
Queue Layout of Planar 3−Tree

Digvijay Pandey

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science & Engineering

June 2019

Scanned by CamScanner

Scanned by CamScanner

Acknowledgements

Firstly, I would like to express my sincere gratitude to my thesis advisor Dr. N.R. Aravind for

the continuous support in my thesis work and related research, for his patience, motivation, and

immense knowledge in theory. His guidance has helped me to think like a researcher, he has also

reviewed presentations and this thesis work which resulted in writing a better content for readers.

I would also like to thank the professors for their valuable comments and suggestions during the

presentations. It has helped me to think in new directions and improve my research work. Finally,

I would express my deep gratitude to my parents for providing me tremendous support throughout

my research work. This achievement would not have been possible without them.

iv

Dedication

Dedicated to:

My Parents

Divya and Shaivya (Sisters)

Priti Sharma (IITB)

Abhay Pratap Singh (Friend)

Prativa and Anamika (Friends)

v

Abstract

Graph drawing is essential for data representation. This thesis addresses various graph drawing

techniques, their implementation, and enhancements. First, we discuss the 3D grid drawing tech-

niques. The subsequent chapters address the Stack Layout and Queue layout of the graph. The

application of Stack and Queue layout and its importance also discussed.

Section 4, dedicated to outerplanar Graph. In this chapter, we have discussed how outerplanar

Graphs are implemented and their queue and track layouts. The most important part of this thesis

is chapter 5, in which the implementation of planar 3-Tree is given. An outerPlanar graph and

Planar 3-Tree are internally related. The known upper bound of the queue number of planar 3-Tree

is 7. We have implemented the queue layout of 2-Layer planar 3-Tree using two queues and then

generalized this experiment for any arbitrary number of levels.

vi

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

Nomenclature viii

List of Figures 1

List of Algorithms 2

1 Introduction 3

1.1 Aesthetic criteria . 3

1.1.1 Area . 3

1.1.2 Aspect Ratio . 3

1.1.3 Sub-graph Separation . 4

1.1.4 Closest Leaf . 4

1.1.5 Farthest leaf . 4

1.1.6 Size . 4

1.1.7 Edge Length . 4

1.1.8 Angular Resolution . 4

1.1.9 Symmetry . 4

1.2 Graph Drawing Techniques . 5

1.2.1 Orthogonal Drawing . 5

1.2.2 Poly Sub-tree Drawing . 5

1.2.3 Upward and Non Upward Drawing . 5

1.2.4 Planar Drawing . 5

1.2.5 Grid Drawing . 5

1.3 Application . 6

1.4 Topology Shape Metrics . 6

1.4.1 Topology . 6

1.4.2 Shape . 6

1.4.3 Metrics . 6

2 Related Work 7

vii

2.1 Planar Graph . 7

2.2 Tree Drawing . 7

2.3 Hierarchical layout algorithms . 8

2.4 Orthogonal Drawing . 8

2.5 Stack and Queue layout . 9

2.6 Track layout . 9

3 Track Layout 10

3.1 3D Grid Drawing . 10

3.2 r-partite Graph Drawing . 12

3.3 3-Track Layout Tree Drawing . 13

4 Stack and Queue layout 15

4.1 Basics of layout . 15

4.1.1 Layouts of Fixed Order . 15

4.1.2 Graph with Queue number 1 and stack number 1 16

4.1.3 Queue number and Stack number Trade off 16

4.2 Queue number and Stack number in a nutshell . 17

5 Outer-planar Graph 18

5.1 Implementation of outer-planar Graph . 19

5.1.1 Terminology . 19

5.1.2 Procedure . 19

5.2 Algorithm . 19

5.3 Track layout of outer-planar Graph . 21

5.4 2-Queue Layout of outer-planar Graph . 21

6 Planar 3-Tree 22

6.1 Definition . 22

6.2 Implementation of planar 3-tree . 23

6.3 5-queue Layout of 2-layer Planar 3-Tree . 24

6.3.1 Terminology . 24

6.3.2 Queue layout of 2-level planar 3-tree . 24

6.3.3 Implementation . 26

6.4 5 Queue layout of n−layer Planar 3-Tree . 27

6.5 Result . 28

6.5.1 n layer 3-tree . 28

6.5.2 Converting into levels . 28

6.5.3 Queue layout . 29

7 Conclusion and Future work 30

7.1 Summary . 30

Bibliography 31

viii

List of Figures

3.1 X− Crossing . 11

3.2 3D Grid Drawing . 11

3.3 3D Grid Drawing with a Prime number ’P’ . 12

3.4 3D Grid drawing for Bi-pertite Graph . 13

3.5 Edge Wrapping into the 3−tracks . 13

3.6 3D Grid drawing for Tree . 14

4.1 k− rainbow . 15

4.2 k− twist . 16

4.3 k− Necklace . 16

5.1 Maximal Outer Planar Graph . 18

5.2 Upper envelop and Lower envelop . 20

5.3 Graph with height of neighboring vertices differ by at most 2 20

6.1 Planar 3-tree . 22

6.2 2-Level Planar 3-Tree . 23

6.3 Planar 3−Tree and level split . 26

6.4 5− Queue layout of Planar 3−Tree . 26

6.5 n− layer Planar 3-Tree . 28

6.6 Level wise placement of vertices of planar 3-tree . 28

6.7 Queue layout of Planar 3-Tree . 29

1

List of Algorithms

1 Outer Planar Graph: Adjacent vertices are at a vertical height at most two. 19

2 Planar 3−Tree . 23

3 Queue layout of 2−Layer Planar 3−Tree . 24

4 Queue layout of n−Layer Planar 3−Tree . 27

2

Chapter 1

Introduction

Interactive and scientific representation of data using a computer-supported tool so that a user

can better understand it is called Information Visualization. Graph drawing [1] is a graphical

representation of Information. With the help of the graph, the Human visual system can grasp

a considerable amount of data (which is impossible without graph visualization) and also find the

pattern in data. The limitation of the Human visual system is that it can only work with image

data. Mapping data to an image in an interactive way is graph drawing [2].

