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Abstract 

 

 

Granular pile, also popularly known as stone column, is an economical and efficient ground 

improvement technique to treat variety of soils. Depending on loading, geometry and 

spacing pattern, granular pile may fail individually or as a group. Bulging failure of granular 

pile is the most common failure criterion among the possible failure mechanisms – punching 

failure, shear failure and bulging failure. In this study, Finite Element analyses have been 

performed using commercially available software PLAXIS 2D to understand the bulging 

and the load-settlement behavior of both single floating granular pile and granular piled raft 

embedded in a soft clay deposit. Elastic-perfectly plastic response (Mohr-Coulomb 

criterion) is used to model both the granular pile and the soft clay. Parametric study is 

carried out by varying the properties of clay and granular pile to understand and quantify (a) 

the bulging along the depth of the pile with and without raft, and (b) the load-carrying 

capacity of granular pile and piled raft. Critical length of granular pile is also proposed for 

the cases considered in the study. 
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Chapter 1 
 

Introduction 

  

 

1.1 Overview 

Since coastal areas are one of the most productive areas and offer good locations for trading 

purposes, lot of developmental activities like construction of ports, industries, tourism based 

buildings and other infrastructure facilities are on the rise. But as these areas mostly contain 

soft marine clay with very low shear strength and high compressibility, construction in these 

areas becomes a challenging task for Civil Engineers. The increased cost of conventional 

foundations restricts their applications in these areas. Ground improvement by granular piles 

offers a very economical and efficient remedial method. Granular piles, also known as stone 

columns or granular columns, are essentially made up of granular materials compacted in 

long cylindrical bore holes. 

Even though the widespread use of granular piles is to support embankments, storage tanks, 

etc., as a group, interest in the application of granular pile as either a single granular pile or 

as a small group is increasing in recent times for low-rise buildings. For such instances, 

understanding the behavior of granular pile as a single or isolated one for reinforcing soil 

becomes essential. Isolated, long granular pile is usually subjected to bulging mode of 

failure. From the existing literature, it was found that only limited studies are available on 

the bulging behavior of single floating granular pile in clay deposit. Hence, in order to 

understand the bulging behavior, this study is carried out using finite element program 

PLAXIS 2D. In addition, the load-carrying capacity of single-floating granular pile and 

granular pile raft is quantified. 

1.2 Objectives of the study 

The objectives of this study are the following: 

 To study bulging behavior and load-settlement behavior of single floating granular 

pile and granular piled raft embedded in a semi- infinite medium of clay by 
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considering linear elastic-perfectly plastic response for both granular pile and soft 

clay deposit. 

 To carry out a parametric study to quantify the effects of various properties of clay 

and granular pile on bulging behavior and load-settlement behavior of granular pile 

and granular piled raft. The study related to bulging behavior of granular pile aims 

to study the effects of various properties of granular material and soft clay on the 

bulging depth, maximum bulging and the corresponding depth.  

 To study the critical length of GP and how this affect the mode of failure of 

granular pile. 

1.3  Organization of  the study 

Chapter 2 contains the theoretical background for understanding the behavior of granular 

pile. Chapter 3 discusses the basic ideas of numerical modeling in PLAXIS 2D to simulate 

elastic – perfectly plastic behavior of granular pile. Chapter 4 will give validation of 

numerical modeling of granular pile, non-linear analysis of granular pile, and provides the 

discussion on results based on bulging behavior and load-settlement behavior of granular 

pile. Chapter 5 discusses numerical modeling of granular piled raft, comparison of granular 

pile raft with granular pile, importance of evaluation of critical length of granular pile and 

results based on bulging behavior and load-settlement behavior of granular piled raft. 

Finally, Chapter 6 contains conclusions based on numerical analysis of granular pile and 

piled raft. 
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Chapter 2 
 

Literature Review 

2   

 

2.1 Introduction 

Currently, more than fifty percent of the World’s population live in coastal areas because 

they are one of the most productive areas and offer good locations for trading purposes. 

Hence, lot of developmental activities like construction of ports, industries, tourism based 

buildings, and other infrastructure facilities are on the rise. But as these areas mostly contain 

soft marine clay with very low shear strength and high compressibility, construction on 

these areas becomes a challenging task for Civil Engineers. The increased cost of 

conventional foundations restricts their applications in these areas. Because of this, ground 

improvement techniques such as deep mixing method, dredging, preloading and soil 

displacement, etc., have been widely used. But considering environmental restrictions and 

post construction maintenance expenses, granular piles (GP) are mostly preferred.  

2.2 History and applications of granular pile 

Granular pile can be defined as a compacted vertical column of stones that penetrates and 

replaces unsuitable soil. In 1830, the concept of stone column was first applied in France. In 

the early 1960s, this technique was adopted in European countries and thereafter it has been 

used successfully for 1) improving slope stability of both embankments and natural slopes, 

2) increasing bearing capacity, 3) reducing the liquefaction potential of sands, 4) reducing 

total and differential settlement, and 5) increasing the time rate of settlement. Applications 

of stone column also include support of embankments, abutments, bridges and other type of 

structures. The problem of differential settlement in the case of extending an already 

existing embankment over soft soils may be prevented by adopting granular piles as a 

ground improvement technique.  

Many research studies have been conducted to understand the behavior of granular pile [1, 

2, 6, 28, 31, 32]. From full scale load tests on granular piles, Bergado et al. (1984) [8] and 

Bergado and Lam (1987) [9] proved that granular piles increased the bearing capacity by 



 

4 

more than 3 to 4 times that of untreated ground, reduced the settlements at least 30% and 

increased slope stability safety by at least 25%. 

GP can be used for wide variety of soils, ranging from loose sands to soft clays and organic 

soils. But it is not suitable for sensitive soils because of their reduction in strength while 

installing granular pile. They are cost effective, utilizing low energy (environmentally 

responsible), technically feasible and can be constructed in the shortest period. Even though 

construction of granular piles is very effective method for various applications, the behavior 

of GP is not fully understood. Construction of GP requires careful field control and an 

experienced contractor. 

2.3 Methods of construction of granular piles  

Method of installation of GP will depend on many factors- (a) existing site condition, (b) 

availability of equipment, (c) availability of material in the locality, and (d) cost of 

installation. Based on these factors, various common methods have been adopted all over 

the World. These methods are briefly explained in the following sections. 

2.3.1 Vibro-compaction method 

This method is suitable for granular soils. In this method, vibroflot is penetrated into the 

ground under its weight and with help of water and vibration [7, 17]. At predetermined 

depth, the vibroflot is then withdrawn slowly from the ground with subsequent addition of 

granular back fill to construct compacted granular pile. Schematic of construction stages in 

vibro-compaction process is shown in Figure 2.1. 

2.3.2 Vibro-replacement method 

This method is used for improving fine-grained soils which have shear strength less than 40 

kPa. The equipment used for this method is similar to that for vibro-compaction method. In 

this process, a hole is formed in the ground by inserting a vibroflot down to the desired 

depth with assistance of water. After making a borehole of desired depth, vibroflot is 

withdrawn. The uncased borehole is flushed out and filled with granular back fill in stages. 

Stages are shown in Figure 2.2. This method is also known as wet process since the 

installation of GP is done in presence of jetting water. The wet process is commonly used 

where borehole stability is problematic. Hence, it is mostly adopted for sites underlain by 

soft soils and a high ground water table. 
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Figure 2.1: Vibro-compaction method [10] 

 

 

Figure 2.2: Vibro-replacement method [10] 

2.3.3 Vibro-displacement method 

Vibro-displacement method is also known as vibro-replacement (dry) process, since air jets 

are used during initial formation of borehole, instead of water jets.  Construction stages for 

this method are same as the wet process. But, this method can only be used when the hole 

that is formed can withstand without collapsing during withdrawal of the probe. For 

suitability of dry process, soils must have undrained shear strength in the range 40-60 kN/m
2
 

and low ground water table condition. 
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Figure 2.3: Vibro-composer method [10] 

2.3.4 Vibro-composer method 

The construction procedures are shown in Figure 2.3. The casing pipe is driven into the 

ground up to a desired depth using a heavy vertical vibratory hammer. The casing is filled 

with sand and then repeatedly extracted and partially re-driven using the vibratory hammer. 

The procedure is repeated until a fully penetrating compacted granular pile is formed. This 

granular pile is usually termed as sand compaction pile. 

2.3.5 Cased borehole method 

Granular material is rammed in stages into pre-bored holes by using a heavy falling weight 

of 15 to 20 kN dropped from a height of 1 m to 1.5 m. This method is more economical than 

vibratory compaction methods. However, its applicability might be limited to non-sensitive 

soils because of disturbance caused by remolding by ramming operation. Construction 

procedure is shown in Figure 2.4. 
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Figure 2.4: Cased-borehole process [10] 

2.4 Failure mechanisms  

In practice, granular piles are constructed as end bearing or floating piles. GP may fail 

individually or as a group. The possible failure mechanisms of single granular pile include 

bulging failure, shear failure, and punching failure as shown in Figure 2.5 [6]. Short 

granular pile may undergo either general or local bearing type failure.  

 

 

Figure 2.5: Failure mechanisms of single granular pile [6] 

But in granular pile groups, since surrounding soil provides additional support to the interior 

piles, they are more confined leading to increased stiffness of group. Hence, they undergo 
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less bulging compared to single isolated GPs. Groups can also fail by lateral spreading 

especially for a wide flexible loading (embankment). The lateral spreading slightly promote 

the tendency of bulging of GPs. Group of piles in soft soil probably undergo a combined 

bulging and local bearing type failure as shown in Figure 2.6. GP groups of short length can 

either fail in end bearing or bearing capacity type failure of individual pile [6].  

