softening curve with a mode I fracture energy GIf , see Figure 2.5(a).

Figure 2.5: Tensile bond behaviour of masonry [40, 41]: (a) test specimen; (b) typical experimental
stress-crack displacement results for solid clay brick masonry.

During the first series in 1990, it becomes clear by close observation of the cracked specimens,

that the bond area was smaller than the cross sectional area of the specimens. This net bond surface

area seems to concentrate in inner part of the specimen. The reduction in bond area is a combined

result from shrinkage of the mortar and the process of laying units in the mortar bed joint. In many

cases the net bond surfaces area was restricted to central part of the specimen. Therefore, it is
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assumed that the reduction of the bond surfaces is caused by the edges of the specimen. With this

assumption, it is possible to estimate the fracture energy. Hence, the net bond surface area must be

corrected according to the number of edges, see Figure 2.6.

Figure 2.6: Tensile bond surface [40] typical net bond surface area for tensile specimens of solid clay
units.

Mode II failure

For capturing the shear response of masonry joints experimentally. It is very important to set-up

a uniform state of stress in the joints. But it very is difficult, because the equilibrium constraints

introduce non-uniform normal stresses in the joints. For the detailed study readers are referred to

Atkinson et al. [42] and Van der Pluijm [41].

Figure 2.7: Typical shear bond behaviour of the joints for solid clay units, Pluijm [41]: (a) stress-
displacement diagram for different normal stress levels; (b) mode II fracture energy GIIf as a function
of the normal stress level.

Pluijm [41] presents the most complete characterization of the masonry shear behaviour for solid

clay and calcium-silicate units. This involves a direct shear test under different levels of uniform state

of stress. This test did not allow for application of tensile stresses and low confining stresses. Because

it results in extremely brittle failure, which makes the test set-up potential installable. Where as, for

higher confining stresses shearing of the unit-mortar interface is accompanied by diagonal cracking

in the units.
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Figure 2.8: Definition of friction and dilatancy angles [12]: (a) Coulomb friction law, with initial
and residual friction angle; (b) dilatancy angle as the uplift of neighbouring units upon shearing.

These experimental results yield an exponential shear softening with a residual dry friction, see

Figure 2.7(a). The area defined by the stress-displacement diagram and the residual dry friction

shear level is called mode II fracture energy GIIf . The value for the fracture energy depends also

on the level of the confining stress, see Figure 2.7(b). Evaluation of the net bond surface of the

specimens is no longer possible in this case.

Moreover, it has been found that behaviour of masonry is no longer associative i.e. δnn 6= δtt tanφ

( δnn and δtt is normal and tangential relative displacement). Thus an additional material parameters

can be obtained from such an experiment i.e. dilatancy angle, see Figure 2.8. The dilatancy angle ψ

measures the uplift of one unit over the other upon shearing. It depends on the level of the confining

stress, see Figure 2.9, i.e. for high confining pressures ψ decreases to zero. Further more, dilatancy

also decreases with increasing in shear displacement, due to the smoothing of the sheared surfaces.
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Figure 2.9: Masonry joint behaviour: relation between normal and tangential relative displacement
for different confining stress.
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2.4 Property of masonry as a composite material

The masonry is composite of brick and mortar, thus it is also important to study the masonry

behaviour as a composite. In this section uniaxial and biaxial behaviour of masonry as a composite

is presented.

2.4.1 Uniaxial behaviour

The uniaxial tests can be applied in two direction to the masonry i.e. one normal to the bed joints

and another parallel to the bed joints. The uniaxial tests in the direction normal to the bed joints

have received more attention from the masonry community then uniaxial compression test in the

direction parallel to the bed joints. This is because of the application and use of masonry as a

vertical load bearing structure. However, masonry is an anisotropic material. Thus the resistance to

applied loads parallel or perpendicular to the bed joint can have a decisive effect on the load bearing

capacity of masonry.

Uniaxial compression behaviour

Hilsdorf [43] presented that the difference in elastic properties of the unit and mortar is the main

cause of failure of masonry. In masonry, units are stiffer than mortar and this difference is more

pronounced in old masonry.

(a) (b)

Figure 2.10: Uniaxial behavior of masonry upon loading normal to the bed joints: (a) stacked bond
prism; (b) typical experimental stress-displacement diagrams [44].

A test on the stacked bond prism of masonry is frequently used to obtain the uniaxial compressive

strength, see Figure 2.10. But, still it is not clear that what are the consequences in the masonry

strength of using this type of specimens (see Mann and Betzler [45]). The Uniaxial compression in

direction perpendicular to bed joints in masonry leads to a state of triaxial compression in the mortar

and of compression/biaxial tension in the unit, see Figure 2.11. Mann and Betzler [45] observed

that, initially vertical cracks appear in the units along the middle line of the specimen, and upon
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increasing deformation additional cracks appear. Normally vertical cracks at the small side of the

specimen lead to failure by splitting of the prism.

(a) (b)

Figure 2.11: Local state of stress in masonry prisms under uniaxial vertical compression [1]: (a)
brick; (b) mortar.

The strength and the failure mode of the masonry changes when different inclinations of com-

pression load with respect to bed joints are considered ( see [19, 20, 46]). This is because of the

anisotropic nature of the material. If loading direction is parallel or perpendicular to bed joints,

splitting of the bed joints or head joint in tension occurs, respectively. For intermediate inclinations

mixed mechanism was found, which are accomplished by the step diagonal failure of the masonry,

see Figure 2.12.

Figure 2.12: Modes of failure of solid clay units masonry under uniaxial compression [19, 20].

Uniaxial tension behaviour

For tensile loading perpendicular to the bed joints, failure is generally caused by failure of unit-

mortar bed joint. As a rough approximation, the masonry tensile strength can be equated to the

tensile strength of the unit or the joint. In masonry with low strength units and greater tensile bond

(or unit-mortar bed joint) strength, for example high-strength mortar and units with numerous small

perforations, which produce a dowel effect. The failure may occur as a result of stresses exceeding

the unit tensile strength. As a rough approximation, in this case the tensile strength of masonry is

equated to the tensile strength of the unit.
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Figure 2.13: Typical experimental stress-displacement diagrams for tension in the direction parallel
to the bed joints [47]: (a) failure occurs with a stepped crack through head and bed joints; (b) failure
occurs vertically through head joints and units.

For tensile loading parallel to the bed joints situation is diffrent. Thus to find out the tensile

strength of masonry, a complete test program was set-up by Backes [47]. The author tested masonry

wallets under direct tension. The author found that tension failure was affected by the type of the

mortar and the masonry units. For stronger mortar and weaker masonry units, the tension cracks

passed along the head mortar joints, and through the centre of the bricks at the intervening courses.

For weaker mortar joints and stronger masonry units, the tension crack passed along the head joints

of the masonry units and the length of bed joints between staggered head joints, as shown in Figure

2.13.

Figure 2.14: Modes of failure of solid clay units masonry under uniaxial tension [19].

The tensile strength and the failure mode change when different inclinations of load with respect

to bed joints are considered. Figure 2.14 shows different modes of failure observed by Page [19] on

solid clay units masonry walls subjected to uniaxial tension. For intermediate inclinations for the

tensile loading, the failure is accomplished by the the sliding and split of the joints diagonally.
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2.4.2 Bi-axial behaviour

The masonry is anisotropic material. Thus constitutive behaviour of masonry under biaxial stress

states can not be completely described from the constitutive behaviour under uniaxial loading con-

ditions. Moreover, The biaxial strength envelope cannot be described in terms of principal stresses.

Therefore, the biaxial strength envelope of masonry must be either described in terms of the full

stress vector in a fixed set of material axes or, in terms of principal stresses and the rotation angle

θ between the principal stresses and the material axes.

Figure 2.15: Biaxial strength of solid clay units masonry [19, 20].

Page [19, 20] conducted the most complete experiments on the masonry subjected to different

proportional biaxial loading, see Figure 2.15. The tests were carried out with half scale solid clay

units. The failure mode and strength of the masonry is influences by both the orientation of the

principal stresses with regard to the material axes and the principal stress ratio. Noted that the

strength envelope shown in Figure 2.15 have a limited applicability for other types of masonry.

Different strength envelopes and different failure modes are likely to be found for different materials,

unit shapes and geometry. Comprehensive study to characterize the biaxial strength of different

masonry types were carried using full scale specimens, see Ganz and Thrlimann [48] for hollow

clay units masonry, Guggisberg and Thrlimann [49] for clay and calcium-silicate units masonry and

Lurati et al. [50] for concrete units masonry.
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From the prior knowledge, failure in uniaxial tension occurred by cracking and sliding of the

head and bed joints. The influence of the lateral tensile stress on the tensile strength is not known

because no experimental results are available. Whereas in the tension-compression loading, lateral

compressive stress decreases the tensile strength. The minimum value is achieved when tensile

loading direction is perpendicular to the bed joints. Moreover, the failure of the masonry occurs by

cracking and sliding of the joints or in a combined mechanism involving both units and joints, see

Figure 2.16.

Figure 2.16: Modes of failure of solid clay units masonry under biaxial tension-compression [20].

In biaxial compression, typically failure occurs by splitting of the specimen at mid-thickness and

in a plane parallel to its free surface, regardless of the orientation of the principal stresses, see Figure

2.17. The orientation plays a significant role, for principal stress ratios less than and grater than 1

failure occurred in a combined mechanism. It involves both joint failure and lateral splitting. The

increase of compressive strength under biaxial compression can be explained by friction in the joints

and internal friction in the units and mortar.

Figure 2.17: Mode of failure of solid clay units masonry under biaxial compression [19].
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2.5 Conclusion

Masonry is a heterogeneous anisotropic material that consists of units and mortar. Both the masonry

constituents are quasi brittle in nature. Their failure in tension and compression loading is essentially

the same and i.e. due to growth of micro level crack in the material. During failure the inelastic

strains result from a dissipation of fracture energy. First, due sliding or mode II which results in a

dry friction process between the components once softening is completed. Second, the split of the

head joint and the brick in mode I. Third, the crushing of mortar or brick take place, which release

the compressive fracture energy. If the micro-modelling strategy is used for masonry, then all these

failure mechanisms should be incorporated in the failure model.

On the other hand if the macro-modelling strategy is used, joints are smeared out in an anisotropic

homogeneous continuum. Therefore, the interaction between the masonry components cannot be

incorporated in these types of models. Instead, a relation between average stresses and strains should

be established through experiments or homogenization.
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Chapter 3

Homogenization of masonry

Masonry is heterogeneous material. Thus, for the macro-modelling of masonry continuum param-

eters must be assessed by experiments on specimens of sufficiently large size, under homogeneous

states of stress or strain. As an alternative to difficult experimental tests. Homogenization tech-

nique can be used to determine global behaviour of the masonry. Experimental data of individual

components is considered as input for the numerical homogenization technique. Moreover, masonry

is periodic material, thus we can exploit its periodicity to simplify homogenization problem.

In this chapter, The homogenization theory for periodic media is implemented in very generic

way to derive the anisotropic global behaviour of the masonry. The rigorous application of the

homogenization theory in one step and through a full three dimensional behaviour is done. Two

basic unit cell of the half brick thick masonry wall are considered for numerical application of

the theory and compression has been done for the two unit cell. Moreover, a full examination

for different stiffness ratio between mortar and unit has been done to assess the performance for

inelastic behaviour. Where the tangent stiffness of one component or the tangent stiffness of the

two components tends to zero with increasing inelastic behaviour.

