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Abstract

Peridynamics (PD) is a non local continuum mechanics theory developed by Silling in 2000.
The inception of peridynamics can be dated back to the works of Piola according to dell’Isola
et al. [1]. Classical continuum theory (CCM) was there to study the materials response
to deformation and loading conditions deformation response of materials and structures
subjected to external loading conditions without taking into effect the atomistic structure.
Classical continuum theory can be applied to various challenging problems but its governing
equation have a limitation that it cannot be applied on any discontinuity such as a crack,
as the partial derivatives with respect to space are not defined at a crack. To overcome this
limitation , a new non local continuum approach i.e Peridynamics (PD) was developed.It
was introduced as it governing equations donot contain any partial derivative with respect
to space so it can be applied at cracks also. We can also think of Peridynamics as the
continuum version of molecular dynamics. This behaviour of peridynamics makes it handy
for multi-scale analysis of materials. Peridynamics finds it usefulness in other fields also
such as moisture, thermal, fracture, aerospace etc., so that multiscale analysis can be done
. The analysis of structure due to progressive failure is challenge. These challenges can
be overcome by techniques such as using both nonlocal and classical (local) theories. But
Peridynamic theory is computationally costly compared to the finite element method. While
analyzing structures with compelxity , utilize structural idealizations is to be done to make
computations feasible. Peridynamics has been catching the eyes of the researchers as its
formulation include integral equations , unlike the partial differential equations in classical
continuum theory. This method is still in early stages, a lot of research work is to be done
to make it feasible for a large no. of problems.
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Chapter 1

INTRODUCTION

Peridynamic is a non local continuum theory of solid mechanics based on integral equations
originally proposed to address elasticity problems involving discontinuities. The govern-
ing equations of peridynamics are integro-differential equations and do not contain spatial
derivatives which make this new theory very attractive for problems including discontinuities
such as cracks.

1.1 Why going away from classical theory ?

In classical theory, a material point is influenced by the other material points which are in
infinitesimally small neighbour, so it is a local theory which means stress at the material
point depends only on the strain of material points in the infinitesimally small neighbour.For
macroscale it can be true but not as the length scale approaches atomistic scale because of the
involvement of longrange forces.Even for macroscale also, microstructure can have influence
on the macrostructure.Even now there are no full proof theory to predict crack initiation
and its path due to the mathematical formulation which assumes body as continous as the
deformation occurs. So the formulations doesnot apply as soon as the discontinuity appears
in the body.Classical theory involves partial differential equations with respect to space
and these spatial derivatives are not defined at the discontinuities.So the main limitation
of classical theory is that it is not applicable due to its governing equations which involve
partial derivatives with respect to space when there is discontinuity such as a crack.
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(a) Local (b) Peridynamics

Figure 1.1: Comparision between local and nonlocal theory

The stress at crack tips tends to be infinite in classical theory which lead to the concept of
Linear Elastic Fracture Mechanics (LEFM) which assumes pre-existing cracks in the material
where crack initiation and crack path are treated separately using external parameters such
as critical energy release rate. The critical energy release rate is not part of the governing
equations of the classical theory. Further the calculation of energy release rate is challenging
as the quantity depends on geometry, loading conditons and numerical methods.in addition
to this separate criteria for crack propagation is needed.

The classical theory solutions are independent of crack size but the experiments showed
that materials with small cracks have more fracture resistance. Also classical theory predicts
there is no dispersion which is not true as the experiments shows otherwise for the propa-
gation of elastic plane waves with shorter wavelengths in elastic solids. Hence no internal
length parameter is there to distinguish different length scales.
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Figure 1.2: Comparison of phase velocity for wave propagation

However classical theory is not capable to distinguish different length scales but it can
capture failure processes by using Finite Element Method (FEM).In fracture mechanics main
worry is the introduction of pre-existing cracks not the new cracks.When addressing the pre-
existing crack growth , FEM using traditional elements have the limitation of remeshing
after each incremental growth of a crack.

Hence the presence of infinite stress at crack tip, need for external parameters, inability to
distinguish crack size and crack initiation, and requirement for remeshing makes impossible
to solve probems with multiple interacting cracks propagating in unusual manner using
traditional FEM elements.
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1.2 Basic Definitions

1.2.1 Equation of Motion

The peridynamic equation of motion of any particle X in reference configuration at time t
is given as

ρ
∂2u

∂t2
=

∫
R

f
(
u(X

′
, t)− u(X, t),X

′ −X
)
dVX′ + b (X, t) (1.1)

where VX′ is a neighborhood of X , u is the displacement vector field, b is prescribed body
force density field, ρ is the mass density in reference configuration and f is a pairwise force
function whose value is the force vector (per unit volume squared) that the particle X ′ exerts
on particle X.

Figure 1.3: Particle interaction in a horizon

1.2.2 Relative Position

The relative position of the two particles in the reference state is ξ which is equal to

ξ = X ′ −X (1.2)
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1.2.3 Relative Displacement

The relative displacement of the two particles is η which is equal to

η = u (X ′, t)− u (X, t) (1.3)

Figure 1.4: Particle interaction in a horizon

The relative position of the particles in the deformed state p which is equal to η + ξ .

1.2.4 Conservation laws

The linear and angular momentum law is to be followed by the force function f that is

f (−η,−ξ) = −f (η, ξ) (1.4)

(η + ξ) ∗ f (η, ξ) = 0 (1.5)
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for all ξ,η. The above expressions implies that the relative position is parallel to the force
between the two particles. The general form of the bond force for the basic theory can be
written as

f (η, ξ) =
ξ + η

|ξ + η|
f (p, ξ, t) (1.6)

where the scalar bond force is represented as f and also

p = |η + ξ|. (1.7)

1.2.5 Bond stretch

Like in classical theory , where there is a strain, here it is a scalar bond stretch ′s′b which is
defined as

sb =
|ξ + η| − |η|

|ξ|
(1.8)

For a brittle material to be microelastic, it should have

f (s, t, ξ) = χ (t, ξ) csb (1.9)

where χ is a history dependent damage function taking values of either 0 or 1 and c repre-
senting spring constant

χ (t, ξ) = 1 if sb (t′, ξ) < so for all 0 ≤ t′ ≤ t (1.10)

= 0 otherwise (1.11)

where so is the critical bond stretch for failure which means if the bond stretch is has
exceeding critical bond stretch, the bond is assumed broken. The value of spring constant
c is found by equating the energy density within the horizon in the peridynamic theory to
strain energy under isotropic extension from continuum mechanics for the same deformation.
Thus

c =
18K

πδ4
(1.12)

where δ is the horizon. The critical stretch for bond failure , so is related to the energy
release rate G as

so =

(
10G

πcδ5

) 1
2

=

(
5G

9Kδ

) 1
2

(1.13)
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This is obtained by equating work done to break all bonds in a unit area to energy release
rate Silling and Askari (2005) described that introduction of failure at interaction level leads
to local damage at a point given by

1−
∫
V
χ (X, t, ξ) dVX∫
V
dVX

(1.14)

where R represents spherical volume with radius equal to horizon of δ and the centre of
sphere is at X. So we can get the definition of the local damage at a point as ratio of
amount of broken interactions to total amount of interactions .

