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Abstract

Data representation is the core of all machine learning algorithms, and their performance depends

mostly on the features or representations of the input on which any machine learning algorithms can

be applied. Hence, to deploy a machine learning model, a considerable amount of time is invested in

designing data preprocessing pipelines and data transformations that help in efficient representation

of the data so that machine learning algorithms can be applied on them. Such feature engineering

is costly yet essential and accentuates the shortcomings and pitfalls of machine learning algorithms,

i.e., their lack of ability to extract abstract information from the input data. Feature engineering

is a way to leverage human ingenuity and prior knowledge to compensate for the shortcomings of

the machine learning algorithms. Hence, to make the machine learning models easily deployable

and application ready, it is highly desirable to curtail the dependence of learning algorithms on

engineered features so that the construction of novel algorithms can be much faster. This thesis

proposes a novel approach to represent a video as a graph for action recognition and localization

using only class label information.

In addition to that, this thesis also proposes a novel subspace attention mechanism to learn to

capture long-range inter-dependencies in visual data. This attention mechanism is implemented as

a block which can be incorporated into any backbone convolution neural network.
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Chapter 1

Introduction

The performance of machine learning algorithms relies mostly on how the data is represented. These

representations capture different explanatory features or variations in the data. Although a prior

domain knowledge can be used to extract informative features in the data, learning using a generic

prior can also be used. By learning to represent the data, a machine learning algorithm can discover

discriminative information from the input data automatically. Rerepresentation learning replaces

the need for manual feature engineering and enables the machine learning algorithms to learn rep-

resentations explicitly required for a particular task. Learning to represent input data is mainly

motivated by the fact that, for tasks such as classification, machine learning algorithms require

input that can be mathematically represented and are computationally convenient. However, for

input data such as images and videos, hand-crafted features are more susceptible to errors. A poten-

tial solution is to learn to represent data, which allows the machine learning algorithm to discover

abstract information automatically from the input data without relying on explicit algorithms.

1.1 Feature Extraction Techniques

In recent research, a significant amount of literature is dedicated to develop methods for better

representations of the input data for various cognitive tasks. Features can be extracted based on

local relationships in the data or based on global relations. The techniques involved in extracting

features can be broadly classified into two categories:

• Hand Crafted Feature Extraction.

• Learned Representation.

1.1.1 Hand Crafted Feature Extraction

Most of the computer vision algorithms depend on the extraction of local features from images

and videos. Therefore, much of the research in visual computing focuses on developing algorithms

to discover, characterize, and improve features that can be extracted from images or videos. By

hand-crafted features, we usually refer to the set of manually designed algorithms based on prior

knowledge. As a result, the features extracted using hand-crafted feature extraction techniques
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are static, and depending on the task, we need to choose the best feature extraction algorithm

appropriately. Some of the local feature extraction techniques are listed as follows:

• Harris detector is a widely used corner detector, which is used to detect corners in an

image. A corner in an image can be considered as an intersection of two edges in two different

directions. Corners are the important features in an image, and they are generally termed as

interest points which are translation, rotation and illumination invariant. Although corners are

scant in an image, they contain the most important features in restoring image information,

and they can be used to minimize the amount of processed data for motion tracking, image

stitching, image representation and other related computer vision areas.

• Scale invariant feature transform(SIFT) is also a highly used hand-crafted feature de-

scriptors, and are usually used in combination with other detectors. From a set of reference

images, SIFT keypoints of objects are first extracted and stored in a database. An object is

recognized in a new image by individually comparing each feature from the new image to this

database and finding candidate matching features based on Euclidean distance of their feature

vectors.

• Speeded Up Robust Features (SURF) scale invariant blob-like features. It uses the deter-

minant of Hessian to select location of the features, as well as, to determine the characteristic

scale. The calculation of the determinant requires the Gaussian second order partial derivatives

Lxx, Lxy, and Lyy which is approximated with box filters.

1.1.2 Learned Representation

Unlike hand-crafted feature descriptors, learned representations allow the machine learning algo-

rithms to extract discriminative feature from data automatically. One of the most popular rep-

resentation learning techniques is deep learning. Deep learning models learn to extract features

automatically from images or videos. Deep learning facilitates new insight into solving problems

involving visual data, and many attempts have been made to use deep learning methods to extract

features from raw RGB, depth, and skeleton data. Many new network architectures have been

proposed for various tasks such as image classification and segmentation, object detection, human

action recognition, etc. Deep learning models, especially, convolution neural networks(CNNs), have

been very successful in the area of image and video understanding.

Although deep CNNs have shown exceptional performance in various image and video under-

standing tasks, however, they have their limitations as well. Many new network architectures have

been proposed to increase learning capacity, and alleviate certain optimization issues which lead to

an increase in performance for various vision tasks. Recent research in deep representation learn-

ing enables machine learning algorithms to learn local as well as global relations in visual data by

learning to capture long-range inter-dependencies in visual data. This automatic learning of features

from data is what makes deep learning powerful.
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Chapter 2

Related Work

The main objective of better data representation is to improve the performance of the machine

learning algorithms for various cognition tasks such as image classification, object detection, action

recognition and localization, image segmentation, etc. In this section, we will discuss the previous

representation techniques and methods proposed for two specific tasks:

• Action recognition and localization in videos

• Image classification.