The data structure for artificial intelligence based production of geometric representations of inter-

related information is a graph where vertices and edges represent the entities and the relationships

between them respectively. Placement of vertices and edges in a coordinate system is crucial. A

graph is useful if it follows some aesthetic criteria [3].

1.1 Aesthetic criteria

1.1.1 Area

The area of a graph G is defined as coverage of total space inscribed within all vertices. Theoretically,

the area of the graph should be minimum, but for a better resolution, the area should be substantial.

The area of a graph should give flexibility scaling in both ways.

1.1.2 Aspect Ratio

Aspect ratio is defined as the fraction of the shortest edge of a graph to the longest edge of the

graph. Ideally, the aspect ratio should be 1. The graph should follow the user controlled aspect

ratio. For example, if an end user needs 2.5 Aspect ratio, then the graph should be scaled up.

3

1.1.3 Sub-graph Separation

Let G be a graph with the root vertex, left sub-tree, right sub-tree v, X and Y respectively then

G(X) and G(Y) should not be overlapped. If we add a new vertex either to G(X) or G(Y) then

the updated area of G(X) or G(X) should also not be overlapped. The importance of Sub-graph

separation is that it should allow the user to focus on context.

1.1.4 Closest Leaf

A leaf which is at the shortest Euclidean distance from the root/central vertex.

1.1.5 Farthest leaf

A leaf which is at the longest Euclidean distance from the root/central vertex. Usually, the closest

leaf should be placed far from the central vertex so that the user can visualize it in a better way.

The furthest leave should be kept close to the central vertex so that the area requirement of the

graph is minimum.

1.1.6 Size

If the graph is inscribed in a rectangle, then the area of the rectangle is termed as the size of the

graph. So for an informative graph, the area of the rectangle should be minimum.

1.1.7 Edge Length

The edge length is defined as the distance between any two vertices of the graph. The total edge

length is the sum of all the edge lengths. Ideally, all the edges should be of the same length.

1.1.8 Angular Resolution

Let G be a graph with a vertex v. Let e1 and e2 be two edges such that both edges shared a common

vertex v then the angle subtended by these two edges on v is called angular resolution. The angular

Resolution for each vertex of the graph should be uniform.

1.1.9 Symmetry

The Graph should be symmetric around an axis so that it can be wrapped around.

4

All the aesthetic norms are not mutually exclusive, so it can happen that the graph specifically

satisfies aesthetic criteria, can not satisfy other criteria. We need to consider these unavoidable trade-

offs. Aesthetic criteria may look useful and applicable to the Graph, but from the implementation

point of view it turns out to be tedious.

1.2 Graph Drawing Techniques

Based on user requirement, there are multiple graph drawing techniques. Some of them are described

below

1.2.1 Orthogonal Drawing

Alternating series of horizontal and vertical sub-trees. The advantages of this drawing are that the

user can visualize and understand the information stored in a sub-tree precisely. The disadvantage

of this drawing it occupies more space.

1.2.2 Poly Sub-tree Drawing

Let G be the Graph and G1, G2, G3...GN be the sub-tree of the graph, placing all these sub-tree in

a coordinate system and then connecting every sub-tree by an edge is called Poly Sub-tree Drawing.

It may happen that by connecting any two sub-tree by a straight edge may create a cross edge or it

violated sub-tree separation criteria. So to overcome this problem we need to bend the edge.

1.2.3 Upward and Non Upward Drawing

In Graph G, when the level of every child node does not precede the level of the root. This phe-

nomenon is called Upward Drawing. On the other hand, when the level of every child node succeeds

the level of the root, then it is called Non upward Drawing. This drawing technique commonly used

for drawing trees.

1.2.4 Planar Drawing

In Graph G, no of two edges should intersect each other. Every Graph need not be Planar, so Planar

drawing does not apply to all graphs.

1.2.5 Grid Drawing

In Grid Drawing, all the vertices of Graph G lie on integer Coordinates. The objective of this

drawing area is to draw a rectangle such that every vertex placed at integer coordinate. So it will

eventually turn out every pair of vertex maintain at least unit Euclidean distance. The rectangle in

which vertices are enclosed is called Inclusive Rectangle.

5

1.3 Application

The application of graph drawing is used in setting up network topology, Chip Design, UML mod-

eling, Share Market, Statistical Learning, Social Network Analysis, resource allocation in Operating

System, flow of computation in a graph, Google Map, etc.

1.4 Topology Shape Metrics

This drawing is practically used in most of the filed like Databases, Software Engineering, Operating

System, Computer Network, Social Network graph, etc. The topology shape matrix is used for

drawing an orthogonal grid hybrid graph. The advantage of using this approach is that it will

satisfy the majority of aesthetic criteria. There are three components to topology shape metrics.

1.4.1 Topology

Two orthogonal Graphs will have the same topology if and only if one can be transformed into

another by preserving the same edge set for each sub-graph.

1.4.2 Shape

Two Orthogonal Graph is said to have the same shape if and only if they have the same topology

and preserve an angle between the edges of segments which are orthogonal to each other.

1.4.3 Metrics

Two orthogonal graphs can have the same metrics if and only if they are the same under translations

and rotational operations. All the above three Topology, Shape and metrics follow hierarchical

manner. If the previous layers are satisfied, then only the current level has a chance to satisfy. The

main objective of the Topology Shape Metrics approach is to minimize the number of cross edges.

Shape and Topology and shape section emphasize the area section of the graph. It satisfies the

majority of the aesthetic criteria but with a lower priority.