1.3 Horizon size

Horizon of a material point refers to the region in which it has its influence on the other
material points i.e it can have interactions with other material points in that region only. It
is a length-scale parameter from which peridynamics gets its non-local behaviour.The type
of the problem and its nature defines the selection of the horizon size. If the problem is
not having any non-local behaviour,horizon should converge to zero In which case, classical
continuum theory and peridynamics are equivalent of each other.We use the numerical tech-
niques to solve the problems in peridynamics.Using a very small value of horizon size , the
computational time gets very large. So that size of horizon should be chosen which doesn’t
show any significant non-local character which we can get by doing some convergence study.
In problems which have non-local and non-classical behaviour horizon is used as a length
scale parameter which we can adjust according to the required physical behaviour that can
be correctly represented.In a beam where crack is to appear or loading is applied , we cannot
choose uniform size of horizon all over the beam, the region in which it is assumed for the
crack to appear and the loading, we can have a smaller horizon of each material point.For
the problems in which the cross section area of the material is changing, we can use small
horizon size to accurately detect the behaviour of material at the change of cross section.

1.4 Advantages and Limitations

� Advantages

– Offers potentially great generality in fracture modeling.

* Cracks nucleate and grow spontaneously.

* Cracks follow from the basic field equations.
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– Any material model from local theory can be used.

– Compatible with molecular scale long-range forces.

– Length scale can be exploited for multiscale modeling.

� Limitations

– Slow due to many interactions.

– Need smarter integration methods.

– surface effects: correction methods are available but none totally satisfactory.

– boundary conditions are different from the local theory.

– Particle discretization has known limitations.
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Chapter 2

LITERATURE REVIEW

The nonlocal peridynamic theory has been proven to be a promising method for modelling
the material failure and damage analysis in solid mechanics .The modelling of complex
fracture problems such as crack branching and spontaneous crack nucleation and , curving
and arrest can be done easily using the integro differential equations of peridynamics. Ning
et al. [2] studied the damage due to impact in a three point bending beam with offset notch
using the peridynamic approach which is widely used for the mixed I-II crack propagation in
brittle materials . The predictions from the peridynamic analysis agree well with available
experimental observations. The numerical results show that the dynamic fracture behaviour
of the beam under the impact load such as crack initiation, curving and branching rely on the
location of offset notch and the impact speed of the drop hammer. It has been observed that
in modal response of an aluminium plate with clamped free boundary conditions, the natural
frequencies from peridynamics agree better with the experimental results than the frequencies
from finite elements for all modes except mode I [3]. Differences between peridynamics and
experiment results ranged (in magnitude )from 0.13 to 10.38% and between pridynamic and
finite-elements from 0.23% to 9.72%. The non local peridynamic theory is applied to study
the structural vibration and impact damage using 2D bond based peridynamics and the the
numerical results indicate that the peridynamic solutions for beams vibration problems are
almost identical to the results based on Euler-Bernoulli beam theory. It is also found that
the feature of softer material near the boundary in peridynamics has a notable effect on the
solution of beam vibration [4]. Gardy et al. [5] developed a new state based peridynamic
model which is used to represent the bending of an Euler-Bernoulli beam. This model is
found to give accurate deformation results for simple beam tests. The perfect plasticity and
simple brittle damage models successfully reproduce the impact of non-linear behaviours on
deformation of rectangular cantilever and the framework is laid to allow application of the
same models to I-beams. This novel model simplifies treatment of bending in beams and

13



is extensible to bending in plates. Silling et al. [6] used PD theory for damage prediction
considering Kalthoff-Winkler experiment [7], in which a plate having two parallel notches
is hit by impactor and peridynamic simulations successfully captured angle of crack growth
that is observed in the experiments. This technique does not reqiure the specification of
kinetic laws for crack growth and because it does not require the tracking of individual
cracks, it models fracture mechanics problems of arbitrary complexity with potentially great
generality. Silling and Askari [8] showed the convergence of peridynamics using a plate with a
centre crack. Gardy et al. [9], using the peridynamic state based beam model, determined the
bending of a Kirchoff-Love plate. This model is non ordinary and is derived from the concept
of a rotational spring between bonds. This simple extension of beam model reproduces plate
bending with a poisson ratio of 0.33, which can be combined with a 2D linear peridynamic
solid model to simulate mixed in-plane and transverse loading. Peridynamic theory can be
applied to fracture problems in contrast to the approach of fracture mechanics. By using
peridynamics, the crack path for inclined crack under dynamic loading were investigated.
The peridynamics solution for this problem represents the main features of dynamic crack
propagation such as crack bifurcation. The problem is solved for various angles and different
stress values. The results are compared with molecular dynamic solutions that seem to show
reasonable agreement in branching position and time [10]. High velocity impact and shock
or blast responses are a critical design characteristic determing sizing of composite parts and
ultimately weight savings .Peridynamis can be used to accurately predict nonlinear transient
deformations and damage behaviour of compositess under shock or blast type of loadings due
to explosions .Peridynamics provide the ability to predict residual strength and durability for
improving structural designs of composites under such loadings[11]. Yile et al. [12] studied
the delamination and the effect of fiber waviness using PD. It is shown that the simulations
correctly perdicted the damage initiation and progression in the double cantilever beam
(DCB) made up of laminated composite with wavy fibers. Jifeng et al. [13] et al. studied
delmination and matrix damage process in composite laminates due to low velocity impact,
and the simulations showed that damage area correlates very well with the experimental
data. The peridynamic formulation for a unidirectional fiber-reinforced composite lamina
based on homogenization and mapping between elastic and fracture parameters of the micro-
scale peridynamic bonds and the macro-scale parameters of the composite is developed
by Wenke et al. [14]. The model is then used to analyze the splitting mode (mode II)
fracture in dynamic loading of a 0◦ lamina. Appropriate scaling factors are used in the
model in order to have the elastic strain energy, for a fixed nonlocal interaction distance
(the peridynamic horizon). Yozo et al. [15] developed a systematic analytical treatment
of peristatic and peridynamic problems for a 1D infinite rod. It is found from the study
that some peridynamic materials can have negative group velocities in certain regions of
wavenumber. This indicates that peridynamics can also be used for modeling certain types
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of dispersive media with anomalous dispersion. Sarego et al.[16] developed a 2D linearized
ordinary state-based peridynamic model. The convergence behavior of peridynamic solutions
in terms of the size of the nonlocal region by comparison with the classical (local) mechanics
model is also studied. The degree to which the peridynamic surface effect influences the
recovery of elastic properties is examined, and stress/strain recovery values are found to have
a definite influence on the results. The technique used here can provide the basis for applying
2D peridynamic models to the study of fatigue failure and quasi-static fracture problems.
The PD model developed by Le et al. [17] for plane stress and plane strain was studied and
validated using a two dimensional rectangular plate with a round hole in the middle under
constant tensile stress. The model is found to show the m -convergence and δ - convergence
behaviors. The problem of cracks propagation in thin orthotropic flat plates under bending
loads was studied by Tastan et al. [18] using peridynamics. The formulation followed here is
based on the main ideas of bond based Peridynamics. Several numerical examples show that
the results obtained with the new approach are in good agreement with those obtained with
more classical computational methods. Moreover the numerically computed crack patterns
seem to follow in a reasonable way the orthotropic properties of the models . Michael et
al.[19] developed a plate model as a two-dimensional approximation of the three-dimensional
bond-based theory of peridynamics via an asymptotic analysis. The resulting plate theory
is demonstrated using a specially designed peridynamics code to simulate the fracture of a
brittle plate with a central crack under tensile loading.
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Chapter 3

