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Abstract 

 

 Masonry and composite laminates are periodic in nature in their own plane. Masonry is a 

composite material made of units and mortar, normally arranged periodically. The combined action 

of brick and mortar will exhibit different directional properties. Finding the orthotropic properties or 

effective material properties from the individual material constituents is called the homogenisation. 

Less computational cost, user friendly mesh, and flexible to apply for large structures are advantages 

while using the homogenised properties. In this study we find the homogenised properties for 

unstrengthen masonry and also strengthened masonry using CFRP (inserted in bed joints). For 

composite laminates, homogenised properties can be found from modified rule of mixture. 

 The behaviour of a composite material under external loads is often quite different from 

that of an isotropic material. Modelling of damage in such materials is a complex problem because 

of the existence of several failure mechanisms at various length scales, e.g., fibre breakage, fibre-

matrix debond, matrix cracks and delamination. This poses a need for understanding the damage 

mechanics thoroughly at various length scales. Hence, it is impossible to create a generalized 

damage model by simply observing the macro-level behaviour of the composite laminate. So, the 

analysis of composites needs to be a multi-scale one, where, the effective field variables at each 

scale are obtained from the homogenization of the field variables defined at a lower scale. Here 

Multi continuum theory and phase degradation approach was proposed to found the failure or 

damage of composite laminate at micro level when the loads are applied at the macro level. And 

also damage of the discrete masonry wall was predicted using the concrete damage plasticity 

material model in Abaqus 6.9 version. 
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Chapter 1 

Introduction 

 

1.1Homogenisation and failure modelling of periodic composite 

Masonry has been largely utilized in the history of architecture, in the past. Despite their present 

uncommon use in new buildings, they still represent an important research topic due to several 

applications in the framework of structural engineering, with particular reference to maintaining and 

restoring historical and monumental buildings. 

Hence, even if new materials (for example the reinforced concrete) are wider spread than masonry 

ones, the unquestionable importance of a lot of real masonry estate require researcher’s particular 

attention for this kind of structures. Therefore, in order to design an efficient response for repairing 

existing masonry structures, a large number of theoretical studies, experimental laboratory activities 

and computational procedures have been proposed in scientific literature. 

Masonry is a heterogeneous medium which shows an anisotropic and inhomogeneous behaviour in 

nature. In particular, the inhomogeneity is due to its biphasic composition and, consequently, to the 

different mechanical properties of its constituents such as mortar and natural or artificial blocks. The 

anisotropy is, instead, due to the different masonry patterns since the mechanical response is 

affected by the geometrical arrangement of the constituents. Basically, in literature, two approaches 

are usually taken into account for materials which have a heterogeneous micro-structure: the 

heuristic approach and the thermodynamical approach. In the former, a aprioristic hypotheses on 

the dependence of the constitutive response on a certain number of parameters are considered and 

the material’s mechanical behaviour is obtained by such hypotheses and by experimental tests. This 

approach is particularly used in non-linear field, where structural analyses are employed (Heyman, 

1966). Our attention was focused on the latter approach. It extends the use of the homogeneous 

classical elasticity to heterogeneous materials by replacing the elastic constants of the classical 

homogeneous theory with the effective elastic ones, which average the actual inhomogeneous 
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properties of the medium. Hence, such approach yields the overall compliance tensor and the 

overall stiffness tensor in a mathematical framework by means of mathematical operations of 

volume averaging and thermo dynamical consistency. In this way, starting from the concepts of the 

average strain for prescribed macro stress and of the average stress for prescribed macro strain, the 

global behaviour is provided from the masonry micro-structure geometry and from the known 

properties of the individual constituents. So in masonry the effective properties or homogenised 

properties are found from the micromechanics of RVE’s (Representative Volume Element) using the 

average theorems. In the unidirectional composite or composite laminate, the effective properties 

or homogenised properties are found from the micromechanics of masonry using the rule of mixture 

or modified rule of mixture. 

Figure 1.1 shows the Masonry and composite laminates are three dimensional composite medium 

admitting only two directions of periodicity in its own plane. 

 

 

 

 

 

 

 

 

 
Figure 1.1 (a) Periodic composite of masonry (b) Periodic composite of unidirectional composite[19] 

 

In this framework, advanced numerical strategies based on the finite element method have 

been developed. 

As one of the oldest building materials, masonry was not only used in many magnificent historical 

structures all over the world but is still used in various new constructions. The need of structural 

(a) (b) 
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rehabilitation and strengthening of ancient masonry structures motivated studies to better 

understand the deformation and failure mechanism of masonry structures. Unreinforced masonry 

structures are particularly vulnerable to earthquake excitations due to the fact that the integrity of 

these structures relies mainly on the joining material between masonry blocks which is apt to crack 

when subjected to tension caused by earthquake lateral forces. The recent earthquakes in various 

countries have caused great damage and destruction to masonry bridges, religious temples, and 

other monumental buildings. 

Some example of the collapse of masonry building of shear walls after an earthquake are shown in 

Figure1.2 Earthquake Damage, Northern Iran, June 21, 1990 has revealed that the masonry 

structures experienced the worst damage during the earthquake. These incidents further 

enlightened the need to have a better understanding of the behaviour of masonry structure through 

experimental and numerical studies. The practical need is motivated to research on modelling 

masonries subjected to lateral loads. 

 

Figure 1.2 failures of the masonry walls due to earthquake [Geo hazard index html] 

 

In spite of the simplicity associated with building in masonry, the analysis of the mechanical 

behaviour of masonry constructions remains a true challenge.  
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Basically, two different approaches have been used to model the masonry behaviour: the “micro-

modelling” and the “macro-modelling” or ‘equivalent-material approach’. Selection of the approach 

depends upon the level of accuracy and the objective sought. The former approach models the 

actual geometry of both the blocks and mortar joints, adopting different constitutive models for the 

two components. Although this approach may appear very straightforward, its major disadvantage 

comes from the extremely large number of elements are required and the requirement of knowing 

the precise layout of each brick. A three-dimensional micro-modelling analysis of a masonry panel 

with only a very simple geometry would require a large number of elements in order to enable 

accurate modelling of each joint and block unit. Hence, the use of micro-models is impossible / 

impractical for the global analysis of entire buildings or bridges. In addition, the actual distribution of 

blocks and joints might be impossible to detect unless many investigations are performed. 

To overcome this computational difficulty, the macro-modelling approach, in which masonry is 

modelled by an equivalent continuous material, is used for structural analysis. The macro-models do 

not make a distinction between individual blocks and mortar joints, smearing the effect of joint 

presence through the formulation of the constitutive relations of an equivalent material. Such a 

constitutive model has to reproduce an average mechanical behaviour of small masonry panel. The 

main advantages of the macro approach are the enormous reduction of the computational cost, 

which makes possible the numerical analyses of complex structures such as bridges and buildings. 

The macro approach makes it feasible to analyse any masonry structure without detailed knowledge 

of the layout of individual bricks. 

 

 

 

 

 

 

 

 
Figure 1.3 Basic cell for masonry and objectives of homogenisation 
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Based on the above comparison discrete masonry wall is created based on individual constituent 

properties of brick and mortar, and predicted damage of wall under lateral loads or displacements. 

Based on the above comparison for the both micro-modelling and macro-modelling approaches, a 

two stage modelling strategy is suitable. First, homogeneous equivalent material properties are 

obtained by using micro-modelling approaches. Specifically, the micromechanics model called Finite 

element analysis will be used to achieve the equivalent continuous material for small masonry panel. 

Figure 2.3 shows the part of the masonry wall taken as RVE to get homogenised properties or 

equivalent properties using the microanalysis of average theorem. Then, the second one discrete 

wall is modelled using constituent properties of brick and mortar to predict the damage of wall 

under lateral loads and lateral displacements.  

1.2 Laminated composite modelling as a periodic composite 

Because of composite structures offer a number of advantages over conventional metallic materials, 

including lightweight and better corrosion resistance, there is an increasing tendency in the 

development of new aircraft towards an even more widespread use of composites. For instance, 

Boeing’s 7E7 aircraft will contain 50% by weight of carbon fibre reinforced composites. Given the 

fact that there are numerous examples where composite materials are being successfully used in 

primary load-bearing structures, one might logically conclude that design procedures (including 

strength prediction) for fibre reinforced composites are fully mature. To the contrary, even at the 

lamina or laminate level, there is a lack of evidence to show that any of the failure criteria developed 

so far could provide accurate and meaningful predictions of failure beyond a very limited range of 

circumstances. Therefore it remains persistent difficulty to accurately predict laminate failure under 

combined loading by using either unidirectional composite (ply) data or with basic constituent 

material properties. This has been the main motivation for major worldwide failure exercise over the 

past decade. 