6

Chapter 2

Related Work

Graph drawing criterion has been extensively studied[1]. What should be the criterion for a good

graph is discussed in the book. A brief summary of Quasi-Upward Planarity, 3D-Orthogonal Box-

Drawings, visualization of interconnected data, Metrics graph drawing algorithms, Planarity Check-

ing, 3D Orthogonal drawing using splash and push approach, geometric thickness of graphs also

given in the book. Apart from the basic aesthetic criterion here are related works based on the type

of graph:

2.1 Planar Graph

G. Kant et al.[4] introduced a method to minimize the area, number of bends and angle between

edges in the planar 3D Grid drawing. Time taken by this algorithm is O(n) and space complexity

is also O(n).

2.2 Tree Drawing

Reingold et al.[5] talked about Tree Drawing algorithms. They have given a spaced optimal algo-

rithmic approach for drawing trees in a tidy way such that they follow aesthetic criteria. Aesthetic

criterion are not mutually exclusive so they have also given a new algorithm for this. Forest and trees

which are not binary binary also discussed in this paper. Crescenzi et al.[6] proved that the Space

Optimal Upward Drawing of binary is possible. Family of binary tree need Ω(nlogn) are and this

bound is tight. They have also given a space linear (O(n)space) algorithm for the Upward Drawing

of a binary tree and extended this result for Fibonacci trees. P. Crescenzi et al.[7] in an another

paper talked about space linear AVL tree construction. In algorithm, each parent was placed above

their child and no two edge intersect. T. M. Chan et al.[8] showed that for a n node binary tree

which is also order-preserving, planar, strictly upward, straight-line can take O(n1+ε) area in the

worst case. Here ε > 0 can be any real number.

7

2.3 Hierarchical layout algorithms

Hierarchical layout algorithms [9] are used for presentation of data. In this paper they talked about

data structures and algorithms, basic concepts of computer graphics and computational geometry,

planarization technique for drawing Hierarchical graphs. Some open problems like performance-

planarization trade-off, testing palanarity, line drawing approach, dynamic drawing algorithms [10],

bend and area minimization had also discussed in the same paper. Directed graphs are useful for

representing the information flow. Peter and Lin et al.[11] gave an algorithm for drawing directed

graphs. The main three aesthetic criterion taken into consideration were:

• No arc pointing upward

• The Uniform distribution of nodes

• Minimum arc crossing

Emden et al.[12] gave a four pass fast algorithm for drawing directed graphs. These four passes are:

• Use network simplex algorithm for finding Optimal rank assignment.

• Vertex ordering within ranks for reducing crossings

• Optimal coordinates for nodes

• Spline edges

This algorithm basically avoids the common visual anomalies like edge crossings and sharp bends.

Aesthetic criteria like Symmetry and balance were the secondary thing for this algorithm. Kozo

et al.[13] discussed a two-step approach for drawing hierarchical graphs. In the first step, order

the vertices in different levels to avoid edge crossing. In second step, place the vertices to en-

hance readability. Nature of problem and scalability is determined by theory and heuristic methods

respectively.

2.4 Orthogonal Drawing

Roberto et al.[14] gave a network flow technique algorithm which minimizes the total number of

bending edges. Output of this algorithm is the region preserving rectilinear grid embedding. This

algorithm was also extended to k− region graphs. For n node graph algorithm takes O(nlogn) time.

Roberto et al.[15] gave another linear algorithm for planar grid embedding. Here vertices are placed

at integer grid points. There are four silent features of this drawing:

1. For a graph G with n nodes, the total number of bends in planar grid embedding of G is

2.4n+ 2

2. Maximum number of bend per edge is 4

3. Length of each edge is linear, i.e. O(n)

4. The total area of planar grid embedding of G is O(n2)

8

2.5 Stack and Queue layout

Stack layout and the Queue layout of a graph is extensively discussed in [16]. Let G be a graph

with n vertices. Graph G can have O(1)×O(1)×O(n) iff queue number of graph G is bounded by

some positive constant. Actually, this question is same as asking ”whether every planar graph has

constant queue number?” [17] Track and queue number of some graphs are well known. Every tree

and outer-planar can be simulated in 1, 2 queue(s) respectively.

2.6 Track layout

Di Giacomo et al.[18] proved that if a graph G has queue number which is bounded by some constant

then track number of the graph G is also bounded by some constant. In same paper track number

of some graph families are also discussed along with the finding track number of a graph in linear

time.

9

Chapter 3

Track Layout

According to Dujmovic et al.[19] a (K,T)-Track layout of the graph G consists of a proper vertex

T’ coloring of G, a total order of each vertex class, and a non-proper edge K’ coloring such that

between each pair of color classes no two monochromatic edges cross. The Track layout is used to

draw a 3-Dimensional Graph.

We first fix the linear set of vertices of the graph in the hierarchical manner such that no two vertices

at the next level share the same color The number of colors and tracks are inversely proportional

to each other. A t−Track Layout for the graph G is the minimum number of tracks in G when the

number of colors is minimized. A vertex t coloring of the Graph G is a partition.

A vertex t-colouring [20] of a graph G is a partition Vi : i ∈ t of V (G) such that for every edge

vw ∈ E(G), if v ∈ Vi and w ∈ Vj then i 6= j. The elements of t are colours, and each set Vi is a

colour class. The chromatic number of G, denoted by χ (G), is the minimum number k such that

G has a vertex k-colouring. Let there be two levels i and j and there are two edges ab and cd such

that vertices a, c are at level i and b, d are at level j. If a precedes c and b precedes d then edges

ab, cd are called X -crossing edges.

3.1 3D Grid Drawing

The 3D Grid drawing [21] is defined as placement of vertices at integer coordinates without X -

crossing. For 2D Graph, an area is a concern, but for a 3D grid, the volume is considered. Now in

3D Grid drawing the goal is to minimize the total volume. The volume of the 3D grid is the volume

of a cube that contains the 3D graph. Let i be any integer if we place vertices at (i, i2, i3) then no

two edges will produce X -crossing. For any two edges to cross or intersect all four endpoints should

be in the same plane. By placing vertices at (i, i2, i3) no four endpoints will not be co-planar. This

can be proved using Vander Monde Matrix Equation.