 

Figure 2.6: Failure mechanisms of granular pile group [6] 

In this study, we focus on the bulging behavior of single isolated floating granular pile. To 

understand the bulging behavior of GPs, many studies based on numerical modeling, 

laboratory testing and field testing have been carried out. If the length of granular pile is 

greater than 4 to 6 times its diameter, the failure mechanism shall be the bulging mode 

irrespective of whether it is end bearing- or floating- type pile [23]. The bulging failure is 

the most common failure criterion, since most of constructed GPs in the field have length 

which is equal to or greater than 4 to 6 times its diameter [15]. The lateral confining stress 

support from the surrounding soil will affect the overall performance of the pile. Since the 

lateral support from the soil increases with depth, bulging mostly occurs near to the top of 

the pile except for cases such as the presence of intermediate layer of very weak soil like 

peat with thickness greater than about one pile diameter [6].  According to the studies by 

Barkdale and Bachus (1983) [6]  and Nayak et al. (2011) [26], bulging depth will be equal 

to 2 to 3 times the pile diameter. Nayak et al. (2011) [26]  found that the maximum bulging 
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occurs at a depth of 0.5 to 0.8 times the diameter of pile from the surface. Ambily and 

Gandhi (2007) [3] reported that the maximum bulging occurs at a depth of 0.5 times 

diameter of the granular pile, if GP is loaded alone. These studies consider the group effects 

of GPs using unit cell concept. But, Deb et al. (2011) [15] observed that the maximum 

bulging occurs at a depth of 1.2 times of column diameter in the case of the granular pile 

used to improve clay deposit and bulging diameter is equal to  1.24 times the pile diameter. 

In this study, groupeffect is not considered. Since these observations in this study based on 

small scale model tests, these have limitations of scale and boundary effects. Some field 

tests are reported in the literature on the bulging behavior of GPs [8, 9, 21, 22].  These field 

tests are reviewed in the Chapter 3. 

2.5 Methods to predict the ultimate load carrying capacity of granular pile 

As we have discussed, bulging failure is the most probable failure mechanism of isolated 

single granular pile. A number of theories have been developed for estimating the ultimate 

load carrying capacity of single granular pile. The lateral confining stress which is 

mobilized by surrounding soil, as the GP material undergoes lateral, outward displacement, 

is taken as the ultimate passive resistance (σ3).  This lateral passive resistance acts in the 

horizontal direction and triaxial state of stress is assumed within the pile. Most of these 

theories were developed based on this concept. According to plasticity theory, ultimate 

vertical stress (σ1) can be calculated using the following equation: 

                   σ1=σ3Kp                                                                                                            (2.1) 

where, Kp (coefficient of lateral passive earth pressure) = (1+sin φp)/(1-sin φp)          

            φp = angle of shearing resistance of granular pile 

Similar concept was used by Greenwood (1970) [20] for his preliminary analyses of 

granular piles. According to him, ultimate lateral stress can be calculated using the 

following equation: 

            σ3 = γczkpc +2cu√kpc                                                                                                 (2.2) 

where, γc = unit weight of clay 

           z = depth of maximum bulging 

            kpc = passive earth pressure coefficient of clay 

            cu = undrained shear strength 

 

Using Equations (2.1) and (2.2), ultimate vertical stress can be found out. But in this 

approach, the lateral resistance by the surrounding soil was taken as passive resistance 
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behind a long retaining wall. As plane- strain loading condition is assumed for modeling of 

granular pile, this approach does not represent actual three- dimensional geometry of a 

granular pile.  

Using cavity expansion theory, lateral expansion of pile can be better idealized as a 

cylindrical expansion into the soil. This theory assumes granular pile as infinitely long 

cylinder which expands about the axis of symmetry. Even though the granular pile bulges 

radially to a distance of about 2 to 3 pile diameters, this approximation of an infinitely long 

expanding cylinder gives reasonable good results [21]. If the soil is treated as ideal elasto-

plastic material, ultimate lateral stress (σ3) of the granular pile was given by Gibson and 

Anderson (1961) [19]  as 

                    σ3 = σro+ cu[1+ ln(Es/2cu(1+µ))]                                                                  (2.3) 

Where σro = total in-situ lateral stress 

          Es = Deformation modulus of the soil 

          cu = undrained cohesion 

          µ = Poisson’s ratio 

Hughes and Withers (1974) [21] presented a method which is based on cavity expansion 

theory given by Gibson and Anderson (1961) [19] for a frictionless soil. They considered 

the bulging or lateral expansion of granular piles as similar to the cavity developed during 

quick pressuremeter test. From the results of quick pressuremeter tests, they reasonably 

approximated the expression for the ultimate lateral stress as  

            σ3 ≈ σro+ 4cu                                                                                                         (2.4) 

The ultimate vertical stress of the granular pile is then calculated as  

             σ1 = (σro+ 4cu) (1+sin φp)/ (1-sin φp)                                                                      (2.5) 

To incorporate for soils with both friction and cohesion, Vesic (1972) [29] had developed a 

general cylindrical cavity expansion solution from previous work. In his approach, soil is 

again assumed as elastic or plastic and pile is idealized as infinitely long cylinder. 

According to Vesic cavity expansion theory, the ultimate lateral passive resistance (σ3) can 

be represented as 

      σ3 = cFc + qFq                                                                                                                (2.6) 

where, c = cohesion of the soil 

           q = mean isotropic stress (σ1 + σ2 + σ3)/3 at equivalent depth  

           Fc, Fq= Cavity expansion factors. 

Using Equations 2.1 and 2.6, ultimate vertical stress (σ1) can be estimated. For frictionless 

soil, Vesic cavity expansion theory will give same result as that from cavity expansion 

theory given by Gibson and Anderson. Bulging failure can be estimated by these theories. 
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Radial expansion of granular pile can be reduced by increasing the confining stress 

developed within the surrounding soil. To increase the lateral confining stress, techniques 

such as wrapping the individual granular piles with geosynthetics [25]  or with geogrids [17] 

or providing rigid raft on the top of granular piles [24] have been proposed. Encasement by 

geosynthetics or geogrid imparts additional confinement to the granular pile, thus reducing 

the bulging of granular pile [17, 24].  Application of   load through a rigid raft over an area 

greater than the granular pile increases the vertical and lateral stress in the surrounding soft 

soil. The larger bearing area together with additional confinement of the granular pile 

reduces the bulging and increases the ultimate load carrying capacity. The available 

literature considers linear stress-strain response of soil and granular pile to model the 

behavior of raft foundation supported on granular pile. However, linear stress-strain 

response can only be applied for strains within elastic regime. In this study, elastic-perfectly 

plastic response of soil and GP was considered to model the behavior of single/isolated 

floating granular pile with and without raft. Numerical modeling was done using 

commercially available finite element software - PLAXIS 2D version 9. 
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Chapter  

 

Numerical Modeling 

3  

  

 

3.1 Introduction 

Application of advanced numerical modeling methods helps to improve the reliability on 

engineering design and provide economically optimized design. Numerical modeling 

mainly involves use of finite element or finite difference methods to analyse the problem 

with the help of computer.  Among the available methods, finite element analysis (FEA) or 

finite element method (FEM) is the most popular one. The basic idea of finite element 

method is to divide the  structure  or region into  large number of finite elements  which are 

interconnected  by nodes,  analyse  each element in local co-ordinate system and combine 

the results in global co-ordinate  system to get the unknown variable for the entire system. 

This method is a suitable alternative to overcome the disadvantage of closed-form analytical 

solutions. In FEM, complex region is discretised into finite elements and analysed to find 

out the unknown field variables with the help of interpolating polynomials. This procedure 

can be applied to all problems which may be structural or non-structural. This speciality 

made FEM as one of the most powerful methods in various fields. In numerical modeling of 

geotechnical engineering problems, soil is usually modeled as a continuum with an 

appropriate constitutive model and boundary conditions. The constitutive model describes 

how the material behaves under specific loading conditions. The boundary conditions define 

the loading and displacements at the boundaries. In this study, commercially available finite 

element software program- PLAXIS 2D (2009) - is used. A brief description of this software 

is given in the following section.  
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3.2  PLAXIS 2D- Finite element program  

3.2.1  Model 

In PLAXIS 2D [13], two dimensional finite element analyses can be performed either with 

plane strain or axisymmetric conditions. Plane strain model is used for geometry with 

uniform cross section which have large dimension of geometry in one direction compared to 

other directions. Deformation or strain perpendicular to cross section is assumed as 

negligible compared to cross sectional strains or deformations. Axisymmetric model is used 

for uniform circular geometry with loads applied symmetrically around the central axis. In 

both plane strain and axisymmetric cases, each node can undergo two translations (degrees 

of freedom) along x –axis and y-axis. In this study, axisymmetric model is used since GP 

and raft have uniform circular shape.  

3.2.2 Element type 

The user can select 6-node or 15-node triangular elements to model region and structures in 

PLAXIS 2D (Figure 3.1). The 15-noded element has fourth order interpolation for 

displacements and twelve Gauss points or stress points for the numerical integration, 

whereas 6-noded element uses second order interpolation and three Gauss points. The 15-

noded element is preferred over 6-noded element because of its very accurate and high 

quality stress results. Even though the 6-noded triangular element gives good results, it over 

predicts the bearing capacity and safety values for axisymmetric problems. However, use of 

15-node elements leads to high memory consumption, slow calculation and slow operational 

performance compared to 6- node elements. For the present analysis, 15-node elements are 

used.  

 

Figure 3.1: Available element types in PLAXIS 2D [13] 

3.2.3  Interface elements 
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Interface elements enable to study the interaction between structural objects (walls, plates, 

geogrids, etc.) and surrounding soil.  In modeling, corners in stiff structures and an abrupt 

change in boundary conditions may lead to non-physical stress oscillations. This problem 

can be solved by using interface elements. 