2.1 Action Recognition and Localization

In recent research, the problem of action localization and action recognition have been mostly dealt

with traditional computer vision approaches [1] as well as deep learning approaches [2, 3]. The

existing techniques for action localization can be classified into four categories based on the level

of supervision, namely, fully supervised, unsupervised, semi-supervised, and weakly supervised. We

review the most recent approaches from each type in this section.

The fully supervised action localization approaches show a high performance but require two

levels of annotations: 1) video-level i.e. class labels of the action in the video, and 2) frame-

level i.e. bounding-box for each action instance over all the frames in a video. These approaches

generate bounding box proposals in each frame individually and then classify them into an action

category. Gkioxari et al. [4] and Weinzapfel et al. [5], generate bounding box proposals using the

object detection method [6], and then classify them into action classes using a two-stream CNN.

In [2, 7, 8, 3], recent CNN based object detectors like SSD [9] and Faster-RCNN [10] are used for

bounding box generation. However, they do not consider temporal information across the frame as

they apply object detection on each video frame as individually. Recently, Zhu et al. [11] propose a

spatio-temporal convolutional regression network for the generation of the bounding box for action

localization in each frame. All these approaches, first detect the bounding boxes in each frame

and later linked them together to generate the action tube proposals in the videos using dynamic

programming based on the Viterbi alogrithm [4].

The unsupervised action localization approaches do not require any ground-truth information

but perform low in comparison to supervised approaches. The traditional sliding-window sampling
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is an unsupervised approach but computationally very slow as it needs to search an exponentially

large space. Gemert et al. [12] and Chen et al. [13] perform action localization using clustering

of motion trajectories effectively. More efficient methods [14, 15, 16] generate proposals for action

localization by sampling bounding boxes based on the super-voxels.

The semi-supervised action localization approaches do not require ground-truth information for

all the bounding box in video frames. Instead, they work with mixed samples of with and without

ground-truth information. Yu and Yuan [17] use a person detector and motion scores to generate

bounding boxes and compute their action score then linked them using maximum set convergence

problem. Klaser et al. [18] uses an upper-body detector per frame and tracks them by optical flow

feature points to generate spatio-temporal action tubes.

The semi-supervised approaches leverage the benefit of both the approaches but the performance

still depends on the ratio of labeled vs unlabeled information used. In our proposed approach for

action localization, we use a weakly supervised approach. The weakly supervised action localization

approaches require video-level annotations but do not need bounding box or pixel-wise annotations

in the video frames [19, 17].

2.2 Image Classification

Image classification is one of the most studied cognition tasks in computer vision. Several approaches

have been proposed in the past to represent images for better classification. Convolution neural

networks(CNNs) have been successfully applied in several image classification tasks. However, in

some cases such as fine-grained classification, vanilla CNNs fail to perform well. Lin et al.[20]

proposed a bilinear model by learning to capture second order statistics in the data. In recent

research, attention mechanism is gaining popularity to capture global relationships in visual data.

[21] proposes a novel double attention block to gather and distribute features to capture global

relationships in the data.

In guided cognition tasks, attention is the ability to focus more on some particular parts of the

input data and ignore the rest of the data. In other words, attention is a way to assign different

importance to different parts of the input data, and this enables the networks to pick the salient

information from the noisy data. Attention can be broadly categorized into two types viz. implicit

attention and explicit attention. During the training, CNNs naturally learn a form of implicit

attention where neurons in CNNs respond differently to different parts of input data, i.e., neurons

respond strongly to some part of input data than others [22, 23, 24]. Explicit attention has been

employed in neural networks to achieve various goals such as to facilitate the interpretation and

visualization of models, to enable scalability and allow variable size input (e.g., fixed-size glimpse

for any input size of the input image), to enable the computational efficiency, i.e., to reduce the

FLOPs, etc.

Several recent works have incorporated (explicit) attention into neural networks for vision related

tasks. Xu et al. [25] and Chen et al. [26] use attention mechanism to generate captions from the

images. Wang et al. [27] propose residual attention network by stacking multiple attention modules

to generate attention-aware features. Recently, several attempts have been made to incorporate

(explicit) attention mechanism to improve the computational efficiency of CNNs and bolster the

performance of CNNs in various vision tasks. Wang et al. [28] proposed non-local operation, a
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generalized form of self-attention [29], to circumvent the limitation of convolution operators, which

occurs due to its locality, and boost the performance in video recognition tasks. Chen et al. [21]

introduced double attention block, which captures the long-range dependencies by gathering and

distributing features in the entire feature space. Woo et al. [30] introduced “convolution block

attention module” (CBAM) which exploits both spatial and channel-wise feature correlation using

attention mechanism to improve the representational power of CNNs. SE-Net [31] re-calibrates the

feature maps using squeeze and excitation operations.
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Chapter 3