3.1 Overview

The present study is on the composite behaviour of masonry in terms of determining averaged micro-

scopic stress and strains so that the material can be assumed homogeneous. Pande et al. [51], Maier

et al. [52] and Pietruszczak and Niu [53] introduced the homogenization techniques in an approxi-

mate manner. In most of these work the homogenization procedure has been performed in several

steps, head joints and bed joints being introduced successively. In this case masonry is assumed to

be a layered material, which simplifies the problem significantly but such a methodology introduces

several errors. The result generally depends on the order of the successive steps (Geymonat et al.

[54]). The geometrical arrangement is not fully taken into account i.e. different bond patterns may

lead to exactly the same result. For example running bond and stack bond result in same results.

The thickness of the masonry was not taken in to account, masonry is considered infinitely thin two

dimension media under plain stress assumption (Maier et al. [52]).

Anthoine [24], Urbanski et al. [27] applied the homogenization theory for periodic media rigor-

ously to the basic cell to carry out a single step homogenization, with adequate boundary conditions
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and exact geometry. Finite element method was used to obtain numerical solution as exact solutions

is not possible. The application of the homogenization theory for the non-linear behaviour of the

complex masonry basic cell implies solving the problem for all possible macroscopic loading histories,

since the superposition principle does not apply any more. Thus, for the complete determination of

the homogenized constitutive law would require an infinite number of computations.

Many studies has been conducted on the homogenization of the masonry in recent years, M

Mistler et al. [55] focuses on the generalization of the homogenization procedure for out-of-plane

behaviour of masonry, in such a way that the in-plane and out-of-plane characteristics of the ho-

mogeneous equivalent plate can be derived in one step. Zucchini and Lourenco [28] developed an

improved micro-mechanical model for masonry homogenisation for the non-linear domain. The au-

thors coupled the model with damage and plasticity models, that can simulate the behaviour of

a basic periodic cell up to complete degradation and failure. IM Gitman et al. [56] investigated

the representative volume element for different stages of the material response, including pre- and

post-peak loading regimes. CK Yan [57] conducted a study on a unified modelling approach for ho-

mogenization (forward) and de-homogenization (backward), applicable to unidirectional composite

systems. Emphasis is placed on the uniqueness between the forward and the backward modelling

processes. Elio Sacco [58] presented a non-linear homogenization procedure for periodic masonry. In

this linear elastic constitutive relationship is considered for the blocks, while a new special non-linear

constitutive law is proposed for the mortar joints. The Elio Sacco work is extended by Daniela Ad-

dessi et al. [59] to cosserat model for periodic masonry, which accounts for the absolute size of the

constituents, is derived by a rational homogenization procedure based on the transformation field

analysis.

3.2 Homogenization theory for periodic media

The theory of homogenization allows global behaviour of the periodic media to be derived from the

behaviour of its constituents. In this section theory of homogenization is presented in a very generic

way for the [3D] by using basic mechanics and mathematics. Since theory will be applied to the

masonry, a half brick thick wall is considered for the analysis.

3.2.1 Description of periodicity

Consider a portion Ω of a masonry wall, see in Figure 3.1. It is a two dimensional periodic composite

continuum, in which brick and mortar are arranged in the running bond. This periodicity can be

characterized by a frame of reference (α1, α2, α3). Where α1, α2 and α3 are independent vectors of

a basic cell Ω̂, such that property of masonry can be expressed in terms of the these independent

variables. The basic cell is considered such that the masonry domain can be generated by repeating

the cells in e1 and e2 direction. Since finite element calculations are to be performed on the cell, it

is preferred to choose cell with least volume and with symmetries. The choice of the cell depends on

the arrangement of the brick and mortar for the masonry. For the half brick thick wall, a simplest

basic cell is made up of one brick surrounded by half mortar joint. The masonry property in periodic

direction can be express as α1β1 + α2β2, where α1, α2 having the zero component of the e3 and α3

have only e3 component i.e. thickness of basic cell Ω̂, β1 and β2 are integers. The reference frame

for the half brick wall may be written as
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α1 = 2le1 (3.1)

α2 = de1 + 2he2 (3.2)

α2 = 2we3 (3.3)

Where 2l is equal to the length of the brick plus the thickness of the head joint, 2w is thickness

of masonry, 2h is equal to the height of the brick plus the thickness of the bed joint and d is the

overlapping. d = 0 gives stack bond, d = 1 gives running bond. For the more complex geometry,

masonry would require larger basic cell, i.e. cell involving more than one brick.

In the boundary surface of the three-dimensional basic cell. Two different regions may be sepa-

rated, Figure 3.1, ∂Ω̂i which is internal to the wall (interfaces with adjacent cells) and ∂Ω̂e which

is external (lateral faces). ∂Ω̂i can be divided into three pairs of identical sides (due to periodicity

in e1 and e2) corresponding to each other through a translation along α1, α2 or α1 − α2 (opposite

sides). Where two pairs (only α1, α2) are of identical sides in the case of stack bond pattern. As

there is no periodicity in e3 direction, thus the two lateral faces of ∂Ω̂e are just opposite sides of the

cell.

α3

α1 − α2

α2

α3
d

∂Ω̂e

∂Ω̂i

e3

e2

e1

∂Ω̂

Figure 3.1: Half brick thick masonry wall in running bond with frame of reference (left) and corre-
sponding three dimension basic cell (right).

Now, suppose the portion Ω̂ of masonry is subjected to a globally (macroscopically) homogeneous

stress state, see Figure 3.2. A stress state is said to be globally or macroscopically homogeneous over

a domain Ω̂ if all basic cells within Ω̂ undergo the same loading conditions. This can be achieved

by apply biaxial principal stress state to the domain. A cell lying nears the boundary ∂Ω̂ of the

specimen is not subjected to the same loading as one lying in the centre. However, on account

of the Saint-Venant principle, all cells lying far enough from the boundary are subjected to the

same loading conditions and therefore deform in the same way. In particular, two joined cells must
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still fit together in their common deformed state. Means that, condition (i) stress compatibility

and condition (ii) strain compatibility must be satisfy on the internal boundary ∂Ω̂i. The external

boundary ∂Ω̂e remain stress free.

If we are passing from a cell to the next cell, which is identical to first one. This means that,

passing from a side to the opposite one in the same cell Ω̂. Then the condition (i) becomes stress

vectors σ.n are opposite on opposite sides of ∂Ω̂i because external normal n are also opposite. Such

a stress field σ is said to be periodic on ∂Ω̂i, whereas the external normal n and the stress vector

σ.n are said to be anti-periodic on ∂Ω̂i. For the condition (ii), it is necessary that opposite sides

can be superimposed in their deformed states without separation or overlapping. The displacement

fields on two opposite sides must be a rigid displacement. Any strain periodic displacement field u

can be written in the following way

ui(x1, x2, x3) = δijEjkδklxl + upi (x1, x2, x3) (3.4)

Ω

Σ1

Σ2Σ1

Σ2

Σ12

Σ11

Σ22

Σ21

Σ12

Σ11

Σ21

Σ22

Ω Σ2

Σ1

Σ2

Σ1

Figure 3.2: Half brick thick masonry wall subjected to macroscopically homogeneous stress state Σ.

Where E is a symmetric second-order tensor for the strain; δij is the Kronecker delta; upi is

a periodic displacement field and x1, x2, x3 are the spatial parameters. In particular, the anti-

symmetric part of E corresponds to a rigid rotation of the cell. Only the symmetric part of E

is considered (rigid displacements are disregarded) with the intuitive definition of the average of a

quantity on the cell. The average of strain can be written as

ǭij =
1

|Ω̂|

∫

ǫij(u) dΩ̂ (3.5)

Where |Ω̂| stands for the volume of the basic cell. Similarly, for consistency of the equation- with

the stress. The average of the stress on the cell should be given by

σ̄ij =
1

|Ω̂|

∫

σij dΩ̂ (3.6)
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3.2.2 Homogenization

Let us consider the problem of a masonry specimen subjected to a macroscopically homogeneous

stress stateΣ.The above conditions (conditions (i) and (ii) in the previous section) make it possible to

study the problem within a single cell (unit cell) of the domain rather than on the whole domain. In

order to find out σ and u everywhere in a cell, equilibrium conditions and constitutive relationships

must be added, so that the problem can be solved. The required equation can be written as

divσ = 0 on Ω̂ (No body force) (3.7)

σ = F (ǫ(u)) (complete constitutive law) (3.8)

σ.n = 0 on ∂Ω̂e (3.9)

σ periodic on ∂Ω̂i (σ.n anti periodic on ∂Ω̂i) (3.10)

u− ǭ.x periodic on ∂Ω̂i (3.11)

σ̄ = Σ where Σ is given, for stress contralled laoding (3.12)

Where the constitutive law F (ǫ(u)) is a periodic function of the spatial variable x. Since it de-

scribes the behaviour of the different materials in the composite cell. A problem similar to Equation

3.12 is obtained when replacing the stress controlled loading by a strain controlled loading

ǭ = E where E is given, for displacement contralled laoding (3.13)

In both cases, the resolution of Equations 3.12 and 3.13 is sometimes termed localization because

the local (microscopic) fields σ and ǫ are determined from the global (macroscopic) quantity Σ or

E. The average procedure can be written in the more rigorous form as

σ : ǫ(u) = σ̄ : ǭ(u) = Σ : E (3.14)

Where [ ¯ ] defines the average of the quantity over the unit cell. Ones we get σ and ǫ, then

the missing macroscopic quantity Σ or E can be determine through the average relation (Equation

3.14). Homogenization theory can only be applied when the load are homogeneous in nature or the

variation of the load from a unit cell to another is very small. In practice, this is satisfied if the size

of the unit cell is very small as compared to the structure and thus two adjacent cells have almost

the same position there for undergo almost the same loading.

If the both the constituent of the masonry wall are considered to be linear elastic and perfectly

bonded then the relations can be written as

For stress controlled loading

divσ = 0 on Ω̂ (No body force) (3.15)
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ǫ(u) = S : σ (3.16)

σ.n = 0 on ∂Ω̂e (3.17)

σ periodic on ∂Ω̂i (σ.n anti periodic on ∂Ω̂i) (3.18)

u− S : σ.x periodic on ∂Ω̂i (3.19)

For displacement controlled loading

divσ = 0 on Ω̂ (No body force) (3.20)

σ = C : ǫ(u) (3.21)

σ.n = 0 on ∂Ω̂e (3.22)

σ periodic on ∂Ω̂i (σ.n anti periodic on ∂Ω̂i) (3.23)

u−E.x periodic on ∂Ω̂i (3.24)

Where S fourth order compliance tensor and C fourth order stiffness tensor.

3.3 Finite element Analysis for determining the homogenizes

properties

To illustrate the aforementioned method of homogenization, the two unit cell of masonry wall are

considered, to determine anisotropic characteristics of the masonry. As close form solution is not

possible thus, the homogenization is done through the finite element analyses using commercial

software package. In particular, the two basic unit cell are taken from a single leaf masonry wall in

running bond, as shown in the Figure 3.3. The assigned dimensions to both the unit cell is such that

volume fraction of the mortar and brick remains same. Brick and mortar are assumed to be isotropic:

the Young′s moduli and Poisson′s ratios are 2X105 MPa and 0.15 for the brick, 2X104 MPa and

0.15 for the mortar respectively. The brick dimensions are 210 X 50 X 100 mm3. Head and bed

mortar joints is 10 mm thick.

