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Abstract

The proposed work develops a lab-on-chip platform to detect the milk adulteration which
exploit the smartphone to overcome the external battery usage and calibration. To have a low
cost and convenient platform for sensing, the interface circuit is powered through the
smartphone and calibration is done through the customized built Application using Android
studio and Arduino IDE.A great accuracy of 0.1Q change is achieved by this work. The OTA
designed has a high GBW of 110 MHz, high gain of 90 dB and very low noise floor .Apart
from this, a wide range resistive readout circuit is also implemented which could sense the
resistance ranging from 10KQ-1GQ.The whole design is analyzed in TSMC 0.18u
technology.



Nomenclature

AC
ADC
APK
DR
GBW
LSB
ICMR
IDE
PM
PVT
PSRR

Alternating Current
Analog-Digital Convertor
Android Application Package
Dynamic Range
Gain Bandwidth Product
Least Significant Bit
Input Common Mode Range
Integrated Development Environment
Phase Margin
Process, Voltage, Temperature

Power Supply Rejection Ratio
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Chapter 1

1 Introduction

Milk adulteration has become a major problem in Indian subcontinent with 70 per cent milk
samples collected across the country failing to confirm desired standards. Separate detection
chemistry for individual adulterants is very time consuming and it needs laboratory set-up
which is Cost-ineffective. The high frequency impedance of the unadulterated milk falls
within the range 615-640 ohms. At high frequency, the capacitive elements have negligible
effect on the overall milk sample, resulting in the pure resistive section. So, the proposed work
develops a lab-on-chip platform where great level of accuracy is being targeted. The circuit
is powered through the smartphone which opens the door for the low cost and reduced
complexity. The calibration of the readout circuit is done using the customized built App

using Android studio and Arduino Uno.

1.1  Thesis Organisation
o Chapter 2 describes the circuit level implementation of impedance detector and the
motivation behind each block.
o Chapter 3 discusses the architecture, design specifications of OTA, and simulation
results of the complete circuit under various load conditions.
e Chapter 4 describes the architecture of the wide range resistive detector and its
simulation results.

e Chapter 5 presents conclusion, future scope and References.



Chapter 2

2 Impedance Readout circuit for Milk
Adulteration

2.1 Introduction

The proposed circuit measures the impedance of the milk sample with different resolutions,
where the adulterated milk sample can be detected with great accuracy.

So targeting for the cost effective method to measure, we make use of the cell phone to power
up the board and display the calibrated impedance using Arduino board.

A separate App is being developed, to sense the output, process and back calibrate to show
the exact value in the cell phone. In this work, the frequency of the on-chip oscillator can be
varied using digital potentiometers which can be configured through the Arduino IDE

platform.
2.2 Circuit implementation and working:

The working of the whole circuit is summarized as follow:
In order to measure the impedance of the milk sensor which falls in the range of 100-1000£2,

different resolutions are targeted in 3 different sub-ranges.

100 - 600 Q, aresolution of 0.5 Q is desired
600 - 700 Q, aresolution of 0.1 Q is desired
700 - 1000 Q, aresolution of 0.3Q is desired.



To achieve the specified resolutions in the particular ranges, we require 6.44 milliamps in the
first range ,32.2 milliamps in the second range, 10.73 milliamps in the third range so that
ADC operating at 3.3 volt supply could resolve one LSB change(3.3 millivolts for a 10 bit
ADC).

To achieve the same, three different currents needs to be generated. Despite doing that,
initially 2.5 milliamps AC current is pushed into the sensor. The remaining fraction of the
current needed is introduced as an amplification factor to achieve the targeted resolutions in
3 sub ranges of the Impedance sensor.

Sub-range 1(100Q-600Q):

When the sensor is in the range 1, it occupies the voltage range of 0.25-1.5V after passing the
2.5 milliamps AC current. In this range, a resolution of 0.5Q is targeted.

100Q-600Q2 impedance range should be completely mapped to ADC full scale voltage
(0-3.3V).i.e. whenever there is a change of 0.5, it should correspond to change of 1 LSB of
10 bit ADC (3.3 millivolts).In order to map the (100Q2-600€2) range to ADC range (0-3.3V),
0.25-1.5V (Sub range 1) should correspond to ADC (0-3.3V).To implement that, a subtractor
stage is employed to subtract 0.25 V from the sub range 1 with the required gain of 2.6 .