Failure of long GP is due to radial bulging occurring near its top for both floating and end 

bearing, but not by shear failure. Hence, interface elements are not adopted in this study. In 

addition, depending on the installation method of GP, shear strength of the interface 

between GP and soft clay which is a mixed zone of stones and clay, is varying. Since this is 

not known precisely, use of interface elements is insignificant [3]. 

3.2.4 Meshing 

After defining the geometry model and assigning material properties to the model, the 

geometry has to be divided into finite elements for analyzing of the problem. A composition 

of interconnected elements is called a mesh. In PLAXIS, the generation of the mesh is done 

by using unstructured 15-noded or 6-noded triangular elements. The sizes of mesh in the 

software are generally divided into five levels of global coarseness. They are very coarse, 

coarse, medium, fine and very fine. By default, the global coarseness is set to ‘Coarse’.   

3.2.5 Loads and boundary conditions 

PLAXIS have options for introducing load either at the model boundaries or inside the 

model. Load options contain distributed load, line loads, point loads and prescribed 

displacement. Prescribed displacements are special conditions that can be forced on the 

model to control the displacements of certain points. The distributed load in the geometry 

model can be created similar to creating geometry line. The distributed load will be a unit 

pressure perpendicular to the boundary. The point load is applied in terms of force per unit 

width. For axisymmetric loads, point loads are actually line loads on a circle section of 1 

radian. The actual point load must be divided by 2π to get the input value of the point load 

to be applied at the centre of the axisymmetric model [13]. 

Boundary conditions can be applied using fixity option. Fixities are defined as prescribed 

displacements at geometry line which is equal to zero.  Fixity can be provided by using 

either horizontal (ux=0), vertical (uy=0), total fixity (ux=uy=0) or standard fixity. By 

selecting standard fixity, PLAXIS automatically imposes a set of general boundary 

conditions to the geometry model. These boundary conditions are generated according to the 

following rules [13]. 

 Vertical geometry lines for which the x-coordinate is equal to the lowest or highest 

x-coordinate in the model obtain a horizontal fixity (ux=0). 
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 Horizontal geometry lines for which the y-coordinate is equal to the lowest y-

coordinate in the model obtain a full fixity (ux=uy=0). 

 Plates that extend to the boundary of the geometry model obtain a fixed rotation in 

the point at the boundary (Фz=0) if at least one of the displacement directions of that 

point is fixed. 

Since standard fixity is convenient and fast input option, it is better option for this study. 

3.2.6 Modeling soil behavior 

In PLAXIS, various soil models are available to simulate the behavior of soil and other 

structural elements. They are Linear Elastic model, Mohr-Coulomb model, Jointed Rock 

model, Hardening Soil model, Soft Soil model, Modified Cam-clay model, Soft Soil Creep 

model and User-Defined model. Among all the models, Mohr-Coulomb model will serve as 

a first-order approximation of real soil behavior. This elastic-perfectly plastic model 

requires five basic soil input parameters, namely deformation modulus (E), Poisson’s ratio 

(µ), cohesion (c), friction angle (φ) and dilatancy angle (ψ). The failure envelope of this 

elastic- perfectly plastic model is shown in Figure 3.2. 

 
Figure 3.2: Mohr-Coulomb failure criterion 

This model which is based on the combination and generalization of Hooke’s and 

Coulomb’s law, formulated in a plasticity framework. The general state of stress, failure 

criterion and flow rules are represented by E and µ, φ and c, and ψ respectively. According 

to the Mohr- Coulomb failure criterion, the failure of soil will occur when shear stress on 

any soil element reaches the critical value. The representation of Mohr-Coulomb failure 

criterion in terms of Principal stresses 1, 2 and 3 is shown in Figure 3.3. 

In general, all model parameters are meant to simulate the effective soil state. The presence 

of pore water will influence significantly the behavior of soil. To incorporate the pore 

pressure effect, three types of behavior are available in the software: drained behavior, 

undrained behavior and non-porous behavior. Drained behavior is used for representing the 
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cases of no excess pressure such as dry soils, high permeable soils and/or low rate of 

loading. This type is mainly meant to simulate long-term soil conditions. 

 

Figure 3.3: Mohr- Coulomb failure surfaces in principal stress space 

Undrained behavior is used for simulating the excess pore pressure in cases of low 

permeability soils, and/or high rate of loading. Undrained analysis can be done with 

effective stress parameters or with total stress parameters. If the effective stress parameters 

are known, it is possible to specify undrained behavior using effective parameters. However, 

if accurate effective parameters are not available, it is possible to perform a total stress 

analysis using stiffness parameters (undrained deformation modulus Eu and an undrained 

Poisson’s ratio µu) and strength parameters (undrained shear strength cu and φu=0). 

For cases where initial or excess pore pressure is not to be considered, such as in the 

modeling concrete or structural elements, non-porous behavior is used for simulating actual 

behavior of these materials.  

3.3 Mohr-Coulomb Model 

Mohr-Coulomb model is a simple model which is highly recommended when soil 

parameters are not known with great certainty. This model is also applicable to three 

dimensional stress space modeling. Even though it simulates drained condition in a good 

manner, the effective stress path may deviate significantly from observed behavior in the 

case of undrained condition. Hence, it is preferable to use the undrained shear strength 

parameters in an undrained analysis with zero friction angle. This model is not suitable for 

tunnel and excavation problems. As already mentioned, Mohr-Coulomb model requires five 

basic soil input parameters, namely deformation modulus (E) or shear modulus (G), 

Poisson’s ratio (µ), cohesion (c), friction angle (φ) and dilatancy angle (ψ).  These 

parameters are briefly explained in the following section. 
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3.3.1 Deformation modulus 

It may be estimated from empirical equations, laboratory test results on undisturbed 

specimens or from in situ tests. Laboratory tests that are used for estimating the modulus 

include triaxial unconsolidated undrained compression or triaxial consolidated undrained 

compression tests.  Field tests include the plate load test, cone penetration test, standard 

penetration test (SPT) and pressuremeter test.  The undrained deformation modulus Eu of 

cohesive soil can be empirically related to undrained shear strength as [16, 27]. 

                               Eu = Kcu                                                                                                (3.1) 

Values of K range from 100 for very soft soils to as high as 1000 for very stiff clays. In this 

study, since soft clay is considered for this study, range of K is taken from 100 to 200. 

Instead of inputting deformation modulus (E), shear modulus (G) or constrained modulus 

(Eoed) can be used. Software automatically re-calculates the deformation modulus using 

following equations: 

                               G = E/2(1+µ)                                                                                       (3.2) 

                              Eoed= (1-µ)E/(1-2µ)(1+µ)                                                                     (3.3) 

3.3.2 Poisson’s ratio 

Selection of Poisson’s ratio, defined as ratio of longitudinal strain to lateral strain, is simple 

when the elastic model or Mohr-Coulomb model is used for gravity loading. For this type of 

loading, PLAXIS should give realistic value of coefficient of earth pressure at rest 

(K0=σh/σv).  As both the models provide a well-known ratio for one dimensional 

compression, it is easy to select a proper value which gives a realistic value of K0. In most 

of the cases, the value of Poisson’s ratio is the range of 0.3 to 0.4. For unloading situations, 

a lower value of Poisson’s ratio (nearly 0.2) is commonly more suitable. For undrained 

behavior, an effective value of Poisson’s ratio is highly recommended if Undrained 

behavior is selected for material behavior.  PLAXIS will automatically add bulk stiffness for 

pore water based on implicit undrained Poisson’s ratio of 0.495. In this case, the effective 

Poisson’s ratio should be smaller than 0.35. 

3.3.3 Cohesion (c) 

PLAXIS can handle both cohesionless soils and cohesive soils. In the Mohr-Coulomb 

model, drained and undrained type of behavior, the cohesion parameter may be used to 

model the effective cohesion c
’ 
of the soil, in combination with a realistic effective friction 

angle φ’. PLAXIS performs an effective stress analysis for both cases. For cohesionless soil 

(c
’
 ≈ 0), some options will not be performed well, especially when the corresponding soil 

layer reaches the ground surface. To avoid numerical issues, it is advised to enter a small 

value (c of the order of 0.2 kPa). 
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3.3.4 Friction angle  

To perform an effective stress analysis of soil, the effective friction of the soil is used with 

an effective cohesion c’. Total stress analysis can be performed by setting the cohesion 

parameter equal to the undrained shear strength of the soil, in combination with φ = 0. 

3.3.5 Dilatancy angle (ψ) 

The dilatancy angle in case of heavily over consolidated clays and normally consolidated 

clays tends to zero. The dilatancy of sand depends on both the density and on the confining 

stress. The order of magnitude for dilatancy angle may be taken as φ-30
o
. In most of the 

cases, the dilatancy angle is zero for soils which have values of friction angle less than 30
o
 

[13]. A small negative value of ψ is realistic for the case of very loose sand. In the case of 

associated flow rule, friction angle is equal to dilatancy angle, whereas for non-associated 

flow rule, dilatancy angle is not equal to friction angle. 
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Chapter 4 
 

Analysis of Single Floating Granular 

Pile 
4  

 

4.1 Introduction 

Granular piles are usually provided as a group to support various geotechnical structures, for 

example, embankments, storage tanks, etc. Many studies, both experimental and numerical, 

have been carried out to study the behavior of granular pile in a group [3, 4, 5, 11, 15, 28, 

32]. For relatively moderate loading from a structure, interest in the application of granular 

pile either singly or in a small group is increasing in recent times. In this chapter, finite 

element program PLAXIS 2D, which is described in chapter 3, is used to perform non-linear 

analysis of isolated granular pile embedded in a semi-infinite medium of clay. The objective 

of this study is to determine the parameters significantly affecting the load-settlement and 

bulging behavior of GP. In addition, ultimate load capacity of granular pile is estimated and 

compared with various available theories.  