APPLICATION TO EULER
BERNOULLI BEAM

Every object in the world has a 3-Dimensional geometrical shape and it is usually possible to
model structures in a 3-Dimensional fashion although this approach can be computationally
expensive. In order to reduce computational time, the 3-Dimensional geometry can be sim-
plified as a beam, plate or shell type of structure depending on the geometry and loading.
This simplification should also be accurately reflected in the formulation which is used for
the analysis. In this study, we want to develop Euler-Bernoulli beam formulation within
ordinary-state based peridynamic framework. The equation of motion can be obtained by
utilizing Euler-Lagrange equations. The accuracy of the formulation is validated by consid-
ering various benchmark problems subjected to different loading and displacement/rotation
boundary conditions.

3.1 Formulation

To represent an Euler Bernoulli Beam, we descretize the beam into single row of material
points. The descretization is meshless and the shape of the horizon is a line . Each ma-
terial point is having only one degree of freedom that is transverse displacement along z-axis.

Consider two material points k and j with coordinates xk and xj and their transverse
displacements as uk and uj, with volume of horizon around each material point as Vk and
Vj respectively.After deformation, let κk andκj are their curvatures.
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Figure 3.1: Kinematics of Euler Bernoulli Beam

xk →material point coordinate
Vk →incremental volume
ρ→mass density
uk →displacement

3.1.1 Equation of Motion

The strain energy density function in terms of micro-potentials for material point k is

Wk =
1

2

∞∑
j=1

1

2
(αkj + αjk)Vj (3.1)

where the micropotential can be defined as the energy required to break the bond between
two material points per unit volume square.
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The micropotentials are also the functions of the transverse degree of freedom of the
material points.

The PD equation of motion at material point xk is found out using principal of virtual
work which is

δ

∫ t1

to

(T − U)dt = 0 (3.2)

where T and U are the total kinetic and total potential energies of the system
Total kinetic energy of the system is due to bending and transverse shear deformation total
potential energy is obtained by the summation of micropotentials

T =
1

2

∞∑
j=1

ρiu̇i · u̇iVi (3.3)

U =
∞∑
i=1

WiVi −
∞∑
i=1

(bi · u̇i)Vi (3.4)

Using equation (3.1)

U =
∞∑
i=1

(
1

2

∞∑
j=1

1

2
(αij + αji)Vj)Vi

)
−
∞∑
i=1

(bi · u̇i)Vi (3.5)

Lagrangian L = T − U

L = · · · 1
2
ρku̇k · u̇kVk · · ·

· · · − 1

2

∞∑
j=1

{1

2
[αkj(u1k − uk, u2k − uk, · · · )

+ αjk(u1j − uj, u2j − uj, · · · )]Vj}Vk · · · (3.6)

· · · − 1

2

∞∑
i=1

{1

2
[αik(u1i − ui, u2i − ui, · · · )

+ αki(u1k − uk, u2k − uk, · · · )]Vi}Vk · · ·
+ (bk · u̇k)Vk · · ·
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or

L = · · · 1
2
ρku̇k · u̇kVk · · ·

· · · − 1

2

∞∑
j=1

{αkj(u1k − uk, u2k − uk, · · · )VjVk} · · ·

· · · − 1

2

∞∑
j=1

{αjk(u1j − uj, u2j − uj, · · · )VjVk} · · · (3.7)

· · ·+ (bk · u̇k)Vk · · ·

Here u1j , u2j ,.. are the neighbourhood material points of j within the horizon.
Similarly u1k , u2k ,.. are the neighbourhood material points of k within the horizon.
Putting the value of lagrangian L from equation (3.7) in lagrangian equation

∂

∂t

(
∂

∂u̇k

)
− ∂L

∂uk
= 0

(3.8)

ρkükVk +

(
∞∑
j=1

1

2

(
∞∑
i=1

∂αij
∂(uj − ui)

Vi

)
∂(uj − ui)

uk
+
∞∑
j=1

1

2

(∑
i=1

∂αik
∂(uk − ui)

Vi

)
∂(uk − ui)

uk
− bk

)
Vk = 0

or

ρkük =
∞∑
j=1

1

2

(
∞∑
i=1

∂αki
∂(ui − uk)

Vi

)
−
∞∑
j=1

1

2

(
∞∑
i=1

∂αik
∂(uk − ui)

Vi

)
+ bk (3.9)

Using dimensional analysis, we come to know that the term
∑∞

i=1

∂αki
∂(uj − uk)

Vi represents

the force term.
Let this term be the force density the material point xj exerts on xk. So the equation (3.9)
can be written as

ρkük =
∞∑
j=1

(t̃kj − t̃jk)Vj + b̂k (3.10)

19



where the tilde sign shows the force densities due to bending deformations

t̃kj =
1

2Vj

∞∑
i=1

∂αki
∂(uj − uk)

Vi =
1

Vj

∂
(
1
2

∑∞
i=1 αkiVi

)
∂(uj − uk)

Vi (3.11)

=
1

Vj

∂Wk

∂(uj − uk)
(3.12)

Using classical continuum mechanics, the strain energy density for material points k can be
represented as

Wk =
1

2
aκ2k (3.13)

where κk is curvature of material point k and a is peridynamic constant
The curvature for material point k can be defined as

κk = d
∞∑
ik

uik − uk
ξ2
ikk

Vik (3.14)

where ik represents all material points inside the horizon of material point k and d is also a
peridynamic constant

ξikk = |xk − xik | (3.15)

Putting the value of κk in eq.(3.13),we get

Wk =
1

2
ad2

(
∞∑
ik

uik − uk
ξ2
ikk

Vik

)2

(3.16)

Putting value of Wk in equation (3.12) we get

t̃kj =
ad2

Vik

(
∞∑
ik

uik − uk
ξ2
ikk

Vik

)
Vik

ξ2
ikk

=
adκk
ξ2jk

(3.17)
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Simlarly the value of t̃jk is found and those values are put in eq. 3.10 to get equation of
motion as

ρkük = ad2
∞∑
j=1

1

ξ2jk

(
∞∑
ik=1

uik − uk
ξ2
ikk

Vik −
∞∑
ij=1

uij − uj
ξ2
ijj

Vij

)
Vj + b̂k (3.18)