Cross edges are not allowed in 3D grid drawing. Two edges will cross if they are in the same plane

but reverse may always be true. Here we are choosing vertices from the different plane so there will

not be any edge crossings.

10

Vi

Vj

v x

y w

Figure 3.1:
X− Crossing

0 2 4 6 8 10 12 0 20406080100120140

0
250
500
750
1000
1250
1500
1750

(a) Vertices and Edges

0 2 4 6 8 10 12 0 20406080100120140

0
250
500
750
1000
1250
1500
1750

(b) Placement of vertices

Figure 3.2: 3D Grid Drawing

Total Volume of the above drawing is (n × n2 × n3) = O(n6). To reduce the volume we select a

prime number p such that n < p < 2n. Now if we placed vertices at [22] (n%p, n2%p, n3%p)

11

0 2 4 6 8 10 12 0
2

4
6 8 1012

0
2
4
6
8
10
12

(a) Vertices and Edges

0 2 4 6 8 10 12 0
2

4
6 8 1012

0
2
4
6
8
10
12

(b) Placement of vertices

Figure 3.3: 3D Grid Drawing with a Prime number ’P’

Total Volume of the above drawing is (n× 2n× 2n) = O(n3).

3.2 r-partite Graph Drawing

Let the total number of vertices be n . A complete r-partite graph Kr(n) will have a 3D dimensional

Grid drawing [23] if we place vertices at

Vi = {(i, t, it) : 0 ≤ t < n ≡ i2%p)}

where p ≥ 2r − 1, N = pn/r and 0 ≤ i ≤ r − 1.

12

0.00.51.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8101214

0
10
20
30
40
50
60

(a) Vertices and Edges

0.00.51.0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 4 6 8101214

0
10
20
30
40
50
60

(b) Placement of vertices

Figure 3.4:
3D Grid drawing for Bi-pertite Graph

Total Volume of the above drawing is (r × 4n× 4nr) = O(n2r2).

3.3 3-Track Layout Tree Drawing

A tree is a minimally connected graph. Each internal vertex is cut vertex, and every edge is cut

edge. Depth of a tree d is the number of edges in the longest path from the root to the longest leaf.

Following the 3D dimensional grid drawing convention, a tree can be drawn with three tracks [18].

Vi = {(i, t, it) : d = i%3, t ≡ i2%3)}

Figure 3.5:
Edge Wrapping into the 3−tracks

13

1

2

5

12 13

18 19

6

3

7 8

14

4

11

17

9 10

16 15

20 21

0.000.250.500.751.001.251.501.752.00 0.02.55.07.510.012.515.017.520.0

0
5
10
15
20
25
30
35
40

GREEN: Edges from Track0 to Track1
BLACK: Edges from Track1 to Track2
ORANGE: Edges from Track2 to Track0

Track0 Vertices
Track1 Vertices
Track2 Vertices

Figure 3.6:
3D Grid drawing for Tree

The total Volume of the above drawing is (r × 4n× 4nr) = O(n× t× t) = O(t2n) = O(n).

14

Chapter 4

Stack and Queue layout

4.1 Basics of layout

4.1.1 Layouts of Fixed Order

Let G be a Graph with Vertices V1, V2, V3...Vn and corresponding edges a1b1, a2b2a3b3....anbn. There

are some edges in Graph G, which may create issues when we need to minimize stack/Queue number.

A k-rainbow [24] is

ep = (vpwp), 1 ≤ p ≤ n

such that

v1 < v2 < v3.....v(n− 1) < wn < wn < yn−1.....w2 < w1

.

v1 v2 v3 v4 v5 w5 w4 w3 w2 w1

Figure 4.1:
k− rainbow

A k-twist [25] is

ep = (vpwp), 1 ≤ p ≤ n

such that

v1 < v2 < v3.....vn−1 < vn < w1 < w2.....wn−1 < wn

.

K rainbow creates an issue for Queue Layout because it creates nested edges which cannot be placed

15

in the same queue. If graph G has k-rainbow, then Queue Layout of that graph cannot be less than

K.

v1 v2 v3 v4 v5 w1 w2 w3 w4 w5

Figure 4.2:
k− twist

K twist creates an issue for Stack Layout because it creates intersecting edges which cannot be

placed in the same stack. If a Graph G has K-twist, then the Stack Layout cannot be less than k.

The largest size of k-rainbow and k-twist in a graph G decides Queue number and Stack number of

G respectively.

v1 w1 v2 w2 v3 w3 v4 w4 v5 w5

Figure 4.3:
k− Necklace

4.1.2 Graph with Queue number 1 and stack number 1

A graph G is arc planar if and only if the number of Queue in Queue Layout is 1. A Graph G is

outer-planar if and only if the number of the stack in stack Layout of Graph G is 1.

4.1.3 Queue number and Stack number Trade off

Let 1, 2, 3....n be a vertex ordering of Graph G. If we cut the above ordering orthogonality then

the maximum number of edges that affected is called cut width. Cut width is the maximum of all

cut sets. The valence of a graph G is defined as maximum degree of any vertex in a Graph G. Let

1, 2, 3....n be a vertex ordering of a Graph G, then the relation between Queue number and Stack

number can be summarized as

Stack number×Queue number ≥ Cut width

Valence of G

.

16

4.2 Queue number and Stack number in a nutshell

A stack is a data structure which follows Last In First out Policy, where as Queue is a data structure

which follows First in First out Policy. The stack layout is the minimum number of stacks needed

to draw a linear ordering of vertices such that there is no X crossing as well as nested edges within

the same stack.

Let endpoints of edges be denoted as L,R and there are two edges x, y,

• if Lx <p Ly <p Rx <p Ry, then x and y will intersect. This is called X crossing

• if Lx <p Ly <p Ry <p Rx, then x and y will intersect.This is called Nest crossing.