Weakly Supervised Spatiotemporal

Action Localization in Videos

We propose an efficient way of representing an action in a video as a graph for spatiotemporal action

recognition and localization in untrimmed videos using class label information only. We construct a

graph by extracting key interest points from a video clip using Harris 3-D corner detector and assign

class label same as that of the video. The local points extracted from multiple classes have significant

intra-class variability and inter-class similarity. To curb the intra-class variability and inter-class

similarity, we apply a deep multiple instance ranking framework on the local action descriptors. To

classify a graph of local actions into one of the action classes, we use a support vector machine

along with a graph kernel. The graph can then be considered as a 3-D volume, which represents the

localized action in a video. The experimental results show that the proposed approach outperforms

the state-of-the-art methods on the three benchmark datasets, namely, UCF101-24, UCF-Sports,

and JHMDB-21.

3.1 Background

In computer vision research, action recognition and localization is an interesting problem due to

its numerous real-world applications such as video surveillance [32], video captioning [33], video-

based human-computer interaction [3], etc. These applications require the model to recognize and

localize an action in an untrimmed video correctly. However, most of the existing methods for

action recognition and localization work offline and perform well on trimmed videos [1, 3]. In

addition to that, existing models highly depend on guided supervision and requires and bounding

box information for a particular action in a video. However, obtaining datasets with high-level

annotation is very costly. Apart from that, action recognition and localization suffer from challenges

such as occlusion, low video quality, camera angle, etc.

In recent research, deep learning methods like convolution neural networks (CNNs) have shown

remarkable performance in a variety of tasks such as scene understanding, action recognition, and

localization, and object detection [34, 2, 4, 35, 8, 3, 5, 10]. Deep learning has been successfully

applied to action recognition and localization tasks because of their ability to learn discriminative

features automatically from images/videos. Since the success of these methods depends on the
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Figure 3.1: The proposed approach constructs a spatio-temporal graph of local actions and generates
non-cubical shapes for efficient localization of the action.

availability of accurate spatiotemporal annotations, they cannot leverage the benefit of rapid growth

in unstructured video data having only clip level annotations. Also, most of the existing deep

learning methods [4, 5, 3] treat each frame independently thus ignore temporal continuity (i.e.,

motion information) in a video clip which is crucial for the action recognition and localization.

To address the above issues, we propose a novel unified approach for action recognition and

localization using only class label information as shown in Fig. 3.1. For each video, we construct

a 3D graph in which nodes describe the interest points in space and time, and edges between

nodes represent the correlation between two local descriptors for a particular action. Since our

graph representation of the action videos contains the structural relationship among the regions of

interest, it helps in better recognition of the action in the video clips. Each node of the graph is

associated with a score indicating the degree to which its appearance and motion support the action

class of interest. We discard all those regions of interest which mislead or do not contribute to the

class of interest. This also reduces the number of nodes in the graph which ultimately results in a

fast method as the time taken during graph generation and kernel computation also decrease. The

score and the descriptor of a node is determined using a weakly supervised deep regression network.

The network is trained from the appearance and motion information around the nodes using deep

multiple instance learning framework to curb the inter-action similarity and intra-action variability.

The contributions of the proposed approach are:

• Use of weakly supervised deep Multiple Instance Learning (MIL) ranking model for joint repre-

sentation learning and scoring of the salient spatio-temporal regions using clip level annotations
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only.

• The use of graph based action recognition method using a max-margin graph classifier makes

our approach robust to slight variations in the videos which may occur due to viewpoint

variations, illumination change, a difference in the video quality, etc.

• Localization of the recognized action as non-cubical or arbitrary shaped-portion of the video

on the basis of nodes (i.e. local interest points) in the graph.

3.2 Proposed methodology

We approach the problem of action recognition and localization in four steps, as shown in Fig. 3.2.

Firstly (§ 3.2.1), we extract local descriptors from each video clip at key interest points using Harris-

3D corner detector, and by extracting appearance and motion information around the interest points,

we obtain a joint representation of the action clip. Secondly (§ 3.2.2), we train a deep multi-instance

learning framework separately for each action class to curb the intra-class variability and inter-class

similarity which arise due to the weak annotation of the interest points. In the third step (§ 3.2.3),

we generate a set of undirected labeled graphs of local actions using the local action descriptors and

their scores that are generated in the previous step. The nodes in a graph are the interest points in

space and time with action scores. An edge represents a possible correlation between the two local

actions. Finally (§ 3.2.4), using a max-margin binary classifier we decide whether the graph belongs

to the positive action class or some other class. In this case, we use a support vector machine trained

using a graph kernel as our classifier. The positively classified graph can be viewed as a 3D volume,

which represents the action in the video, and bounding boxes are generated based on the nodes in

the graph(§ 3.2.4).