Sub-range 2 (600Q-700Q)):

When the sensor is in this range, it occupies the voltage range of 1.5-1.74 V after passing the
2.5 milliamps AC current. In this range, a resolution of 0.1Q is targeted.

To implement that, a difference amplifier stage is employed to subtract 1.5 V from the

Sub-range 2 with the required gain of 13.

Sub range 3 (700Q-1000€):

When the sensor is in this range, it occupies the voltage range of 1.74-2.5 V after passing the
2.5 milliamps AC current. In this range, a resolution of 0.3Q is targeted.

To implement that, a difference amplifier stage is employed to subtract 1.74 V from the

Sub-range 3 with the required gain of 4.3.



Impedance(Q) 100 600 700 1000

Resolution((1) 0.50 0.10 0.30
2.5m Amp-é
'
Voltage(v) 0.25 1.5 1.74 2.5
0 oo 1.24 0 e 0.25 0 J— 0.74
O/P Voltage(v) 0 3.22 Qe 3.2 [ J— 3.2

ADC (ARDUINO)

l

CELL PHONE

Figure 2-1 Mathematical representation



2.3 Wien bridge oscillator

Wien bridge oscillator is a sinusoidal wave oscillator .It consists of aseries RC
circuit connected to the parallel RC circuit which employs the positive feedback network and
the voltage divider circuit (Rf and R1) employs the negative feedback network.

The op-amp is used in noninverting mode provides a phase shift of 0°. Resistors Rf and
R1 determine the amplifier gain and are selected to make the loop gain equal to 1.The
feedback circuit parameters are selected such that ,there is a frequency at which there is zero
phase shift for the signal fed back to non-inverting terminal.[2]

Rf

AW

Y,

§ | {

2.5V C
y VOSC

4

AT
R 1 C
T

25v

-

Figure 2-2 Wien bridge oscillator


https://www.elprocus.com/rc-snubber-circuits/
https://www.elprocus.com/rc-snubber-circuits/

The frequency of oscillation is given by

1
Fosc = ——
OS¢ = o7RC

Gain required for sustained oscillations:

Rf
—>2
R1 ™

2.4  Butterworth second order low filter and high pass filter

The sine wave generated from the Wien bridge oscillator contains harmonics apart from the
fundamental frequency. To get a pure sinusoidal waveform, filtering action is required.so a
Butterworth second order filter is employed to remove the unwanted frequencies. The cut-off
frequency is chosen such that higher frequencies beyond it rolls down at the rate of 40
dB/decade.

1
~ V2mRI1C1R2C2

There is a positive feedback employed to ensure that there is fast transition from pass band to
stop band and to avoid peaking response around cut-off frequency.

The oscillator produces a sine wave of 100 KHz with odd harmonics starting from 300 KHz,
500 KHz and so on. To limit the response till 100 KHz, cutoff frequency is chosen to be 150

KHz. To remove the dc component, a high pass filter is employed.
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Figure 2-3 second order low pass and high pass filter

2.5 Voltage to current convertor

In most cases, the output voltage is not transmitted directly to the destination due to the
addition of noise and wire impedance. In such cases, this circuit plays a vital role. As per my
requirement, it is desired to send a 2.5 milliamps AC current into the sensor while making use

of the above mentioned advantage.

Following circuit shows the voltage to current converter using operational amplifier[3]. It

consist of simple resistance connected to the inverting and non-inverting terminals of op amp.



Vo

Figure 2-4 V- | convertor

Mathematical calculation for the current through the Load (sensor)

= (VinR— VZ) 1= <Vin1; VZ)

Vin—-"V2 Vo—-V12
)+ (%)

IL=11+12 =
w12= (75 :

And we have
Vo =2V2



So the current through the load is given by

From the filter, a pure sinusoidal wave is obtained, oscillating all the way from 0 to 5 volts
(VDD supply). The V to | convertor converts the AC voltage to the sinusoidal current of 2.5
milliamps by choosing the value of R=1k ohms. Now, this current is pushed into the sensor
to produce the desired output voltage which is then detected by peak detector followed by
comparators to identify the different ranges wherein different resolutions are desired.

After passing the initial current of 2.5 milliamps into the sensor, an AC voltage range of 0.25-
2.5 volts is obtained. So a peak detector is employed next to the V to | convertor to convert

the bi-directional voltage to the unidirectional voltage.