The Queue layout is the minimum number of the queue needed to draw a linear ordering of vertices

such that there is no X crossing as well as nested edges within the same queue.

Let endpoints of edges be denoted as L,R and there are two edges x, y,

• if Lx <p Ly <p Rx <p Ry, then x and y will intersect. This is called X crossing

• if Lx <p Ly <p Ry <p Rx, then x and y will intersect.This is called Nest crossing.

Every Queue Layout graph can be converted into Track Layout Graph, but the reverse may not be

true. For every bounded width graph, the track number is constant.

17

Chapter 5

Outer-planar Graph

In the planar graph, if every vertex is at the outer boundary, then it is called outer-planar Graph [26].

The maximal outer-planar graph is an outer-planar graph in which if we add an edge it destroys

the property of outer-planarity. For n vertex, outer-planar graph the total number of edges are

2N − 3. Every face of the outer-planar graph is bounded by exactly three edges or a triangle. If a

graph G is outer-planar, then every bi-connected component of G is also outer-planar. Any maximal

outer-planar graph can be implemented in a way such that every adjacent vertex (vertices connected

by an edge) are placed at a vertical distance at most 2. Every vertex of the outer-planar graph lies

on the outer boundary so if we delete a vertex and its connecting edges, then the resultant graph is

also outer-planar. Every outer-planar graph has at least two vertices with the degree 2.

3

4

5

6

7

8

1

2

Figure 5.1:
Maximal Outer Planar Graph

18

5.1 Implementation of outer-planar Graph

5.1.1 Terminology

1. Upper Envelope: The part of a graph that is visible from (0,+∞).

2. Lower Envelope: The part of a graph that is visible from (0,−∞).

3. Co-ordinates of end point of an edge uv are (X(u), Y (u)) and (X(u), Y (u)).

5.1.2 Procedure

To construct a maximal outer-planar graph with neighboring vertices at height at-most two, recur-

sively delete vertices which are having degree 2 and add it to the graph. Here the only concern is

the vertical distance. For any face uw where Y (u) < Y (w), v can be placed at following places:

• If uw is the face visible from (0,+∞) Y (w) = Y (u) + 1, v should be placed at (1
2X(w) +

1
2X(u), Y (w) + 1).

• If uw is the face visible from (0,+∞) Y (w) = Y (u) + 2, v should be placed at (3
4X(u) +

1
4X(w), Y (w) + 1).

• If uw is the face visible from (0,−∞) Y (w) = Y (u) + 1, v should be placed at (1
2X(w) +

1
2X(u), Y (u)− 1).

• If uw is the face visible from (0,−∞) Y (w) = Y (u) + 2, v should be placed at (3
4X(w) +

1
4X(u), Y (u) + 1).

5.2 Algorithm

As procedure mentioned above, below is an algorithm[19] for drawing maximal outer planar graph in

which adjacent vertices are separated by the vertical distance at most two. This algorithm will take

a maximal outer planar graph as input and return a maximal outer planar graph having property

that every pair of neighbouring vertices at a vertical distance at most two.

Algorithm 1 Outer Planar Graph: Adjacent vertices are at a vertical height at most two.

1: G : Outer Planar Graph
2: G′ : Null Graph
3: Vi : Set of vertices
4: procedure Draw(Vi, G)
5: Draw a triangle in G′

6: for i = 1 to n− 4 do
7: Randomly select a triangular region ∆ in G
8: Randomly select a point inside ∆
9: Add edge between Vi to each vertices of ∆

10: end for
11: Return G′

12: end procedure

19

w

u

v

(a)

w

u

v

(b)

u

w

v

(a)

u

v

w

(b)

Figure 5.2: Upper envelop and Lower envelop

Every outer-planar graph can only be bounded by a triangle so adding a vertex v to the already

existing outer-planar graph G will not affect outer-planarity.

2 4 6 8 10
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Figure 5.3:
Graph with height of neighboring vertices differ by at most 2

20

5.3 Track layout of outer-planar Graph

Every maximal outer-planar graph can be implemented in 5 tacks [27]. To prove this, we can use

the relation between tack-layout and span. If a graph has a maximum span of s then the number of

track in the track layout of G can be represented by the following inequality:

t ≤ 2s+ 1

3 4 5 6 7 8 9

0

1

2

3

4

An outer-planar graph

Let us say we have two vertices P1 and P2 whose coordinates are (xp1, yp1) and (xp1, yp1). If there

is an edge between P1 and P2, then |yp1 − yp1| ≤ 2. So in the worst case a vertex V : (xp1, yp1)

can be a neighbour of V : (xp1, yp1 + 2) and V : (xp1, yp1 − 2). The total span of y coordinates for

any vertex is five here. We can use Wrapping Lemma and simulate any maximal outer-planar graph

with five tracks.

5.4 2-Queue Layout of outer-planar Graph

Queue Layout of an outer-planar graph is a total ordering of vertices such that no two independent

edges create a rainbow. The motive of queue layout is partitioning of the edges into the queues. G

is a 1-stack graph if and only if G is outerplanar [28]. Every 1-stack graph can be simulated with

2-queue. So, the queue number of outerplanar graph is 2.The total span of maximal outerplanar is

2. This fact is also forcing an outerplanar graph to has queue number two.

21

Chapter 6

Planar 3-Tree

6.1 Definition

A graph is said to be the planar such that edges in the drawn graph which lies in the same plane so

that it does not intersect each other. A planar graph divides the plane into bounded and unbounded

regions. The unbounded region is called the outer face, and the bounded region is called inner

faces. The vertices which lie on the outer faces are called outer vertices, while the vertices which

lie inside the inner faces are called inner vertices. A bounded region bounded by three edges is

called a triangular region. If every face is bounded by three edges is called a triangulated graph [29].