Motion 
Representation 

Appearance 
Representation 

Joint
Representation

Graph 
Representation

Max 
score 

Action
Recognition

Action
Localization

Score

Figure 3.2: Proposed approach for weakly supervised spatio-temporal action recognition and local-
ization in untrimmed video clips using graph of local actions. The local actions at 3D salient points
along with their feature vector represented using appearance and motion information are used to
construct a graph of interaction’s between them.
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3.2.1 Extracting Interest Points

The main objective of extracting interest points in a video is to locate key demeanour in a video,

which denote a significant change in spatial, as well as temporal dimension. Similar to space-time

interest points [36], the spatio-temporal interest points are regions in f : R2 × R → R space with

eigenvalues λ1, λ2, and λ3 of a second-moment matrix µ and Harris-3D corner function (H) can be

used to detect these points in spatial as well as temporal domain by combining both the determinant

and the trace of µ and can be written as:

H = det(µ)− k trace3(µ) (3.1)

H = λ1λ2λ3 − k(λ1 + λ2 + λ3)3, (3.2)

Here, k is a constant and µ is a matrix of 3 × 3 dimension consisting of first order spatial and

temporal derivatives averaged using a gaussian weighting function g(.;σ2
i , τ

2
i ) and scaled with spatial

variance(σ2
i ) and temporal variance(τ2i ). µ can be computed as

µ = g(.;σ2
i , τ

2
i ) ∗

( L2
x LxLy LxLz

LxLy L2
y LyLz

LxLz LyLz L2
z

)
, (3.3)

Here, Lx, Ly, and Lz are the partial derivatives with respect to x, y, and z of the linear scale-space

representation L : R2 × R × R2
+ → R of f constructed by convolution of f with a Gaussian kernel

g(.;σ2
l , τ

2
l ) with local scales σ2

l (spatial variance) and τ2l (temporal variance). L can be computed

as:

L(.;σ2
l , τ

2
l ) = g(.;σ2

l , τ
2
l ) ∗ f(.). (3.4)

Solving equation (3.2) results into a set of m 3D interest point P = {p1,p2, ···,pm}. To represent

the local action at each 3D interest point p(x, y, z), a feature vector is computed by considering a

smaller size volume around it called spatio temporal video volume (STVV) similar to [37], with

different scales in both space and time jointly from both appearance and motion (optical flow)

modalities. STVV at a spatio-tamporal point can be seen in Fig. 3.3

3.2.2 Weakly Supervised Feature Extraction at Interest Points

Since a local feature vector fi ∈ F contains appearance and motion information from a limited

spatio-temporal region from a full video clip, different action may contain significantly similar local

feature vectors. However, obtaining precise annotations for each local feature vector is laborious and

time-consuming. So, we assigned the label of the video clip to all its local action vectors. For each

class, a transformed representation can be learned to curb the inter-class similarity and intra-class

variability using a deep multiple instance learning based ranking model similar to [38] as shown in

Fig. 3.4. Instead of applying ranking on each local feature, we apply ranking only on two instances,

one from a clip of action of interest F+ and other from a clip of any other action F∗ having the

highest score for the action of interest. The objective is to encourage the high scores for the features

9
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using a 3-D sliding volume of size (w, h, t).

from F+ as compared to features from F∗ as

max
i∈F+

f(f+i ) > max
i∈F∗

f(f∗i ). (3.5)

To keep the score of the features in F∗ away from the score of the features in F+, we use the

hing-loss function

l(F+,F∗) = max(0, 1− max
i∈F+

f(f+i ) + max
i∈F∗

f(f∗i )). (3.6)

Finally, the model weights W are computed by minimizing the objective function

J (W) = l(F+,F∗) + λ3‖W‖F , (3.7)

3.2.3 Graph Representation of an Action in a Video

Once we obtain a set of interest points P in space and time and their respective feature vectors F
for each video clip, the video can be represented as a graph G(P, E), where nodes P represent the set

of spatio-temporal points and E denotes the set of edges which represents the correlation between

the points for a particular action class. An edge Aij in the graph G is calculated based on the edge

weight eij computed using

eij =
κ(fi, fj)

||pi − pj ||2
, (3.8)

where, κ(fi, fj) is a kernel function used to compute the correlation between the local descriptors

fi and fj extracted at points pi and pj , respectively. The value of e is high if fi and fj has high

correlation which shows that these points belong to the same action class or the object at point pi
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moved to point pj over the time. Both the cases are vital for action recognition and localization.

The distance ||pi−pj ||2 between points pi and pj is inversely proportional to the edge score i.e the

distance between two points impacts the correlation between them. The adjacency matrix of the

graph G is computed as

Aij =

0 , if eij < eT

1 , otherwise
(3.9)

Here, eT is some threshold. Fig. 3.5 shows an example graph generated for a sample video from

UCF101-24 dataset for basketball action.

3.2.4 Action Recognition and Localization

After representing an action in a video as a graph, we classify the graphs into one of the action

classes. The graph obtained can be viewed as a 3D volume in space and time, and the action is

localized based on the nodes in the graph.