In the present work, the study of elastic response of the model is done, for a generic loading

condition as linear combination of the elastic responses for six elementary loading conditions. Both

stress-prescribed and displacement-prescribed analyses have been carried out in the present work.

The finite element model which has been used in numerical analysis is given in Figure 3.4. 8 nodded

linear brick element with reduced integration is used for the simulation. The structured mesh was
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Unit cell 1

Unit cell 2

Masonry

Figure 3.3: Chosen micro mechanical model.

obtained by taking into account a uniform element size of 0.5 cm. Thus the unit cell 1 and unit

cell 2 have 5280 and 21120 elements respectively.

(a) Unit cell 1 (b) Unit cell 2

Figure 3.4: Finite element model
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3.3.1 Stress prescribed analysis

In the stress-prescribed analysis, the overall compliance tensor is to be obtained by means of six

numerical analysis i.e. XX-compression, YY-compression, ZZ-compression, XY-shear, XZ-shear, and

YZ-shear. The boundary conditions for all the six numerical analysis are applied as per the Section

3.2.2 and are listed in Table 3.1. An anisotropic mechanical behaviour is considered, thus stress

strain relationship can be written in the following form
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(3.25)

Where the superscript [ ¯ ] means that the above written quantities refer to the average values

within the considered unit cell.

Compliance tensor is obtain by applying the six loading conditions one at a time, only a single

column of the compliance tensor is obtain by applying one loading condition out of the six. By

applying the average theorem to the unit cell and using the Equations 3.5-3.6, the following relation

are obtained for the compliance tensor and the average stress value in the unit cell

S̄ij =
ǭi
σ̄j

(3.26)

σ̄j =
1

|Ω̂|

∫

σj dΩ̂ = Σ (3.27)

Where i, j =1, 2, 3, 4, 5, 6; and |Ω̂| stands for the volume of the unit cell and is the generic

stress-prescribed component. The average value of strain within the unit cell is obtained as

ǭi =
∑ ǫ

(e)
i

n
(3.28)

Where n = number of elements in the uniformly discretized unit cell; ǫ
(e)
i = the average value of

ith strain component for generic element. The average value of stress within the unit cell is obtained

as

σ̄j =
∑ σ

(e)
j

n
(3.29)

Where σ
(e)
j = the average value of jth strain component for generic element. Hence, all six stress

states are applied one by one to both the unit cell and the single columns of compliance tensor is

obtained by using the Equation 3.26 and the corresponding coefficient of compliance tensor are given

below
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Table 3.1: Boundary conditions - stress prescribed

XX-direction YY-direction ZZ-direction
Side face (Left) Side face (Right) Top Face Bottom face Front faces Back faces

Normal Stress Pressure Pressure
in = = All d.o.f. free All d.o.f. free All d.o.f. free All d.o.f. free

XX-direction constant -constant
Normal Stress Pressure Pressure

in All d.o.f. free All d.o.f. free = = All d.o.f. free All d.o.f. free
YY-direction constant -constant
Normal Stress Pressure Pressure

in All d.o.f. free All d.o.f. free All d.o.f. free All d.o.f. free = =
ZZ-direction constant -constant
Shear Stress Surface traction Surface traction

in Z-SYMM Z-SYMM = = Z-SYMM Z-SYMM
XY-Plane constant -constant

Shear Stress Surface traction Surface traction
in = = Y-SYMM Y-SYMM Y-SYMM Y-SYMM

XY-Plane constant -constant
Shear Stress Surface traction Surface traction

in X-SYMM X-SYMM X-SYMM X-SYMM = =
XY-Plane constant -constant

3
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3.3.2 Displacement prescribed analysis

In the displacement-prescribed analysis, the aim is to find out stiffness tensor by means of six

numerical analysis i.e. XX-compression, YY-compression, ZZ-compression, XY-shear, XZ-shear, and

YZ-shear. The boundary conditions for the six numerical analysis are applied as per the Section

3.2.2 and are listed in Table 3.2. An anisotropic mechanical behaviour is considered, thus stress

strain relationship can be written in the following form
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ǭ5

ǭ6
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Where the superscript [ ¯ ] means that the above written quantities refer to the average values

within the considered unit cell.

Stiffness tensor is obtain by applying the six loading conditions one at a time, only a single column

of the stiffness tensor is obtain by applying one loading condition out of the six. By applying the

average theorem to the unit cell and using the Equations 3.5-3.6, the following relation are obtained

for the average strain value in the unit cell

ǭi =
1

|Ω̂|

∫

ǫi(u) dΩ̂ = E (3.33)
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Table 3.2: Boundary conditions - displacement prescribed
XX-direction YY-direction ZZ-direction

Side face (Left) Side face (Right) Top Face Bottom face Front faces Back faces
Normal Displacement Displacement

in X-SYMM = Y-SYMM All d.o.f. free All d.o.f. free All d.o.f. free
XX-direction -constant

Normal Displacement Displacement
in X-SYMM X-SYMM Y-SYMM = All d.o.f. free All d.o.f. free

YY-direction -constant
Normal Displacement Displacement

in X-SYMM X-SYMM Y-SYMM Y-SYMM All d.o.f. free =
ZZ-direction -constant

Shear Displacement Displacement Displacement
in Z-SYMM Z-SYMM = = Z-SYMM Z-SYMM

XY-Plane constant -constant
Shear Displacement Displacement Displacement

in = = Y-SYMM Y-SYMM Y-SYMM Y-SYMM
XY-Plane constant -constant

Shear Displacement Displacement Displacement
in X-SYMM X-SYMM X-SYMM X-SYMM = =

XY-Plane constant -constant

3
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Where i, j =1, 2, 3, 4, 5, 6; and |Ω̂| stands for the volume of the unit cell and E is the generic

strain component, such that ǭi.x = u0i , Where u0i is a prescribed displacement on the boundary of

the unit cell. The average theorem yields the following relation to obtain the stiffness tensor

C̄ij =
σ̄j
ǭi

(3.34)

Where i, j =1, 2, 3, 4, 5, 6. The average value of stress within the unit cell is obtained as

σ̄i =
∑ σ

(e)
i

n
(3.35)

Where n = number of elements in the uniformly discretized unit cell; σ
(e)
i = the average value of

ith strain component for generic element. The average value of stress within the unit cell is obtained

as

ǭj =
∑ ǫ

(e)
j

n
(3.36)

Where ǫ
(e)
j = the average value of jth strain component for generic element. Hence, all six stress

states are applied one by one to both the unit cell and the single columns of stiffness tensor is

obtained by using the Equation 3.34 and the corresponding coefficient of stiffness tensor are given

below
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37



3.4 Result

The different stiffness ratios allows us to assess the performance of the model for inelastic behaviour.

In fact, non-linear behaviour is associated with (tangent) stiffness degradation and homogenization

of non-linear processes will result in large stiffness differences between the components. In the limit,

the ratio between the stiffness of the different components is zero or infinity. The material properties

of the unit are kept constant, whereas the properties of the mortar are varied. In particular, for

the unit, the Young′s modulus Eb is 20 GPa and the Poisson′s ratio is 0.15. For the mortar, the

Young′s modulus is varied to yield a ratio Eb/Em ranging from 1 to 1000. In this section, a graphs

has been plot for different stiffness ratios between mortar and unit, to study the effects of mortar

moduli on the homogenized equivalent material properties of the unit cells see Figure 3.5-3.7 for

stress prescribed analysis, and Figure 3.8-3.9 for displacement prescribed analysis.

The two different basic cells of same masonry having the same volume of its constituent has

been to analysis the effect of basic cell. One can fairly concludes from the previous section, by

comparing the stiffness and compliances matrices of two basic cells that the values are all most

similar. Moreover, the plot for stress and displacement prescribed analysis are also same. In detail,

the equivalent material property i.e. Young′s modulus, shear modulus and Poisson′s ratio decreases

with increase in the ratio of Young′s modules of unit and mortar (i.e. with decrease in Young′s

modules of mortar).
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(a) Unit cell 1: Young′s modulus

First of all, equivalent Young′s modules Exx
1, Eyy of masonry decreases with increase in the ratio

of young′s modules of unit and mortar up to its constant residual, as both unit and mortar interde-

pendently contributes to equivalent Young′s modules. Whereas, the equivalent Young′s modules Ezz

(for out of plane direction) reduces rapidly till the stiffness ratio of 10, after that Ezz became almost

1Eii = Cii
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(b) Unit cell 2: Young′s modulus

Figure 3.5: Variation of stress prescribed homogenized value for different stiffness ratio.
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Figure 3.6: Variation of stress prescribed homogenized value for different stiffness ratio.
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Figure 3.7: Variation of stress prescribed homogenized value for different stiffness ratio.
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Figure 3.8: Variation of displacement prescribed homogenized value for different stiffness ratio.
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Figure 3.9: Variation of displacement prescribed homogenized value for different stiffness ratio.

constant as in out of plane unit and mortar independently contribute to equivalent Young′s modules

and after the stiffness ratio of 10 the contribution of contribution of mortar become negligibly small.

Second, the shear modulus of the masonry also decreases with increase in the ratio of shear moduli,

but the rate of shear module Gxy
2 and Gxz is almost constant till it reaches its constant residual

value whereas softening rate of shear module Gyz deceases when mortar strength get exhausted and

the softening rate of equivalent shear module Gyz is govern by softening of shear module unit only.

Finally, the similar behaviour can be observed for the Poisson′s ratio that equivalent passion ratio

also decrease with increase in the ratio of moduli of brick and mortar.

3.5 Conclusions

The homogenization theory for periodic media has been applied in a rigorous way for deriving the

anisotropic elastic characteristics of masonry that is in one step. In particular, the real geometry

has been taken into account (bond pattern and finite thickness of the wall). The theory has been

numerically applied to the two representative volume element having the same ratio of mortar and

unit for the same masonry wall (running bond) and their equivalent property has been found. As the

matter of fact, numerical application showed that the masonry behaviour is anisotropic in nature,

and that varying the basic cell for the same masonry will not effect the result. Moreover, a care

full examination for different stiffness ratio between mortar and unit has been done to assess the

performance for inelastic behaviour.

The average stress-strain relationship derived from the homogenization can be used in the damage

or plasticity based macro-modelling of the masonry.

2Gij = Cij
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Chapter 4

The Composite Interface Model

4.1 Introduction

Micro-models is best tool to understand the behaviour of masonry. This requires the consideration

of the failure mechanisms of the masonry and its constituent. These failure mechanisms are lumped

into a interface element, with the assumption that all the inelastic behaviour occurs in interface

element. Which leads to robust type of modelling, capable to tracing complete load path. The

interface element shows the failure mechanism as potential crack, slip and crushing. In this chapter,

a Composite Interface Model is developed in the plasticity concepts and its implementation and nu-

merical performance is assessed. The Composite Interface Model includes Coulomb fiction envelope

for mode II failure, with tension cut for mode I failure and compression cap for compression failure.