2.6 Peak detector

It detects and holds the peak of the input signal. The circuit consisting of only diode and
capacitor can pass the input voltage greater than the forward diode drop (i.e 0.7V typically).So
, in order to pass the voltage less than the diode drop, say in order of few millivolts, we make

use of the op-amp[3].

The operation of op-amp peak detector can be explained as follows:

Vout < Vin; The diode is ON and the capacitor charges to peak value of an input,

Vout < Vin; The diode is OFF and the capacitor holds the peak value of an input.
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Figure 2-5 Peak detector

2.7 Comparator stage

To identify the range of operation, the peak detector output is compared with pre-defined
voltage levels of 1.49 volts and 1.74 volts using op-amp as a comparator.
The output logic level of comparators is used to turn on the corresponding switches of the

particular ranges.

Sv

VCOMP1
- VCOMP1 [ - R1
]t Dy S -+ o
1.49
VPEAK NOR NOR ~
— — e B . —R2
174 VPEAK
~ veomP2 ~
>— >——LR3
) VCOMP2 e

Figure 2-6 Comparator stage



2.8  Difference amplifier
It is a subtractor circuit which amplifies the difference voltage between the inverting and the
non-inverting terminals. The gain of the circuit can be set using resistances R2 and R1.[3]

R1

V1 A vout
v2 —AW - |

R1

R2

R2
Vout = — (V2 — V1
ou Rl( )

Figure 2-7  Differential amplifier
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2.9  Custom built App for impedance readout circuit

Android Studio:

It is the official IDE platform where you can develop your Application for any Android
device. The App built can work for Android Versions above 4.0.To build any Android App,
you require Activity_main.xml file which contains the Layout view describing the details like
Height, width, buttons you want to view on the homepage of the App. Manifest.xml file is
used for defining user’s permission for the external devices connected.MainActivity.java is
the source code editor where you can program your Application. There is a virtual Android
Emulator to view and check the output of your Application. Once the Application is

developed, the APK file can be transferred to the phone.[4]

Please enter your data

D Autoscroll

Figure 2-9 Homepage of the customized Application



Chapter 3

3 Circuit design

Circuit design for proposed impedance readout detector involves designing of OTA with 3.3

V supply. These are analyzed and designed in TSMC 0.18 um CMQOS technology.

3.1 The architecture of two-stage OTA:

The present work requires an op-amp which has high gain, low noise and moderate UGB, rail
to rail input and output common range. To meet these requirements, self-biased Folded
cascode configuration is chosen with both PMOS and NMQOS input pair. In general two stage
OTA's are designed for achieving high swing and high gain. First stage provides high gain

and second stage provides high swing.

Self-biasing:

Biasing of the transistors should be done in such a way that all the transistors should be in
saturation to get maximum gain. In this work, self-biasing is chosen such that additional
biasing network is not required. From the Fig. 3-1, the connection from gate of M1 to drain
of M2 ensures that M1 is in saturation .If the resistance is chosen in such a way such that its
voltage drop is Vov, then a similar connection as above make sure that M2 is always in

saturation .



Ves2=Ves1 + Vov

+
R Vov
Vas1
M2 +
— _ VH
1.
.Tl Vov

Figure 3-1 Self biasing network[5]

Maximum ICMR of Folded cascode topology:

The maximum ICMR can exceed beyond Vdd supply in this topology. For M1 to be in

saturation, VICMRmax=Vp1 +VT1H1, Where Vpi1= Vdd-Vbss.

VICMRmax = Vdd-Vbpss +VTHL
If Vbss <V7Hithen VICMRmax > Vdd.
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Figure 3-2 Folded cascode OTA with NMOS and PMOS input pair[5]



3.2 Design specifications of OTA:

Important OTA specifications include DC gain, Gain Bandwidth Product (GBW), phase
margin (PM), ICMR, Noise, Dynamic range, offset and PSRR.

DC gain:
DC gain of minimum 60 dB is required such that finite gain error < 1 mv.
This work achieves 92dB.

ICMR:
It is the input signal range for which all transistors are in saturation.
Rail to rail ICMR and output ICMR is aimed .Here, 0-3.2V ICMR is achieved

Noise:

The dynamic range of the circuit is limited by noise floor, to get the more dynamic range
integrated noise floor should be small. At low frequencies, flicker noise is dominant than
thermal noise. To reduce the flicker noise, Wide PMOS input pair is chosen. To reduce the
thermal noise, the Gm of the input transistor is increased. DR of system is aimed for 60dB,

such that the noise of input transistor is less than 1mV. This work achieves 50dB.