Action Recognition

We train a max-margin binary classifier using the graphs for a particular action category by labeling

them as the positive class and the rest of the graphs are labelled as negative class. Let {Gi, yi}ni=1

denote the corresponding labeled graphs for n training action clips, where the label yi is +1 for

graphs of action of interest and −1 for graphs of other actions. The SVM [39] can be trained using

the data points {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1,+1} as:

min J =
1

2

n∑
i=1

n∑
j=1

βiβjyiyjK(xT
i ,x)−

n∑
i=1

βi, (3.10)
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subject to

n∑
i=1

βiyi = 0 and 0 ≤ βi ≤ C,

Here, C is a parameter. After we find the solution by solving the above optimization problem, we

get m support vectors (SV), with respective βis, and the bias b. Now, the decision function can be

written as:

f(x) = sign

(
m∑
i=1

βiyiK(xT
i ,x) + b

)
, (3.11)

Here, βis are lagrange multipliers. K(xT
i ,x) is the kernel function similar to [40, 41, 42, 43] which

is used to compute the similarity between two points. This approach can also be used for graph

classification using a suitable kernel. In this work, we have used random walk graph kernel to

measure the similarity between two graphs as it is computationally efficient and is suitable for such

tasks.

The random walk graph kernel [44] counts the number of common random walks which is used

to compare two graphs. The number of walks of length l between the two graphs can be calculated

directly using the product graph [44]. The lth power of the adjacency matrix of the resultant graph

obtained after direct product gives us the number of common walks.
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The standard SVM classifier in Equation (3.10) with a graph kernel can now be rewritten as:

min J(β) =
1

2

n∑
i=1

n∑
j=1

βiβjyiyjK(Gi, Gj)−
n∑

i=1

βi, (3.12)

subject to

n∑
i=1

βiyi = 0 and 0 ≤ βi ≤ C.

And the decision function in Equation 3.11 for a test graph G will be

f(x) = sign

(
m∑
i=1

βiyiK(Gi, G) + b

)
. (3.13)

Equation (3.12) can thus be solved for the graphs built from the training videos for each action and

using this and solving 3.13 gives the decision for a test video.

Spatio-temporal Action Localization

After successful recognition of the action class, the next objective is to localize the recognized action

in space and time. For that, we take a union of the spatio-temporal regions in the proximity of each

node in the graph representing the action in a video clip. As the ground truths provided for the

benchmark datasets are of actors instead of the action, we use the SSD [9], a CNN based object

detector for person detection in those regions of each frame where there is a node in the graph

in order to predict a tube of bounding boxes localizing the actors playing action across the video

frames.

3.3 Experiments
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dataset

Figure 3.6: The ROC curve for the action localization using the proposed approach for various IOU
threshold.

We have performed our experiments on the three challenging benchmarks datasets, namely,

UCF-101-24 [45], UCF-Sport [46] and J-HMDB-21 [47]. UCF101-24 is a subset of UCF101 action

recognition dataset which is large and diversified and a challenging action dataset. In the THUMOS-

2013 challenge, the spatiotemporal bounding box annotations are released for 24 classes out of 101.
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Figure 3.7: The precision-recall (PR) curve for the action localization using the proposed approach
for various IOU threshold.

Similar to previous spatiotemporal action localization approaches [4, 5, 48], we test our method on

split 1.

To measure the recognition performance, we use the overall accuracy and to measure the local-

ization performance, we use the widely accepted localization metrics: AUC (area under the curve)

and mAP (mean average precision).

Table 3.1 shows the comparison of the action recognition in each of the class while training an

SVM classifier with graph kernel between the graphs of the action of interest as positive class and

graphs of other action categories as the negative class. To avoid the overfitting due to imbalance

class classification during training, we randomly select the equal number of graphs from all other

actions for the negative class. The results in the table below show that the our proposed method

outperforms the existing approaches such as T − Sliding, ST −Cube− subvol, T − Subgraph, and

T − Jumb − Subgraph in term of correctly recognizing each individual action. This improvement

in the capability of recognizing action is due to the ability of labeled graph generated from the

joint local feature representation which is free from the curse of the intra-class variability and the

inter-class similarity.

Table 3.1: Performance (%) of the classification of each action in UCF Sport dataset
Verbs T-Sliding ST-Cube- T-Jump- Our

Subvol Subgraph
Diving 0.8106 0.7561 0.9091 0.7186
Lifting 0.7899 0.8058 0.8096 0.8430
Riding 0.5349 0.5075 0.3888 0.3207
Running 0.4602 0.3269 0.4705 0.5344
Skate 0.1407 0.1057 0.1803 0.6301
Swing-B 0.5520 0.6259 0.4582 0.7170
Swing-S 0.6728 0.3478 0.7212 0.4601
Walking 0.4085 0.3462 0.4657 0.8150

The ROC curve at various IoU threshold δ are presented in Fig. 3.6 for three datasets. The high

area under the curve shows the better recognition as well as efficient localization of the action in

space and time. The performance of the localization increases while reducing the threshold on IoU.