4.2 Problem Definition 

The objective of this Chapter is to study the load-settlement and bulging behavior of a single 

floating granular pile in semi- infinite medium of clay (Figure 4.1). Mohr-Coulomb’s 

criterion is used to model linear elastic -perfectly response of clay and GP. For analysis, the 

finite element program PLAXIS V9 is used. The granular pile and clay is modeled as axi-

symmetric 2D problem. 
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Figure 4.1: Schematic of granular pile in semi-infinite medium of clay 

4.3 Validation of the model 

In modeling the problem, the element size of mesh and the extent of the lateral and bottom 

boundaries should be properly chosen to obtain realistic values. Hence, as a first step, 

validation of the model was carried out with the models available in the literature. The 

present model was validated against the following cases from the literature: 

1)  Madhav et al.’s study (Linear analysis of granular pile) 

2)  Ambily and Gandhi’s study (Non-linear analysis of granular pile in a group) 

3)  Hughes et al.’s study (Field tests on granular pile) 

4.3.1 Validation with Madhav et al.  

In this model, linear stress-strain behavior is considered for both soil and GP. It is modelled 

as axisymmetric case in software PLAXIS V9. The granular pile of length 10 m and 

diameter 1 m is considered. The soil is modelled as single layer of clay as shown in Figure 

4.2. To study the effect of boundary, distance of boundaries both in lateral and vertical 

directions are varied and the analysis is performed. Along the bottom boundary, lateral and 

vertical deformations are restrained (ux and uy = 0). Along the lateral boundaries, lateral 

deformation is restrained but vertical deformation is allowed (ux =0). A prescribed 

placement of 13 mm is applied on the top of GP. The elastic parameters- Deformation 

modulus (E) and Poisson’s ratio (µ) - used in the model are given in Table 4.1. 

L 
Granular Pile 
Elastic Properties - E p ,  µ p 
Unit weight  -  p 
Shear strength Properties - cp,  p p 

Clay 
Elastic Properties - E c ,  µ c 
Unit weight  -  c 
Undrained Shear Strength  -  Cu 

d 

q 
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Figure 4.2: Model of granular pile and soil with the insert showing the enlarged view 

near the pile top 

To study the effect of mesh size, analyses are performed for coarse, medium, fine and very 

fine mesh. Table 4.2 shows information on the generated meshes. For this study, depth and 

width of soil medium are taken as 60 m. 15- noded element, which is more accurate than 6-

noded elements, is used for modelling this problem. 

Table 4.1: Material properties of GP and soil 

Properties Soil (clay) Granular Pile 

E 

(Deformation Modulus) 

kN/m
2 

3000 30000 

µ (Poisson’s ratio) 0.5 0.3 

 

For each type of mesh, load corresponding to 13 mm prescribed displacement is calculated 

at the centre of granular pile. It is observed that load taken by GP converges as the mesh 

configuration is varied from coarse mesh to very fine mesh. Then, further refinement is 

done within and near the GP geometry. Medium mesh with further refinement and very fine 

mesh with further refinement give same results. Hence, medium mesh is used for entire 

domain and further refinement is done within and near the GP. Soil is considered as semi-

infinite medium. To model soil, different values of depth and width are taken and analysed.  

From the analysis, we can observe that beyond a value equal to 60 m of depth of bottom 
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boundary and left/right lateral boundary, there is no change in value of load taken by GP. 

Hence, size of bottom boundary and lateral boundary is fixed as 60 m. 

Very fine mesh is used for modelling.  

Table 4.2: Details of generated meshes 

Mesh No of elements No of nodes Av. Element size

Very fine 1222 9957 1.14 m

Fine 595 4891 1.64 m

Medium 276 2301 2.41 m

Coarse 128 1089 3.54 m

 

 

Figure 4.3: Deformed mesh of the model with the insert showing the enlarged view of 

GP 

The deformed mesh of granular piled raft and soil is shown in Figure 4.3. Different values 

of modular ratio K (ratio of deformation modulus of granular pile to that of clay) are 

considered for the analysis. The load corresponding to 13 mm prescribed displacement on 

the top of GP is compared with solution by Madhav et al. (2009) [24]. The results from the 

present study show good agreement with Madhav et al. (2009) as shown in Figure 4.4. 
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Figure 4.4: Effect of modular ratio on load taken by granular pile  

4.3.2 Validation with Ambily and Gandhi  

In this analysis, soft clay and granular pile is modelled using Mohr-Coulomb criterion 

(linear elastic-perfectly plastic). To start with, the model developed in PLAXIS 2D 

considering elastic-plastic response is compared with a similar study conducted by Ambily 

and Gandhi (2007) [3]. 

Model developed by Ambily and Gandhi (2007) studies the behavior of interior columns 

among a large group of columns. Here, interior column was idealized as unit cell as shown 

in Figure 4.5. They considered the following cases. 

1) Granular pile loaded alone 

2) Granular pile and surrounding soil loaded  (sand pad is provided on the top) 

 

Figure 4.5: Unit cell idealization [6] 

Granular piled raft considered in Ambily and Gandhi (2007) was taken as axisymmetric 

case. The input parameters used in PLAXIS analysis are given in Table 4.3. The drained 

behaviour is considered for clay, stone column, and sand.  The simulation of unit cell model 

is initialized by applying initial stresses in all materials using K0 procedure. To get equal 
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vertical strain condition, load is applied as prescribed displacement. Water influence is not 

taken into account. Fine meshes which are generated using 15-noded triangular elements 

and boundary conditions for both the cases are shown in Figure 4.6. Along the lateral 

boundaries, radial deformation is restricted but vertical deformation is allowed. Along the 

bottom boundary, radial and vertical deformations are restricted. In this analysis, no 

interface element is used. 

Table 4.3: Details of material properties 

Materials 

Deformation 

Modulus 
E 

(kN/m
2
) 

Poisson’s 

ratio 
µ 

Cohesion 
c

u
 

(kN/m
2
) 

Dilatancy 
Ψ  

(Degree) 

Friction 

angle 
φ 

(Degree) 

Dry 

density 

(kN/m
3

) 

Bulk 

density 

(kN/m
3

) 

Soft Clay 5,500 0.42 30 _ _ 15.56 19.45 

Stones 55,000 0.3 _ 10
o

 43
o

 16.62 _ 

Sand 20,000 0.3 _ 4
o

 30
o

 15.50 _ 

 

 

Figure 4.6: Finite-element discretization for both cases 

Figure 4.7 shows deformed mesh at failure for both cases. In the case of column alone 

loaded, bulging failure occurs with maximum bulging at a depth of 0.5 times diameter of 

granular pile as was noticed in Ambily and Gandhi’s study [3]. For the case of entire area 

loaded, no bulging is observed and similar behavior reported in their analysis.  
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Figure 4.7: Deformed mesh for both cases 

Based on the axial stress developed at the pile top and settlement behaviour, for the case of 

granular pile loaded alone, it can be observed that GP reaches a failure stage. Settlement 

behavior of granular pile with respect to axial stress is shown in Figure 4.8. But for second 

case, failure did not take place even for a large settlement of 35 mm and it is in linear elastic 

range of loading. Figure 4.9 shows axial stress versus settlement behavior from 

experimental and numerical analysis reported by Ambily and Gandhi (2007) and PLAXIS 

analysis. The results from the present analysis match well with Ambily and Gandhi (2007). 

 

Figure 4.8: Axial stress vs. settlement- Granular pile alone loaded 
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Figure 4.9: Axial stress vs. settlement- Entire area loaded 

4.3.3 Validation with Hughes et al. 

Full scale load test on compacted granular piles on soft Bangkok clay was done by Bergado 

et al. (1984) [8] to determine the ultimate load capacity of pile. Nine granular piles were 

constructed in a triangular pattern at a spacing of 0.9 m. Out of nine piles; seven piles were 

made of sand. Other two were constructed as isolated piles, one was made of sand and other 

was made of gravel. All piles have 0.3 m diameter and 8 m length which were penetrated 

into the soft Bangkok clay. The piles were compacted in lifts of 0.6m with 15 blows. From 

this full scale load tests, it was observed that the ultimate load capacity were 3 to 4 times 

greater than the untreated soil layer. It was also found that granular pile will act 

independently if the spacing of piles is equal to or greater than 3 times the pile diameter.  

Bergado and Lam (1987) [9] investigated the behavior of the granular piles constructed with 

different proportions of gravel and sand compacted at different number of blows per layer 

under full scale load tests. Totally thirteen granular piles were installed at 1.2 m spacing in a 

triangular pattern. All piles which were constructed by using cased bore hole method have 

diameters of 0.3 m and lengths of 8 m. The piles were grouped into 5 categories.  Groups 1, 

2 and 3 were constructed with sand compacted at 20, 15, and 10 blows per layer, 

respectively. These groups consisted of 3 piles each. Group 4, consisting of two piles, was 

constructed using gravel mixed with sand in the proportion of 1: 0.3 by volume, and Group 

5, made up of with two piles, was made of gravel. These two groups were compacted at 15 

blows per layer. Four active piezometers and two dummy piezometers were installed to 

monitor pore water pressures. In-situ vane tests and pressuremeter tests were used for 

finding the soil properties. The full scale plate load tests were used for determining ultimate 

load capacity of piles.  From this study, it was found out that the ultimate bearing capacity is 

directly proportional to the number of blows per layer.  It was observed that gravel was the 

most efficient granular pile material, even though compacted at lower number of blows per 
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layer, due to its higher angle of shearing resistance. It was also observed that maximum 

bulging occurred at a depth between 10 cm to 30 cm below the ground surface. 