To accelerate the insertion of composite materials/structures into application and to reduce the 

associated certification cost, aircraft structures are moving towards certification by analysis 
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supported by test and demonstration. To this end an advanced predictive capability is required that 

is able to accurately assess the damage tolerance and durability of fibre-reinforced composites. In 

the context of through-life support and management of composite structures, a predictive capability 

would also improve the design and qualification of repairs. Because the failure process of composite 

structures involves failures at multiple length scales, including the microscopic scale (fibre, matrix 

and fibre/matrix interface), the macroscopic scale (structure), a predictive capability would need to 

deal with the onset of microscopic failures, their progression to the mesoscopic scale, and the 

ultimate coalescence into macroscopic damage causing structural failure.  

Recently the strain invariant failure theory (SIFT) has emerged as a promising predictive method for 

composite laminates. Compared to the traditional composite failure theories, including the Tsai-Wu 

interactive failure theories, and the physically based failure criteria by Hashin and Rotem, the SIFT 

method represents a first step towards multi-scale modelling that attempts to link structural failure 

to events at the fibre-resin level. In this context, SIFT is similar to the multi-continuum theory, 

although SIFT does appear to have the advantage that the critical strain invariants determined from 

lamina data were reported to correlate well with net resin properties. The important feature of the 

SIFT provides a basis for an accelerated durability assessment methodology. 

In the strain-invariant failure theory, the matrix and fibre phases are characterised by separate 

failure criteria. Matrix is considered to fail either under dilation mode or shear mode, while fibre is 

assumed to fail by shear distortion. Consequently, composite failure is completely characterised by 

three critical invariants. However, such an approach does not capture the micro-buckling failure 

mode under compression and therefore would over-predict the strength of compression failure 

which is often dominated by micro-buckling. Furthermore, SIFT was essentially developed to 

determine the onset of failures in composites, rather than the ultimate load carrying capacity. 

Nevertheless, attempts have been made to extend SIFT to predict the maximum load-carrying 

capacity by using a maximum energy retention method. 
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The purpose of study is to present a multi-scale failure theory that accounts for the pressure-

sensitivity of polymer matrix, fibre fracture under tension, and fibre micro buckling under 

compression. Similar to the SIFT, the present approach treats a laminate as a stack of transversely 

isotropic plies. At the ply level, matrix failure is due to the combination of dilation and distortion, 

while the fibres can fail either by micro-buckling or by distortion. Damage progression through plies 

is simulated by judiciously degrading the constituent stiffness, hence the ply stiffness. 

 

1.3 Objectives of the study 

 To formulate and implement a computational homogenization scheme for periodic 

composites. 

 To implement the above procedure for  

a) Unreinforced masonry   

b) Masonry strengthened with CFRP  

c) Laminated composites. 

 To formulate and implement a failure model for periodic composites. 

 To implement a plasticity based damage model for masonry failure 

 To implement a phase degradation approach for modeling failure in 

laminated composite. 

1.4 Outline of the thesis 

The present work is outlined as follows: 

1. The first chapter introduces the Homogenisation of the periodic composite from the 

micromechanical analysis and the briefly gives an idea of failure modelling of periodic 

composite. 

2. In the next chapter deals the homogenisation theory from the literature survey is presented 

and brief literature survey on failure modelling of periodic composite. 
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3. The third chapter deals results from homogenisation of masonry based on stress prescribed 

and strain prescribed analysis of volume averaging theorem, and results based on 

homogenisation of masonry with CFRP based on stress prescribed and strain prescribed 

analysis of volume averaging theorem. 

4.  In the final chapter, plasticity damage model for masonry failure is presented and phase 

degradation approach for modelling failure in laminated composites is presented. 
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Chapter 2 

Literature survey 

 

2.1 Micromechanics of masonry 

Masonry is the oldest building material that is still currently used in the building industry. Masonry is 

a heterogeneous material composed of units and mortar joints. Irregular stones, ashlars, adobes, 

bricks and blocks have been used as units. The units can be joined together using mortar (commonly 

clay, lime or cement based mortar) or just by simple superposition. With these two components, a 

large number of arrangements can be accomplished, generated from the different combinations of 

units and joints. A possible classification of stone masonry is shown in Figure 2.1 and the most used 

combinations are illustrated in Figure 2.2 

 

 

 

 

 

Figure 2.1 Different kinds of stone masonry: (a) rubble masonry; (b) ashlar masonry; 
(c) coursed ashlar masonry (Lourenço, 1998). 

 

 

 

 

 

 

 

 

Figure 2.2 Different arrangements for brick masonry: (a) stack bond; (b) stretcher bond 

(a) (b) (c) 

(a) (b) 
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In spite of the simplicity associated with building in masonry, the analysis of the mechanical 

behaviour of masonry constructions remains a true challenge. Masonry is a material that exhibits 

distinct directional properties due to the mortar joints, which act as planes of weakness. 

Consequently, masonry structures display shows an anisotropic and inhomogeneous nature. In 

particular, the inhomogeneity is due to the different mechanical properties of its constituents, 

mortar and unit. The anisotropy is due to the different masonry patterns since the mechanical 

response is affected by the geometrical arrangement of the constituents. In general, the approach 

towards its numerical representation can focus on the micro-modelling of the individual 

components, i.e., unit (brick, block, etc.) and mortar, or the macro-modelling of masonry as a 

composite (Rots 1991). 

Depending on the level of accuracy and simplicity desired, it is possible to use following modelling 

strategies as described in Figure 2.3 

 Detailed micro modelling- units and mortar  joints are represented by continuum elements 

whereas the unit mortar interface represented by discontinuous elements; 

 Simplified micro modelling- expanded units are represented by continuum elements 

whereas the behaviour of the mortar joints and unit mortar interface is lumped in 

discontinuous elements; 

 Macro modelling- units, mortar and unit-mortar interface are smeared out in the continuum. 
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Figure 2.3 Modelling of masonry structures (a) masonry sample; (b) detailed micro modelling;          

(c) simplified micro-modelling; (d) macro modelling. 

In the first modelling, Young’s modulus, Poisson’s ratio and, optionally, inelastic properties 

of both unit and mortar are taken into account. The interface represents a potential crack/slip plane 

with initial dummy stiffness to avoid interpenetration of the continuum. This enables the combined 

action of unit, mortar and interface to be studied. In the second modelling, each joint, consisting of 

mortar and the two unit-mortar interfaces, is lumped into an “average” interface while the units are 

expanded in order to keep the geometry unchanged. Masonry is thus considered as a set of elastic 

blocks bonded by potential fracture/slip lines at the joints. Accuracy is lost since Poisson’s effect of 

the mortar is not included. The third approach does not make a distinction between individual units 

and joints but treats masonry as a homogeneous anisotropic continuum [2]. One modelling strategy 

cannot be preferred over the other because different application fields exist for micro- and macro-

models. Micro-modelling studies are necessary to give a better understanding about the local 

behaviour of masonry structures. This type of modelling applies notably to structural details, but also 

to modern building systems like those of concrete or calcium-silicate blocks, where window and 

door openings. Macro-models are applicable when the structure is composed of solid walls with 

sufficiently large dimensions so that the stresses across or along a macro-length will be essentially 

uniform. Clearly, macromodeling is more practice oriented due to the reduced time and memory 
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requirements as well as a user-friendly mesh generation. This type of modelling is most valuable 

when a compromise between accuracy and efficiency is needed. 

 Accurate micro- or macro-modelling of masonry structures requires a thorough 

experimental description of the material. However, the properties of masonry are influenced by a 

large number of factors, such as material properties of the units and mortar, arrangement of bed 

and head joints, anisotropy of units, dimension of units, joint width, quality of workmanship, and 

degree of curing, environment and age.  

2.2 Homogenisation background 

Masonry is a composite material made of units and mortar, normally arranged periodically. Utilising 

the material parameters obtained from experiments and the actual geometry of both components, 

viz. units (e.g. bricks, blocks or stones) and joints, it is possible to numerically reproduce the 

behaviour of masonry structures, see e.g. Lourenco and Rots (1997). Nevertheless, the 

representation of each unit and each joint becomes impractical in case of real masonry structures 

comprising a large number of units. 

 

 

 

 

 

 

 

 

Figure 2.4 Basic cell for masonry and objectives of homogenisation 
 

The alternative is to describe the composite behaviour of masonry in terms of macro or 

average stresses and strains so that the material can be assumed homogeneous. This problem can 

be approached, basically, from two directions. A possible direction is to gather extensive 
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experimental data that can be used confidently in the analyses. It is stressed that the results are 

limited to the conditions under which the data are obtained. This approach, which aims at describing 

the behaviour of the composite from the geometry and behaviour of the representative volume 

element (or basic cell, see Figure 2.4), grants us a predictive capability. 

The techniques of homogenisation (Bakhvalov and Panasenko, 1989) are currently becoming 

increasingly popular among the masonry community. A method that would permit to establish 

constitutive relations in terms of averaged stresses and strains from the geometry and constitutive 

relations of the individual components would represent a major step forward in masonry modelling. 