The consistent performance on all three datasets shows the generalization capability of the proposed

approach. Also, the precision-recall (PR) curve δ presented in Fig. 3.6 for three datasets are also

showing high mAP performace at various IoU threshold.
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Table 3.2, 3.3 & 3.4 present the mean average precision (mAP) results for the action localiza-

tion in space and time with a comparison to several existing approaches for fully-supervised and

weakly-supervised approaches. The mAP for the proposed approach performs better than all the

existing weakly-supervised approaches and achieves a comparable performance with the supervised

approaches.

Table 3.2: Spatio-temporal action localization results (mAP) on untrimmed videos of UCF101-24
dataset

IoU threshold δ 0.2 0.5 0.75
Weinzaepfel et al.†[5] 46.8 - -
Yu et al.†[17] 26.5
Peng and Schmid†[35] 73.5 32.1 02.7
Saha et al.† [8] 66.6 36.4 07.9
Hou et al.† [34] 47.1 - -
Jain et al.† [3] 48.1 - -
Kalogeiton et al.† [2] 77.2 - -
Singh et al.† [3] 73.5 46.3 15.0
Li et al.[49] 37.7 - -
Mettes et al.∗ [50] 37.4 - 06.2
Our model 58.4 31.9 20.1

For all the datasets, we compute the mAP of our approach using three thresholds on IoU i.e.

δ = 0.2, 0.5, 0.75 similar to [3]. The reason behind the success of the proposed approach in spatio-

temporal localization of the actions over the existing approaches is because of the incorporation of

the MIL ranking framework for computing the action score and a joint representation of appearance

and information at the carefully selected salient points. In particular, this framework assign a high

score to those local action features which are unique to action of interest and also learn a joint

representation for them with improved discrimination ability by keeping them far-apart from the

local features of other actions.

Table 3.3: Spatio-temporal action localisation results (mAP) on untrimmed videos of UCF Sports
dataset

IoU threshold δ 0.2 0.5 0.75
Weinzaepfel et al.†[5] - 90.5 -
Kalogeiton et al.† [2] - 91.7 -
Hou et al.† [34] 86.7 -
Mettes et al.∗ [50] 81.7 37.8 -
Our model 79.6 56.0 29.8

Table 3.4: Spatio-temporal action localisation results (mAP) on untrimmed videos of JHMDB21
dataset

IoU threshold δ 0.2 0.5 0.75
Gkioxari and Malik[4] - 53.3 -
Wang et al.[48] - 56.4 -
Weinzaepfel et al.†[5] 63.1 60.7 -
Saha et al.][8] 72.6 71.5 43.3
Peng and Schmid†[35] 74.1 73.1 02.7

Our model 68.8 63.4
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The comparison of the experimental results of proposed approach with the state-of-the-art ap-

proaches on three challenging benchmark datasets for action localization confirms the superiority

of the proposed approach for both action recognition as well as action localization with class label

annotations only. Fig. 3.8 & 3.9 provide a detailed comparison of the proposed approach with the

some of the existing fully supervised approaches showing a trade-off between recall and IoU at several

threshold for UCF101-24 and UCF-Sports datasets, respectively. Although our approach is weakly

supervised, our proposed method gives a comparable performance to fully supervised approaches.
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Figure 3.8: Recall and IoU trade-off curve for the UCF101-24 dataset

3.4 Conclusion

The proposed approach for the action recognition and localization performs better than existing

approaches because of the efficient graph representation using the relevant local actions where the

MIL ranking model learns a joint representation to rid of the curse of inter-class similarity and

intra-class variations. Also, the proposed approach is fast and able to search candidates in a large

space-time region in short time in comparison to existing approaches because it does not compute a

bag-of-words histogram on a large vocabulary as used in [1].
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Chapter 4

Deep Representation Learning

using Subspace Attention

Convolution neural networks [51, 52, 53] or CNNs have achieved exceptional performance in various

cognitive tasks. The unprecedented performance of CNNs stems from the rich representational

power of CNNs, which in-turn stems from the deeper and wider layers in networks. Deeper and

wider layers boost the expressiveness and discrimination ability of the network by circumventing

the limitations of convolution operators, viz., locality [21] and linearity [54]. In CNNs, convolution

operators capture the local (e.g., 3 × 3) feature correlations and enable weight sharing to reduce

the number of learn-able parameters [55]. Multiple convolution operators are stacked in CNNs to

enlarge the receptive field and capture the long-range dependencies [21], which makes the CNNs

deeper. Further, since the linearity of convolution operation leads to inefficient capturing of the

non-linear abstraction of input data [54], CNNs employ higher number of filters per layer which are

learnt to capture all the possible variations of the same latent concept [54]. However, this make

the CNNs wider. Altogether, deeper and wider layers in CNNs leads to high computational cost

(measured in the number of floating point operations or FLOPs) and the number of parameters

increase which makes deployment of CNNs on resource-constrained platforms quite challenging.