A single surface yield function is used for the model, to remove the singularity that occurs in the

conner region in multi surface plasticity.

4.2 Overview

Many attempts were made to use interface element for micro modelling of the masonry. Aryan and

Hegemier [60], Page [61] made early attempts to study the masonry failure using micro modelling.

Stankowski et al. [62, 63] proposed a plasticity based constitutive model to describe the fracture

and slip of the interface in cementitious materials, the model uses a curvilinear Mohr-Coulomb

yield function with a tension cut-off and the yield function has a smooth transition between shear

and tension region. They considered the tensile strength softening without changing shape of yield

function (i.e. degradation of tensile strength is considered whereas cohesion and friction angle

are considered to be unchanged). Lotfi et al. [13, 64] have developed an interface model that

incorporates additional softening mechanisms i.e. the degradation of cohesion and friction angle and

additional attention has been paid to include the dilatancy. The models presented here can simulate

initiation and propagation of crack under combined normal and shear stresses in tension-shear and

compression-shear region, but however failure to simulate masonry under high compression stress.

Lourenço [12, 15, 65] introduced multi-surface interface model for analysis of masonry structures.

The constitutive model is based on multi-surface plasticity, which can be illustrated by three yield

function: a tension cut-off for mode-I failure, a Mohr-Coulomb failure envelope for mode-II failure
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and a cap model for compressive failure. The model is capable of simulating masonry under tension-

shear, compression-shear and even under high compression stress. Due to presence of three yield

criteria, singularity problem arises at the non-smooth corner in transition zone from tension to shear

and shear to compression.

Many other plasticity based constitutive model have also been proposed in recent years, Gi-

ambanco et al. [66] presented an interface model suitable to simulate the behaviour of mortar joint

in the masonry, using the Mohr-Coulomb bilinear limit surface with tension-cut off. The model

considers the softening response that occurs along with decohesion process in the presence of shear

and tension. Oliveira and Lourenco [67, 68] extended the Lourenco and Rots model to damage

formulation for simulating the cyclic behaviour of interface element. Dolatshahi et al. [18] used the

Lourenco and Rots model and have shown that in a computational scheme, the use of rigid ele-

ments along with non-linear line interfaces leads to a reduced number of degrees-of-freedom, which

consequently reduces the computational time.

4.3 Masonry failure mechanism

Many failure mechanism are possible, most prominent masonry failure mechanisms [12, 15, 19, 20, 69]

are (a) cracking of unit in direct tension, (b) cracking of mortar joint, (c) bed or head joint failure

at low value of normal stress, (d) diagonal tension cracking of the unit, (e) masonry crushing. The

failure mechanism are shown in Figure 4.1. Where (a) is unit mechanism, (b) and (c) are the joint

mechanism and (d) and (e) are the combine mechanism. An accurate masonry model must include

all these failure mechanisms.

(a) (b) (c)

(d) (e)

Figure 4.1: Prominent masonry failure mechanisms: (a) unit direct tensile cracking; (b) joint tensile

cracking; (c) joint slipping; (d) unit diagonal tensile cracking; (e) masonry crushing.
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4.4 The Composite Interface Model

The composite interface model is used to represent the mechanical behaviour of discontinuous inter-

face element for joint interface in the masonry modelling, which includes potential crack, slip, and

crushing planes. In the following section, a complete description of numerical implementation of a

plasticity based composite interface model is explained.

4.4.1 Elastic behaviour

The interface elements allows the discontinuity in the displacement field and their behaviour is

described by relation between traction force and relative displacement of the interface element. The

generalised stress-strain relation can be written in standard form as

σ = Kǫ (4.1)

In a 2D framework, σ = {σnn, σtt}
T , ǫ = {ǫnn, ǫtt}

T and K = diag{knn, ktt}
T where nn and

tt designate normal and tangential components. For simplifying the model, the effect of Poisson′s

ratio is assumed to be negligible. The Poisson′s ratio of the brick is considerably lower than mortar,

and most of the behaviour of the masonry is governed by joint mechanics, mortar mechanism and

splitting of the brick, thus this assumption seems to be valid. Due to lager difference in the thickness

of the mortar and unit, the units are assumed to be linear-elastic. The component of elastic stiffness

matrix K can be written as

1

knn
=

1

hm

(

1

Eb
+

1

Em

)

(4.2)

1

ktt
=

1

hm

(

1

Gb
+

1

Gm

)

(4.3)

Where Eb, Em, Gb and Gm are the elastic Young′s moduli and the elastic shear moduli for brick

unit and mortar. hm is the actual thickness of mortar joint.

4.4.2 Plastic behaviour

In the present study a rate independent composite interface model, defined by hyperbolic function

(Equation 4.4) has been proposed (see Figure 4.2). The proposed model is a simple extension of the

Mohr-Coulomb criteria with cut-off in tension and cap-off in compression, which result in the single

surface yield criteria capable of representing pressure-dependent friction shear failure and cracking

by cut-off in-tension and crushing by cap-off in compression under combined normal and tangential

stresses. The model includes all the mechanisms of the masonry failure and also overcomes the

problem of the singularity that occurs in multi-surfaces yield criteria.

F (σ, q) := −[(C − σnn tan(φ))]
2fc(σ, q)ft(σ, q) + σ2

tt (4.4)

fc(σ, q) :=
2

π
arctan

(

σnn − ζ

αc

)

(4.5)
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ft(σ, q) :=
2

π
arctan

(

ξ − σnn
αt

)

(4.6)

 

 σtt

σnnξζ

F (σ, q)

Q(σ, q)

Figure 4.2: Trace of yield function F (σ, q) and potential function Q(σ, q); red, green, blue lines

represents the tension-cut, shear and compression-cap region respectively.

Where the vector q = q(C,Cq, φ, ψ, ξ, ζ) is a function of six internal hardening parameters, which

implicate the apparent cohesion (C,CQ), friction angle (φ), dilation angle (ψ), tensile strength

(ξ) and compression strength (ζ). In the yield function, ξ denotes tension cut-off and ζ denotes

compression cap. The function fc(σ, q) and ft(σ, q) are the compression cap and tension cut-off

functions respectively. The function fc(σ, q) has the zero value at the cap and the function ft(σ, q)

has zero value at tension-cut. For all other stress-states both the function have value approximately

equal to one. The parameters αc and αt control the curvature of the compression cap and tension

cut-off at transition region.

A non-associated formulation is used because friction and dilatency angles are considerably dif-

ferent [42, 70]. Therefore, the plastic potential is described in terms of another hyperbolic function

with different values of apparent cohesion (CQ) and frictional angle (dilation angle (ψ)), with same

tensile (ξ) and compressive strength (ζ). The expression of potential function reads

Q(σ, q) := −[CQ − σnn tan(ψ)]
2fc(σ, q)ft(σ, q) + σ2

tt (4.7)

4.4.3 Evolution laws

Evolution laws for hardening or softening behaviour for the composite interface model is defined by

the rate of plastic work per unit of volume. During plastic loading internal variables can be express

as

Ẇ p := σT ǫp (4.8)
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Where Ẇ p is the rate of plastic work hardening per unit of volume. In the present study, evolu-

tion of yield surface in tension-shear and compression-shear region has been assumed such that during

plastic loading in tension-shear region, tensile strength (ξ) decreases exponentially while friction an-

gle (φ) remain unchanged, and in compression-shear region both friction and tensile strength both

degrades exponentially. In addition, the compression strength changes when plastic loading path

intersects with the compression cap. The above assumptions can be expressed by four internal vari-

ables i.e. Ẇ p := Ẇ p(ẇp1 , ẇ
p
2 , ẇ

p
3 , ẇ

p
4) where ẇ

p
1 and ẇp2 represent degradation in tensile strength, ẇp2

and ẇp3 govern the frictional strength degradation and ẇp4 gives change in the compression strength.

ẇp1 := 〈σnn〉u̇
p
nn (4.9)

ẇp2 := (σtt − σttr1sign(σtt))u̇
p
tt (4.10)

ẇp3 := (σttr1 − σttr2)sign(σtt)u̇
p
tt (4.11)

ẇp4 := 〈〈σnn〉〉u̇
p
nn for σnn < ζc (4.12)

Where the symbol 〈〉 denotes for Macaulay bracket and 〈x〉 = (x+ |x|)/2 and 〈〈x〉〉 = (x−|x|)/2.

ζc denotes the transient point from compression cap to Mohr-Coulomb friction envelope. σttr1 is

the tangential strength when tensile strength is completely exhausted; σttr2 is minimum tangential

strength for the final contracted yield surface. In tension-shear region, σttr1 and σttr2 are assumed

to be zero and in compression-shear region they can be express as

σ2
ttr1

= −2Cr tanφ fcft (4.13)

σ2
ttr2

= −2Cr tanψr fcft (4.14)

In tension-shear region, during plastic loading the yield surface will contract until the tensile

strength is exhausted and cohesion reaches a minimum value, see Figure 4.3(a), i.e. yield surface

contracts from F0 to F1. While in compression-shear region, plastic loading reduces the tensile

strength, cohesion as well as friction angle to its residual value (i.e. yield surface contracts to F2).

If the plastic loading path intersects the compression cap region, yield surface will evolve due to

hardening in compression, see Figure 4.3(b), i.e. yield surface evolves from F0 to F1. After the

compression-strength reaches its maximum value, there is a subsequent softening and compression

strength reduces to minimum value due to contraction of yield surface i.e. yield surface contracts

from F1 to F2.
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 σtt

σnn
ξζ0

F0
F1

F2

σtt
σttr1σttr2

(a)

 

 
σtt

σnn
ξζp

F1

F0

F2

ζ0 ζr

(b)

Figure 4.3: Evolution of yield surfaces (a) Tension and shear region; (b) Compression region.

The hardening parameter q can be related to the internal variables as follows

C := Cr + (C0 − Cr) exp

−βC

(

wp1
GIf

+
wp2
GIIf

)

(4.15)

CQ := CQr
+ (CQ0

− CQr
) exp

−βCQ

(

wp1
GIf

+
wp2
GIIf

)

(4.16)

φ := φr + (φ0 − φr) exp
−βφw

p
3 (4.17)

ψ := ψr + (ψ0 − ψr) exp
−βψw

p
3 (4.18)

ξ := ξ0 exp

−βξ

(

wp1
GIf

+
wp2
GIIf

)

(4.19)
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ζ =







































ζ0 + (ζp − ζ0)

√

(

2wp4
wp

)

−

(

wp4
wp

)2

if wp4 ≤ wp

ζ0 + (ζp − ζp)

(

wp4 − wp
wm − wp

)2

if wp ≤ wp4 ≤ wm

ζr + (ζm − ζr) exp
βζ

(

wp4 − wp
ζm − ζr

)

if wp4>wm

(4.20)

Where GIf and GIIf are the mode I and mode II fracture energy and βi is a parameter that

controls the softening of the internal variable. The subscript 0 stands for initial value and r for

residual value whereas subscript p and m indicate intermediate values. The preceding hardening

equation can be written in a compact form as follows

Ẇ p = Hǫ̇p (4.21)

4.4.4 Elastic-plastic tangent modulus

The total strain ǫ can be decomposed into sum of elastic strain and plastic strain i.e.