Given the difficult geometry of the masonry basic cell, a close-form solution of the homogenisation 

problem seems to be impossible, which leads, basically, to three different lines of action. 

 The first, very powerful approach is to handle the brickwork structure of masonry by 

considering the salient features of the discontinuum within the framework of a generalised/Cosserat 

continuum theory. This elegant and efficient solution (Besdo, 1985; Muhlhaus, 1993) possesses 

some inherent mathematical complexity and has not been adopted by many researchers, even 

though being capable of handling the unit– mortar interface and true discontinuum behaviour. The 

step towards the practical application of such an approach is still to be done. 

 A second approach (Anthoine, 1995, 1997; Urbanski et al., 1995) is to apply rigorously the 

homogenisation theory for periodic media to the basic cell, i.e. to carry out a single step 

homogenisation, with adequate boundary conditions and exact geometry. It is stressed that the 

unit–mortar interface has not yet been accounted for by researchers. The complexity of the masonry 

basic cell implies a numerical solution of the problem, which has been obtained using the finite 

element method. The theory was thus used by the cited authors to determine macro-parameters of 

masonry and not, actually, to carry out analysis at the structural level. In fact, the rigorous 

application of the homogenisation theory for the non-linear behaviour of the complex masonry basic 

cell implies solving the problem for all possible macroscopic loading histories, since the 
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superposition principle does not apply anymore. Thus, the complete determination of the 

homogenised constitutive law would require an infinite number of computations. 

 The third approach can be considered as an ‘‘engineering approach’’,  aiming at substituting 

the complex geometry of the basic cell by a simplified geometry so that a close-form solution of the 

homogenisation problem is possible. Keeping in mind the objective of performing analysis at the 

structural level, Pande et al. (1989), Maier et al. (1991) and Pietruszczak and Niu (1992) introduced 

homogenisation techniques in an approximate manner. The homogenisation has generally been 

performed in two steps, head (or vertical) and bed (or horizontal) joints being introduced 

successively. In this case masonry can be assumed to be a layered material, which simplifies the 

problem significantly. Lourenco (1996) further developed the procedure, presenting a novel matrix 

formulation that allows a much clearer implementation of linear elastic homogenisation algorithms 

and also a relatively simple extension to non-linear behaviour. 

 The present study a new micro-mechanical model, for masonry in stretcher bond, to 

overcome the limitations of the standard two-step homogenisation by a more detailed simulation of 

the interactions between the different internal components of the basic cell. The model can still be 

considered as an engineering approach, in which an ingenious observation of the behaviour of 

masonry leads to the simulation of additional internal deformation mechanisms of the joints that 

become more and more important for increasing unit/mortar stiffness ratios. At this stage, the unit–

mortar interface is not considered in the model. 

 
2.3 Homogenization theory for periodic media 

 
Suppose now that a portion Ω of masonry is subjected to a globally homogeneous stress 

state. A stress state is said to be globally or macroscopically homogeneous over a domain Ω if all 

cells within Ω undergo the same loading conditions. This can be approximately achieved with an 

experimental set-up designed to apply any biaxial principal stress state to a panel (Dhanasekar et al., 

1982). The shear stress component is then obtained by selecting the proper lay-up angle of the 
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specimen (Fig. 5). The approximation is due to perturbations near the boundary; a cell lying nears 

the boundary δΩ of the specimen is not subjected to the same loading as one lying in the centre. 

However, on account of the Saint- Venant principle, cells lying far enough from the boundary are 

subjected to the same loading conditions and therefore deform in the same way. In particular, two 

joined cells must still fit together in their common deformed state, just like in a picture of Escher 

(Fig. 6). In mechanical terms, this means that, when passing from a cell to the next one, (i) the stress 

vector     is continuous; (ii) strains are compatible, i.e. neither separation nor overlapping occurs. 

Since passing from a cell to the next one which is identical, also means passing from a side to the 

opposite one in the same cell S, condition (i) becomes 

Stress vectors     are opposite on opposite sides of δS 

because external normal n are also opposite. Such a stress field σ is said to be periodic on δS, 

whereas the external normal n and the stress vector     are said to be anti-periodic on δS. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Macroscopically homogeneous stress state test [testing set-up from Dhanasekar et al. 

(1982)]. 
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Figure 2.6 Escher-like picture illustrating the concept of macroscopic homogeneity.[1] 

 

Let us consider the problem of a masonry specimen subjected to a macroscopically homogeneous 

stress state ∑ . The previous discussion was devoted to the special conditions holding on the 

boundary δS of any cell S; σ is periodic and u is strain-periodic. Those conditions make it possible to 

study the problem within a single cell rather than on the whole specimen. In order to find σ and u 

everywhere in a cell, equilibrium conditions and constitutive relationships must be added so that the 

problem to solve is 

             (No body forces) 

   ( ( )) (Constitutive law under plane stresses) 

                 (                       )                                 

  〈 ( )〉   (              )  

〈 〉   ∑ , ∑                                ,          (2.1) 

Where the constitutive law f is a periodic function of the spatial variable x since it describes the 

behaviour of the different materials in the composite cell. A problem similar to (2.1) is obtained 

when replacing the stress controlled loading by a strain controlled one 

〈 ( )〉                     (2.1a) 
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In both cases, the resolution of (2.1) is sometimes termed “localization” because the local 

(microscopic) fields        ( )determined from the global (macroscopic) quantity ∑  or E. 

It is worth noting that, independently of the constitutive laws of the materials, the average 

procedure holds true in an energetic sense, i.e. 

〈   ( )〉   〈 〉   〈 ( )〉               (2.2) 

Homogenization in linear elasticity: 

Both constituents (brick and mortar) are now assumed linear elastic and perfectly bonded. Problem 

(1) with strain controlled loading reads 

              

      ( )  

                         

                     ,       (2.3) 

Where E is a given symmetric second-order tensor and c is the fourth-order tensor of elastic 

stiffnesses in plane stress. Writing (2.3) in terms of        , and eliminating σ, the following 

system is obtained: 

    (   (  ))      (   )           

   ( (  )   )                          

                            (2.4) 

Note that the term    ( (  )   )     simply reduces to     (  )    if the material characteristics 

are continuous across the boundary δS. The solution of (2.4) is then the periodic displacement field 

inducing a periodic stress field and equilibrating the body forces f induced by the uniform 

strain(  ). 

2.4 Micromechanics-Based Failure Theory for composite laminates 
 
Huang [2001, 2004a, 2004b] developed a micromechanics-based failure theory so called “the 

bridging model”. The bridging model can predict the overall instantaneous compliance matrix of the 

lamina made from various constituent fibre and resin materials at each incremental load level and 
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give the internal stresses of the constituents upon the overall applied load. The lamina failure is 

assumed whenever one of the constituent materials attains its ultimate stress state. Using classical 

laminate theory (CLT), the overall instantaneous stiffness matrix of the laminate is obtained and the 

stress components applied to each lamina is determined. If any ply in the laminate fails, its 

contribution to the remaining instantaneous stiffness matrix of the laminate will no longer occur. In 

this way, the progressive failure process in the laminate can be identified and the laminate total 

strength is determined accordingly. 

Multicontinuum theory (MCT) is numerical algorithm for extracting the stress and strain fields for a 

composites constituent during a routine finite element analysis [Mayes and Hansen, 2004a, 2004b]. 

The theory assumes: (1) linear elastic behaviour of the fibres and nonlinear elastic behaviour of the 

matrix, (2) perfect bonding between fibres and matrix, (3) stress concentrations at fibre boundaries 

are accounted for only as a contribution to the volume average stress, (4) the effect of fibre 

distribution on the composite stiffness and strength is accounted for in the finite element modelling 

of a representative volume of microstructure, and (5) ability to fail one constituent while leaving the 

other intact results in a piecewise continuous composite stress-strain curve. In MCT failure theory, 

failure criterion is separated between fibre and matrix failure and it is expressed in terms of stresses 

within composite constituent. 

Gosse [Gosse and Christensen, 2001; Gosse, 1999] developed micromechanics failure theory which is 

based on the determination of fibre and matrix failure by using critical strain invariants. The theory is 

called strain invariant failure theory, abbreviated as SIFT. Failure of composite constituent is 

associated with one invariant of the fibre, and two invariants for the matrix. Failure is deemed to 

occur when one of those three invariants exceeds a critical value. For the past three years, SIFT has 

been tested to predict damage initiation in three-point bend specimen [Tay et al, 2005] and matrix 

dominated failure in I-beams, curved beams and T-cleats [Li et al, 2002; Li et al, 2003]. 
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Chapter3 

Computational homogenisation 

 

3.1 Introduction 

It has been seen that the FEM can be thought as a mathematical model able to include in it 

the continuum theories. Such method, in fact, overcomes the difficulties of the analysis of a 

continuum solid structural response by operating a discretization of the same continuum. This 

means, as already seen, that the solid is divided in to finite number of elements, whose structural 

behaviours are known. Such elements, when assembled with accurate relation laws among the 

nodes, are able to yield the global behaviour of the primitive solid, even if approximately. Obviously, 

the solution is as much close to the actual mechanical response as the mesh is refined. The goal of 

this chapter will be to show some computational analyses, carried out by means of the calculation 

code Abaqus 6.9 version.  