4.1 Subspace Attention

Learning to capture long-range inter-dependencies in visual data is of primary interest for deep

convolution neural networks. However, convolution operations in vanilla CNNs are responsible to

capturing local relations, hence, are inefficient to captue long range dependencies.

In this work, we try to overcome the issues associated with CNNs by capturing long-range

dependencies in visual data. We aim to achieve the same while keeping in mind the computation

and parameter overhead. We have observed that by dividing the feature maps into multiple sub-

spaces and learning to capture spatial as well as cross channel interactions among the feature maps

provides us with compute efficient way to capture long-range dependencies in the data.

We split the feature maps from an intermediate convolution layer and learn spatial attention

maps individually for each group. Also, we learn to capture spatial interaction among the feature

maps using Global Attention Pooling operation.
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Gather Broadcast

Gather Broadcast

Figure 4.1: Gather spatial as well as cross channel interactions from the feature maps from multiple
sub-spaces

The subspace attention network is related to a number of recent works. Capturing cross channel

interactions among the feature maps is inspired from Convolution Block Attention Module(CBAM)

[30] and Global Attention mechanism is inspired from Squeeze-and-excitation networks [31]. How-

ever, compared to the above methods, subspace attention networks benefits from several unique

advantages : (a) computation efficient way of generating attention maps, (b) parameter overhead is

very less (c) capture spatial and cross-channel information among the feature maps.

4.1.1 GrAB : Grouped Attention Block for compact CNNs

Let F ∈ Rc×h×w be an input tensor, i.e. feature maps from an intermediate convolution layer, where

c is the number of channels, h and w are the spatial dimensions of the feature maps. Our objective

is to learn to capture the cross-channel inter-dependencies in the feature maps without incurring

significant parameter and computation overhead. As shown in Figure 4.2, GrAB divides the input

feature maps (F ) into g mutually exclusive groups [F1, F2, ....Fñ, ....Fg] where each group have G

feature maps. We define Fñ as a group of intermediate feature maps and proceed as follows.

Añ = softmax(PW 1(maxpool3×3,1(DW 1×1(Fñ)))) (4.1)

F̂ñ = (Añ ⊗ Fñ)⊕ Fg̃ (4.2)

F̂ = concat([F̂1, F̂2, ....F̂ñ, ....F̂g]) (4.3)

In Eq. 4.1, maxpool3×3,1 is maxpool with kernel size = 3 × 3 and padding = 1, DW 1×1 is

depthwise convolution with kernel size = 1× 1, PW 1 is pointwise convolution with only one filter,

and Añ is an attention map inferred from the a group of intermediate feature maps (Fñ). Attention

map (Añ) in each group (subspace) capture the non-linear dependencies among the feature maps

by learning to gather cross channel information. To ensure
∑

i,j Añ(i, j) = 1 i.e. a valid attention

weighting tensor, we employ a gating mechanism with a softmax activation in Eq. 4.1. After the

feature-redistribution (in Eq. 4.2), each group of feature maps gets the refined set of feature maps

(F̂ñ). In Eq. 4.2, ⊗ denotes element-wise multiplication and ⊕ denotes element-wise addition. The

final output of GrAB (F̂ ) is obtained by concatenating the feature maps from each group (Eq. 4.3).

Note that, unlike [21] and [28] we use only one filter in pointwise convolution which makes our block

compute-efficient which is desirable for integration in compact CNNs.

The idea of generating attention maps to gather information across the channels is inspired from
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Figure 4.2: GrAB divides the input feature maps into g mutually exclusive groups where each group
contains G feature maps.

the SE-Net [31]. SE-Net first captures the spatial information using squeeze operation in spatial

dimension and further, captures the channel-wise inter-dependencies using parameter-heavy MLP

in excitation operation. Unlike SE-Net, first we perform depthwise convolution followed by maxpool

operation to highlight local informative regions [56] (Eq. 4.1). Further, we perform squeeze operation

along the channel dimension using pointwise convolution with only one filter and we eschew using

parameter-heavy MLP which makes our block ultra-lightweight and become amenable for compact

CNNs.

In effect, GrAB learns to capture the complex interaction of cross channel information with very

few parameters and computations unlike the stacking of layers with same configuration in MobileNet-

V1 and MobileNet-V2 which is compute and parameter heavy. We analyze GrAB by considering

three prominent cases:

Case 1 : g = 1 : In this case, there is only one group which implies that the cross channel

information for the whole feature volume will be captured by a single attention map. Intuitively, a

single attention map is not sufficient to capture the complex relations in the entire feature space.

Case 2 : 1 < g < m : Dividing the feature maps into g groups implies that g attention maps

will be generated. Each attention map is capable of capturing the cross channel information from

the feature maps in their respective groups. We have performed our experiments (Section 4.2) with

g = 2, 4, 8 and have obtained performance improvement for g = 4 on ImageNet and g = 8 on

fine-grained datasets. We notice that diving the feature maps into groups does not incur additional

parameter and computation overhead while learning better cross-channel information.