PSRR:

The output of the op-amp is affected by the ripple on the power supply.so, PSRR (power
supply Rejection ratio) quantifies this effect. It is defined as the ratio of the Differential gain
to the PSR (power supply gain) with the AC ripple on the power supply while the Differential

input set to Zero.



Av (Vdd = 0)
Awvdd (Vin = 0)

PSRR =
Here, the transistor M14 is biased by the Current source M15 ,which makes the Vsc of M14
to be constant .AC ripple on the power supply forces the gate of the M14 to track the changes
,which in turn gets coupled to the Output by Cc(Compensating Capacitor).
The differential gain is 92 dB and the PSR gain is 1dB, so PSRR=90dB.

Offset:

It is one of the non-ideality of the circuit design that limits the accuracy and the minimal
signal that can be processed. It occurs due to the device mismatch between the identical
transistors owing to the physical processes during the device fabrication. By using large
device sizes, the mismatch can be reduced.

This work aimed for offset < 3.3 mV and achieved 1.71 mV.

3.3 Simulation results and discussions:
To verify and validate the performance of the proposed circuit across all process corners and
temperature variations, simulation results have been mentioned below.

OTA is simulated with Maximum Load capacitance to verify the phase margin and the GBW.

3.3.1 Differential operation:
Figure 3-3 differential gain and phase margin at a load of 2pF. It shows that

OTA is highly stable with required GBW for a differential operation over wide range.
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Figure 3-3 Gain and phase margin plot

3.3.2 OTA Gain and phase margin across PVT variations:
It can be seen from the below graph that the OTA Gain and PM doesn’t vary much and are
well defined within the acceptable range across PVT.
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Figure 3-4  Gain and phase margin variation across PVT

Minimum | Typical Maximum
Gain(dB) 78 95 105
Phase Margin(deg) 69 71 73

Table 3-1 Gain and PM values across PVT

3.3.3 GBW at 10 pF load across PVT variation:

Figure 3-5 shows that the GBW is within the acceptable range across the PVT variations.

Minimum | typical maximum

GBW(MHz) | 65 105 115

Table 3-2 GBW values across PVT
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Figure 3-5 UGB @ 10 pf across PVT

3.3.4 ICMR plot:

Figure 3-6 shows the ICMR plot. The design aimed for rail —rail ICMR (0-3.3V) and achieved

(0-3.2V).

3.2 - ICMR PLOT
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Figure 3-6 ICMR plot
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3.3.5 Offset:
The design aimed for Offset < 3.3mV and from the below Fig. 3-7, it can be observed that

offset achieved is 1.7 mV which is quite acceptable for the design implementation.
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Figure 3-7 Offset (Mismatch variation)

3.3.6 Noise and SFDR plot:

The designed aimed for noise < 3.3 mV and the Dynamic range > 60dB.From the below Fig.
3-8, it can be seen that the total input referred noise is 23 pV and the DR achieved is around
50dB.

Device Param Noise Contribution % 0f Total
/18/M28 fn 8.06B582219 37.11
JIB/M1B fn B.B08581866 37.87
J18/M7 fn 8.8832375 11.48
f18/M4 fn B.80323729 11.47
/18/M8 fn " B.BBBEBB13T7 8.85
fIB/M3 fn B.800878783 8.85
fI8/M38 fn 8.80808595816 8.39
fI8/M32 fn 8.8008595882 8.39
f18/M28 id 8.80808253784 8.87
JIB/M1B id B.B0808253661 8.87
Integrated Noise Summary (in V) Sorted By Noise Contributors
Total Summarized Noise = 8.BB955713

Total Input Referred Noise = 2.38478e-85

The above noise summary info is for noise data
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3.3.7 PSRR:

From the Fig. 3-9, it can be seen that PSR gain is 0 dB and the differential gain achieved is
95 dB .So, the PSRR =differential gain — PSR gain=95-0=95dB.
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Figure 3-9 PSRR plot



3.3.8 Performance summary:

Units Targeted Specs | Achieved Specs
Supply voltage \% 3.3
Gain dB >60 95
Phase Margin degrees >60 71
GBW MHz >100 105
ICMR V 0-3.3 0-3.2
Noise \YJ <3.3m 23u
Dynamic Range dB >60 50
PSRR >60 95
offset millivolt <33 171
Power consumption | milliwatt <15 10