Hughes et al. (1975) [22] had investigated the load-settlement relationship of an isolated 

granular pile based on field full scale plate load test. The pile was constructed in soft clay at 

Canvey island, Britain, using vibro-replacement method. The purpose of their study was to 

verify the theoretical model proposed by Hughes and Withers (1974) [21] which are based 

on laboratory model tests.  After the test, pile was excavated to check its deformed shape. 

The results of a site investigation supplemented by Cambridge and Menard pressuremeter 

tests were used to assess the limiting radial pressure. The results of the test prior to the field 

testing was predicted using theory given by Hughes and Withers (1974) [21] which is 

reviewed in Chapter 2. By assessing accurate pile diameter, the prediction of the load 

carrying capacity was excellent. This study demonstrated the importance of adopting correct 

soil and column properties. It was observed that deformed shape, shown in Figure 4.10, was 

similar to that observed by Hughes and Withers (1974) [21].  

In this section, the load-settlement response of isolated granular pile given by Hughes et al. 

(1975) [22] are reproduced using FEM based software PLAXIS. As the field test was 

completed in duration of 30 minutes, it might be assumed that the soil deformed under 

undrained conditions. The same was modeled in PLAXIS by choosing the type of soil 

behavior as undrained. The granular pile material is considered as a purely frictional 

dilatant material, whereas the soft soil is taken to possess purely undrained shear strength. 

The site is uniform with 1-2 m thick layer of stiff clay underlain by soft clay to a depth of 

about 9 m. Medium dense sand is found underneath this layer. This layer may be considered 

as a stiff stratum. Depth of pile is considered as 9 m and the ground water table is located at 

2 m below the surface. The initial column diameter of pile was estimated as 730 mm after 

excavating the granular pile from ground after testing. The basic soil parameters required 

for finite element analysis can be assessed from the available data of site investigations. The 

soil shear strength profile was measured using the Menard and Cambridge pressurementers, 

Dutchcone, Vane shear tests and conventional undrained triaxial tests. 
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Figure 4.10: Deformed shape of granular pile after testing [22] 

From the Cambridge pressuremeter tests, profile is taken as a relatively homogenous soil 

with an average cohesion of 22 kN/m
2
. The cohesion profile of soil obtained from the 

conventional undrained triaxial testing on samples collected from the site and vane tests is 

shown in Figure 4.11. The same profile is used in finite elements analysis. The parameters 

of the GP and the soft clay used in PLAXIS are in this section are derived from Balaam 

(1978) [4] . 
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Figure 4.11: Strength profile of soil (Balaam 1978) [4] 

To determine the deformation modulus of the clay, the radial stress-strain curves from the 

Cambridge pressuremeter is used. From this, an average value of 8000 kN/m
2
 is adopted.  A 

unit weight of 18 kN/m
3
 is assumed for the both the pile and clay. Medium mesh is used for 

entire domain, and granular pile is further refined as shown in Figure 4.12. 

 

Figure 4.12: Mesh used for analysis of field plate load test 

The friction angle and dilatancy angle are taken as 38
o 

and 12
o
. The coefficient of earth 

pressure at rest K0 is taken to be 1 in the pile region. The deformation modulus of granular 

pile which is back calculated from the elastic portion of the load-settlement curve and is 

taken as 50,000 kN/m
2
. The load-settlement curve from PLAXIS, finite element analysis by 

Balaam (1978) [4] and field test by Hughes et al. (1974) [22] are compared here. The results 

from this study shows good agreement with Balaam’s work and also shows reasonable 

agreement with field tests reported by Hughes et al. (1974) [22] as shown Figure 4.13. 
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Figure 4.13: PLAXIS result compared with FE solution by Balaam (1978) [4] and load 

test by Hughes et al. (1975) [22] 

4.4 Non-linear analysis of  isolated floating granular pile 

In order to analyse the single floating granular pile in semi-infinite mass of clay, it is 

modeled as axisymmetric case in software PLAXIS 2D v9. Since elastic response can only 

be applied for strains within elastic regime, elastic-perfectly plastic response of GP and clay 

are considered to model more realistic behavior. Granular pile of diameter 1 m and length 

10 m is considered in the study. To study the effect of distance of boundary, both in lateral 

and vertical directions, distances are varied and the analysis is performed to obtain the load-

settlement response (Figure 4.14). Based on the results, sizes of lateral and bottom 

boundaries are fixed as 35 times diameter of pile and 2 times the length of pile. In a similar 

fashion, mesh size is varied from coarse to very fine mesh. Medium and fine meshes were 

refined further for the whole domain with finest refinement within and near the GP. The 

load-settlement with various mesh configurations is shown Figure 4.15. The mesh 

configuration for which its effect on the load-settlement response is minimal should ideally 

be chosen for modeling. However, since fine mesh configuration will increase the 

computational effort, medium mesh for whole domain and refined mesh for GP area is 

considered. Further refinement mainly leads to more stress concentration in the area of 

granular pile.  
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Figure 4.14: Effect of lateral and bottom boundaries on load-settlement behavior of 

GP 

 

 

Figure 4.15: Effect of mesh configuration on load-settlement behavior of GP 

Drained and undrained behavior are assumed for granular pile and clay, respectively. The 

input parameters (E, µ, cu, φ, ψ, γ) are given in Table 4.4. To get equal vertical strain 

condition, load is applied as prescribed displacement of 30 cm. Water influence is not taken 

into account. 15-noded triangular elements are used because of its very accurate and high 

quality stress results.  . 

Table 4.4: Range of parameters of soft clay and Gp 

Entity Material 
Properties 

Nominal 
Value 

Range adopted 

Soft clay 

Ec (kN/m
2
) 3750 2000-8000 

µc 0.5 - 

cu (kN/m
2
) 25 15-40 

γc (kN/m
3
) 16 - 

Granular 
Pile 

Ep (kN/m
2
) 37500 20000-50000 

µp 0.3 - 

cup kN/m
2 

0 0 

φp 38
0 

30
0 
-50

0
 

ψp 8
0 

5
0
- 15

0 

p (kN/m
3
) 20 - 

The initial stress is simulated by using K0 procedure. At the interface of granular pile, 

interface elements are not used since shear strength properties at interface between granular 
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pile and clay can vary depending on the method of installation. The model and deformed 

mesh is shown in Figure 4.16 

 

Figure 4.16: Finite element model and enlarged view of granular pile 

In the following sections, bulging and load-settlement behavior of granular pile is described. 

4.4.1 Bulging behavior of single floating granular pile 

This study is focused on bulging behavior of single-isolated floating granular pile. To 

understand the bulging behavior of a GP, many studies based on numerical modeling, 

laboratory testing and field testing have been carried out. If the length of granular pile is 

greater than 4 to 6 times its diameter, the failure mechanism will be the bulging mode, 

irrespective of whether it is end bearing or floating pile [23]. The bulging failure is the most 

common failure criterion, since most of constructed GPs in the field have lengths equal to or 

greater than 4 to 6 times its diameter [15]. The lateral confinement from the surrounding soil 

influences the overall bulging behavior of the pile. Since the lateral confinement from the 

surrounding soil increases with the depth, bulging occurs near the surface and is suppressed 

away from the surface, except for cases such as the presence of intermediate layer of very 

weak soil like peat with thickness greater than about one pile diameter [6]. According to 

studies conducted by Barkdale and Bachus (1983) [6] and Nayak et al. (2010) [26], bulging 

depth will be equal to 2 to 3 times the pile diameter. Bulging depth is defined as the depth 

over which the lateral deformations of the granular material pile occur. Nayak et al. (2010) 

proposed that the maximum bulging occurs at a depth of 0.5 to 0.8 times the diameter of pile 

from surface [26].  Ambily and Gandhi (2007) reported that maximum bulging will occur at 

a depth of 0.5 times diameter of the granular pile, if the GP is loaded alone [3]. These 

studies consider the group effects of GPs using unit cell concept. Deb et al. (2011) observed 

that the maximum bulging occurs at a depth of 1.2 times of column diameter in the case of 

the granular pile embedded in clay and bulging diameter has a magnitude of 1.24 times the 

pile diameter[15]. Since these observations are based on small scale model tests, limitations 

of scale and boundary effects exist [15]. Field test findings on the bulging behavior of GP 

are also reported in the literature [8, 9, 21, 22]. In this study, the soil and GP parameters 

such as angle of shearing resistance and dilatancy angle of granular material, undrained 
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shear strength of soft clay, deformation moduli of granular material and soft clay, etc. are 

varied to study their influence on bulging behavior of GP. For this, finite element modeling 

was performed using PLAXIS 2D which is described in Chapter 3.  As we discussed, 

bulging at top portion of granular pile can clearly be noticed as shown in Figure 4.14. This 

is mainly because of low confining stress developed near the top of the pile. In this 

parametric study, the effects of various properties of granular material and soft clay on the 

bulging depth, maximum bulging and the corresponding depth are studied. For the 

parametric study, values given as nominal value in Table 4.4 are used. 

4.4.1.1 Effect of angle of shearing resistance of granular material 

The influence of angle of shearing resistance of granular material, φp, on the bulging 

behavior is studied by varying φp from 30
o
 and 50

o
. According to Brauns (1978) [12], 

bulging depth can be calculated using the equation 

                h=d. tan(π/4 + φp/2)                                                                                            (4.1) 

where,                 

                h = Bulging depth 

                d = diameter of GP 

From this equation, it can be inferred that bulging depth will increase with increase in φp. 

Similar trend is noticed for granular pile modeled in the present study (Figure 4.17). 