This software offers a large number of appliances in a lot of engineering fields and it is just 

based on the mathematical F.E.M. model.  

In the present study, the used micro-mechanical model and the effected analyses will be 

described. Since, in linear-elastic field, a numerical analysis can efficaciously replace an experimental 

test, such finite element analyses have been employed in order to compare the numerical results 

obtained by our proposed homogenization techniques with the literature data. 

3.2 Micro-mechanical model 

 The micromechanics theory is to employ a representative volume element (RVE) to calculate 

the equivalent elastic constants and failure modes of masonry material with the help of finite 

element software Abaqus6.9. Both the units and mortar joints are idealized as isotropic material 

having their own properties such as modulus of elasticity and poisons ratio characteristics. Based on 

the numerical results, the equivalent material properties are used as the homogenized material 

properties in numerical simulation of a full masonry structure based on the continuum approach. It 
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is constituted by a periodic basic cell extracted from a single leaf masonry wall in stretcher bond, as 

shown in the figure 3.1 below     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3.1 Definition of masonry axes and of chosen micro mechanical model 

 

 

Input data considered in the analysis for both RVE’s are listed as 

Modulus of elasticity of brick = 20Gpa 

Modulus of elasticity of mortar = 2Gpa (It will vary for different analysis) 

Poisson’s ratio of brick and mortar = 0.15 

Mortar thickness = 1cm 

Brick dimensions: length = 21cm, Height = 5cm, width = 10cm 

The figure 3.2 below shows the modal dimensions of the both RVE’s 

 

Running Bond: Masonry 

RVE 1 

RVE 2 

22c

6c
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Figure 3.2 Modal dimensions of RVE’s 

 

The assumed hypothesis of linear elasticity lets to study the elastic response of the model 

for a generic loading condition as linear combination of the elastic responses for six elementary 

loading conditions. In particular, both stress prescribed and strain-prescribed F.E analyses have been 

carried out. In the following paragraph, the results obtained with the stress-prescribed analysis will 

be described. 

 Figure 3.3 below, the finite element model which has been used in the numerical analysis. 

 

 

 

 

 

 

 

 

Figure 3.3 Finite element model-mesh 

The element type considered was the C3D8R (8 noded linear brick, reduced integration)  The mesh 

was obtained by a process of regular subdivisions of all model lines, by taking into account a mesh 

size of 0.5 cm.  

RVE 1 RVE 2 
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3.3 Stress-prescribed analysis 

In the stress-prescribed analyses, the goal has been to obtain the overall compliance tensor by 

means of six numerical analyses. Since an orthotropic mechanical behaviour is considered, only nine 

elastic coefficients will be independent and different from zero. 

By using the Voigt notation, so that: 

                             

                                          (3.1) 

                                         

The stress-strain relation can be written in the following form: 
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    (3.2) 

Where the superscript [ ̅ ]means that the above written equations refer to the average values of 

the corresponding quantities within the considered RVE. By applying the six loading conditions one 

at a time, it is possible to obtain the single columns of the compliance tensor, one at a time too, 

according to the following relation: 

  ̅  
 ̅ 

 ̅ 
                     (3.3) 

3.3.1 Homogenised elastic compliances 

When the boundary conditions are applied in terms of uniform stresses on the considered 

RVE (basic cell), the following relation furnishes the average stress value in the RVE volume 

 

                     ̅  
 

 
∫      

    
                        (3.4) 

Where   stands for the volume of the basic cell and    
  is the generic stress-prescribed component. 
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 The same result is attained if the above shown RVE is considered subjected, for an example, 

to a unit stress component   
 ,i.e 

                       
                                 (3.5) 

Hence, the resulting force    on loaded face is obtained by 

        ∑ ̅ 
( )
 ( )

 

   

                                        (   ) 

Where  

m is the number of the elements in which the loaded face is discretized. 

 ( ) is the area of generic element 

 ̅ 
( )

 is the average value of the j-stress component, for the generic element 

Since the used mesh size is constant everywhere, all the areas of the elements are equal, too. So, the 

equation (5) can be rewritten in the following form  

    ∑ ̅ 
( )

 

   

   ∑  ̅ 
( )

 

   

  
  

 
               (   ) 

By dividing both members for the elements number m, it is obtained: 

 

 

 
∑ ̅ 

( )

 

   

  
  

  
  

 

    
    ̂      

                     (   ) 

Where: 

 ̂    = the average value of the j-stress component on the examined loaded face 

    = the area of such loaded face 

The equation (8) remains unaltered if it is multiplied and divided for l , 

Where l is given by: 

        
 

 
                     (   ) 

and with: 
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n = the number of the elements, equal to 21120(for RVE1), in which the whole RVE has been 

discretized. 

Since such operation yields the average value of the j-stress component within the whole RVE, it is 

obtained that: 

                  ̅      
                            (    ) 

At this point, it occurs to calculate the volume average value of strain,   ̅  , obtained as 

  ̅  
   ̅

( ) 
   

 
                                    (    ) 

Where 

n = the number of elements in which the whole RVE is discretized . 

  ̅
( )

= the average value of the i-strain component, for the generic element. 

3.3.2 Homogenised properties results from RVE’s 

In the finite element analysis the individual material properties of brick and mortar are 

considered. Different stiffness ratios between mortar and unit are considered to plat graphs, This 

has allowed assessing the performance of the model for inelastic behaviour. In fact, non-linear 

behaviour is associated with (tangent) stiffness degradation and homogenisation of non-linear 

processes will result in large stiffness differences between the components. In the limit, the ratio 

between the stiffness of the different components is zero or infinity. 

Figure 3.4 and Figure 3.5 shows variation of             ⁄ (x-axis) with normalised young’s 

modulus normalised shear modulus and normalised poisons ratio for RVE1 and RVE2. 

The material properties of the unit are kept constant, whereas the properties of the mortar are 

varied. In particular, for the unit, the Young’s modulus    is 20 GPa and the Poisson’s ratio is 0.15. 

For the mortar, the Young’s modulus is varied to yield a ratio     ⁄   ranging from 1 to 1000 while 

the mortar Poisson’s ratio is kept constant to 0.15 and equal to that one of the unit. 

The adopted range of     ⁄   is very large (up to 1000). Note that the ratio     ⁄   tends to infinity 

when softening of the mortar is complete and only the unit remains structurally active. 
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Figure 3.4  FEA results for different stiffness ratios for RVE1: (a) Young’s moduli (b) Poisson’s ratio 

and (c) shear moduli. 

 

 

 

 

 

 

(a) 
(b) 

(c) 
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Figure 3.5 FEA results for different stiffness ratios for RVE2: (a) Young’s moduli (b) Poisson’s ratio 

and (c) shear moduli. 

 

 

3.3.3 Effect of mortar modulus 

To investigate the effects of mortar moduli on the homogenized equivalent material properties of 

the unit cell, the material properties of the brick are kept constant whereas the properties of the 

mortar are varied. Different stiffness ratios of brick to mortar are considered in the analysis. Figure 

3.4(a) shows the plots of the ratios of Young’s modulus of brick to Young’s modulus of mortar 

(    ⁄ ) ranging from 1 to 1000 vs. the normalized homogenized equivalent Young’s moduli and 

(a) (b) 

(c) 
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shear moduli (     ⁄             ⁄ ). Similar trends for equivalent Young’s moduli and shear 

moduli are observed in Figure 3.5. Both (     ⁄             ⁄ ) begin with the value of 1.0 when 

   is equal to   , and decrease rapidly at the beginning and then slowly with the increase of the 

modulus ratio    ⁄  .       is greater than the     and     , and In-plane shear modulus     is also 

less than the out-of plane shear moduli,      and    . These observations indicate that the unit cell 

has higher out-of-plane stiffness than its in-plane stiffness. Because of the out of plane stiffness     

is more, the in plane Poisson’s ratio     is less and we can see it in Figure 3.4(b) graph. 

 

3.4 Strain prescribed analysis 

In the strain-prescribed analyses, the goal has been to obtain the overall stiffness tensor by 

means of six numerical analyses. Since an orthotropic mechanical behaviour is considered, only nine 

elastic coefficients will be independent and different from zero. 