Every outer-planar graph is internally triangulated. A maximum outer-planar graph is internally

triangulated outer-planar graph with the maximum number of edges [30]. A layer i in a planar 3-tree

is the graph after removing vertices and its connecting edges at layer i− 1.

12

3

4

5

6

7

8

9

10

11

12

13

Figure 6.1:
Planar 3-tree

22

6.2 Implementation of planar 3-tree

Here is the algorithm for planar 3-tree.

Algorithm 2 Planar 3−Tree

1: G : Null Graph
2: Vi : Set of vertices
3: procedure Draw(Vi, G)
4: Draw a triangle G
5: for i = 1 to n− 4 do
6: Randomly select a triangular region ∆ in G
7: Randomly select a point inside ∆
8: Add edge between Vi to each vertices of ∆
9: end for

10: Return G
11: end procedure

The total number of vertices is n. Draw a triangle. Now, we have n− 3 edges. Select any bounded

region and place vertex Vi anywhere in that region. Connect every vertex of that region with Vi.

Previously the region was a triangle. After placing vertex Vi in that region, whole region becomes

a set of the triangle where every region is at the outer boundary for region ∆123.

12

3

4

5

6

Figure 6.2:
2-Level Planar 3-Tree

In the above figure we had region ∆123. After placement of vertex 4 ∆123 becomes ∆124, ∆143,∆243.

For the next vertex, region ∆243 was selected and vertex 5 was placed there. After placement of

vertex 5,∆243 becomes ∆245,∆253,∆453. Same for vertex 6. Placement of each vertex divides a

∆ into 3,∆ and each new region placed at the outer boundary corresponding to their parent ∆.

Vertices {1, 2, 3} are at the outer boundary so these vertices are at level 0. If we remove these outer

23

vertices and its connecting edges, then vertices {4, 5, 6} will lie on the new outer boundary and this

set of vertices are at level 1.

In fig 6.1, 3-Level Planar 3-Tree where the vertex set {1, 2, 3} is at level 0, the vertex set {4, 5, 6, 7, 9, 10, 11, 12}
is at the level 1, vertex set {13, 8} is at level 2. Every layer of planar 3-tree consist of internally tri-

angulated outer-planar graph. Property of outer-planar graph like track number and queue number

is useful for finding the Queue layout of planar 3-tree.

6.3 5-queue Layout of 2-layer Planar 3-Tree

6.3.1 Terminology

• Layer: Layer i of a planar 3-tree is the set of vertices which are at the boundary after removing

all edges which are the level i− 1. The vertices of a triangle are said to be at layer 0.

• Binding edges: Binding edges are those edges which are connecting two layers of planar

3-tree.

• Level edges: Edges which are used to connect the vertices of the same layer is called level

edges.

• Anchor: Let < u, v, w > is a triangle with neighbour vertices having maximum vertical height

at-most 2. Let v and w are top and bottom vertices, then vertex u is called the anchor vertex

of face < u, v, w >.

6.3.2 Queue layout of 2-level planar 3-tree

Let graph G0 is the graph obtained due to layer L0 and graph G1 is the graph obtained due to layer

L1. We need to follow procedure [31]:

Algorithm 3 Queue layout of 2−Layer Planar 3−Tree

1: G : 2-level planar 3-tree
2: Li : Set of vertices at Layer i
3: Qi : Set of 5-queues
4: procedure 5-Queue Layout(G,Li, Qi)
5: Total ordering of vertices such that vertices which are at layer L0 placed before vertices of

layer L1

6: Placement of edges of same layers can be done with the help of one queue each. For layer
L0 we need 1 Queue and another queue for layer 1. Total 2-Queues

7: Three additional queues needed for the edges which are connecting two successive layers i.e.
layer L0 and layer L1

8: Return Q
9: end procedure

24

2 Queues for level edges:

Place vertices of L0 and L1 in a total order such that L0 < L1. For each layer order of vertices would

be decided by the property of the triangulated outer-planar graph. Every triangulated outer-planar

graph can be converted into a graph such that neighboring vertices differ by the vertical height at

most 2. Two queues are sufficient to simulate a triangulated outer-planar graph. If there are multiple

connected components at any level, then each connected component either precede or succeed. In

that case, we use the previously used queue for them also.

3 Queues for binding edges:

Let L1 having a face < u, v, w > that is inscribed in L0. We will allocate top, bottom and anchor

vertex to different queues. If L1 having more than one connected component let’s say, c1 and c2,

then find ordering between these two and then-then place in into the queues.

Finding Ordering:

Let’s say, L1 has two connected components c1 =< u, v, w > and c2 =< u′, v′, w′ > inscribed in L0.

u, u′ are anchor vertices, v, v′ are top and w,w′ are bottom vertices of connected components c1 and

c2.

1. If the position of anchor vertex is not same i.e. uu′ the either c1 precedes or succeed depending

upon the relative positions of u and u′. If u ≺ u′ then c1 precedes c2 and place c1 in the queue

before C2 in partial order of L1.

2. If the position of anchor vertex is same i.e. u = u′ then depending upon the relative positions

of v and v′ either c1 precedes or succeed. If v ≺ v′ then c1 precedes c2 and place c1 in the

queue before c2 in partial order of L1.

3. If the position of anchor vertex is same i.e. u = u′ and v = v′ then depending upon the relative

positions of w and w′ either c1 precedes or succeed. If w ≺ w′ then c1 precedes c2 and place

c1 in the queue before C2 in partial order of L1.

Proof that no two edges of the same queue nested:

Let’s say two edges e1, e2 whose end vertices at L0 and L1 are (p, q), (p′, q′) respectively and are

placed in the same queue. Anchor vertices p, p′ ∈ L0 with the face ∆ and q, q′ ∈ L1 with face ∆′.