Bulging depth varies from 3.75 m to 5.30 m with increase in φp. Maximum bulging is 

reduced from 20.7 mm to 10.61 mm as φp increases from 30
o
 to 50

o
. This means that the 

tendency of bulging is reduced by increasing the angle of shearing resistance of granular 

pile. This is because as the angle of shearing resistance increases, shear resistance at the 

interface increases and hence, the lateral deformation of granular pile is reduced. Maximum 

bulging for various φp values occurs at a depth of 0.54 m to 0.97 m.  



 

34 

0

1

2

3

4

5

6

-5 0 5 10 15 20 25

D
ep

th
 (
m

)

Lateral Displacement (mm)

φ=30 deg.

φ=35 deg.

φ=40 deg.

φ=45 deg.

φ=50 deg.
 

Figure 4.17: Influence of angle of shear resistance of granular pile on lateral 

displacements of GP 

4.4.1.2 Effect of dilatancy angle of granular material 

Figure 4.16 shows the bulging behavior for various dilatancy angles of granular material 

(ψp= 5
o
 to 15

o
). The bulging depth is not affected by dilatancy angle of granular material. 

The maximum bulging increases from 14.8 mm to 18.4 mm as ψp increases from 5
o
 to 15

o
 

(Figure 4.18). The depth at which the maximum bulging occurs varies from 0.827 m to 

0.685m for ψ = 5
o
 and ψ = 8

o
, respectively.  

4.4.1.3 Effect of undrained shear strength of clay deposit 

The influence of the undrained shear strength cu of the surrounding clay on the performance 

of the granular pile is studied by varying cu from 15 kPa to 40 kPa. As undrained shear 

strength increases, maximum bulging is found to decrease (Figure 4.19). This is because 

of its contribution towards the improvement of the column-soil interfacial shear resistance. 

Depth of maximum bulging ranges from 0.67 m to 0.76 m. The effect of cu on the bulging 

depth is found to be insignificant. 
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Figure 4.18: Influence of dilatancy angle of granular material on lateral displacements 

of GP 

 

 
Figure 4.19: Influence of undrained shear strength of clay on lateral displacements of 

GP 

4.4.1.4 Effect of loading 

Instead of applying load, incremental prescribed displacement (up to 10 cm) is applied on 

the top of granular pile. Maximum bulging increases from 1.54 mm to 15.55 mm (Figure 

4.20) corresponding to a prescribed vertical displacement of 1 cm and 10 cm, respectively. 

But, depth of maximum bulging is not affected by load increment. Bulging depth increases 

from 2.04 m to 4.31 m. Equation [Eq. (14.1)] proposed by Brauns (1978) does not consider 

the load effect on bulging depth. Zhang et al. (2012) [32] reported that values of maximum 

bulging increases with increase in load on the GP. Similar behavior of granular pile is 

observed in this study. 
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Figure 4.20: Lateral displacements for various prescribed displacement at the top of 

GP 

4.4.1.5 Effect of deformation moduli of granular pile and clay 

The influence of deformation modulus of granular pile, Ep, is studied for Ep=25,000 kPa to 

50,000 kPa.  The effect of Ep on the maximum bulging is found to be insignificant, the 

difference in the maximum bulging is found to be only 1 mm as Ep increase from 25,000 

kPa to 50,000 kPa. The depth of maximum bulging and bulging depth is not affected by 

deformation modulus (Figure 4.21). To study the effect of deformation modulus of clay, 

Ec, is varied from 2500 kPa to 7500 kPa. The maximum bulging varies from 17.59 mm to 

20.06 mm as Ec increases from 2500 kPa to 7500 kPa. But the effect of Ec on the depth of 

maximum bulging and bulging depth is found to be insignificant (Figure 4.22).  
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Figure 4.21: Influence of deformation modulus of granular pile on lateral 

displacements of GP 

4.4.1.6 Effect of diameter of granular pile 

The diameter of granular pile is varied from 40 cm to 100 cm to study its effect on the 

bulging behaviour of GP. The maximum bulging is not affected by variation of diameter of 

granular pile, as shown in Figure 4.23. But depth of maximum bulging and bulging depth 

are found to vary with the pile diameter. Bulging depth varies from 2.36 m to 4.2 m, 

whereas the depth at which maximum bulging occurs varies from 0.28 m to 0.67 m. 
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According to Braun’s equation [Eq. (4.1)], bulging depth varies linearly with the diameter 

of granular pile. Similar behavior is observed in this study. 

 

0

1

2

3

4

5

6

-5 0 5 10 15 20

D
ep

th
 (
m

)

Lateral Displacement (mm)

Ec=2500 kPa

Ec=5000 kPa

Ec=7500 kPa

 
Figure 4.22: Influence of deformation modulus of clay on lateral displacements of GP 
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Figure 4.23: Influence of diameter of granular pile on lateral displacements of GP 

4.4.2 Load-settlement behavior of granular pile 

In this section, the finite element analysis described in the previous Chapter 3 is used to 

determine the important GP and clay parameters that affect the load-settlement behavior of 

single floating GP. Range of parameters is tabulated in Table 4.4. Length and diameter of 

GP are taken as 10 m and 1 m, respectively. Same mesh configuration and boundary sizes 

are considered as given in the previous section. A prescribed displacement equal to 30% of 

pile diameter is applied at the top of GP for getting equal vertical strain. The finite element 

solutions show that considerable yield of both the granular material and the clay took place 
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while prescribed displacement is increased from 25 mm to 100 mm as shown in Figure 

4.24. 

 

Figure 4.24: Growth of yielded zones in soil and GP 

As the pile is formed by compacting different sizes of gravel, the mechanical properties of 

the GP will vary depending on the mechanical properties of material used and on the state of 

the material achieved. Numerical analysis is performed to assess the influence of angle of 

shearing resistance, dilatancy angle and stiffness (in terms of modular ratio) of GP on the 

load-settlement behavior of GP. The value of Ec/cu and L/d is also varied to understand the 

effect of these parameters on load-settlement behavior. Normalized value of load (q
*
) and 

settlement-diameter ratio (S/d), where S= settlement, is used for generating graphs.  

          q
*
 = Q/πd

2
cu                                                                                                                                                                              (4.2) 

                where, Q is the applied load on the pile top 

4.4.2.1 Influence of angle of shearing resistance of granular material 

The influence of angle of shearing resistance of granular material, φp, on the load-settlement 

behavior is observed by varying φp from 30
o 

to 50
o
. As φp is increased from 30

o
 to 50

o
, the 

load carrying capacity of GP corresponding to a pile displacement of 10% of pile diameter 

is increased up to 41% (Figure 4.25). This is mainly due to increase in shear resistance 

offered by granular material with increase in φp. This leads to an increase in the load 

carrying capacity of GP as φp increases. 



 

39 

 

Figure 4.25: Influence of angle of shearing resistance of granular material on load-

settlement behavior of GP 

4.4.2.2 Influence of dilatancy angle of granular pile 

Figure 4.26 shows the load-settlement behavior for various dilatancy angles of granular 

material (ψp = 5
0 

to ψp = 15
0
).  The load carrying capacity increases up to 12.27 % for ψp 

increasing from 5
0
 to 15

0
. This may be due to an increase in the lateral confining stress for 

the case of a more dilatant material tending to increase in volume. The effect of dilatancy 

angle on the load-settlement behavior of GP is not significant in comparison to that of the 

effect of the angle of shearing resistance. 

 

Figure 4.26: Influence of dilatancy angle of granular material on load-settlement 

behavior of GP 

4.4.2.3 Influence of modular ratio 

The stiffness of the granular material used for GP construction varies depending on the type 

of the material and the stiffness of the surrounding soil. To study effect of stiffness of GP, 

modular ratio (relative stiffness ratio) is considered. The range of modular ratio is varied 

from K=10 to K = 25 to observe its effect on load-settlement behavior of GP. For this range 
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of values, the influence of modular ratio on load-settlement behavior of GP is found to be 

insignificant (Figure 4.27). 

 

Figure 4.27: Influence of modular ratio on load-settlement behavior of GP 

4.4.2.4 Effect of Ec/cu
 
ratio 

Figure 4.28 shows the load-settlement behavior of granular pile for various value of Ec/cu 

of clay. Ec/cu value is varied from 100 to 200. As Ec/cu increases from 100 to 200, load 

carrying capacity of GP increases up to about 21%. This is due to increase in confinement 

on GP with increase in Ec leading to larger load carrying capacity of GP for a given pile 

displacement.  

 

Figure 4.28: Influence of Ec/cu ratio on load-settlement behavior of GP 

4.4.2.5 Influence of L/d ratio 

In most cases, the length of the granular pile does not exceed 15 m. Length of GPs greater 

than about 10 m are usually not economically competitive with conventional deep 

foundations. Hence, range of L/d ratio is taken from 2 to 15. From this study, it can be 

observed that load carrying capacity of GP is increased for L/d = 2 to L/d = 3 as shown in 

Figure 4.29. After L/d = 3, there is no much increase in load carrying capacity indicating 

that a further increase in length of GP does not influence the load carrying capacity of GP.  
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Figure 4.29: Influence of L/d ratio on load-settlement behavior of GP 

4.4.3 Comparison of ultimate load carrying capacity of  GP  with existing theories 

From the present study, the relationship between the angle of shear resistance of granular 

material, undrained shear strength of surrounding clay, and the ultimate vertical stress of 

isolated floating granular pile is compared with existing theories by Greenwood (1970) [20], 

Hughes and Withers (1974) [21], and Gibson and Anderson (1961) [19] (Figure 4.30).  

From PLAXIS analysis, the ultimate vertical stress of GP corresponding to 10 % and 20 % 

diameter of granular pile is used to compare with existing theories. 