By remembering the Voigt notation, the stress-strain relation can be written in the   

following form 

[
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 Where the superscript [ ̅ ]means that the above written equations refer to the 

average values of the corresponding quantities within the considered RVE. By applying the six 

loading conditions one at a time, it is possible to obtain the single columns of the stiffness tensor, 

one at a time too, according to the following relation 

  ̅  
 ̅ 

 ̅ 
                          (3.12) 

3.4.1 Homogenised elastic stiffness 

When the boundary conditions are applied in terms of surface displacements on the considered 

RVE (basic cell), the following relation furnishes the average strain value in the RVE volume 
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∫      
 

     
   

 

Where   stands for the volume of the basic cell and   
   is the generic strain component so that: 

         

With 

  = prescribed surface displacement 

More in detail, in order to found the homogenized stiffness tensor, the average strain value 

within the RVE volume is obtained as 

  ̅      
   ∑

  ̅
( )

 

 

   

  

n = the number of elements in which the whole RVE is discretized and equal to 21120 (for RVE1). 

  ̅
( )

 = the average value of the j-strain component, for the generic element. 

At this point, it occurs to calculate the average value of stress,  ̅  obtained as 

 ̅    
   

( ) 
   

 
           (    ) 

Where   
( )

= the average value of the i-stress component, for the generic element. 

3.4.2 Homogenised properties results from RVE’s 

The material properties of the unit are kept constant, whereas the properties of the mortar are 

varied. In particular, for the unit, the Young’s modulus    is 20GPa and the Poisson’s ratio is 0.15. 

For the mortar, the Young’s modulus is varied to yield a ratio     ⁄   ranging from 1 to 1000 while 

the mortar Poisson’s ratio is kept constant to 0.15 and equal to that one of the unit. 

Figure 3.6 and Figure 3.7 shows variation of             ⁄ (x-axis) with normalised young’s modulus 

normalised shear modulus for RVE1 and RVE2. 
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Figure 3.6 FEA results for different stiffness ratios for RVE1: (a) Young’s moduli and (b) shear moduli. 

 

 

 

 

 

 

 

Figure 3.7  FEA results for different stiffness ratios for RVE2: (a) Young’s moduli and (b) shear moduli. 

 

3.5 Homogenisation of masonry strengthening by CFRP 

The masonry is made of UNI clay bricks, whereas the mortar joint thickness is 10 mm for head joint 

and 10mm for bed joint in the case of un-strengthened masonry. When the strengthened masonry is 

considered, the horizontal joint thickness is composed of two mortar layer 4.4 mm thick and one 

central layer of CFRP material 1.2 mm thick as shown in figure8 below. In fact the CFRP repointing 

technique reduces the mortar bed joint thickness in the measure of the CFRP thickness. The whole 

thickness of bed joint is still 10 mm. The assume material properties are: Young’s modulus of CFRP 

(a) (b) 

(b) (a) 



30 
 

145Mpa, poisons ratio of CFRP 0.2, Young’s modulus of brick is 90Gpa and poisons ratio of brick and 

mortar is 0.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 (a) FE model of RVE with CFRP (b)FE discretization 

 

The below figures shows that variation of young’s modulus and shear modulus for strengthened and 

unstrengthen masonry  

From figure 3.9 and figure 3.10, by using the CFRP the out of plane shear modulus      strength is 

becoming high compared to the other shear modulus values. And young’s modulus     ,     also 

showing high values compared to the      modulus  for the strengthen and unstrengthen masonries. 

 

 

 

 

(a) (b) 
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Figure 3.9 FEA results for different stiffness ratios of (a) young’s modulus in x direction (b) 

young’s modulus in Y direction (c) young’s modulus in Z direction 
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Figure 3.10 FEA results for different stiffness ratios of (a) shear modulus in XY (b) shear 

modulus in YZ (c) shear modulus in ZX 
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3.6 Conclusion 

In this study, effective properties or homogenised properties of masonry have been found from 

micromechanics RVE (representative volume element) analysis. Average theorems are used to found 

the effective properties of masonry. Average stresses and average strains are found from FE analysis, 

six numerical analysis are carried out to find the stiffness matrix and compliance matrix. 

 In this work we investigated the effects of mortar moduli on the homogenized equivalent 

material properties of the unit cell, the material properties of the brick are kept constant whereas 

the properties of the mortar are varied. Different stiffness ratios of brick to mortar are considered in 

the analysis and  the plots of the ratios of Young’s modulus of brick to Young’s modulus of mortar 

(    ⁄ ) ranging from 1 to 1000 vs. the normalized homogenized equivalent Young’s moduli and 

shear moduli (     ⁄             ⁄ ) are made. Both (     ⁄             ⁄ ) begin with the value 

of 1.0 when    is equal to   , and decrease rapidly at the beginning and then slowly increase of the 

modulus ratio    ⁄  .       is greater than the     and     , and In-plane shear modulus     is also 

less than the out-of plane shear moduli       and    . These observations indicate that the unit cell 

has higher out-of-plane stiffness than its in-plane stiffness. Because of the out of plane stiffness     

is more,  the in plane Poisson’s ratio     is less. 

 Plots are also made for strengthen with CFRP and unstrengthen masonry, using the 

CFRP. The out of plane shear modulus      strength is becoming high compared to the other shear 

modulus values. And young’s modulus     ,     also showing high values compared to the      

modulus for the strengthen and unstrengthen masonries.  
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Figure 4.1 Modelling of masonry structures (a) masonry sample; (b) detailed micro modelling; (c) simplified 
micro-modelling; (d) macro modelling. 
 

Chapter 4 

Failure modelling of periodic composites 

 

4.1 Introduction 

Masonry can be analysed in different scales such as micro model, meso model and macro model.  

Masonry is composite material which exhibit distinct directional properties due to mortar joints. In 

literature the approach run towards micro modelling of individual components of unit or brick and 

mortar or the macro modelling of masonry. Depending on the level of accuracy and simplicity 

desired, it is possible to use following modelling strategies: 

 Detailed micro modelling- units and mortar in joints are represented by continuum elements 

whereas the unit mortar interface represented by discontinuous elements; 

 Simplified micro modelling- expanded units are represented by continuum elements 

whereas the behaviour of the mortar joints and unit mortar interface is lumped in 

discontinuous elements; 

 Macro modelling- units, mortar and unit-mortar interface are smeared out in the continuum. 
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In the first modelling, Young’s modulus, Poisson’s ratio and, optionally, inelastic properties of both 

unit and mortar are taken into account. The interface represents a potential crack/slip plane with 

initial dummy stiffness to avoid interpenetration of the continuum. This enables the combined 

action of unit, mortar and interface to be studied. In the second modelling, each joint, consisting of 

mortar and the two unit-mortar interfaces, is lumped into an “average” interface while the units are 

expanded in order to keep the geometry unchanged. Masonry is thus considered as a set of elastic 

blocks bonded by potential fracture/slip lines at the joints. Accuracy is lost since Poisson’s effect of 

the mortar is not included. The third approach does not make a distinction between individual units 

and joints but treats masonry as a homogeneous anisotropic continuum. One modelling strategy 

cannot be preferred over the other because different application fields exist for micro- and macro-

models. Micro-modelling studies are necessary to give a better understanding about the local 

behaviour of masonry structures. This type of modelling applies notably to structural details, but also 

to modern building systems like those of concrete or calcium-silicate blocks, where window and 

door openings. Macro-models are applicable when the structure is composed of solid walls with 

sufficiently large dimensions so that the stresses across or along a macro-length will be essentially 

uniform. Clearly, macromodeling is more practice oriented due to the reduced time and memory 

requirements as well as a user-friendly mesh generation. This type of modelling is most valuable 

when a compromise between accuracy and efficiency is needed. 

 Accurate micro or macro-modelling of masonry structures requires a thorough experimental 

description of the material. However, the properties of masonry are influenced by a large number of 

factors, such as material properties of the units and mortar, arrangement of bed and head joints, 

anisotropy of units, dimension of units, joint width, quality of workmanship, and degree of curing, 

environment and age.  

 

 

 



36 
 

4.2 Behaviour of masonry in Different aspects 

4.2.1 Softening Behaviour 

Softening is a gradual decrease of mechanical resistance under a continuous increase of deformation 

forced upon a material specimen or structure. It is a salient feature of quasibrittle materials like clay 

brick, mortar, ceramics, rock or concrete, which fail due to a process of progressive internal crack 

growth. Such mechanical behaviour is commonly attributed to the heterogeneity of the material, 

due to the presence of different phases and material defects, like flaws and voids. Even prior to 

loading, mortar contains micro cracks due to the shrinkage during curing and the presence of the 

aggregate. The clay brick contains inclusions and micro cracks due to the shrinkage during the 

burning process. The initial stresses and cracks as well as variations of internal stiffness and strength 

cause progressive crack growth when the material is subjected to progressive deformation. Initially, 

the micro cracks are stable which means that they grow only when the load is increased. Around 

peak load an acceleration of crack formation takes place and the formation of macro cracks starts. 