If p ≺ p′ then ∆ should be placed before ∆′. If all edges of ∆ placed before every edge of ∆′ that

means there will not be any nesting edges. We can use the same analogy for top and bottom vertices

also. For avoiding nesting edges we need three queues. One each for:

• Anchor vertex

• Top vertex

• Bottom vertex

25

6.3.3 Implementation

4 5

6

1 2

3

7

9 8

Level Edge

Binding Edge

Binding Edge

Binding Edge

(a) 2 layer planar 3Tree

1 2 3

9 68 57 4

(b) Splitting into the Levels

Figure 6.3:
Planar 3−Tree and level split

1 2 3 9 6 8 5 7 4

3 Queues for bindinf edges

2 Queues for level edges

Figure 6.4:
5− Queue layout of Planar 3−Tree

26

6.4 5 Queue layout of n−layer Planar 3-Tree

We have proved that five queues are sufficient enough to simulate 2-layer planar 3-tree. For a graph

G having n− layers L0, L1, L2,, Ln. Each layer Li is a set of internally triangulated outer-planar

connected components. These connected components may be bi-connected so add extra edges in

order to make it bi-connected. For each layer i the graph Gi must be inscribed in Gi−1 or vice versa.

Edges connecting vertices of the same layer are called level edges and edges connected connecting

the vertices of consecutive layers are called binding edges. Algorithm[31] for placement of edges into

the 5−queues for n− layer planar 3− Tree (n > 2):

Algorithm 4 Queue layout of n−Layer Planar 3−Tree

1: G : 2-level planar 3-tree
2: Li : Set of vertices at Layer i
3: Q : Set of 5-queues
4: procedure 5-Queue Layout(G,L,Q)
5: for i = 0 to n− 1 do
6: Total ordering of vertices such that vertices which are at layer Li placed before vertices

of layer Li+1

7: Placement of edges of two consecutive layers can be done with the help of one queue
each. For layer Li we need 1 Queue and for layer Li+1 another queue needed. Total
2-Queues

8: Three additional queues needed for the edges which are connecting two successive layers
i.e. layer Li and layer Li+1

9: i = i+ 1
10: end for
11: Return Q
12: end procedure

For each level pair Li and Li+1, we first linearly place the vertices of each layer such that they will

follow total order. Ordering of vertices is decided by layer number. We need two queues for level

edges and three queues for binding edges. Once we are done with layer pair Li and Li+1, the same

procedure will be applicable to layer pair Li+1 and Li+2. Here the queue used for level edges of

layer i can be reused for level edges of layer i+ 2. Binding edges also follow the same rule.

No Nesting Edges in same queue

Lets say two edges e1, e2 whose end vertices at Li and Li+1 are (p, q), (p′, q′) respectively and are

placed in same queue. Anchor vertices p, p′ ∈ Li with face ∆ and q, q′ ∈ Li+1 with face ∆′. If p ≺ p′

then ∆ should be placed before ∆′. If all edges of ∆ placed before every edge of ∆′ that means

there will not be any nesting edges. We can use the same analogy for top and bottom vertices also.

Finally, we need three queues. One each for:

1. Anchor vertex

2. Top vertex

3. Bottom vertex

and there will not be any nesting edges or k − rainbow.

27

6.5 Result

6.5.1 n layer 3-tree

Here is the 3-layer planar 3-tree. Blue edges are level edges and violet edges are binding edges. We

will first place this graph in multiple levels. Vertex 1 is at level 1. If we delete the vertex 1 then the

next level vertex set is 2, 3, 6, 10.

Queue Layouts of Planar 3-Trees

Upper bound: Overview

Theorem 2

Every planar 3-tree admits a 5-queue layout

level 4

level 3

6 310

13 14 11 9 8 5 4

1

2

12 7

level 1

level 2

2 queues

1 2 10 3 13 14 11 9 8 5 4 12 76

3 queues

1
14

10 6

3 4

13

12

11

7

5

8

2

9

Figure 6.5:
n− layer Planar 3-Tree

6.5.2 Converting into levels

Queue Layouts of Planar 3-Trees

Upper bound: Overview

Theorem 2

Every planar 3-tree admits a 5-queue layout

level 4

level 3

6 310

13 14 11 9 8 5 4

1

2

12 7

level 1

level 2

2 queues

1 2 10 3 13 14 11 9 8 5 4 12 76

3 queues

1
14

10 6

3 4

13

12

11

7

5

8

2

9

Figure 6.6:
Level wise placement of vertices of planar 3-tree

28

6.5.3 Queue layout

At level 0 only one vertex 1 is there. So no level edge for L0. At Level 1 there are four vertices2, 3, 6, 10.

Create a total order of vertices and then place on a number line. We have 5 queuesQ0, Q1, Q2, Q3, Q4.

Queues Q0, Q1 for level edges and Q2, Q3, Q4 for binding edges.

For Level L0 no level edge for Q0 would be empty and for L1 all edges 2− 10, 2− 3, 6− 3 placed in

Q1. Binding edges uses 3 queues and edges 1− 3, 3− 6 are placed in Q2, edges 1− 2, 1− 6, 1− 10

are placed in Q3, edges 1− 3, 3− 2, 10− 2 are placed in Q3. Once this process is completed Q0 can

be used for level L2 and binding edges can be reused accordingly. Here is implementation:

Level Edges are blue colored, binding edges are violet coloured and the vertices inscribed in the

grey coloured area is the set of vertices at the same level.

1 1310 6 32 14 11 9 8 5 4 12 7

Binding Edges

Level Edges

3 Queues

2 Queues

Figure 6.7:
Queue layout of Planar 3-Tree

29

Chapter 7

Conclusion and Future work

7.1 Summary

Queue Layout

Graph Class Lower Bound Upper Bound

Tree 1 1
Outer-Planar 2 2
Planar 2−tree 3 3
Planar 3−tree 4 5

Planar 4 O(logn)

Implementation of an outer-planar graph was the basis of finding queue layout of planar 3-tree. Any

maximal outer-planar graph can be converted into outer-planar graph with neighboring vertices kept

at the vertical distance at most two. This result helps in finding track layout and queue layout of

outer-planar graph. Every planar 3-tree consist of internally triangulated outer-planar graphs. Each

layer of planar 3-tree is set of connected component of triangulated outerplanar graph.