ǫ = ǫe + ǫp (4.22)

Where ǫe and ǫp are the elastic strain and plastic strain or irreversible strain respectively and

the notion of irreversibility of plastic flow can be introduced by non-associated flow rule. It can be

written in rate form as

ǫ̇p = λ̇m (4.23)

Where λ̇ is the constant slip rate or plastic multiplier. The plastic multiplier can be found

by checking the consistency condition (persistency condition) together with Kuhn-Tucker condition

(F ≤ 0, λ̇ ≥ 0, λ̇F = 0). The consistency condition can be written as λ̇Ḟ = 0 for yield condition

λ̇ > 0 and Ḟ = 0 and we can be written it as

Ḟ =
∂F

∂σ
σ̇ +

∂F

∂q
q̇ = 0 (4.24)

λ̇ =
nKǫ

nTKm+ pT̟
(4.25)

In which m := ∂Q/∂σ , n := ∂F/∂σ , p := ∂Q/∂λ, ̟ := (∂q/∂W p)(∂W p/∂ǫp)(∂ǫp/∂λ) =

(∂q/∂W p)Hm. Now we can define hardening parameter in its rate form as q = λ̟̇. Putting

the plastic multiplier (λ̇) in the rate form of stress-strain relationship to get elasto-plastic tangent

modulus Kep, i.e.

σ̇ = K(ǫ̇− λ̇m) = Kepǫ̇ (4.26)

Kep = K −
Km⊗ nK

nTKm+ pT̟
(4.27)
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4.4.5 Algorithmic aspect of local and global solver

In the present section, the composite interface model is implemented into a finite element framework

with elastic-plastic continuum elements, which gives rise to a set of non-linear algebraic-differential

equations, and are to be solved. The Newton-Raphson scheme is used to solve non-linear system of

equations, which leads to combined local and global approach. Local solver provides the new internal

state variable for a given relative displacement, subsequently global solver provides the solution for

the unbalanced force to accommodate stress distribution within the finite load increments. In this

section, numerical strategy is presented at both local (Constitutive level) and global level (Structural

level).

Elastic predictor-plastic correct strategy

The implicit backward Euler integration method is used to integrate the differential constitutive

equations. The backward Euler method is a first order (i.e. local truncation error is O(h2) for a single

step) method and is unconditionally stable. The integration procedure leads to a set of algebraic-

incremental equations, which can be split in to elastic predictor, followed by plastic corrector if and

only if the trial stress-state violates the current trail yield condition.

The time discretization of an interval of interest as [0, T ] =
⋃N

n=1[tn, tn+1]. The relevant problem

can be seen with in time interval [tn, tn+1]. It is assumed that the stress-state (σn, qn) at current

time t = tn should satisfy the equilibrium conditions and be admissible. For prescribed increment

in strain ǫ̇, at the next time step tn+1 = tn + ∆t the strain is given by ǫn+1 = ǫn + ∆ǫ, and this

can be split into two part i.e. ∆ǫ = ∆ǫe + ∆ǫp. According to the elastic predictor-plastic correct

strategy, the stress and internal variables can be written in their incremental form as

σn+1 = σn +K∆ǫe = σn +K(∆ǫ−∆ǫp) (4.28)

σn+1 = σtrialn+1 +∆λn+1Kmn+1 (4.29)

qn+1 = qn +∆λn+1̟n+1 (4.30)

Where σtrialn+1 = σn + K∆ǫ is the trial stress. During the elastic predictor step (say point A),

if the trial stress goes outside the yield surfaces at the point B, see Figure 4.4) after cutting the

yield surface at the contact point o; F (σtrialn+1 , qn+1) > 0, then plastic corrector step projects the

stress-state at the point D after the evolution or contraction of the yield surface due to the change

in internal variable. In the Figure 4.4 point C represents the final converged stress-state for an

elastic-perfectly plastic model. In the present study plastic step mobilizes the plastic work which

changes the internal hardening parameter (q) that expands or contracts the yield surface. It should

be noted that the solution of the plastic corrector step must satisfy the full consistency at point D,

rather than differential consistency (Ḟ = 0).

F (σn+1, qn+1) = 0 (4.31)
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D

Figure 4.4: Plot of the integration process, initial converged stress at point A(σn), contact point

at o (σ0
n+1), trial stress B (σtrialn+1 ), final stress for elastic-perfectly plastic Model at point C, final

converged stress for evolved or shrunk yield surface at point D (σn+1).

Contact point

The plastic corrector step only produces the change in the stress and internal variable (σn, qn).

Therefore, it is very important to find the contact point for the present elastic predictor step.

Mathematically, it can be express as

F (σn + γ∆σ, qn) = 0 (4.32)

Where σn, qn are the variables from the last converged elastic or plastic step, and γ is unknown

integer within the range [0 1], which converges the stress to the contact point.

Local iteration strategy

The backward Euler method gives rise to non-linear system of equations, which has to be solved to

get actual stress state. In the present study full Newton-Raphson method is used to solve non-linear

system of equations. It provides quadratic convergence with initial root sufficiently close, and also

ensures the asymptotic quadratic convergence at the global level for structural equilibrium. Newton-

Raphson strategy is used for the solution of non-linear equation in monolithic format, as illustrated

in the [71–73] for the J2 plasticity. The strategy is highly influenced by the choice of the independent

variables and sequence of the numerical operations. It requires the determination of residual for the

set non-linear Equations 4.29, 4.30 and 4.31. It can be written as

r(σn+1, qn+1,∆λn+1) =











σn+1 − σtrialn+1 +∆λn+1Kmn+1 = 0

qn+1 − qn +∆λn+1̟n+1 = 0

F (σn+1, qn+1) = 0

(4.33)

Linearization of the residual, and expanding the residual. we can write
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r(σ + δσ, q + δq,∆λ+ δλ) = r(σ, q,∆λ) +
r(σ, q,∆λ)

∂(σ, q, λ)







δσ

δq

δλ






+O(δ2) (4.34)

Where the truncation after first order term is zero (O(δ2) ∼= 0) and
r(σ, q,∆λ)

∂(σ, q, λ)
is the gradient

of residual with respect to its dependent variable i.e. σ, q, λ commonly known as Jacobian. The

Jacobian for residual at time step n+1 can be express as

J(σn+1, qn+1,∆λn+1) =















I +∆λK
∂m

∂σ
∆λK

∂m

∂q
Km

−∆λK
∂̟

∂σ
−∆λK

∂̟

∂q
−̟

∂F

∂σ

∂F

∂q
0















(4.35)

The actual solution is achieved by letting the residual go to zero for that current time step during

plastic loading. This can be achieved by performing iterations cycles. The iteration will end when

residual will become smaller then prescribed tolerance value.

0 = r(σkn+1, q
k
n+1,∆λ

k
n+1) + J−1(σkn+1, q

k
n+1,∆λ

k
n+1)







δσk+1
n+1

δqk+1
n+1

δλk+1
n+1






(4.36)







δσk+1
n+1

δqk+1
n+1

δλk+1
n+1






= −J−1(σkn+1, q

k
n+1,∆λ

k
n+1) r(σ

k
n+1, q

k
n+1,∆λ

k
n+1) (4.37)







σk+1
n+1

qk+1
n+1

λk+1
n+1






=







σkn+1

qkn+1

λkn+1






+







δσk+1
n+1

δqk+1
n+1

δλk+1
n+1






(4.38)

For starting the iteration a sufficiently close initial solution is required, as the convergence of

local iteration cycle depends up on the initial root. Thus initial solution is chosen to be the elastic

solution at the contact point.

σ0
n+1 = σtrialn+1 + (1− γ)∆σ; q0

n+1 = qn; ∆λ0n+1 = 0 (4.39)

Note that the variable ∆λ0n+1 is taken equal to zero at first iteration of every new load step, as

plastic multiplier captures the plastic process incrementally. The initial hardening parameter values

q0
n+1 are the last converge hardening parameter values.
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Global iteration strategy

The converged solution form local iteration strategy can be used for the determination of consistent

tangent operator
∆σ

∆ǫ
for the current time step. Thus, in order to compute the tangent operator

using the Jacobian, we have to differentiate the residual with respect to the strain and then using

the chain rule we will get

∂

∂ǫ







σn+1 − σtrialn+1 +∆λn+1Kmn+1

qn+1 − qn +∆λn+1̟n+1

F (σn+1, qn+1)






= 0 (4.40)

∂
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
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=
∂

∂ǫ







σ +K∆ǫ

q

0







n

(4.41)
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∂ǫ
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∂ǫ
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∂ǫ






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q
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


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J(σn+1, qn+1,∆λn+1) ·

[

∂σ

∂ǫ

∂q

∂ǫ

∂λ

∂ǫ

]T

n+1

=







K

0

0




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The consistent tangent operator can extracted from the preceding expression,and we can defined

the consistent tangent operator as:

[

∂σ

∂ǫ

]

2x2

= O2x2
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
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


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
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

K

0

0







9x2











(4.45)
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4.4.6 Algorithmic Implementation

The plasticity based composite interface model is implemented in commercial finite element software

ABAQUS [74] by writing the user defined subroutine UMAT, which allows to define a user defined

mechanical constitutive model for a material. During the analysis, the UMAT is called at the all

integration points of the elements. At end of the increment UMAT updates the stress, internal

state variables and elasto-plastic tangent operator. The proposed numerical integration algorithm

implemented in the UMAT is presented in Algorithm 1.

Steps

1. Recover Solution Dependent Variables from the last converged iteration cycle
σn+1, qn,W

p
n , ǫ

p
n

2. Compute trial elastic stress
σtrialn+1 = σn +K∆ǫ

3. Compute the yield function F trial(σtrialn+1 , qn)
4. Check for the yield condition
if F trial(σtrialn+1 , qn) < 0 then

Elastic State

update σn+1 = σtrialn+1 ;
update qn+1 = qn ;
update W p

n = W p
n ;

update ǫpn = ǫpn ;

else
Plastic State

Compute the contact point F (σn + γ∆σ, qn);
while ||r(σn, qn,∆λn)|| < tol do

Compute nkn,m
k
n,̟

k
n;

Compute Jkn(σ
k
n, q

k
n,∆λ

k
n) =

r(σkn, q
k
n,∆λ

k
n)

∂(σkn, q
k
n, λ

k
n)

;

Compute δ(σn, qn, λn)
k+1 = −J−1(σkn, q

k
n,∆λ

k
n)r(σ

k
n, q

k
n,∆λ

k
n);

Compute [σn, qn, λn]
k+1 = [σn, qn, λn]

k + δ(σn, qn, λn)
k+1;

end

update σn+1 = σk+1
n ;

update qn+1 = qk+1
n ;

update W
p
n+1 = (W p

n )
k+1 ;

update ǫpn = (ǫpn)
k+1 ;

Compute Kep

end

Algorithm 1: Monolithic numerical integration algorithm.

4.4.7 Verification Examples

In order to verify the proposed composite interface model various verification examples have been

considered in this section. The formulated constitutive model is verified by implementing a single

zero-thickness interface, which is a 4-node two dimensional cohesive element with two integration

point. The material parameter used for verification are tabulated in Table 4.1 and 4.2 obtained

from the calibration process. Specifically, to find the values of mode I and mode II fracture energy,

it is assumed that GIf = 5GIf,min and GIIf = 10GIf , where G
I
f,min = ξ20/2knn corresponding to the

perfectly brittle tensile fracture. The verification examples include interface in tension, compression
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and shear mode condition. The implementation is done in ABAQUS, by using the user defined

subroutine (UMAT).