The macro cracks are unstable, which means that the load has to decrease to avoid an uncontrolled 

growth. For shear failure, a softening process is also observed as degradation of the cohesion in 

Coulomb friction models. For compressive failure, softening behaviour is highly dependent upon the 

boundary conditions in the experiments and the size of the specimen, [Van Mier (1984) and Vonk 

(1992)]. Figure 4.2 shows characteristic stress-displacement diagrams for quasi-brittle materials in 

uniaxial tension and compression. In the present study, it is assumed that the inelastic behaviour 

both in tension and compression can be described by the integral of the σ −δ diagram. These 

quantities, denoted respectively as fracture energy Gf and compressive fracture energy Gc, are 

assumed to be material properties. It is noted that masonry presents other type of failure 

mechanism, generally identified as mode II, that consists of slip of the unit-mortar interface under 

shear loading, see Figure 4.3. Again, it is assumed that the inelastic behaviour in shear can be 

described by the mode II fracture energy GIIf, defined by the integral of the τ −δ diagram in the 

absence of normal confining load. Shear failure is a salient feature of masonry behaviour which must 
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be incorporated in a micro-modelling strategy. However, for continuum models, this failure cannot 

be directly included because the unit and mortar geometries are not discretized. Failure is then 

associated with tension and compression modes in a principal stress space. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Typical behaviour of quasi-brittle materials under uniaxial loading (a) tensile loading (ft 
denotes the tensile strength); (b) compressive loading (fc denotes the compressive strength). 
[Lourenco 2006] 
 

 

 

 

 

 

 

 

 

Figure 4.3 Behaviour of masonry under shear (c denotes the cohesion). [Lourenco 2006]  
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4.2.2 Uniaxial compressive behaviour 

The compressive strength of masonry in the direction normal to the bed joints has been traditionally 

regarded as the sole relevant structural material property, at least until the recent introduction of 

numerical methods for masonry structures. A test frequently used to obtain this uniaxial 

compressive strength is the stacked bond prism, it has been accepted by the masonry community 

that the difference in elastic properties of the unit and mortar is the main for failure. Uniaxial 

compression of masonry leads to a state of triaxial compression in the mortar and of uniaxial 

compression and biaxial tension in the unit. Mann and Betzler (1994) observed that, initially, vertical 

cracks appear in the units along the middle line of the specimen, i.e. continuing a vertical joint. Upon 

increasing deformation additional cracks appear, normally vertical cracks at the small side of the 

specimen, that lead to failure by splitting of the prism. Examples of load-displacement diagrams 

obtained in 500 × 250 × 600mm prisms of solid soft mud bricks are shown in Figure 4. Increasing 

strength leads to a more brittle behaviour.  

 

 

 

 

 

 

 

Figure 4.4 Typical experimental stress-displacement diagrams for 500 × 250 × 600 [mm3] prisms of 
solid soft mud brick, Binda et al. (1988). Here, fmo is the mortar compressive strength. 
 

4.2.3 Uniaxial tensile Behaviour 

For tensile loading perpendicular to the bed joints, failure is generally caused by failure of the 

relatively low tensile bond strength between the bed joint and the unit. As a rough approximation, 
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the masonry tensile strength can be equated to the tensile bond strength between the joint and the 

unit. 

For tensile loading parallel to the bed joints a complete test program was set-up by Backes (1985). 

The specimen consists of four courses, initially laid down in the usual manner, A special device 

attached to the specimen turns it 90° in the intended direction of testing shortly before the test 

time, The load is applied via steel plates attached to the top and bottom of the specimen by special 

glue. The entire load-displacement diagram is traced upon displacement control. 

Two different types of failure are possible, depending on the relative strength of joints and units, see 

Figure 4.5. In the first type of failure cracks zigzag through head and bed joints. A typical stress-

displacement diagram shows some residual plateau upon increasing deformation. The post-peak 

response of the specimen is governed by the fracture energy of the head joints and the post-peak 

mode II behaviour of bed joints. In the second type of failure cracks run almost vertically through the 

units and head joints. A typical stress-displacement diagram shows progressive softening until zero. 

The post peak response is governed by the fracture energy of the units and head joints. 

 

 

 

 

 

 

 

 

 

Figure 4.5 Typical experimental stress-displacement diagrams for tension in the direction parallel to 
the bed joints, Backes (1985): (a) failure occurs with a stepped crack through head and bed joints; (b) 
failure occurs vertically through head joints and units. 
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4.3 Damage modelling of masonry  

 Main focus is to develop a modelling frame work to representing damage behaviour of 

masonry for macro model and simplified micro model. This involves several aspects of theoretical 

and practical interest. Important issues include material models, element types, mesh, convergence 

and boundary conditions. A general conclusion regarding these issues is that the model must be rich 

to be able to capture the important phenomena, but it should not be more complex than necessary 

since this would only increase the computer time needed. Abaqus/standard was used for the finite 

element modelling in this work. This FEM package includes large variety of material models and 

elements including facilities necessary for this subject. 

4.3.1 Constitutive model 

(a)For Brick, concrete or quasi brittle materials 

In the last decades, many constitutive models which can predict the behaviour of brick, including 

cracks and crushing have been developed. Two approaches are available in Abaqus to predict the 

behaviour of concrete or brick: smeared crack and plastic damage models. The plastic damage 

model was selected for this study since it has higher potential for convergence compared to the 

smeared crack model. 

The concrete plastic damage model assumes that the two main concrete failure mechanisms 

are cracking and crushing. Crack propagation is modelled by using continuum damage mechanics, 

stiffness degradation. 

The plastic damage model requires the values of elastic modulus, Poisson’s ratio, the plastic 

damage parameters and description of compressive and tensile behaviour. The five plastic damage 

parameters are the dilation angle, the flow potential eccentricity, the ratio of initial equibiaxial 

compressive yield stress to initial uniaxial compressive yield stress, the ratio of the second stress 

invariant on the tensile meridian to that on the compressive meridian and the viscosity parameter 

that defines viscoplastic regularization. The values of the last four parameters were recommended 

by the Abaqus documentation for defining concrete material and were set to 0.1, 1.16, 0.66, and 0.0, 
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respectively. The dilation angle and Poisson’s ratio were chosen to be 37° and 0.15, respectively. 

Another important thing is to represent the stress-strain curve for concrete in an accurate way. For a 

given brick characteristic compressive strength, the stress-strain curve can be defined beyond the 

ultimate stress, into the strain-softening regime. The compressive inelastic strain,  ̃ 
   is defined as 

the total strain minus the elastic strain,   ̃ 
          

  , as illustrated in figure 4.6 

 

 
Figure4.6 Response of concrete to uniaxial loading in compression 

 

The concrete behaviour in tension was modelled using a linear elastic approach until 

cracking is initiated at tensile strength. After crack initiation, the softening will start. The post-failure 

behaviour for direct straining is modelled with tension stiffening, which permits to define the strain-

softening behaviour for cracked concrete. Tension stiffening is required in the concrete damage 

plasticity model. It is possible to specify tension stiffening by means of a post-failure stress-strain 

relation or by applying a fracture energy cracking criterion. 

The degradation of the elastic stiffness is characterized by two damage variables, dt and dc, 

which are assumed to be functions of the plastic strains. The damage variables can take values from 

zero, representing the undamaged material, to one, which represents total loss of strength. Linear 

relationship between the damage variable and stress was assumed. 
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(b) Mechanical behaviour 

The model is a continuum, plasticity-based, damage model for concrete. It assumes that the main 

two failure mechanisms are tensile cracking and compressive crushing of the concrete material. The 

evolution of the yield (or failure) surface is controlled by two hardening variables,  ̃
  

 and  ̃
  

 , linked 

to failure mechanisms under tension and compression loading, respectively. We refer to    ̃
  

 and  ̃
  

  

as tensile and compressive equivalent plastic strains, respectively. The following sections discuss the 

main assumptions about the mechanical behaviour of concrete. 

Uniaxial Tension and compressive behaviour: 

The model assumes that the uniaxial tensile and compressive response of concrete is characterized 

by damaged plasticity, as shown in Figure 4.7  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Response of concrete to uniaxial loading in (a) tension and (b) compression 
 Under uniaxial tension the stress-strain response follows a linear elastic relationship until  

 



43 
 

the value of the failure stress,     is reached. The failure stress corresponds to the onset of micro-

cracking in the concrete material. Beyond the failure stress the formation of micro-cracks is 

represented macroscopically with a softening stress-strain response, which induces strain 

localization in the concrete structure. Under uniaxial compression the response is linear until the 

value of initial yield,      . In the plastic regime the response is typically characterized by stress 

hardening followed by strain softening beyond the ultimate stress,    . This representation, 

although somewhat simplified, captures the main features of the response of concrete. 