The queue layout of a tree, outer-planar graph and planar 2-tree is 1, 2, 3 respectively. Previous

upper and lower bound of planar 3−tree was 3 and 7 respectively. We reduced the upper bound to

5 and there exist a planar 3−tree whose lower bound is 4. This result will help us to find queue

layer out of any planar graph. Till now, the lower bound of the queue layout planar graph is 4 and

upper bound is O(logn). These bounds are still not tight. Finding queue layout of planar graph is

still an open problem. There are paper which shows that if tree width of graph is bounded by some

constant then the requirement of the number of queues in queue layout of planar is also bounded by

some constant. Finding queue layout of queue layout is an open optimization problem.

30

Bibliography

[1] Sue H Whitesides. Graph Drawing: 6th International Symposium, GD’98 Montreal, Canada,

August 13-15, 1998 Proceedings. Number 1547. Springer Science & Business Media, 1998.

[2] Fabian Beck, Michael Burch, and Stephan Diehl. Towards an aesthetic dimensions framework for

dynamic graph visualisations. In 2009 13th International Conference Information Visualisation,

pages 592–597. IEEE, 2009.

[3] Helen C Purchase. Metrics for graph drawing aesthetics. Journal of Visual Languages &

Computing, 13(5):501–516, 2002.

[4] Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32,

1996.

[5] Edward M. Reingold and John S. Tilford. Tidier drawings of trees. IEEE Transactions on

software Engineering, (2):223–228, 1981.

[6] Pierluigi Crescenzi, Giuseppe Di Battista, and Adolfo Piperno. A note on optimal area algo-

rithms for upward drawings of binary trees. Computational Geometry, 2(4):187–200, 1992.

[7] Pierluigi Crescenzi and Adolfo Piperno. Optimal-area upward drawings of avl trees. In Inter-

national Symposium on Graph Drawing, pages 307–317. Springer, 1994.

[8] Timothy M Chan. A near-linear area bound for drawing binary trees. Algorithmica, 34(1):1–13,

2002.

[9] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Algorithms for

drawing graphs: an annotated bibliography. Computational Geometry, 4(5):235–282, 1994.

[10] Jürgen Branke. Dynamic graph drawing. In Drawing graphs, pages 228–246. Springer, 2001.

[11] Peter Eades and Lin Xuemin. How to draw a directed graph. In [Proceedings] 1989 IEEE

Workshop on Visual Languages, pages 13–17. IEEE, 1989.

[12] Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and K-P Vo. A technique for

drawing directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230, 1993.

[13] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hi-

erarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–

125, 1981.

31

[14] Roberto Tamassia and Ioannis G Tollis. Planar grid embedding in linear time. IEEE Transac-

tions on circuits and systems, 36(9):1230–1234, 1989.

[15] Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.

SIAM Journal on Computing, 16(3):421–444, 1987.

[16] David R Wood. Queue layouts, tree-width, and three-dimensional graph drawing. In Interna-

tional Conference on Foundations of Software Technology and Theoretical Computer Science,

pages 348–359. Springer, 2002.

[17] Lenwood S Heath, Frank Thomson Leighton, and Arnold L Rosenberg. Comparing queues and

stacks as machines for laying out graphs. SIAM Journal on Discrete Mathematics, 5(3):398–412,

1992.

[18] Emilio Di Giacomo and Henk Meijer. Track drawings of graphs with constant queue number.

In International Symposium on Graph Drawing, pages 214–225. Springer, 2003.

[19] Vida Dujmovic, Attila Pór, and David R Wood. Track layouts of graphs. Discrete Mathematics

and Theoretical Computer Science, 6(2), 2004.

[20] E Sampathkumar and VN Bhave. Partition graphs and coloring numbers of a graph. Discrete

Mathematics, 16(1):57–60, 1976.

[21] Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid.

Combinatorica, 10(1):41–51, 1990.

[22] Robert F. Cohen, Peter Eades, Tao Lin, and Frank Ruskey. Three-dimensional graph drawing.

Algorithmica, 17(2):199–208, 1997.

[23] János Pach, Torsten Thiele, and Géza Tóth. Three-dimensional grid drawings of graphs. In

International Symposium on Graph Drawing, pages 47–51. Springer, 1997.

[24] Boštjan Brešar, Michael A Henning, Douglas F Rall, et al. Rainbow domination in graphs.

Taiwanese Journal of Mathematics, 12(1):213–225, 2008.

[25] Indra Rajasingh, Bharati Rajan, and R Sundara Rajan. Embedding of hypercubes into necklace,

windmill and snake graphs. Information Processing Letters, 112(12):509–515, 2012.

[26] Prosenjit Bose. On embedding an outer-planar graph in a point set. Computational Geometry,

23(3):303–312, 2002.

[27] Franz Brandenburg, David Eppstein, Michael T Goodrich, Stephen Kobourov, Giuseppe Liotta,

and Petra Mutzel. Selected open problems in graph drawing. In International Symposium on

Graph Drawing, pages 515–539. Springer, 2003.

[28] Lenwood S Heath and Arnold L Rosenberg. Laying out graphs using queues. SIAM Journal

on Computing, 21(5):927–958, 1992.

[29] Donald J Rose. Triangulated graphs and the elimination process. Journal of Mathematical

Analysis and Applications, 32(3):597–609, 1970.

[30] Giuseppe Di Battista, Fabrizio Frati, and Janos Pach. On the queue number of planar graphs.

SIAM Journal on Computing, 42(6):2243–2285, 2013.

32

[31] Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey

Pupyrev. Queue layouts of planar 3-trees. In Therese Biedl and Andreas Kerren, editors,

Graph Drawing and Network Visualization, pages 213–226, Cham, 2018. Springer International

Publishing.

33