Table 4.1: Elastic material property for the Brick and joints

Brick Joint

E ν knn ktt

N/mm2 N/mm3 N/mm3

2000 0.15 1000 1000

Table 4.2: Inelastic material property for the joints

Tension Shear Cap

ξ0 GIf C0\Cr CQ0\CQr φ0\φr ψ GIIf ζp

N/mm2 Nmm/mm2 N/mm2 N/mm2 radian radian Nmm/mm2 N/mm2

2.0 5ξ20/2Knn 1.4ξ0\0.1CQ 1.1ξ0\0.1CQ 0.65\0.50 0.30\0.20 10GIf 30

Direct tension test

In this test the interface is subjected to direct tension. A normal relative displacement is applied to

the nodes on the top face of the interface element while all the degrees of freedom on the bottom

face are fixed. Figure 4.5 shows the variation of tensile strength ξ with mix mode fracture energy
wp1
GIf

+
wp2
GIIf

. The response exhibits a exponential degradation of the tensile strength and matches

well with the analytical values.
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Figure 4.5: Plot of distribution of tensile strength ξ with

(

wp1
GIf

+
wp2
GIIf

)

.
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Direct compression test

In this test the interface is subjected to direct compression. The test is performed to check the

functionality of the compression cap. A normal relative displacement is applied to produce the pure

compression state in the interface and variation of compression strength (ζ) with work hardening

parameter wp4 is traced and compared with the analytical values by solving Equation 4.20. It can be

observed from Figure 4.6, that the internal hardening variable (ζ) coincides well with the analytical

values.
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Figure 4.6: Plot of distribution of compression strength ζ with wp4 .

Direct shear test under compressive stress

In this test the interface is subjected to direct shear test under different normal compressive stress.

The interface element is loaded with normal compressive stress. Then, a relative shear displacement

is applied at the top surface, while all degrees of freedom on the bottom face are kept fixed. This

load sequence is repeated for various levels of constant normal compressive stress. The results of this

test are shown in Figure 4.7(a). A plot of distribution of tangential stress with relative tangential

displacement are plotted for different compressive stress (0.1, 1, 10 Mpa). A shear softening be-

haviour is observed. The result shows that the shear capacity of the interface increases with increase

in compressive stress. After the initial elastic response, all response curves show a similar post-peak

behaviour, with a steeper part given by the decrease of all softening parameters (q). After that, ξ

remains zero, and the shear traction diminishes. Finally, all softening curves tend to the residual

shear value that corresponds to the residual cohesion (Cr) and friction angle (φr).

In Figure 4.7(b), the distribution of normal displacements with relative tangential displacements

is plotted. It can be observed that the dilatancy decreases with increase in compressive stress, and

approaches a limiting value when the interface degrades to the residual dilation angle (ψr).
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Figure 4.7: Plot for direct shear test under different constant compressive stress (a) distribution

of tangential stress with relative tangential displacement; (b) distribution of normal displacements

with relative tangential displacements.
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4.4.8 Sub stepping

There are three critical aspects on which the success of numerical algorithm depends: first, Robust-

ness, it ensures that for reasonable choices of initial conditions and input data, the algorithm will not

fail and it will provide a solution. Second, Accuracy ensures that the solution is within a tolerance

threshold. Third, Non-associativity, it ensures that numerical algorithm will work for the dilatancy

angle, for return mapping. All these aspects becomes very importance because the entire global

solution depends on the solution of the constitutive equations at the Gauss point level. To check

these aspects on the proposed Composite Interface Model, implementation of different examples are

presented below.

Robustness

To check the robustness of proposed algorithm, campaign of different load paths, and different

load increment is applied to 2D interface model. Seven load path are considered for tension shear

and compression region each. Load is applied in all cases from σ = 0 up to a certain value of

the trial stress state, σtrail. In particular, four load increment are considered N := 5, 25, 125,

625. The material parameter used in these example are given in Table 4.1 and 4.2. The result of

these numerical example are summarized in Table 4.3, in term of no of iteration required for the

convergence of algorithm with the tolerance of 1−10.

Table 4.3: Convergence of algorithm without sub-stepping for different load path, at a Gauss point

level

Tension-shear region

θ = 0 θ = 15 θ = 30 θ = 45 θ = 60 θ = 75 θ = 90

N = 5 4 8 7 6 7 6 6

N = 25 5 16 14 12 14 8 8

N = 125 5 Fail 14 15 16 8 10

N = 625 6 Fail Fail Fail Fail Fail 12

Compression-shear region

θ = 90 θ = 105 θ = 120 θ = 135 θ = 150 θ = 175 θ = 180

N = 5 6 6 8 8 11 25 E

N = 25 8 16 12 13 12 12 4

N = 125 10 20 13 Fail 13 12 7

N = 625 12 22 17 Fail 17 16 9

The result shows that for load paths whose directions are different from θ = 0 and θ = 90,

the algorithm does not converge if the loading step size is large then 125. It demonstrates need

for sub stepping to achieve optimal performance. The sub stepping procedure will only take place,

when the algorithm does not reach convergence within a prescribed number of iterations. To check

the results of this new procedure the same campaign of numerical test is repeated, and its results
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are summarized in Table 4.4. The number of iterations is augmented by the total number of sub

increments (between parentheses) which are needed for convergence.

Table 4.4: Convergence of algorithm with sub-stepping for different load path, at a Gauss point level

Tension-shear region

θ = 0 θ = 15 θ = 30 θ = 45 θ = 60 θ = 75 θ = 90

N = 5 4 8 7 6 7 6 6

N = 25 5 16 14 12 14 8 8

N = 125 5 39(2) 14 15 16 8 10

N = 625 6 198(8) 113(8) 101(8) 117(8) 64(8) 12

Compression-shear region

θ = 90 θ = 105 θ = 120 θ = 135 θ = 150 θ = 175 θ = 180

N = 5 6 6 8 8 11 25 E

N = 25 8 16 12 13 12 12 4

N = 125 10 20 13 97(8) 13 12 7

N = 625 12 22 17 481(40) 17 16 9

Accuracy

It has also been observed that number of iterations increases as the load step size increases. However,

there are special situations in which do not follow this trend i.e. uniaxial tension (θ = 0), pure shear

(θ = 90) and uniaxial compression (θ = 180). If the convergence for some special situations does

not depend of the loading step size, the issue remains whether the accuracy of the solution depends

strongly on the load step size. To find out this, three different load steps are considered where u

equals 1× 10−4, 5 × 10−4, 1× 10−3. A fourth loading size step is computed, u equals 1× 10−5, to

compare the accuracy of those results. The latter step size is considered sufficiently small to serve

as an accurate reference solution to compare with.
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Figure 4.8: Plot for Error stress response along entire loading path: (a)tension; (b) compression; (c)

shear.

The results are plotted in Figure 4.8. The result shows that

• the error of the solution increases as the load step size increases;

• the integration algorithm requires sub stepping not only to ensure convergence of the solution

but also to ensure the accuracy of the final solution.

Non-associativity

The capacity of proposed algorithm for different non-associativity is cheeked here. A campaign of

different dilatancy angle for a given load step is applied to 2D interface model. Seven dilatancy angle

are considered ψ = 0, 15, 30, 45, 60, 75, 90. The displacement is applied in lateral direction at a

different vertical pressure i.e. p = 0, 0.1, 1, 10, 20, 22. The result of these numerical example are

summarized in Table 4.5 and 4.6, in term of no of iteration required for the convergence of algorithm

with the tolerance of 1−10.
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Table 4.5: Convergence of algorithm without sub-stepping for different dilatency for load step =

0.005, at a Gauss point level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

ψ = 0 3 3 3 3 13 16

ψ = 15 7 7 7 8 24 16

ψ = 30 8 8 9 18 39 Fail

ψ = 45 10 10 11 Fail Fail Fail

ψ = 60 13 13 17 Fail Fail Fail

ψ = 75 41 67 83 Fail Fail Fail

ψ = 90 Fail Fail Fail Fail Fail Fail

Table 4.6: Convergence of algorithm without sub-stepping for different dilatency for load step =

0.00001, at a Gauss point level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

ψ = 0 2 2 2 3 3 15

ψ = 15 2 2 2 3 3 15

ψ = 30 2 2 2 3 4 16

ψ = 45 2 2 3 3 4 16

ψ = 60 3 3 3 3 4 16

ψ = 75 4 4 4 6 6 25

ψ = 90 4 4 9 11 17 27

The result shows that for the higher dilatancy angle and load step, the algorithm does not

converge. Thus sub steeping is also required for robust non-associativity. The same campaign of

numerical test is repeated for the algorithm with sub stepping, and its results are summarized in

Table 4.7. The number of iterations is augmented by the total number of sub increments (between

parentheses) which are needed for convergence.

Table 4.7: Convergence of algorithm with sub-stepping for different dilatency for load step = 0.005,

at a Gauss point level

p = 0 p = 0.1 p = 1 p = 10 p = 20 p = 22

ψ = 0 3 3 3 3 13 16

ψ = 15 7 7 7 8 24 16

P = 30 8 8 9 18 39 59(6)

ψ = 45 10 10 11 39(3) 66(3) 66(3)

ψ = 60 13 13 17 116(9) 178(6) 220(5)

ψ = 75 21(2) 25(3) 75(10) 121(3) 138(26) 539(26)

ψ = 90 37(9) 41(9) 57(9) 390(75) 341(57) 942(57)
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Algorithm with sub stepping

The algorithm requires sub-stepping not only to ensure convergence of the solution but also to

ensure the accuracy of the final solution at both local and globe level. Fortunately, it is possible

to integrate the constitutive equations by sub-dividing the load at the constitutive level [75–77].

Based on these considerations, an adaptive sub-stepping scheme has been developed for the present

composite interface model. This technique starts with the previous system of Equation 4.33. The

algebraic problem is modified significantly in order to obtain consistent tangent operator in the case

of sub-stepping. It is assumed that any increment can be subdivided into N sub-increments, which

could be of different sizes but the sum of all sub-increments always equals to the total displacement

at the end of the increment

∆ǫ =

N
∑

i=0

∆ǫi = ∆ǫ
(

ηi
)

(4.46)

Where 0 < ηi < 1 and
N
∑

i=0

ηi = 1

Hence rewriting the Equation 4.33, for sub-increment

r(σi, qi,∆λi) =











σi − (σtrial)i +∆λiKmi = 0

qi − qi−1 +∆λi̟i = 0

F (σi, qi) = 0

(4.47)

Note that, now the independent variable of the system of equation are σi, qi,∆λi and the method-

ology for solving the equation is same as the one in previous section. For consistent tangent operator,

taking the derivative of the equation with respect to ∆ǫ and then apply the chain rule
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The consistent tangent operator of a sub-increment can extracted from the preceding expression.