It is assumed that the uniaxial stress-strain curves can be converted into stress versus plastic-strain 

curves. (This conversion is performed automatically by Abaqus from the user-provided stress versus 

“inelastic” strain data, as explained below.) Thus, 

     (  ̃
  
  ̃ ̇
  
     )  

     (  ̃
  
  ̃ ̇
  
     )  

Where the subscripts t and c refer to tension and compression, respectively;    ̃
  

 and   ̃
  

  are the 

equivalent plastic strains,  ̃ ̇
  

and   ̃ ̇
  

 are the equivalent plastic strain rates,  is the temperature, 

and are     other predefined field variables. 

When the concrete specimen is unloaded from any point on the strain softening branch of the 

stress-strain curves, the unloading response is weakened: the elastic stiffness of the material 

appears to be damaged (or degraded). The degradation of the elastic stiffness is characterized by 

two damage variables,            , which are assumed to be functions of the plastic strains, 

temperature, and field variables: 

     (  ̃
  
     )                 

     (  ̃
  
     )                 
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The damage variables can take values from zero, representing the undamaged material, to one, 

which represents total loss of strength. 

If    is the initial (undamaged) elastic stiffness of the material, the stress-strain relations under 

uniaxial tension and compression loading are, respectively: 

   (    )  (     ̃
  
)  

   (    )  (     ̃
  
). 

We define the “effective” tensile and compressive cohesion stresses as 

   
  

(    )
   (     ̃

  
)  

   
  

(    )
   (     ̃

  
)  

The effective cohesion stresses determine the size of the yield (or failure) surface. 

 ̃     ̃
  
  

  
(    )

  

  
               (4.1) 

 ̃     ̃
  
  

  
(    )

  

  
               (4.2) 

 

 

4.4 Failure modelling of masonry under lateral displacements 

Masonry wall was modelled by individual properties of brick and mortar, modelling and post 

processing was completed in Abaqus 6.9. Steel beam is attached on the top of the wall to apply 

lateral displacements uniformly. The created model of masonry and its FE discretization is shown in 

below figure 4.8. 
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Figure 4.8(a) masonry wall model (b) FE discretization of masonry 

 

Here C3D8R (8 noded linear brick, reduced integration) element is used for analysis and 21*5*10 

brick size is used, individual linear isotropic material properties are used and Concrete Damage 

Plasticity model (CDP) is used along with the isotropic properties.  For steel beam elastic perfectly 

plastic material is assumed. 

Following are material parameters used in CDP model and figure 4.9 shows the induced compressive 

and tensile behaviour of masonry. 

Dilation angle = 38(For brick)/4 for mortar 

Flow potential eccentricity=0.1 

Ratio of initial equibiaxial compressive yield stress to Initial uniaxial compressive yield stress = 1.16 

ratio of the second stress invariant =0.66,Viscosity parameter = 0 
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Figure 4.9 (a) stress-displacement curve for masonry under tensile loads (b) stress-strain curve for 

masonry in compressive loads 

 

Bottom face of masonry is fixed and 0.7Mpa pressure is applied on the top face of the steel beam as 

shown in Figure 4.8, 3mm displacement is applied on the side face of the steel beam so that it 

displacement was consistently applied on top of wall. The positive equivalent plastic strain gives the 

damage on the wall as shown in the figure4.10 (a) and figure 4.10(b) horizontal load vs. 

displacement of the masonry wall. Horizontal tension cracks developed at the bottom and top of the 

wall at an early loading stage but, ultimately, a diagonal stepped cracks leads to collapse, 

simultaneously with cracks in bricks and crushing of compressed toes. 

(a) (b) 

Figure 4.10 (a) damage distribution of masonry wall (b) load vs. displacement graph for masonry 

(a) 
(b) 
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4.5 Multi scale failure theory for composite laminate 

Due to the complex structure of composite laminates, consisting of plies made of anisotropic fibres 

embedded in a polymeric resin, there are a number of complex failure modes, rendering the 

characterisation very difficult. For instance, a unidirectional laminate subjected to compressive 

loading may fail by fibre breakage, fibre micro buckling, or transverse delamination. In this regard, 

research has been devoted to developing predictive failure theories [16]. Early failure theories, such 

as Tsai-wu theory, treated the lamina as basic building block. Consequently, a large number of 

mechanical properties are required to determine the coefficients of empirical failure models. 

Because a ply consists of two phases (fibres and resin) and can fail in several modes, the laminate 

properties are strongly dependent on stacking sequence, thickness, and operating temperature. 

Furthermore, it is extremely difficult to extend the conventional laminate failure theories to account 

for time-dependent failure mechanisms, such as creep and exposure to hot or wet environment. 

 Recognising the limitations of the conventional laminate failure theories, the researchers 

have attempted to develop failure criteria that separately model the failure modes of the matrix and 

the fibres, including the Hashin criterion [19] and Rotem criterion. Both these models use the 

average stresses in the fibre phase and the matrix phase in determining the onset of initial failure. 

Stiffness degradation is then required to simulate the fibre-bridging effect in cross-ply laminate. 

Instead of average stresses as in the Hashin and Rotem criteria multi-continuum theory (MCT)[19] 

phase averaged stresses, which takes into account the stress amplification effect due to fibre 

reinforcement in lamina. 

4.6 Multi-continuum failure criteria 

One common feature between the multi-continuum theory and the strain invariant failure theory is 

the use of micro-mechanics in determining the stresses within a lamina or ply, which is modelled by 

a periodic fibre and matrix structure, either of diamond pattern or hexagonal pattern, in this study I 

consider diamond pattern and the below figure 4.11 is showing diamond configuration RVE which is 
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modelled in Ansys and its FE discretization. The failure of a fibre-composite material lamina will 

occur either in the fibres or in matrix, fibre will fail due to shear distortion mode and matrix will fail 

either due to dilation mode or shear distortion mode. 

 

 

 

 

 

 

 

 

Figure 4.11 Three-dimensional unit cell for reinforced composite (a) diamond configuration RVE (b) 

FE discretization of RVE  

Assumptions for MCT: 

 Linear elastic behavior of fiber 

 Nonlinear elastic behavior of matrix 

 Deboning is not considered here 

 Matrix fails either under dilation mode or shear mode 

 Pressure sensitivity of matrix is considered  

 Fiber failed due to shear distortion or micro buckling. 

4.6.1 Fibre failure 

The current constituent level failure criteria are based on revised failure criteria originally proposed 

by Mayes [11]. Simple quadratic stress-based failure criteria for fibre is expressed as 

,144

2

11 

ffff IAIA           (4.3) 

 

(a) (b) 



49 
 

Where  

2

12

4

2

11

1

1

,
1

f

f

f

f

S
A

S
A





 

ff SS 1211 ,  are the strength along respective directions 

4.6.2 Matrix failure 

Simple quadratic stress-based failure criteria for matrix is expressed as 
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In Equation 4.3 and 4.4, the     terms denote transversely isotropic stress invariants for each 

constituent,     for fiber,      for matrix. The coefficients     and     , leading the invariants, 

are constituent failure parameters, generally derived from experimentally determined composite 

ultimate strength data through correlation with the MCT decomposition. The ± signs in these 
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equations indicate a dependence of the parameter on tensile versus compressive stress. Details on 

the computation of these parameters for the analyses presented here-in may be found in Kenik 

[117]. With the exception of a single parameter,    all values of     and      may be determined 

from a standard set of uniaxial test data. Moreover, parameter     may be determined from 

unidirectional composite biaxial test data (       ). In the absence of biaxial data, a reasonable 

approximation of     may be obtained based on the orthotropic failure criteria of Hill [18]. 

Alternative form for pressure sensitivity 

To account for pressure sensitivity of polymeric matrix in the shear distortion failure mode, the 

modified von Mises yield criterion will be adopted [10] (as illustrated in figure) 

 

Where     
  denotes the critical von Mises stress for matrix,   the pressure sensitivity of the matrix. 

 To determine the stresses in the fibre and in the matrix, a two-step analysis is required. 

Firstly the stresses for lamina determined by using laminate theory. Then a micromechanics analysis 

is performed by using the finite element method to solve for the fibre and matrix stresses where the 

strains determined in the first step serve as the boundary conditions. 

  

 

 

 

 

 

 

Figure 4.12 Matrix failure criterion 

 

 

 

𝜎𝑣𝑚  𝜇𝑝 ≥ 𝜎𝑣𝑚𝑐
𝑚  
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4.7 Laminate analysis 

Since the loading axes and the lamina material principle axes do not typically coincide, so the lamina 

stresses must be transformed from loading axis to the material axis directions. The transformed 

stress matrix  ̅ of ply is rotated by an angle  of and is given as  

[ ̅]   [ ] [ ][ ]           (4.5) 

Where [ ] is the transformation matrix expressed as 

[ ]   [
      
       

            
] ;                                      And  

[ ]   [

         
         
         

]  

4.8 Micromechanics solutions 

For either of the unit cells shown in figure 4.3, there is a substantial non uniformity in the matrix 

stress, due to the disparity in stiffness. An example is shown in figure 4.13 which depicts the stress 

distribution due to an applied stress. The maximum fibre stresses and the {  } maximum matrix 

stresses {  } are related to the ply stresses, 

{  }   [  ] { }              

{  }   [  ] { }                 

Where matrices [  ] and [  ] denote the amplification factors, which can be determined by using 

the finite element method for a given fibre volume fraction and fibre-matrix combination. The 

micromechanics model is based on an assumed periodic fibre configuration within the lamina’s 

matrix, either in the form of repeating diamond or hexagonal unit cell shown in figure 4.11. To 

enforce compatibility of the unit cell boundaries, i.e., boundaries remains plane after deformation, 



52 
 

the nodes along the unit cell boundaries is constrained to undergo the same displacement normal to 

the boundary. 