3.1.2 Validation with classical theory

The validity of the equation is to be checked and to check so we limit the horizon nsize to
zero to get classical continuum theory i.e δ → 0
Using Taylor series expansion the transverse displacements is expressed in terms of their
main material point displacements and ignoring higher order terms

uik = uk + ξikkuk,xsgn(xikk − xk) +
ξ2
ikk

2
uk,xx (3.19)

Putting value from eq. (3.19) in eq. (3.18), we get

ρkük = ad2
∞∑
j=1

1

ξ2jk

 ∞∑
ik=1

−ξikkuk,x +
ξ2
ikk

2
uk,xx

ξ2
ikk

Vik −
∞∑
ij=1

ξijjuj,x +
ξ2
ijj

2
uj,xx

ξ2
ijj

Vij

Vj + b̂k

(3.20)

ρkük = ad2
∞∑
j=1

1

ξ2jk

(
−∞∑
ik=1

uk,xx
2

Vik +
∞∑
ik=1

uk,xx
2

Vik −
−∞∑
ij=1

uj,xx
2

Vij −
∞∑
ij=1

uk,xx
2

Vij

)
Vj + b̂k

(3.21)

The summation sign includes all the material points in the horizon of main material point
on the left and right of the material point.
If similar expansion is done for material point j we have

uj,xx = uk,xx + ξjkuk,xxxsgn(xj − xk) +
ξ2jk
2
uk,xxxx (3.22)
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Putting value from eq. (3.22) to eq. (3.21)

ρkük = ad2
−∞∑
j=1

1

ξ2jk

−∞∑
ij=1

ξjkuk,xxx −
ξ2jk
2
uk,xxxx

2
Vij +

∞∑
ij=1

ξjkuk,xxx −
ξ2jk
2
uk,xxxx

2
Vij

Vj

+ad2
∞∑
j=1

1

ξ2jk

−∞∑
ij=1

−ξjkuk,xxx −
ξ2jk
2
uk,xxxx

2
Vij +

∞∑
ij=1

−ξjkuk,xxx −
ξ2jk
2
uk,xxxx

2
Vij

Vj + b̂k

(3.23)

Doing some algebraic calculations,we have the final equation of motion for peridynamics as

ρkük = −ad2
∞∑
j=1

(
∞∑
i=1

uk,xxxx
4

Vi

)
Vj + b̂k (3.24)

where ij is replaced by i
The infinitesimal volumes Vi andVj can be expressed as

Vi = A∆ξik (3.25)

Vj = A∆ξjk (3.26)

∆ξik tends to dξ” and ∆ξjk tends to → dξ
′

Converting summations of eq.(3.24) into integrals, we have

ρü = −ad2A2

∫ δ

−δ

∫ δ

−δ

u,xxxx
4

dξ”dξ
′
+ b̂ (3.27)

ρü+ A2ad2δ2
∂4u

∂x4
= b̂ (3.28)

Also in classical continuum mechanics the EOM for Euler Bernoulli beam is

ρü+
EI

A

∂4u

∂x4
= p− ∂m

∂x
(3.29)
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where p is the transverse load and
∂m

∂x
is the change in acting on a material volume.

Comparing eq. (3.28) and eq. (3.29) we get

a =
EI

A3d2δ2
(3.30)

b = p− ∂m

∂x
(3.31)

We can calculate peridynamic material parameter d, by comparing the curvature of material
point in peridynamics with curvature in classical theory under a simple loading condition
with constant curvature υ i.e

k = υ =
∂2u

∂x2
(3.32)

Integrating above equation, we get

ux =
υx2

2
+ ax+ b (3.33)

At x = δ and x = −δ , y=0.Satisfying these conditions we have

u =
υx2

2
− υδ2

2
(3.34)

At x=0, uk = −υδ2

2

At x = ξ, uik = υξ2

2
− υδ2

2

Putting the value of uik and uk in eq. 3.14 we get

κk = d
∞∑
ik=1

υ

2
Vik (3.35)

κk = d
υ

2

∫ δ

−δ
Adξ” (3.36)

κk = dυAδ (3.37)

Equating above value with υ we get

d =
1

Aδ
(3.38)
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Putting the value of d in eq. (3.30)

a =
EIA2δ2

A3δ2
(3.39)

a =
EI

A
(3.40)

Putting the value of a in (3.13) we get

Wk =
1

2

EI

A
κ2k (3.41)

which is same as the strain energy density function in the classical theory.

This shows that we can recover classical theory by reducing horizon size in peridynamics
to zero.
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Chapter 4

APPLICATION TO TIMOSHENKO
BEAM

Progressive failure analysis of structures is still a major challenge. There exist various predic-
tive techniques to tackle this challenge by using both classical (local) and nonlocal theories.
Peridynamic (PD) theory (nonlocal) is very suitable for this challenge, but computationally
costly with respect to the finite element method. When analyzing complex structures, it is
necessary to utilize structural idealizations to make the computations feasible. Therefore,
this study presents the PD equations of motions for structural idealizations such as beams
while accounting for transverse shear deformation. Also, their PD dispersion relations are
to be presented and compared with those of classical theory .

4.1 Formulation

For a Timoshenko Beam also, we descretize the beam into single row of material points. The
descretization is meshless and the shape of the horizon is a line . Each material point is
having only one degree of freedom that is transverse displacement along z-axis.But alongwith
the transverse displacement we have the shear deformation also.

Consider two material points k and j with coordinates xk and xj and their transverse
displacements as uk and uj, shear deformation as ϕk and ϕj, out of plane rotations asθk
and θj with volume of horizon around each material point as Vk and Vj respectively.After
deformation, let κk andκj are their curvatures.
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Figure 4.1: Kinematics of Timoshenko Beam

ϑk, ϑjare transverse shear angles
uk, ujare out of plane deflections
θk, θjare out of plane rotations

ϑj =
uj − uk
ξjk

− θjsign (xj − xk) (4.1)

ϑk =
uj − uk
ξjk

− θksign (xj − xk) (4.2)

Assuming ϑkj as the average tansverse shear deformation due to the interaction between
material points j and k

ϑkj =
uj − uk
ξjk

− θj + θk
2

sign(xj − xk) (4.3)

Let κkj is curvature between material points j and k

κkj =
θj − θk
ξjk

(4.4)
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Similarly for material point j

ϑjk =
uk − uj
ξjk

−
(
−θj + θk

2

)
sign(xj − xk) (4.5)

ϑjk = −ϑkj (4.6)

κkj =
θk − θj
ξjk

= −κjk (4.7)

4.1.1 Equations of Motion

The PD equation of motion at material point xk is found out using principal of virtual work
which is

δ

∫ t1

0

(T − U)dt = 0 (4.8)

where T and U are the total kinetic and total potential energies of the system

Total kinetic energy of the system is due to bending and transverse shear deformation
total potential energy is obtained by the summation of micropotentials
Let α̃kj(κkj) and α̂kj(ϑkj) are micropotentials between material points arising from
bending and transverse shear deformation respectively.