The consistent tangent operator of the load step is obtained by linear combination of all sub-

increments and can be written as

[

∂σ

∂ǫ

]

=

N
∑

i=0

[

∂σi

∂ǫi

]

(4.49)
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Steps

1. Recover Solution Dependent Variables from the last converged iteration cycle
σn+1, qn,W

p
n , ǫ

p
n

2. Compute trial elastic stress
σtrialn+1 = σn +K∆ǫ

3. Compute the yield function F trial(σtrialn+1 , qn)
4. Check for the yield condition
if F trial(σtrialn+1 , qn) < 0 then

Elastic State

update σn+1 = σtrialn+1 ;
update qn+1 = qn ;
update W p

n = W p
n ;

update ǫpn = ǫpn ;

else
Plastic State

Compute the contact point F (σn + γ∆σ, qn);
Compute (Kep)0 = γK ;
while i < n do

while ||r(σn, qn,∆λn)|| < tol do
for simplicity superscript ’i’ is not used ;

Compute nkn,m
k
n,̟

k
n;

Compute Jkn(σ
k
n, q

k
n,∆λ

k
n) =

r(σkn, q
k
n,∆λ

k
n)

∂(σkn, q
k
n, λ

k
n)

;

Compute δ(σn, qn, λn)
k+1 = −J−1(σkn, q

k
n,∆λ

k
n)r(σ

k
n, q

k
n,∆λ

k
n);

Compute [σn, qn, λn]
k+1 = [σn, qn, λn]

k + δ(σn, qn, λn)
k+1;

end

update (σn+1)
i = (σk+1

n )i;

update (qn+1)
i = (qk+1

n )i;

update (W p
n+1)

i = ((W p
n )
k+1)i ;

Compute (Kep)i

end

update σn+1 = (σk+1
n )N ;

update qn+1 = (qk+1
n )N ;

update W
p
n+1 = ((W p

n )
k+1)N ;

Compute Kep =
N
∑

i=0

(Kep)i

end

Algorithm 2: Monolithic numerical integration algorithm with sub-stepping.
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4.5 Conclusion

A plasticity based composite interface model is proposed, which is capable of simulating the initiation

and propagation of crack under combined normal and shear stresses. Moreover, singularity at corner

region is removed by using a single surface yield criteria. The yield function is capable of representing

pressure-dependent friction shear failure, cracking by cut-off in tension and crushing by cap-off

in compression. The model is developed by integrating the differential equation by fully implicit

backward Euler method. The equation are solved by full Newton-Raphson technique in monolithic

manner, which lead to combined local and global approach.

At last, the model is implemented in commercial finite element software ABAQUS. The three

basic verification example are used to verify the implementation of algorithm. During the verification,

it has been found that sub stepping is required to ensure the convergence and accuracy of the final

solution at both local and global level. This Make the code to behaves well at even large load step.
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Chapter 5

Validation of composite interface

model

In the present chapter, the composite interface model proposed in previous chapter is validated, by

comparing the numerical results with experimental results available in the literature. In this chapter

first the micro-modelling strategy of masonry wall is discussed. Then, the strategy is successfully

applied to the masonry shear walls. In the last, the applicability of model to simulate the direct

cyclic behaviour is validated, by simulating the masonry bed joint.

5.1 Micro Modelling of Masonry

Micro-modelling approach includes distinct representations of units, mortar and the unit-mortar

interface. The unit and mortar are represented by continuum elements and unit-mortar interface is

represented discontinuous interface element. Elastic and inelastic properties of both unit and mortar

are taken into account. This detailed micro-modelling procedure leads to very accurate results.

However, it requires an intensive computational effort. This drawback is overcome by making an

assumption that mortar and two unit-mortar interface is lumped into joint between expended units,

see Figure 5.1. The units are expended in order to keep the geometry of structure unchanged. Thus,

masonry is considered as a set of elastic blocks bonded by potential crack, potential slip and crushing

plane at the joints.

Figure 5.1: Simplified micro-modelling.
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In the present section simplified micro modelling is adopted for the study of failure analysis of

unreinforced masonry under plane stress condition. The joint interface is modelled with proposed

composite interface model, which is capable of representing the potential crack, potential slip and

crushing. Moreover, for modelling cracking of the bricks, a potential crack is placed vertically in the

middle of each brick. Simple mode I crack model with exponential softening behaviour in tension is

adopted for the potential crack. It is assumed that after initiation of the crack shear stress drops to

zero. This assumption is made to overcome the bifurcation problem of shear tension regime, for detail

see [12]. The modelling strategy is validated by comparing numerical results with the experimental

results available in the literature. In this study, shear wall tests carried by the Vermeltfoort and

Raijmakers [78, 79] is adopted for the further study.

5.2 Masonry shear wall

An experimental Study was carried out on masonry shear walls by Vermeltfoort and Raijmakers

[78, 79]. The authors conducted the tests on two type of wall i.e. one without the opening and

another with the opening. The authors used a set-up that consisted of a pier with a width to height

ratio of one and with dimensions 990 × 1000 [mm2]. It was built-up with 18 courses of which two

courses were clamped in steel beam and only 16 courses were active. The wall was made up of wire

cut solid clay [210 × 52 × 100 mm3] and mortar [10 mm], prepared with a volumetric (cement

: lime : sand) ratio of (1 : 2 : 9). The test involves a monotonically increasing horizontal load

under different levels of uniformly distributed normal stress, keeping the bottom and top boundaries

horizontally fixed. The material data is obtained from existing experimental results on tension,

shear and compression from the sample collected for each wall and all other missing parameters are

obtained from the calibration process.

From the present work both type of wall are presented their. The wall without opening is denoted

by SW and wall with opening is denoted by SWO. The micro-properties of the shear wall material

are obtained from [78, 79] and are given in Table 5.1, 5.2 and 5.3. The hardening/softening law for

the compression cap is defined by the set {ζ, wp4} = {(ζp/3, 0.0); (ζp, 0.09); (ζp/2, 0.49); (ζp/7,∞)}.

For the numerical analyses, units are represented by plane stress continuum elements (8-noded)

while line interface elements (4-noded, with 2 integration point) are adopted for the joints and for

the potential vertical cracks in the middle of the unit. Each unit is modelled with 4 x 2 elements.

For the joints, the composite interface model described in previous chapter has been adopted.

Table 5.1: Properties for Potential Brick Cracks.

Elastic Inelastic

Knn Ktt ξ0 GIf

N/mm3 N/mm3 N/mm2 Nmm/mm2

106 106 2.0 0.08

Table 5.2: Elastic material property.

Brick Joint

E ν Knn Ktt

N/mm2 N/mm3 N/mm3

16700 0.15 82;110;82 36;50;36
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Table 5.3: Inelastic material property for the joints.

Tension
ξ0 [N/mm2] 0.25;0.16;0.16

GIf [Nmm/mm2] 5ξ20/2Knn

Shear

C0\Cr [N/mm2] 1.4ξ0\0.1CQ

CQ0\CQr [N/mm2] 1.1ξ0\0.1CQ

φ0\φr [radian] 0.65\0.50

ψ [radian] 0

GIIf [Nmm/mm2] 10GIf

Cap ζp [N/mm2] 10.5; 11.5; 11.5

Note: three different parameters are for three different initial vertical pressure.

5.2.1 Shear wall without opening (SW)

The experimental test was carried out successfully on the shear wall without opening (SW). These

wall were tested for three different initial vertical pressure i.e. for wall SW-1a and SW-1b pressure

equals 0.30 [N/mm2], for wall SW-2 pressure equals 1.21 [N/mm2] and for wall SW-3 pressure equals

2.12 [N/mm2]. The experimental failure pattern for the different wall tested are shown in Figure

5.2. All the wall shows almost the similar behaviour. On applying the monotonically increasing

horizontal load, first horizontal tensile cracks develop at the bottom and top of the wall particularly

in the bed joint at an early loading stage and then, a diagonal stepped crack form. Finally, diagonal

stepped cracked and crushing of the toes of the masonry leads to over all the failure of the masonry,

simultaneously bricks gets cracked.

P = 0.30 [N/mm2]

(a) SW-1a

P = 0.30 [N/mm2]

(b) SW-1b
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P = 1.21 [N/mm2]

(c) SW-2

P = 2.12 [N/mm2]

(d) SW-3

Figure 5.2: Experimental failure pattern for the different walls without opening [12, 78, 79].

The comparison between numerical and experimental load-displacement curves are shown in

Figure 5.3. The experimental behaviour is satisfactorily reproduced by the proposed composite

interface model. All the wall behaves in the same manner and confirms the idea that masonry can

with-stand substantial post-peak deformation with reduced loss of strength. The masonry shear

wall also shows that higher initial vertical loads lead to increase in it’s strength, But, its ductility

deceases. In case of shear wall softening region is govern by failure of compression toes of wall and

material fail in out of plane direction. Higher initial vertical loads corresponds to higher failure

loads, which leads to higher normal stresses. Thus, during crushing of the compressed toes higher

normal stresses makes redistributions of stresses more and more difficult. This results in deceases

in the ductility. This behaviour of shear wall also confirmed by the experimental result which also

shows that higher initial vertical loads lead to increasing strength of the shear walls at the loss of

its ductility.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

Relative Tangential Displacement [mm]

La
te

ra
l L

oa
d 

[K
N

]

 

 

Experimental (SW−1a)
Experimental (SW−1b)
Numerical

(a)

69



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

Relative Tangential Displacement [mm]

La
te

ra
l L

oa
d 

[K
N

]

 

 

Experimental
Numerical

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

Relative Tangential Displacement [mm]

La
te

ra
l L

oa
d 

[K
N

]

 

 
Experimental
Numerical

(c)

Figure 5.3: Comparison of experimental and numerical result obtained from the proposed model:

(a) SW-1; ((b) SW-2; (c) SW-3.

The sharp load drops in Figure 5.3(b) is attributed to sudden drop of shear stress in single

integration point of the potential crack, caused by cracking of a brick. The decision of setting

the shear stress in potential crack of brick equal to zero upon initiation of the crack, causes the

problem related to convergence. Thereby forcing the choice of load steps to be very very small and

are impractical. This effects the numerical robustness of the model, due release of large amount of

energy in single load step. However, if sufficiently fine meshes are adopted, the solution obtained

is independent of the size of the load increments. The problem of large amount of energy release

in single load step is over come by gradually decreasing the shear stress to zero in several load step

rather than sudden drop to zero. This assumption allows us to overcome the problem and it is

confirmed by the numerical example on the shear wall SW-1 and SW-3, Figure 5.3(a) and 5.3(c) .
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d = 1 [mm] d = 2 [mm] d = 4 [mm]

(a)

d = 1 [mm] d = 2 [mm] d = 4 [mm]

(b)

d = 1 [mm] d = 2 [mm] d = 4 [mm]

(c)

Figure 5.4: Minimum principal stress at different displacement (d) with deformed mesh for different

shear wall without opening: (a) SW-1; ((b) SW-2; (c) SW-3.
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The numerical crack pattern and minimum principle stress distribution for the different wall

are presented in the Figure 5.4. The behaviour of shear wall can also be understood from the

stress distribution plots. First, initial vertical loads are applied, which makes the stress distribution

continuous. At early stages of horizontal displacement, small diagonal compression struts forms.

These struts are defined by the center of the bricks due to the different stiffnesses of joints and bricks,

see Figure 5.4. On further loading, a diagonal stepped crack opens and prevents the formation of

compressive struts parallel to the diagonal line defined by the center of the bricks. Simultaneously,

diagonal struts initiate the the splitting of bricks due to Possion’s effect. When the diagonal cracks

are fully open, two distinct struts are formed, one at each side of the diagonal crack. Finally, diagonal

stepped crack and crushing of the toes in compression leads to collapse of shear wall, simultaneously

with cracks in the brick.