Simulation results of the impedance readout circuit:
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Load(Q) Ideal Output(V) Achieved Output(V)
395 1.9291 1.9282

0.0 10.0 20,0 30.0 40.0 50.0 60.0 70.0 80.0

time (us)

Figure 3-12 Simulation results of the impedance in subranges with the

targeted resolutions



Impedance (£2) Final Output(V)
250 0.9968
250.5 0.9995
400 1.9529
400.5 1.9554
550 2.9543
550.5 2.9574
630 1.0325
630.1 1.0367
680 2.6706
680.1 2.6739
750 0.567
750.3 0.571
800 1.149
800.3 1.153
930 2.636
930.3 2.640

Table 3-3 Final output of the impedance in 3 subranges with the desired

resolutions, corresponding to a change of 3.3 millivolt.



35 Output of the PCB board integrated with the cell phone and Arduino UNO

Figure 3-13  PCB board for impedance readout circuit

Figure 3-14 The board interfaced with cell phone and Arduino Uno
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Figure 3-16 For a load of 662 (), 660Q displays on cell phone
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Figure 3-17 For a load of 807€Q), 800Q displays on cell phone



Chapter 4

4 Design and Implementation of wide
Range Resistive Readout circuit

4.1 Introduction:

Many resistive based gas, chemical and pressure sensors exhibit a wide range performance.
So, the proposed design uses a subrange detector based on comparators to cover an input
resistance ranging from 10kQ to 1GQ .Here, the resistance(Rin) is first converted to a voltage ,
by fixed current source and then measured by an ADC . However, accommodating a high Rin
range results in one of two issues: the ADC input voltage will saturate at high Rin or an
extremely high resolution ADC is required to sense low Rin that produce very small voltages.
So, a common approach is to divide the Rin range into Sub-ranges and apply different currents
for each sub-range using a current DAC. This technique greatly increases accuracy across the
total Rin range. After the correct sub-range is found for a particular sub range, the

corresponding current is selected and Vi is generated from the resulting IR drop. [1]

4.2  Circuit design:

First, a 1.5nA initial current is applied to the unknown Rin. This initial current is chosen to
map the entire Rin range (10kQ—-1GQ) to the comparator operating range. This 1.5nx Rin
drop is compared to 3 threshold values(1.5m,150m,1500mV) to determine 2 fine sub-
ranges(10M-100M ,100M-1G) and 1 one coarse sub range(10k-10M). According to the
coarse sub-range, a second current (150n A) is activated resulting in a 150nx Rin spanning

1.5-1500mV. The same procedure repeats to divide coarse sub-range into 3 fine sub-



ranges(10k-100k,100k-1M,1M-10M), yielding total 5 sub-ranges. Here, an edge-triggered D
flip-flops are used to avoid unnecessary switching of the comparators and the current sources

during the activation of the second initial current.

Resistance(Q) 10k 100k 1M 10M 100M 1G
\LISU l 1.5u l 150n : 15n 1.5n
[
[
[
[
[
1.5n Amp :
[
[
[
15m | 150m 1500m
Voltage(v) 15u 150u 1.5m |
< > : «—— > «———»
[
Coarse Range | Sub Range 1 Sub Range 2
150n Amp :
[
[
[
Voltage(v) 1.5m 15m 150m 1500m |
«“—>r «“—>r «“—>r
Sub Range 3 Sub Range 4 Sub Range 5
Figure 4-1 Mathematical representation

4.3  Circuit implementation:

Circuit design for wide range resistive readout circuit involves designing of OTA with 1.8V
supply, D flip-flop and logic gates .These are analyzed and designed in TSMC 0.18 um
CMOS technology. Here, the voltage drop I*Rin is biased with Vcm voltage such that the

comparator is always in the maximum gain region for better resolution.
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Figure 4-3 Level-triggered D flip-flop
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Figure 4-4 Edge-triggered D flip-flop
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44  OTA with 1.8 V supply:

4.4.1 Architecture of two stage OTA:

The present work requires an op-amp which has high gain, low noise and high UGB.
To meet these requirements, Folded cascode configuration is chosen with NMOS and
PMOQOS input pair.