T =
1

2

∞∑
k=1

ρ

[
u̇k

2 +
I

A

(
θ̇k

2
)]

Vk (4.9)

U =
∞∑
k=1

[
1

2

∞∑
j=1

1

2
[α̃kj(κkj) + α̃jk(κjk)]Vj − b̃kθk

]
Vk

+
∞∑
k=1

[
1

2

∞∑
j=1

1

2
[α̂kj(ϑkj) + α̂jk(ϑjk)]Vj − b̂kuk

]
Vk (4.10)

Euler Lagrange equations can be expressed as

d

dt

∂L

∂u̇k
− ∂L

∂uk
= 0 (4.11)

d

dt

∂L

∂θ̇k
− ∂L

∂θk
= 0 (4.12)
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where

L = T − U (4.13)

T = · · ·+ 1

2
ρu̇k

2Vk +
1

2
ρ
I

A
θ̇k

2
Vk + · · · (4.14)

−1

2

∞∑
j=1

[
1

2
[α̃kj(κkj) + α̃jk(κjk)]Vj

]
Vk · · ·

−1

2

∞∑
j=1

[
1

2
[α̂kj(ϑkj) + α̂jk(ϑjk)]Vj

]
Vk · · ·

−1

2

∞∑
j=1

[
1

2
[α̃kj(κkj) + α̃jk(κjk)]Vj

]
Vk · · ·

−1

2

∞∑
j=1

[
1

2
[α̂kj(ϑkj) + α̂jk(ϑjk)]Vj

]
Vk · · ·

+b̃kθkVk + b̂kukVk (4.15)

L = · · ·+ 1

2
ρu̇k

2Vk +
1

2
ρ
I

A
θ̇k

2
Vk + · · ·

−
∞∑
j=1

[
1

2
[α̃kj(κkj) + α̃jk(κjk)]Vj

]
Vk · · ·

−
∞∑
j=1

[
1

2
[α̂kj(ϑkj) + α̂jk(ϑjk)]Vj

]
Vk · · ·

+b̃kθkVk + b̂kukVk (4.16)

Putting this L in the Lagrange equation, we get

ρükVk +
∞∑
j=1

[
1

2

[
∂α̂kj(ϑkj)

∂ϑkj

∂ϑkj
∂uk

+
∂α̂jk(ϑjk)

∂ϑjk

∂ϑjk
∂uk

]
Vj

]
Vk − b̂kVk = 0 (4.17)

Let

1

ξjk

∂α̂kj(ϑkj)

∂ϑkj
= f̂kj (4.18)

1

ξjk

∂α̂jk(ϑjk)

∂ϑjk
= f̂jk (4.19)
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Then we have

ρükVk +
∞∑
j=1

1

2

[
ξjkf̂kj

∂ϑjk
∂uk

+ ξjkf̂jk
∂ϑjk
∂uk

]
Vj − b̂k = 0 (4.20)

Also

ρ
I

A
θ̈k +

∞∑
j=1

[
1

2

[
∂α̃kj(κkj)

∂κkj

∂κjk
∂θk

+
∂α̃jk(κjk)

∂κjk

∂κjk
∂θk

]
Vj

]
Vk

+
∞∑
j=1

[
1

2

[
∂α̂kj(ϑkj)

∂ϑkj

∂ϑkj
∂θk

+
∂α̂jk(ϑjk)

∂ϑjk

∂ϑjk
∂θk

]
Vj

]
Vk − b̃kVk = 0 (4.21)

Let

1

ξjk

∂α̃kj(κkj)

∂κkj
= f̃kj (4.22)

1

ξjk

∂α̃jk(κjk)

∂κjk
= f̃jk (4.23)

Then we have

ρ
I

A
θ̈k +

∞∑
j=1

1

2
ξjk

[
f̃kj

∂κkj
∂θk

+ f̃jk
∂κjk
∂θk

]
Vj

+
∞∑
j=1

1

2
ξjk

[
f̂kj

∂ϑkj
∂θk

+ f̂jk
∂ϑjk
∂θk

]
Vj − b̃k = 0 (4.24)

where f̃kj, f̃jkf̂kj, f̂jk, are peridynamic interaction forces between material points j and k
arising from bending and transverse shear deformation .

For linear behaviour, the interaction forces can also be defined as

f̃kj = cb(κkj) f̃jk = cb(κjk) (4.25)

f̂kj = cs(ϑkj) f̂jk = cs(ϑjk)

The peridynamic parameter associated with bending and transverse shear deformation are
cs, cb
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Putting these values of peridynamic forces and corresponding shear angles and curvatures
in EOM we have

ρük = cs

∞∑
j=1

(
uj − uk
ξjk

− θj + θk
2

sign(xj − xk)
)
Vj + b̂k (4.26)

ρ
I

A
θ̈k = cb

∞∑
j=1

θj − θk
ξjk

Vj +
1

2
cs

∞∑
j=1

(
uj − uk
ξjk

− θj + θk
2

sign(xj − xk)
)
Vj + b̃k (4.27)

4.1.2 Validation with classical theory

Using Taylor series expansion we can express out of plane rotation and transverse shear
deformation at material point j as

uj = uk + uk,xξjksign(xj − xk) +
1

2
uk,xxξ

2
jk (4.28)

θj = θk + θk,xξjksign(xj − xk) +
1

2
θk,xxξ

2
jk (4.29)

Putting these values in the EOM gives

ρük = cs

∞∑
j=1

(
uk + uk,xξjksign(xj − xk) + 1

2
uk,xxξ

2
jk − uk

ξjk

)

−cs
∞∑
j=1

(
θk + θk,xξjksign(xj − xk) + 1

2
θk,xxξ

2
jk + θk

2
sign(xj − xk)

)
Vj + b̂k

= cs

∞∑
j=1

(
0 +

uk,xxξjk
2

−
(
θksign(xj − xk) +

θk,xξjk(1− 0)

2
+
θk,xx

2
ξ2jksign(xj − xk)

))
Vj + b̂k

= cs

∞∑
j=1

(
uk,xxξjk

2
− θk,xξjk

2

)
Vj + b̂k

ρük = cs

∞∑
j=1

(uk,xx − θk,x)ξjkVj + b̂k

(4.30)

Similarly

ρ
I

A
θ̈k = cb

∞∑
j=1

θk,xxξjkVj + cs

∞∑
j=1

(
uk,x − θk −

1

4
θk,xxξ

2
jk

)
Vj + b̃k (4.31)
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Let Vj = A∆ξjk where ∆ξjkis representing the spacing between two consecutive material
points and replace summation by integration as ∆ξjk approaches zero. Now we have

ρü = cs

∫ δ

0

(u,xx − θ,x)ξAdξ + b̂

ρü = cs(u,xx − θ,x)A
δ2

2
+ b̂ (4.32)

Also

ρ
I

A
θ̈ = cb

∫ δ

0

θ,xxξAdξ + cs

∫ δ

0

(
u,x − θ −

1

4
θ,xxξ

2

)
ξAdξ + b̃

= cb
δ2

2
θ,xxA+

(
u,x

δ2

2
− θδ

2

2
− θ,xxδ

4

16

)
A+ b̃

ρ
I

A
θ̈ =

Aδ2

2

(
cb − cs

δ2

8

)
θ,xx +

Aδ2

2
cs(u,x − θ) + b̃ (4.33)