Moreover, all the shear walls confirms ductile behaviour. However, for higher initial vertical

load the shear transfer across the bed joints in the diagonal crack zone is higher, which reduced the

opening of the diagonal crack. Therefore, a more continuous stress distribution is found with larger

compression zones at the supports, which lead to reasonable ductility with delayed compressive

failure at the toes.

5.2.2 Shear wall with opening (SWO)

In this section we present analysis the tests carried out on walls with a central opening. These walls

are subjected to only one vertical normal pressure equals 0.30 N/mm2. The material properties

used in simulation are same as for the walls SW-1 (without opening). In these shear walls, opening

creates two small weak piers on either sides of opening. Thus, two compressive strut develops under

horizontal loading to spread the load around both sides of the opening. On applying the monoton-

ically increasing horizontal load, first diagonal zigzag cracks arise from two corners of the opening.

Than, a tensile cracks arise from the outside of the wall at the base and top of the small piers (in

the bed joint). Finally, a collapse mechanism is formed by failure of the compressed toes, located at

the bottom and top of the wall as well as the small piers.

P = 0.30 [N/mm2]

(a) SWO-1a

P = 0.30 [N/mm2]

(b) SWO-1b

Figure 5.5: Experimental failure pattern for the different walls with opening [12, 78, 79].
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Figure 5.6: Comparison of experimental and numerical result obtained from the proposed model for

SWO-1.

The comparison between numerical and experimental load-displacement curves are shown in Fig-

ure 5.6. The numerical result are very much in agreement with those obtained from the experiments.

A good impression of the SWO-1a and numerical model is obtain because calculated stiffness of the

numerical model matches with the experimental values. This indicates that the proposed model is

able to predict correct failure mechanism.

d = 1 [mm] d = 4 [mm]

Figure 5.7: Minimum principal stress at different displacement (d) with deformed mesh for shear

wall with opening (SWO-1).

The Numerical crack pattern and minimum principle stress distribution for the different wall are

presented in the Figure 5.7. During the Initial horizontal loading, two diagonal crack that arise from

the corners of the opening. simultaneously, horizontal crack in the top and bottom of the piers also

arise, Figure 5.7 (first figure). The load is transfer by the two large compression struts on the both
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side of opening. On further loading, the previous diagonal crack will stop and two new addition

diagonal crack start to open, see Figure 5.7 (second figure). The two compression struts becomes

narrower. Finally the diagonal crack progress toward the the supports and, then the compression

toes at the top and bottom will crush. A complete collapse mechanism is formed with the failure of

the smaller piers.

5.3 Masonry bed joints in direct cyclic shear loading

In the previous section 5.2 the proposed composite interface model has used for the monotonically

increasing load. But, the propose model has more applicability. The experimental work [42, 63, 67,

80, 81] carried out to investigate cyclic behaviour of masonry interfaces has shown some important

characteristics 1, summarized as

• stiffness degradation in both tension and compression regimes;

• residual relative normal displacements at zero stress;

• absence of stiffness degradation in direct shear;

• complete crack closing under compressive loading.

From the above summarized point, it becomes clear that the present formulation of composite

interface model is unable to reproduce stiffness degradation in tension and compression unloading.

But, the model can work for the cyclic behaviour for shear, where stiffness degradation is not

required. Thus present model can only be used for the for analysis of masonry joint under direct

cyclic shear loading. For the general cyclic loading kinematic hardening has to be include in the

model for including the stiffness degradation in tension and compression unloading. It is not persuade

in the present work and is suggested for the further work.

Figure 5.8: Direct shear test set-up as per Atkinson et al. [42]

Further in this section, the capability of the proposed composite interface model is validated by

comparing the finite element results with experimental results obtained by Atkinson et al. [42], in

representing the cyclic shear behaviour of masonry mortar joints under different load conditions. In

[42] the authors conducted direct shear tests using a servo-controlled loading apparatus to examine

1Note: During unloading of the structure
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the response of brick masonry bed joints under monotonic and cyclic shear loadings, see Figure

5.8. In each of these tests, first a uniformly distributed normal stress was applied ranging from

0.34− 4.31 Mpa, and then four cycles of shear reversals were imposed under displacement control.

The authors used old and new bricks with low- and high-strength mortars. In the present study,

new bricks specimens with high-strength mortar has been considered for the validation, under three

different levels of compressive stress (0.49, 1.34, 4.31Mpa). The specimens consist of modern clay

bricks [193x55x92mm3] and mortar joints [7 mm], prepared with a volumetric cement : lime : sand

ratio (1 : 1.5 : 4.5). The bed joint area is equal to 92 x 398 mm2(0.037m2). The values of the

material parameters used in the simulations are summarized in Table 5.4 and 5.5. The stiffness of

the brick is assumed to be 20 times the elastic normal stiffness of the mortar joint.

Table 5.4: Elastic material property for the brick and joints

Brick Joint

E ν Knn Ktt

N/mm2 N/mm3 N/mm3

220 0.15 3.8 11.5

Table 5.5: Inelastic material property for the joints

Tension
ξ0 [N/mm2] 0.65

GIf [Nmm/mm2] 5ξ20/2Knn

Shear

C0\Cr [N/mm2] 1.4ξ0\0.1CQ

CQ0\CQr [N/mm2] 1.1ξ0\0.1CQ

φ0\φr [radian] 0.67\0.57

ψ [radian] 0.35\0

GIIf [Nmm/mm2] 10GIf

Cap ζp [N/mm2] −16

The comparison between numerical and experimental load-displacement curves is shown in Figure

5.9, which shows that the proposed model is able to reproduce the shear behaviour of brick masonry

bed joints not only in monotonic but also in cyclic loading. The experimental and numerical dilatancy

curves show that, higher the compressive stress, smaller is the dilatancy and it is observed that the

correlation of numerical and experimental results is good. The significant influence of dilatancy

on the de-formability and strength of an interface can be demonstrated by this numerical example.

When the interface between the elastic region (elastic brick) is subjected to shear deformations under

a normal confinement, Initially the normal stress on the interface is zero. However, since the elastic

boundary prevents the interface from dilating freely, a significant compressive stress develops on the

interface during the application of relative tangential displacement. Depending on the amount of

dilatancy, controlled by the dilatancy parameter, the shear response can change from softening to

hardening, and the shear strength of the interface can change by an order of magnitude.
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p = 0.49 [Mpa]

p = 1.34 [Mpa]

p = 4.31 [Mpa]

(d)

Figure 5.9: Comparison between experimental results from direct shear test [42] and Numerical
results obtained from the present model (a) P = 0.49 MPa; (b) P = 1.34 MPa; (c) = 4.31
MPa; (d) distribution of normal displacements with relative tangential displacements for different
pressure.
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5.4 Conclusions

A simplified micro-modelling strategy for masonry has been presented for the validation of proposed

model, in which the units are discretized with continuum elements and the joints are discretized with

interface elements. Moreover, simple mode I potential crack is placed vertically in the middle of each

brick, to model splitting of the brick. Validation of the model and the strategy against experiments

carried out in shear walls. The numerical result shows that strategy is able to reproduce the complete

path of the structures up to and beyond peak until total degradation of strength without numerical

difficulties in the proposed model.

Finally, it has also been shown that the proposed model is able capture the cyclic effect in direct

shear only. The numerical result on masonry bed joints in direct cyclic shear loading shows the good

correlation with experimental result.
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Chapter 6

Summary and conclusions

The main objective of work was to the development and use of reliable numerical tools. In particular,

a tool which is able to describe the post-failure behaviour of masonry structures in order to assess

the safety of architectural heritage. A Reliable tools is robust and provides accurate solution. In

this study, an attempt has been made to provide tools for the analysis of unreinforced masonry

structures at micro level in plane stress conditions. This research presents an original contribution

to numerical strategies aimed at the analysis of structural.

Homogenization techniques

An aspect of the analysis of masonry structures, which has been discussed, is homogenization tech-

niques. The importance of such techniques is that, it is possible to predict the behaviour of the

different composites based on the micro-mechanical properties of its components. The main objec-

tive is to obtain a macro-properties of the composite. These macro-parameters can serve as input

data for an independent macro-model based on plasticity or damage constitutive laws. In present

study, homogenization theory for periodic media has been applied in a rigorous way for deriving the

anisotropic elastic characteristic of masonry that is in one step. In particular, the real geometry has

been taken into account (bond pattern and finite thickness of the wall). For the numerical example

the two representative volume element having the same ratio of mortar and unit has been considered

and their equivalent property has been found. Moreover, a careful examination for different stiffness

ratio between mortar and unit has been done to assess the performance for inelastic behaviour.

Composite interface model

The mathematical theory of plasticity has been adopted for the representation of the quasi material

behaviour. The yield function consists of a single surface yield criteria, which is capable of represent-

ing pressure-dependent friction shear failure, cracking of material by cut-off and crushing of plain by

cap-off in compression. The proposed yield function is simple extension of Mohr-Coulomb criteria,

which makes use of property of arc-tan for cut and cap-off. The algorithms have been developed by

integrating the differential equation by fully implicit Euler backward method. These equations are

solved by full Newton-Raphson technique in monolithic manner, which lead to combined local and

global approach.
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A careful and detailed investigation has been made to check robustness and accuracy of the

algorithm for different load path and non associativity. It has been found that sub stepping is

required to ensure convergence and accuracy of the final solution at both local and global level.

Thus, Algorithm is combined with a sub stepping strategy. The adopted solution strategy has

proven to be satisfactory because the loading paths could be traced completely, ranging from the

elastic regime, pre-failure inelastic regime and post-failure inelastic regime until total degradation

of strength.

Micro-modelling

For the micro-modelling strategy, mortar and unit-mortar interface is lumped into joint between

expended units. The units are assumed to be linear-elastic and all inelastic phenomena are lumped

in to the joints via a composite interface model. The composite interface model comprehends three

different failure mechanisms. First, tension cut-off for mode I failure. Second, the Coulomb friction

model for mode II failure. Third, cap for compression failure. It is assumed that the internal

damage associated with each failure mechanism can be modelled using internal hardening/softening

parameters which are related to a fracture energy in tension, shear and compression. Analyses

of structures where all the modes of the composite interface model become active show that the

strategy results in a stable and accurate algorithm.

Micro modelling of masonry provides a good understanding of the failure mechanisms involved in

the analysed structures. However, this model is particularly suited for small structures. Particular

for the structural where the interaction between units and mortar is of primary interest. It is noted

that, for micro Modelling of large structures, the memory and time requirements become too large.

Scope for future work

In retrospect, the present study successfully achieved the objectives. In particular, robust and

accurate numerical tools that can be offered to masonry analysts and designers have been developed

at the micro-level. However, the proposed Composite interface model is restricted to masonry

structure subjected to monotonic loading. In particular, kinematic hardening could be included in

the model for the cyclic behaviour of masonry in the compression and tension region.

Moreover, for further application of the models to a wide range of masonry structures, it is empha-

sized that the experimental determination of material parameters is very important. In particular,

information about the post-peak material behaviour is very rarely given in present literature.

In a more fundamental perspective for modelling the shear wall, an investigation of refined

strategies to model cracks in the units is suggested.
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