 

 

 

 

 

 

 

 

Figure 4.13 stress distribution in a carbon/epoxy lamina subjected to a unit applied stresses: (a)      

and (b)    

4.9 Phase degradation approach 

The failure criteria presented in section are valid only for a lamina. For a composite laminate, the 

failure of a single lamina may not cause the rupture of the laminate, as the failed lamina may be 

bridged by other plies. Therefore the ultimate failure strength of a laminate may be significantly 

higher than the initial failure strength of the most highly stressed lamina in laminate. One efficient 

approach to account for this damage progression through the laminate is to adopt a phase 

degradation approach in which the fibre stiffness or the matrix stiffness is reduced in accordance 

with failure modes; longitudinal fibre stiffness is reduced to zero should fibre fracture occur, 

whereas  matrix shear stiffness is reduced if the matrix failure is detected. Ply stiffness is 

recalculated by using the modified rule of mixture [15]; details will be presented in the following. As 

the damage progression through the laminate, eventual failure will occur due to either excessive 

deformation or insufficient load carrying capacity (i.e., failure have completely progressed through 

all the laminae). 

(a) (b) 
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 In the case of fibre failure, resulting from either shear distortion or compressional micro 

buckling, the longitudinal stiffness of the fibre phase is assumed to degrade to zero. In other words, 

the effective longitudinal stiffness of the fibre phase is assumed to degrade to zero. In other words, 

the effective longitudinal stiffness can be expressed as  
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For the matrix, it is necessary to account for the relatively high degree of plastic 

deformation. In this case, the effective shear modulus is taken to be equal to the secant 

shear stiffness before the shear strain reaches a critical value, as described by the following 

relations, 
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Where m

oct  and )(m

oct  denote the octahedral shear stress and shear strain in the matrix. The value of 

(m)

c  for a polymeric matrix material can be readily obtained through the in-plane shear stress or 

strain data. As an example, for the four fibre or epoxy laminates employed in the world-wide failure 

exercise study. 

Now the ply properties can be expressed in terms of the fibre and matrix properties via the 

modified rule of mixture [15], 
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Where             need to be determined so that predictions of the modified rule of mixture 

match the ply properties in the absence of damages. It is interesting to note that both the major 

Poisson’s ratio and the through-thickness Poisson’s ratio are not affected by damage, while the 

longitudinal, transverse, and in-plane shear stiffness are strongly dependent on the degree of 

damage in the fibre and the matrix.  

4.10 Open-Hole Tension (OHT) specimen 

The case of composite quasi-isotropic plate with notch is built and damage was expected to initiate 

at the edge of the hole. One half of the open-hole tension specimen is symmetrically built. Plate has 

dimensions of 100mm*50mm. Total thickness of the plate is 1.25 mm. Diameter of the hole is 10 

mm. 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.14 (a) open hole tension specimen (b) FE discretization of the quarter part of OHT specimen 
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Above figure shows open hole tension specimen model and its FE discretization. In the 

symmetry through-the-thickness, surface of symmetry is restrained so that it will not move laterally 

(out of plane). Unit displacement is prescribed as loading condition on the top of the plate. At the 

bottom, plate is restrained. 

4.10.1 Damage progression in open hole tension specimen 

The aim of research is to predict the damage in composite laminates. Damage progression in 

composite laminate can be predicted by using phase degradation approach and failure criteria used 

is Multi Continuum Theory. 

MATLAB code was developed for phase degradation approach and MCT, and it also consists of 

transformation matrix which it will convert from global stress tensors to local stress tensors, it found 

four stress invariants to calculate the failure criteria equations from the local stress tensors, once 

equations satisfied then damage will initiate and propagate. Table 4.1 and Table 4.2 are given as an 

input to the Matlab code. 

 

 

 

  

 

 

 

 

 

 

Figure 4.15 Damage progression for ply-1 and ply-2 of laminated composite (-30/30/-30/30) (a) 1st 

ply (30 deg) (b) 2nd ply (-30 deg) 
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Table 4.1 Matrix properties (3501-6) 

Table 4.2 Fiber properties properties (3501-6) 

 

  

Above figure illustrate the predicted damage progression of each ply of laminated composite             

[-30/30]s when 144 elements are failed. Generally, the damage initiates at the right and left area 

close to the central hole. Ply-1 (-30 degree) has large amount of failed elements which are 

dominantly failed due to shear distortion. 

4.11 Conclusion 

In this chapter failure was predicted in masonry wall and also failure of composite laminate was 

predicted. 

Discrete Masonry wall was modeled in Abaqus and individual isotropic properties of brick and 

mortar was used. The material model was used to predict the damage of the wall is Concrete 

damage plasticity in terms of plastic strains. Masonry will fail either due to tension or compression, 

so damage due to tension and compression were essentially form cracking strain and inelastic strains 

respectively, these strains will automatically convert to the plastic strains by the Abaqus. Due to 

plastic strains of masonry wall we can predict load vs. displacement plots beyond the yield. 

In the second part of this chapter multiscale failure modeling of periodic composite was discussed. 

Here we are doing the analysis at macro level (e.g. OHT specimen) and we are seeing failure at micro 

level by using multi continuum failure theory and phase degradation approach. Here MCT and phase 

degradation approach was implemented in MATLAB programme. 

 

Em(Gpa) Gm(Gpa) vm +S22m(Mpa) -S22m(Mpa) +S33m(Mpa) -S33m(Mpa) S12(Mpa) 

4.50 1.68 0.3 42.3 -176.3 5.52 -23.0 49.54 

E11f(GPa) E22f(GPa) G12f(GPa) G23f(GPa) V12f(GPa) V23f(GPa) +S11f(MPa) -S11f(MPa) S12f(MPa) 

207.5 25 95 9.20 0.24 0.359 3202 -2431 101 
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Chapter 5 

Conclusion 

 

5.1 Conclusion and summary 

In this study, effective properties or homogenised properties of masonry has been found from 

micromechanics RVE (representative volume element) analysis. Average theorems are used to found 

the effective properties of masonry. Average stresses and average strains are found from FE analysis, 

six numerical analysis are carried out to find the stiffness matrix and compliance matrix. 

 In this work we investigated the effects of mortar moduli on the homogenized equivalent 

material properties of the unit cell, the material properties of the brick are kept constant whereas 

the properties of the mortar are varied. Different stiffness ratios of brick to mortar are considered in 

the analysis and  the plots of the ratios of Young’s modulus of brick to Young’s modulus of mortar 

(    ⁄ ) ranging from 1 to 1000 vs. the normalized homogenized equivalent Young’s moduli and 

shear moduli (     ⁄             ⁄ ) are made. Both (     ⁄             ⁄ ) begin with the value 

of 1.0 when    is equal to   , and decrease rapidly at the beginning and then slowly increase of the 

modulus ratio    ⁄  .       is greater than the     and     , and In-plane shear modulus     is also 

less than the out-of plane shear moduli       and    . These observations indicate that the unit cell 

has higher out-of-plane stiffness than its in-plane stiffness. Because of the out of plane stiffness     

is more,  the in plane Poisson’s ratio     is less. 

 Plots are also made for strengthen with CFRP and unstrengthen masonry, using the CFRP 

the out of plane shear modulus      strength is becoming high compared to the other shear 

modulus values. And young’s modulus     ,     also showing high values compared to the      

modulus for the strengthen and unstrengthen masonries.  

In the chapter 4 failures were predicted in masonry wall and also failure of composite laminate was 

predicted. 
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Discrete Masonry wall was modeled in Abaqus and individual isotropic properties of brick and 

mortar was used. The material model was used to predict the damage of the wall is Concrete 

damage plasticity in terms of plastic strains. Masonry will fail either due to tension or compression, 

so damage due to tension and compression were essentially form cracking strain and inelastic strains 

respectively, these strains will automatically convert to the plastic strains by the Abaqus. Due to 

plastic strains of masonry wall we can predict load vs. displacement plots beyond the yield. 

In the second part of this chapter multiscale failure modeling of periodic composite was discussed. 

Here we are doing the analysis at macro level (e.g. OHT specimen) and we are seeing failure at micro 

level by using multi continuum failure theory and phase degradation approach. Here MCT and phase 

degradation approach was implemented in MATLAB programme. 
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