VDD

VDD
5 vBPL E
VDD M4 |—| M3
v MBS |—| M25

M27 m28

M16 |— ‘m |_ M6 ﬁl—”m E M7 VDD

i |_ _ —r{ M2
VENL L
VBN AM— vour

o AT o e R

= M1l M13
M20 m24 lJ MO

rJI

—

Y

BIASING NETWORK

Figure 4-5 Folded cascode OTA[5]



4.5 Simulation results of OTA:
To verify and validate the performance of the proposed circuit across all process corners and
temperature variations, simulation results have been mentioned below. OTA is simulated with

maximum load capacitance to verify the phase margin and the GBW.

45.1 Differential operation:
Figure 4-6 shows differential gain and phase margin plot. It can be seen that OTA is highly
stable with required GBW for a differential operation over wide range.
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Figure 4-6  Gain and phase margin plot



PM (deg)

45.2 OTA Gain and phase margin across PVT variations:

It can be seen from the below graph that the OTA Gain and PM doesn’t vary much and are
well defined within the acceptable range across PVT.
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Figure 4-7  Gain and phase margin plot @ 5 pF



Minimum | Typical | Maximum
Gain(dB) 80 99 105
Phase margin (deg) 73 83 93

Table 4-1

Gain and PM values across PVT

45.3 GBW at5 pF load across PVT variation:

Figure 4-8 shows that the GBW is within the acceptable range across the PVT variations.

Minimum | typical maximum
GBW(MHz) | 4 11 12
Table 4-2 GBW across PVT
) UGB across PVT
s ' tt
40 ff
00 200 T T 3000 T T 400 N T 5000 T T T 600 T T T 700 T T T 80.

Figure 4-8

UGB @ 5 pf across PVT



454 ICMR plot:
Figure 4-9 shows the ICMR plot. The design aimed for ICMR (0-1.5V) and achieved
(0.01-1.5V).

% VCM ',/"‘
go.gfE ‘a"“
] g 108.0m 108.1mV ‘,x"’ VOUT

T

Figure 4-9 ICMR plot

455 Offset:
The design aimed for Offset < 1.8mV and from the below Fig. 4-10, it can be observed that

offset achieved is 0.8 mV which is quite acceptable for the design implementation.
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Figure 4-10
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4.5.6 Noise and SFDR plot:
The design aimed for noise < 1.5 mV and the Dynamic range > 60dB.From the below figure,

it can be seen that the total input referred noise is 14 uV and the DR achieved is around 120dB.

fﬂeuce w..Param _ Moise Contribution % Of Total .
/18/M8 fn 0. 8148697 28.11
f18/M9 fn 8. 014869 28.21
F18/M5 fn 8,811883 18.81
fI8/M6 fn a.e1188M 18.81
/18/M20 fn 0.80443781 2.51
fie/m9 fn 8. 68443633 2.5
f16/M28 id 0. 08209575 0.56
fie/ma id 0. 00209543 0. 56
/TB/MS id 8.08197612 e.58
f18/M6 id 0.80197581 0.58
f18/M8 id 0.60123462 8.19
/16/M9 id 8. 68123461 8.19
/Te/M1 fn 0.008354384 .62
fia/me fn 8.p0B354329 a.62
fie/mze rs 0. 088132256 9.68
f1e/m9 rs 0.608132235 9.68
/10/M5 rs 8.89221e-085 0.60
/18/M6 rs 8.B89883e-05 0.68
18/M8 rs 8.52241e-85 0.08
f1e/m9 rs 8,52235e-85 0.00
Integrated Noise Summary (in V) Sorted By Moise Ck&tributnrs
Total Summarized Moise = @.8279985
Total Input Referred Noise = 1.4492e-85
The above noise summary info is for noise data
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Figure 4-11 Noise and SFDR plot



4.5.7 Performance summary:

consumption

Units Targeted Specs | Achieved Specs
Supply voltage \ 1.8
Gain dB >60 100
Phase Margin degrees >60 83
GBW MHz >10 11
ICMR Vv 0-1.5 0.01-1.5
Noise V <1.8mv 14u
Dynamic Range | dB >60 100
PSRR >60 70
offset millivolt <1.8 0.8
Power J watts <800 720
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Chapter 5

5 Conclusion:

Impedance readout circuit for the Milk Adulteration and the Wide range resistive detector is
designed and verified across all process corners and temperatures varying from 20°C to

80-C.Interfacing the cell phone with the PCB board and Arduino Uno is also shown.

51  Future work:
For the Wide range resistive detector, the currents are realized with ideal current sources.so,

replacing the ideal current sources with BGR current reference circuit can be done.
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