 

Figure 4.30: Comparison of ultimate vertical stress with existing theories 

It can be observed that lower values are obtained from the method proposed in Greenwood 

(1970) [20].  This method obtains the ultimate load using the earth pressure theory treating 

the GP as a strip footing (plane strain condition) resting on a clay deposit. Hence, this 

method may not compare well with the ultimate load carrying capacity of GP obtained from 

the present study which is analysed by considering axisymmetry condition. From 

comparison of existing theories, it can be seen that higher values are obtained from Gibson 

and Anderson (1961) [19] which is based on cavity expansion theory by considering pure 

bulging mode of failure. PLAXIS result is more comparable with Hughes and Withers 
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(1974) [21]. Bergado and Lam (1987) [9] and Bergado et al (1984) [8] reported same range 

of ultimate load carrying capacity of GPs based on their experimental works. 

4.5 Conclusions 

The model is validated in finite element program software PLAXIS V9 with the linear 

stress-strain, and elastic- perfectly plastic analysis (including field test) of granular pile. The 

linear stress-strain analysis for granular pile compares well with Madhav et al. (2009).  

Elastic –perfectly plastic analysis of granular pile (unit cell concept) in PLAXIS shows good 

agreement with experimental result reported by Ambily and Gandhi (2007). The agreement 

between field test by Hughes et al. (1974), finite element solution by Balaam (1978) and 

PLAXIS result is found to be very good. The bulging and load-settlement behavior of single 

floating granular pile in semi-infinite medium of clay is studied. Angle of shearing 

resistance of the granular material, diameter of GP, and amount of load is found to have 

significant effect on the bulging behavior of GP. Brauns’s equation is not appropriate to 

calculate the bulging depth since it does not consider the amount of load applied on the pile 

top. For a given value of d and Ec/cu, well densified (higher value of φp) granular pile with 

high dilation angle acts stiffer and can take greater proportion of the applied load. Ultimate 

load obtained from PLAXIS 2D using Mohr-Coulomb model is found to compare well with 

Hughes et al. (1974). For a given value of d and Ec/cu, the ultimate load of single pile 

corresponding to a displacement of 10% of the pile diameter is found to be proportional to 

the angle of shear resistance of granular material.   
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Chapter 5 

 

Analysis of Isolated Floating Granular 

Piled Raft 
5  

 

5.1 Introduction 

For relatively moderate loading from a structure, interest in the application of granular pile 

either single or in a small group is increasing in recent times. When the vertical load applied 

on the granular pile is increased, the lateral deformations or bulging of granular pile occurs. 

Bulging is more pronounced near to the surface due to low confining stresses near its top. 

Therefore, GPs typically fail from bulging as was observed from the findings reported from 

analysing of single floating granular pile (Chapter 4). Murugesan and Rajagopal (2010) [25] 

reported that strengthening the GP at the top portion can prevent bulging and consequently 

increase the load carrying capacity. It can be achieved by wrapping the individual granular 

piles with geosynthetics [25] or geogrid [17] or by encapsulating with a flexible sleeve/ 

horizontal disks [31] or by providing raft on the top of GP (GPR) [24]. Many research 

studies have been conducted on different methods, but the literature on the use of granular 

piled raft is limited. The available literature considers linear stress-strain response of soil 

and granular pile to study the effect of raft on the behavior of granular pile [24]. However, 

elastic response can only be applied for strains within elastic regime. In this study, elastic-

perfectly plastic response of soil and GP are considered to model the behavior of granular 

piled raft.  

 

5.2 Problem Definition 

In this chapter, the load-settlement and bulging behavior of isolated granular piled raft in a 

semi-infinite medium of clay is studied. The objective of this study is to determine the 

important parameters affecting the behavior of GPR. In addition, critical length, bulging and 

load carrying capacity of GP and GPR is compared. 
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Figure 5.1: Schematic sketch of GP and GPR 

5.3 Linear elastic analysis of granular piled raft (GPR) 

As we did for the case of granular pile loaded alone (Chapter 4), granular pile is modeled 

with a length of 10 m and a diameter of 1 m. A rigid raft with a diameter of two times the 

diameter of GP is incorporated. Instead of providing the raft as a structural element in 

PLAXIS 2D, prescribed displacement is applied on the top of raft area (Figure 5.2). This 

models the raft as an infinitely rigid member. The soil is modeled as a single layer of clay 

with same properties as discussed in Chapter 4 (Table 4.1). Same boundary condition and 

mesh configuration are adopted for this model. The deformed mesh of granular piled raft 

and soil is shown in Figure 5.3. Different values of modular ratio K are considered for the 

analysis. The load taken by granular piled raft corresponding to 13 mm prescribed 

displacement is compared with solution by Madhav et al. (2009) [24]. The results from the 

present study show good agreement with Madhav et al. (2009) [24]  as shown in Figure 5.4. 
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Figure 5.2: FE model granular piled raft with the insert showing an enlarged view 

near the pile top  

 

Figure 5.3: Deformed mesh of granular piled raft 

 

Figure 5.4: Comparison of results from present analysis with Madhav et al. (2009) 
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5.4 Non-linear analysis of granular piled raft 

In this analysis, soft clay and granular pile is modelled using Mohr-Coulomb criterion 

(linear elastic-perfectly plastic) to simulate more realistic behavior. GPR is modelled as 

axisymmetric case. GP is of 10m in length and 1m in diameter. The convergence of results 

is carried out by changing the lateral and bottom boundaries and the mesh configuration.  

From the study, the size of lateral and bottom boundary is fixed as 35 times diameter of pile 

and 2 times the length of pile. For meshing, medium mesh is used for whole domain and 

further refinement is done for GPR area.  

 

Figure 5.5: FE element model and mesh configuration of model 

Drained and undrained behavior is assumed for granular pile and clay, respectively. The 

input parameters of GP and clay are given in Table 4.4.  The effect of water table is not 

considered. Interface elements are not used in the analysis. In following sections, 

comparison between load-settlement behaviours of GP and GPR is studied. 

5.5 Comparison between GP and GPR 

5.5.1 Bulging behavior  

To study the lateral deformation of granular piled raft, 10 cm prescribed displacement is 

applied on the raft. By comparing the deformed shape from the analyses performed on 

granular pile alone and granular piled raft (Figure 5.6), we can observe that lateral 

deformation is reduced and shifted from ground surface to some depth for GPR with respect 

to GP.  Maximum bulging of GP is reduced from 16.1 mm to 11.2 mm (about 30 % 

reduction) when a raft is provided on top of GP. Depth of maximum bulging is shifted from 

0.7 m to 1.32 m. Bulging depth is increased from 4.5 m to 5.5 m. Since load is applied over 

the full area of raft, the mean confining pressure on the GP is increased leading to less 

bulging. Lateral deformation of GP and GPR is shown in Figure 5.7. 
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Figure 5.6: Deformed shape of GP and GPR 
 

 

Figure 5.7: Comparison of lateral deformation of GP and GPR 

5.5.2 Load-settlement behavior  

In this section, load settlement behavior of granular pile and granular piled raft is compared. 

Prescribed displacement of 30 % of pile diameter is applied on the top of raft. Stress due to 

the applied load is shared by clay and granular pile. A portion of the load is transferred to 

the clay due to presence of raft and remaining portion of the load is taken by granular pile. 

Hence, ultimate load (corresponding to settlement=10% d) of GPR is increased up to 121% 

to that of GP as shown in Figure 5.9.  When the prescribed displacement is increased from 

25 mm to 100 mm, plastic zones are developed inside granular pile and these zones are 

found to grow into surrounding clay.  Due to high stress concentration at the edge of raft, 

plastic zone is also developed near to the edges. For a large prescribed displacement equal 

to 100mm, the plastic points are found to reach the edge of raft. When prescribed 

displacement up to 100 mm is reached, plastic zone is developed fully as shown in Figure 

5.8. 
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Figure 5.8: Growth of plastic zone with respect to loading 

 

Figure 5.9: Load carrying capacity of GP and GPR 

5.5.3 Critical length  

According to Hughes et al (1975), the critical length is defined as the minimum length at 

which both bulging and end bearing failure occur simultaneously. The basic assumption for 

critical length is that the clay/pile interface develops the full cohesion at failure. The critical 

length can be calculated by equating load corresponding to bulging failure and the sum of 

shaft friction resistance and end bearing force [22]. 

                                      Q = cuAs + NccuAp                                                                                                           (5.1) 

where, 

Q is the ultimate load carrying capacity  

Nc is the appropriate bearing capacity factor which is taken as 9 for a long GP 

As   is the surface area πdLc of granular pile of diameter equal to d 

Lc is critical length of granular pile 

Ap is the cross-sectional area πd
2
/4 
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In Figure 5.10, we can observe that plastic points are developed at the bottom of GP for L 

=2m. But there is no full development of plastic points at the bottom of GP for pile lengths 

L=3 m and 5 m. For granular pile with L =10 m, plastic points are only developed at the top 

portion of GP. This indicates that only bulging failure is governing the failure mode if 

length is greater than 3 m. Hence, critical length of GP will be in the range 2 m -to- 3 m for 

this case.   

 

Figure 5.10: Development of plastic zone with respect to length of granular pile 

Using cavity expansion theory [19] and Hughes and Withers (1974) [21] study, critical 

length of GP is calculated as 3.25 m and 2.29 m, respectively. If the length of granular is 

less than critical length, the governing failure criterion will be pile failure. Otherwise, it will 

be bulging mode of failure. 