The above PD equations have same form as classical Timoschenko Beam equations

ρü = kG(u,xx + θ,x) + b̂

ρ
I

A
θ̈ =

EI

A
θ,xx + kG(u,x − θ)b̃ (4.34)

Comparing coefficients we get the peridynamic material parameters as

cs =
2kG

Aδ2
cb = 2EI

δ2A2 + 1
4
kG
A

(4.35)
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Chapter 5

APPLICATION TO MICROPOLAR
BEAM

In micropolar continuum, it is assumed that there is a microstructre which can rotate inde-
pendently from the surroundings. This means every particle contains six degrees of freedom
, three translational motions which are assigned to macro element and three rotational ones
which are assigned to the microstructure. In this method , in addition to force, particles ap-
ply moments to each other that is if a particle rotates, the other particles will apply moment
to that particle to resist deformation.

At each particle of a micropolar continuum, it is assumed that there is a microstructure
which can rotate independently from the surrounding medium.
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Figure 5.1: Microrotation

� Stress equilibrium

∂σx
∂x

+
∂τyx
∂y

= 0 (5.1)

∂σz
∂z

+
∂τxz
∂x

= 0 (5.2)

∂mxy

∂x
+
∂mzy

∂y
+ τxz − τzx = 0 (5.3)
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Figure 5.2: Stresses acting on a planar micropolar solid.

The shear stresses are not symmetric. The shear stresses are divided into antisymmetric
and symmetric parts

τs =
τxz + τzx

2
(5.4)

τa =
τxz − τzx

2
(5.5)

Figure 5.3: Split of the shear stresses into symmetric and antisymmetric parts.

The antisymmetric part is responsible for microrotation and symmetric part for usual
shear deformation.
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5.1 1D Micropolar PD Beam Theory

5.1.1 Geometry

Figure 5.4: Kinematics of an Micropolar Beam .

5.1.2 General Equation of motion

mü(x, t) =

∫ x+δ

x−δ
(Nz[x]−Nz[x

′])dx+Bz(x, t) (5.6)

Jφ̈(x, t) =

∫ x+δ

x−δ
(µy[x]− µy[x′])dx

+
1

2

∫ x+δ

x−δ
(Nz[x] +Nz[x

′])(x− x′)dx

+
1

2

∫ x+δ

x−δ
(Ms[x]−Ms[x

′])dx+ Ly(x, t)

Iρθ̈(x, t) =

∫ x+δ

x−δ
(M [x]−M [x′])dx (5.7)

− 1

2

∫ x+δ

x−δ
(Ms[x] +Ms[x

′])dx+ Lz(x, t) (5.8)
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5.1.3 1D kinematic states

Relative transverse displacement u[x] = u(xj)− u(xk)

Relative macro-rotation θ[x] = θ(xj)− θ(xk)

Relative micro-rotation φ[x] = φ(xj)− φ(xk)

Average macro-rotation θ̂[x] = 1
2
(θ(xj) + θ(xk))

Average micro-rotation φ̂[x] = 1
2
(φ(xj) + φ(xk))

5.1.4 Constitutive relations

It is found out using the energy balance equations.

Nz(xj − xk) = A((ũ+ η)γθφ + ũγuφ)(xj − xk)
µy(xj − xk) = (Aβκφ)(xj − xk)
M(xj − xk) = (EIκθ)(xj − xk)
Ms(xj − xk) = A((ũ+ η)γuφ + ũγθφ)(xj − xk)2

where γuφ, κφ, κθ,γθφ are the non local strains which are given by:

γuφ =

[
N∑
j=1

((uj − uk) +
1

2
(φj + φk)(xj − xk))(xj − xk)LE

]

γθφ =

[
N∑
j=1

(
1

2
(φj + φk)−

1

2
(φj + φk))(xj − xk)2LE

]

κφ =

[
N∑
j=1

(φj − φk)(xj − xk)LE

]

κθ =

[
N∑
j=1

(θj − θk)(xj − xk)LE

]
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5.1.5 Equation of motion

Putting the corresponding values in the equations (33), (34), (35), we get EOM as

mü(xk, t) = 2V (LE)
N∑
l=1

(ξjk)((µ̃+ η)
N∑
j=1

1

2
(φj + φk)(ξjk)

2

+ µ̃
N∑
j=1

(uj − uk)(ξjk)− η
N∑
j=1

1

2
(φj + φk)(ξjk)

2) (5.9)

Iρθ̈(xk, t) =
N∑
l=1

2EIξjk(LE)2
N∑
j=1

(θj − θk)(xj − xk)

− 1

2
(2V (LE)

N∑
l=1

(ξjk)
2((µ̃+ η)

N∑
j=1

(uj − uk)(ξjk)

+ µ̃
N∑
j=1

1

2
(θj + θk)(ξjk)

2 + η
N∑
j=1

1

2
(φj + φk)(ξjk)

2) (5.10)

Jφ̈(xk, t) = 2V LEβ
N∑
l=1

ξjk

N∑
j=1

(φj − φk)ξjk

− V (LE)η
N∑
l=1

(ξjk)
2(

N∑
j=1

1

2
(θj

+ θk)(ξjk)
2 +

N∑
j=1

(uj − uk)(ξjk))

+ 2V (LE)η
N∑
l=1

(ξjk)
2

N∑
j=1

1

2
(φj + φk)(ξjk)

2 (5.11)

� By neglecting the microrotation and putting micropolar constant η as zero , we get
the EOM for Timoshenko beam by adjusting the constants as

ρük = cs

∞∑
j=1

(
uj − uk
ξjk

− θj + θk
2

sgn(xj − xk)
)
Vj + b̂k (5.12)
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ρ
I

A
θ̈k =

cb

∞∑
j=1

θj − θk
ξjk

Vj +
1

2
cs

∞∑
j=1

(
uj − uk
ξjk

sgn(xj − xk)−
θj + θk

2

)
ξjkVj + b̃k (5.13)

� Further neglecting the shear deformation and adjusting the constants, we get EOM for
Euler Bernoulli beam as

ρkük = ad2
∞∑
j=1

1

ξ2jk

(
∞∑
ik=1

uik − uk
ξ2
ikk

Vik −
∞∑
ij=1

uij − uj
ξ2
ijj

Vij

)
Vj + b̂k (5.14)
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Chapter 6

PROBLEM STATEMENT

6.1 Problem

� A simply supported beam

� Length of beam(L) = 1m

� Area of cross section(A)= 0.01× 0.01m2

� Young’s modulus(E)= 200GPa

� Point load at centre(P) = 50N

� Horizon size(δ) = 2× length of an elemnt
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Figure 6.1: SSB with load of 50 kN

6.1.1 Solution

� Discretize the beam into single row of N no. of material points.

� Distance between material points is LE = 1/N

� Two fictitious volumes are created on left hand and right hand of the beam with length
equal to horizon size .

Figure 6.2: Discretization of a Beam

� If there are odd no. of elements, then loading is applied to middle material point with
body force b = P

A∗LE
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� If there are even no. of elements, then loading is applied to two middle material points
with body force b = P

2∗A∗LE on each of the two material point.

� .Boundary condition is applied by extending the deformed shape of the beam in the
fictitious volumes as shown

Figure 6.3: Negative Mirror image of Displacements

� Similarly it is done for other support also.The displacements of the material points in
the fictitious volume are specified as

u1 = −u4
u2 = −u3
u99 = −u98
u100 = −u97

� Equation (3.18) is written in matrix form as

[K]{U} = {B} (6.1)

where {U}, [K] and {B} represents the displacement matrix,stiffness matrix and body
force matrix respectively.

� Lets displacement matrix be expressed as

{U} = [R]{Û} (6.2)

where[R] represents matrix used to transform displacement matrix into reduced dis-
placement matrix i.e {Û}.
The reduced displacement matrix contain displacements of material points which are
in the beam only.
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� Imposing boundary conditions, we have

R =



0 −1 0 . . . .
−1 0 0 . . . .
1 0 0 . . . .
0 1 0 . . . .
. . . . . . .
. . . . . . .
. . . . 0 0 1
. . . . 0 0 −1
. . . . 0 −1 0


N×(N−2δ)

Û =



u3
u4
.
.
.
.
u97
u98


(N−2δ)×1

� Putting stiffness , transformation,reduced displacement and body force matrix in the
following equation we will get the unknown displacements

[R]T [K][R]{Û} = [R]T{B} (6.3)
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Chapter 7

RESULTS AND DISCUSSIONS

7.1 Euler Bernoulli Beam

7.1.1 Simply Supported Beam
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Figure 7.1: Plot with varying no. of elements and constant horizon of 2*LE (EB Beam)
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� Analytical solution

Deflection =
P ∗X

48 ∗ E ∗ I
(3L2 − 4X2) X < L/2

� This is the plot between transverse displacements of the material points and their
coordinates .

� The maximum deflection is at centre of the beam and is equal to 6.25 mm analytically.

� As the no. of elements are increasing from NE=50 to NE=800, the graph is converging.

� After NE=100, it seems graphs overlaps a little to each other for NE=200,400,800.

� For NE=800, the graph is totally compatible with the analytical solution.
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Figure 7.2: Plot with varying horizon length and constant no. of elements equal to 500
(EB Beam)

� This is the plot beyween transverse displacements of the material points and their
coordinates .

� The maximum deflection is at centre of the beam and is equal to 6.25 mm analytically.

� As the horizon size is increasing from h=LE to h=10 LE, the graph is diverging

� After h=2LE, graph discourages itself to overlap from h=4 LE, 6 LE, 8 LE.

� For h=2 LE the graph is totally compatible with the analytical solution.
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7.1.2 Cantilever Beam

� Length of beam(L) = 1m

� Area of cross section(A)= 0.01× 0.01m2

� Young’s modulus(E)= 200GPa

� Point load at free end(P) = 50N

� Horizon size(δ) = 2× length of an elemnt

Figure 7.3: Cantilever Beam with load 50 kN
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Figure 7.4: Plot with varying no. of elements and constant horizon of 2*LE (EB Beam)

� Analytical solution

DEflection =
P ∗ (L−X)3

3 ∗ E ∗ I
(7.1)

� This is the plot between transverse displacements of the material points and their
coordinates .

� The maximum deflection is at free end of the beam and is equal to 100 mm analytically.

� As the no. of elements are increasing from NE=50 to NE=800, the graph is converging.

� But the correct overlapping of analytical solution is with the graph with NE= 100.

� For NE=50 , the displacements in peridynamics are coming greater than the analytical
solutions.
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Figure 7.5: Plot with varying horizon size and constant no. of elements equal to 500
(EB Beam)
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� This is the plot beyween transverse displacements of the material points and their
coordinates .

� The maximum deflection is at the free end of the beam and is equal to 100 mm
analytically.

� As the horizon size is increasing from h=LE to h=10 LE, the graph is diverging

� After h=2LE, graph discourages itself to overlap from h=4 LE, 6 LE, 8 LE.

� For h= LE the graph is totally compatible with the analytical solution.
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7.1.3 Clamped Clamped Beam

� Length of beam(L) = 1m

� Area of cross section(A)= 0.01× 0.01m2

� Young’s modulus(E)= 200GPa

� Point load at centre(P) = 50N

� Horizon size(δ) = 2× length of an elemnt

Figure 7.6: CCB with load 50 kN
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Figure 7.7: Plot with varying no. of elements and constant horizon of 2*LE (EB Beam)
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� Analytical solution

Deflection =
P ∗X

48 ∗ E ∗ I
(3L− 4X) X < L/2

� This is the plot between transverse displacements of the material points and their
coordinates .

� The maximum deflection is at centre of the beam and is equal to 1.6 mm analytically.

� As the no. of elements are increasing from NE=50 to NE=800, the graph is converging.

� After NE=100, it seems graphs overlaps a little to each other for NE=200,400,800.

� For NE=800, the graph is totally compatible with the analytical solution.
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Figure 7.8: Plot with varying horizon length and constant no. of elements equal to 500
(EB Beam)

� This is the plot beyween transverse displacements of the material points and their
coordinates .

� The maximum deflection is at centre of the beam and is equal to 1.6 mm analytically.

� As the horizon size is increasing from h=LE to h=10 LE, the graph is diverging

� After h=2LE, graph discourages itself to overlap from h=4 LE, 6 LE, 8 LE.

� For h= LE the graph is totally compatible with the analytical solution.
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7.2 Timoshenko Beam

7.2.1 Simply Supported Beam

� Length of beam = 1m

� Area of cross section = 0.1× 0.1m2

� Young’s modulus = 200GPa

� Point load at centre = 500kN

Figure 7.9: SSB with load 500 kN

� Analytical solution

Deflection =
P ∗X

48 ∗ E ∗ I
(3L2 − 4X2) X < L/2

Rotation =
P

16 ∗ E ∗ I
(L2 − 4X2) X < L/2
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Figure 7.10: Plot between transverse dis-
placement and length of beam (Timo-
shenko Beam)
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Figure 7.11: Plot between rotation and
length of beam (Timoshenko Beam)

� These are the plots between transverse displacement,and rotation of material points
and their coordinates.

� The maximum displacement is at centre and is equal to 6.25 mm .The maximum
rotation is at supports and is equal to 1.5×10−6 and is equal to zero at mid point of
the beam analytically.

� For the transverse displacement, as the no. of elements are increasing from NE=50 to
NE=800, graph is converging.

� For the rotation the graph is somewhat not uniform , the graph for NE=800 overlaps
with analytical one at starting, then from X=0.2m to X=0.7m , NE=200 overlaps with
analytical one, then in the end NE=400 overlaps with analytical one.