According to Vidyaranya et al. (2006) [30] if failure of granular pile is governed by bulging 

mode, the ultimate load carrying capacity of GP will be independent of L/d ratio as shown 

in Figure 5.11. A similar pattern of behavior is observed in the analysis of GP from the 

present analysis as shown in Figure 5.12. Beyond critical length of GP, there is no further 

improvement of load carrying capacity of GP.   
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Figure 5.11: Variation of ultimate compressive load with L/d   and G/Cu for different 

φp [30] 

 

Figure 5.12:  Effect of L/d ratio on load carrying capacity of GP 
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Figure 5.13: Effect of L/d ratio on load carrying capacity of GPR 

By providing the raft on the top of GP (GPR), critical length of granular pile can be 

increased. It can be proved by analysing load-settlement behavior of GPR for various L/d 

ratios as shown in Figure 5.13. Beyond L/d =5, there is no further improvement of the load 

carrying capacity of granular pile. It indicates that bulging is the governing failure mode of 

granular pile if L/d ratio is greater than/equal to 5. Hence, critical length will be in between 

3 m and 5 m for a GPR of 1 m diameter. 

5.6 Load settlement behavior of  single floating granular piled raft 

In this section, load-settlement behavior of granular piled raft is studied. To apply equal 

vertical strain, prescribed displacement equal to 30 % of pile diameter is applied on the top 

of raft. Range of parameters considered in the study is tabulated in Table 4.4. Numerical 

analysis is performed to assess the influence of angle of shear resistance and dilatancy angle 

of granular material, Ec/cu ratio, L/d ratio and d/dr ratio on load-settlement behavior of GPR. 

Length and diameter of GP is taken 10 m and 1 m, respectively. Normalized value of load 

q* (Eq. 4.2) is plotted against S/d ratio, where S is the prescribed settlement at the top of the 

raft.  

5.6.1 Influence of angle of shearing resistance of granular material 

The influence of angle of shearing resistance, φp, on the load-settlement behavior is studied 

by varying its value from 30
0
 to 50

0
. As φp increases from 30

0
 to 50

0
, load carrying capacity 

of GP, corresponding to 10% of pile diameter, is increased up to about 29% as shown in 

Figure 5.14. This is due to more shearing resistance offered along the pile interface. 
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Figure 5.14: Influence of angle of shear resistance of granular material on load-

settlement behavior of GPR 

5.6.2 Influence of dilatancy angle of granular pile 

Figure 5.15 shows the load-settlement behavior for various dilatancy angles of granular 

material (ψp = 5
0
 to ψp = 15

0
). For single granular pile, the load carrying capacity increases 

up to 12.27 % (Figure 4.26). For GPR, the effect of dilatancy angle on load carrying 

capacity of granular material is found to be insignificant. The confining stress on GP may be 

predominant leading to suppression of tendency to dilate. 

 

Figure 5.15:  Influence of dilatancy angle on load-settlement behavior of GPR 

5.6.3 Influence of  Ec/cu ratio of clay 

Figure 5.16 shows the load-settlement behavior of granular piled raft for various values of 

Ec/cu of clay. Its value is varied from 100 to 200. By increasing the value of Ec/cu, load 

carrying capacity of GP increases up to about 21 % and 29 % for GP alone (Figure 4.28) 

and GPR, respectively. This is due to increase in confining stress on granular pile as Ec 

increases. 
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Figure 5.16: Influence of Ec/cu ratio on load-settlement behavior of GPR 

5.6.4 Influence of modular ratio  

Modular ratio is varied from K =10 to 25 to observe its effect on load-settlement behavior of 

GP. For this range of values, it is found that there is no significant influence of modular 

ratio on load-settlement behavior of GPR as shown in Figure 5.17. 

 

Figure 5.17:  Influence of modular ratio on load-settlement behavior of GPR 

5.6.5 Influence of dr/d ratio of granular pile 

To study the effect of dr/d ratio on load-settlement behavior of GPR, the ratio is taken in the 

range 1.5 to 3. By increasing the dr/d ratio, load carrying capacity of GPR increases as 

shown in Figure 5.18. This is due to increase in overburden pressure on granular pile as 

diameter of raft increases. Load taken by raft will increase and this will lead to more 

confinement to the pile. 
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Figure 5.18: Effect of dr/d ratio on load-settlement behavior of GPR 

5.6.6 Influence of L/d ratio 

Figure 5.19 shows the load-settlement behavior for various L/d ratio of granular piled raft 

(L/d =2 to L/d =15). The load carrying capacity of GPR increases as L/d increases. The 

increases in the load carrying capacity are not significant for L/d ratio greater than or equal 

to 5. This is because the bulging mode of failure governs the behavior of GPR as discussed 

earlier in Section 5.5.3. 

 

Figure 5.19: Effect of L/d ratio on load-settlement behavior of GPR 

5.7 Conclusions 

The proposed model used in finite element analysis using PLAXIS 2D v9 is validated for 

the linear stress-strain analysis of granular piled raft. The linear stress-strain analyses for 

granular piled raft compares well with Madhav et al. (2009). The load carrying capacity of 

GP is enhanced by providing raft on the top of granular pile. In this study, the ultimate load 

(corresponding to the settlement equal to 10% d) of GPR increases up to 121% compared to 

that of GP. Bulging of granular pile can be reduced with the provision of a raft. From this 

study, 30% reduction in bulging is observed for granular piled raft compared to that for the 

case of granular pile loaded alone. There is also increase in its critical length with the 

provision of the raft.  If the length of GPR is greater than its critical length, bulging mode 
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governs the failure and ultimate load will not be affected by L/d ratio. Angle of shear 

resistance of granular material, dr/d and Ec/cu of clay are found to have significant influence 

on the load-settlement behavior of GPR for length of pile greater than or equal to critical 

length. 
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Chapter 6 
 

Conclusions 

6  

 

In this study, behavior of single floating granular pile and piled raft embedded  in a semi-

infinite medium of clay deposit is  analysed using finite element method with the help of the 

software package PLAXIS 2D. Among the possible failure mechanisms of the granular pile, 

bulging failure has been considered, since it is the common failure criterion of long granular 

pile. When load is applied in short time, clay will behave as a purely cohesive 

incompressible material whereas response of the pile material will be that of a purely 

frictional dilatant material. Finite element analyses have been carried out in which the 

following cases are taken into account to understand bulging and load-settlement behavior: 

o Single floating granular pile (GP) 

o Single floating granular piled raft (GPR) 

6.1 Single floating granular pile 

 The FE model in PLAXIS is validated by comparing the results from linear stress-

strain analysis of granular pile with that of the results from Madhav et al. (2009) 

obtained by solving the elasticity solutions using finite difference method. The 

linear stress-strain analyses for granular pile compares well with Madhav et al. 

(2009).   

 

 Non-linear analysis of granular pile (unit cell concept) in PLAXIS is compared with 

experimental and finite element analysis of pile group by Ambily and Gandhi 

(2007). Here, linear elastic-perfectly plastic response of GP and clay is taken into 

account to simulate more realistic behavior of both materials. The numerical results 

show good agreement with the results from experimental and finite element studies 

reported by Ambily and Gandhi (2007). 

 

 Finite element analysis has also been used to reproduce the results of a previously 

published full scale plate load test by Hughes et al. (1975). The results from the 
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present finite element analysis are found to be in good agreement with the results 

reported by Hughes et al. (1974) and Balaam (1978). It is observed that the PLAXIS 

analysis is capable of predicting the response of a single floating granular pile, if the 

material properties and geometry of GP are well defined from field test. The 

bulging and load-settlement behavior of single floating granular pile in semi-infinite 

medium of clay is studied. It is observed that the long GPs will fail from bulging 

that takes place near the surface due to less confinement or lateral support. Angle of 

shearing resistance of the granular material, diameter of GP and amount of load 

applied on the pile top are found to have significant effect on the bulging behavior 

of GP. Brauns’s equation is not appropriate to calculate the bulging depth as the 

equation does not account for the load applied on the top.  

 

 The ultimate load carrying capacity of single floating granular pile is compared with 

available theories which are based on bulging mode of failure. Ultimate load 

obtained from PLAXIS 2D using Mohr-Coulomb model is found to compare well 

with empirical equation developed by Hughes et al. (1974) from experimental 

studies. For a given value of d and Ec/cu, the ultimate load of single pile is 

proportional to the angle of shear resistance of granular material. 

 

6.2 Single floating granular piled raft 

The bulging and load-settlement behavior of single floating granular piled raft is studied by 

considering elastic-perfectly plastic behavior of both pile and clay.  

 

 The model is validated in finite element program software PLAXIS 2D for the 

linear stress-strain analysis of granular piled raft. The linear stress-strain analysis 

for granular piled raft compares well with Madhav et al. (2009).  

 

 Analysis of the granular piled raft, it is observed that the load carrying capacity of 

GP is enhanced with the provision of raft on the top of granular pile. In this study, 

ultimate load (corresponding to the settlement equal to 10 % diameter of GP) of 

GPR increases up to 121% compared to that of GP. 

 

 Bulging of granular pile can be reduced with the provision of raft. In this study, 30 

% reduction in bulging of granular piled raft compared to granular pile is observed. 
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The depth of maximum bulging and bulging depth shifts to a larger depth from the 

surface because of confinement effect of raft. 

 

  The critical length of GP and GPR is compared. It can be observed that critical 

length of granular piled raft is increased. If the length of both GPR and GP is 

greater than its critical length, bulging mode will be the governing failure criterion 

and ultimate load will not be affected by L/d ratio.  

 

 Load-settlement behavior of GPR is studied. For given value of d and Ec/cu, angle of 

shearing resistance (φp) and dr/d ratio of granular material are found to have 

significant influence on the load-settlement behavior of GPR with the length of pile 

greater than or equal to critical length. 

 

Hence, for low-rise building founded on clay deposit, granular piled raft can be used as an 

efficient reinforcement method to enhance the load carrying capacity and prevent bulging, 

since single floating granular pile is not sufficient to reduce bulging due to less confinement 

near the top of granular pile. 
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