� For transverse displacement, from NE=100, the begins to overlap each other and it
fully complies with the analytical solution.
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7.2.2 Cantilever Beam

� Length of beam = 1m

� Area of cross section = 0.1× 0.1m2

� Young’s modulus = 200GPa

� Point load at centre = 500kN

Figure 7.12: Cantilever Beam with load 500 kN

� Analytical solution

Deflection =
P ∗ (L−X)3

3 ∗ E ∗ I

Rotation =
P ∗ (L−X)2

2 ∗ E ∗ I
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Figure 7.13: Plot between transverse dis-
placement and length of beam (Timo-
shenko Beam)
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Figure 7.14: Plot between rotation and
length of beam (Timoshenko Beam)

� These are the plots between transverse displacement,and rotation of material points
and their coordinates.

� The maximum displacement is at free end and is equal to 100 mm .The maximum
rotation is at free end and is equal to 0.15 rad.

� For the transverse displacement, as the no. of elements are increasing from NE=50 to
NE=800, graph is converging

� For the rotation also , as the no. of elements are increasing from NE=50 to NE=800,
graph is converging

� For transverse displacement, from NE=100, the graph begins to overlap each other
and it fully complies with the analytical solution, only for NE=50 graph seems to be
having less displacement values

� For rotation also, from NE=100, the graph begins to overlap each other and it fully
complies with the analytical solution, only for NE=50 graph seems to be having less
rotation values
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7.2.3 Clamped Clamped Beam

� Length of beam = 1m

� Area of cross section = 0.1× 0.1m2

� Young’s modulus = 200GPa

� Point load at centre = 500kN

Figure 7.15: CCB with load 500 kN

� Analytical solution

Deflection =
P ∗X

48 ∗ E ∗ I
(3L− 4X) X < L/2

Rotation =
P ∗X

8 ∗ E ∗ I
(L− 2X) X < L/2
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Figure 7.16: Plot between transverse dis-
placement and length of beam (Timo-
shenko Beam)
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Figure 7.17: Plot between rotation and
length of beam (Timoshenko Beam)

� These are the plots between transverse displacement,and rotation of material points
and their coordinates.

� The maximum displacement is at centre and is equal to 1.6 mm .The maximum rotation
is at a distance of 0.25 m from each supports and is equal to 4.5×10−3 and is equal to
zero at each support and middle of the beam.

� For the transverse displacement, upto a distance of 0.5 m, all graphs seems to be
overlapping but after 0.5 m , the graph with NE=50 begins to diverge.For NE =50,
the maximum value of deflection comes as X=0.55 m.

� For the rotation all the graphs seems to be ovelapping but showing a greater value of
maximum rotation . Upto X=0.2 m , from X=0.4 m to 0.7m and near the support,
the graph with NE=800 fully complies with tha analytical solution.
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Chapter 8

SCOPE OF PRESENT WORK

– PRODUCTION SOFTWARE

* Unify Peridigm/Sierra/EMU

* Address usability and interface issues

* Material model library

– SOLVERS AND NUMERICAL METHODS

* SPH, kernel methods connection

* Next gen platforms

* Eulerian and ALE capability

– MATERIAL/DAMAGE MODELING

* Ductile failure

* continuum damage mechanics

* Quasistatic material failure

* Digital Image correlation (DIC)

* Nonlocal deformation measures

– MULTISCALE

* Scalable multiscale methods

* Coarse graining

* Atomistic-to-continuum coupling

* General tool for material failure

– MATH AND THEORY
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* Quantify uncertainty specially in fracture

* Contact algorithms

* Material stability

– MULTIPHYSICS

* Math and numeric for multiphysics

* Geological applications

* Fluid-structure interaction

* Diffusion, chemical reactions

* Electromagnetic fields

* Electronics and MEMS reliability

* Friction

59



Bibliography

[1] Francesco dell’Isola, Ugo Andreaus, and Luca Placidi. A still topical contribution of
Gabrio Piola to Continuum Mechanics: the creation of peridynamics, nonlocal and
higher gradient continuum mechanics. 2014.

[2] Ning Liu and Dahsin Liu. Peridynamic modeling of impact damage in 3 point bending
beam with offset notch. Applied Mathematics and Mechanics, 38:99–110, 2017.

[3] A Freimanis and A Paegltis. Modal analysis of isotropic beams in peridynamics. IOP
Conference Series: Materials Science and Engineering, 251:1–7, 2017.

[4] B.O Chen, Ning Liu, and Guolai Yang. Application of peridynamics in predicting beam
vibration and impact damage. Journal of Vibro Enineering, 21:2369–2378, 2015.

[5] James O’ Gardy and John Foster. Peridynamic beams: A non-ordinary, state-based
model. International Journal of Solids and Structures, 51:3177–3183, 2014.

[6] S A Silling. Reformulation of elasticity theory for discontinuities and long range forces.
Journal of Mechanics and Physics of Solids, 48:175–209, 2000.

[7] J F Kalthoff and S Winkler. Failure mode transition at high rates of shear loading.
Impact Loading and Dynamic Behaviour of Materials, 1:185–195, 1988.

[8] S . A. Siling and E. Askari. A meshfree method based on the peridynamic model of
solid mechanics. Computers and Structures, 83:1526–1535, 2004.

[9] James O’ Gardy and John Foster. Peridynamic plates and flat shells:a non ordinary
state based model. International Journal of Solids and Structures, 51:4572–4579, 2014.

[10] A Shafei. Dynamic crack propagation in plates weakened by inclined cracks :investiga-
tion based on periynamics. Frontiers of structural and civil engineering, 12, 2018.

[11] C Diyaroglu, E Oterkus, E Madenci, T Rabczuk, and A Siddiq. Peridynamic modeling
of composites laminates under explosion. Composite Structures, 144, 2016.

60



[12] Yile Hu, Erdogan Madenci, and Nam Phan. Peridynamic modeling of defects in com-
posites. Structural Dynamics and Materials Conference, 2015.

[13] Jifeng Xu, Abe Askari, Olaf Wreckner, and Stewart Silling. Peridynmic analysis of
impact damage in composite laminates. Journal of Aerospace Engineering, 21:23–42,
2008.

[14] Wenke Hu, Youn Doh Ha, and Florin Babaru. Modeling dynamic fracture and dam-
age in a fiber reinforced composite lamina with peridynamics. Journal for Multiscale
Computational Engineering,, 9:707–726, 2011.

[15] Yozo Mikata. Analytical solution of peristatic and peridynamics problems for a 1D
infinite rod. International Journal of Solids and Structures, 49:2887–2897, 2012.

[16] G. Sarego, Q. V. Le, F. Bobaru, M. Zaccariotto, and U. Galvanetto. Linearized state
based peridynamics for 2D problems. International Journal for Numerical methods in
Engineering, 108:1174–1197, 2016.

[17] Q.V. Le, W.K. Chan, and J. Schwartz. A 2D ordinary state based peridynamic model
for linearly elastic solids. International journal for numeriacal methods in engineering,
98(4):547–561, 2014.
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