Case 3 : g = m : When number of groups equals to the number of channels, attention map is

generated from a single feature map in each group. Therefore Eq. 4.1 can be re-written as:

Añ = softmax(α2 ⊗ (maxpool3×3,1(α1 ⊗ Fñ))) (4.4)

Here α1 and α2 are the parameters for depth-wise and point-wise convolution operation. We

can see that in each group there is only one feature map i.e G = 1 and nothing is to be learned

along the channel dimension. Hence, the attention map will not be able to capture the cross channel

information and the process of generating attention maps reduces to a non-linear transformation of

the feature map itself.
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From the above discussion, it is clear that better interaction of cross-channel information can be

obtained when 1 < g < m and this intuition is confirmed by the experimental results shown in Table

4.2 and Table 4.8. To keep the model simple and desirable for compact CNNs, we avoid intelligent

division of feature maps into groups. Also, it is worth noticing that diving the feature maps into

groups does not incur additional parameter and computation overhead while learning better cross-

channel information. In other words, amount of computation and number of parameters are constant

for a given number of channels (m) irrespective of the number of groups(g) formed.

4.1.2 Subspace Attention Pooling
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Figure 4.3: Subspace attention pooling captures spatial relations among the feature maps

For a set of intermediate feature maps F ∈ Rc×h×w, where c is the number of channels, h and

w are the spatial dimensions of the feature maps. Our objective is to learn to capture spatial

inter-dependencies in the feature maps without incurring significant parameter and computation

overhead. As shown in Figure 4.3, Subspace Attention Pooling divides the input feature maps (F )

into g mutually exclusive groups [F1, F2, ....Fñ, ....Fn] where each group have G feature maps. For a

set of attention maps , We define Fñ as a group of intermediate feature maps and proceed as follows.

Añ = softmax(UV T ) (4.5)

Ŝñ = Gsq(Añ ⊗ Fñ) (4.6)

Ŝ = concat([Ŝ1, Ŝ2, ....Ŝñ, ....Ŝn]) (4.7)

Ŝ = mlp(Gex(Ŝ)) (4.8)

F̂ = Gscale(Ŝ, F )) (4.9)

Here, U and V are attention parameters. We approximate the attention map Amap as a low-rank
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approximation : Amap = UV T where U, V ∈ Rf×1. Gsq(.) denotes squeeze operation i.e weighted

sum of individual feature maps. This way of pooling enables the network to capture spatial relations

in the feature maps. The pooled features are then passed through a multi-layer perceptron which

broadcasts the spatial information from each subspace. The final set of feature maps are obtained

by Gscale(.) operation which distributes the spatial information among the feature maps.

4.2 Experimental Evaluation

Experimental setup and dataset : We perform our experiments with MobileNet-V1 and MobileNet-

V2 as baseline architectures and to enable fair comparison and show the effectiveness of GrAB, we

reproduce the results of the baseline networks (MobileNet-V1 and MobileNet-V2). We perform all

our experiments using PyTorch [57] framework. Our experiments are performed on ImageNet-1K

[58] and fine-grained datsets, Caltech-UCSD Birds 200 [59] and Stanford Dogs [60], for image clas-

sification. We have reported validation accuracy for single crop with the input image 224 × 224.

We use 4 Nvidia-P100 GPU for ImageNet-1K experiments and 1 Nvidia-P100 GPU for fine-grain

classification experiments.

Layer no. Layer config. (in, out, stride)
1 (Std.) ( 3, 32, 2)
2,3 (DWS) ( 32, 64, 1), ( 64, 128, 2)
4,5 (DWS) ( 128, 128, 1), ( 128, 256, 2)
6,7 (DWS) ( 256, 256, 1), ( 256, 512, 2)
8 - 12 (DWS) 5× (512, 512, 1)
13, 14 (DWS) ( 512, 1024, 2), ( 1024, 1024, 1)

AvgPool, FC, softmax

Table 4.1: MobileNet-V1 architecture

Layer no. Layer type
8 conv DWS ( 512, 512, 1)

8:1 GrAB
9 conv DWS( 512, 512, 1)

9:1 GrAB
10 conv DWS( 512, 512, 1)
11 GrAB
12 conv DWS( 512, 512, 1)

Table 4.2: MobileNet-V1 layers 8-12 with GrAB

Layer no./type (in, out)
1 / conv2d ( 3, 32)
2 / residual block (32, 16)
3-4 / residual block 2× (16, 24)
5 / residual block ( 24, 32)
6-7 / residual block 2× (32, 32)
8 / residual block ( 32, 64)
9-11 / residual block 3× (64, 64)
12 / residual block ( 64, 96)
13-14 / residual block 2× (96, 96)
15 / residual block (96, 160)
16-17 / residual block 2× (160, 160)
18 / residual block (160, 320)
19 / conv2d ( 320, 1280)

AvgPool
20 / conv2d (1280, num classes)

Table 4.3: MobileNet-V2 architecture

Where to insert GrAB in CNNs ? The GrAB module can be inserted between the layers

and/or it can substitute the layers from the stack of repeated convolution layers with same configu-

ration. For example, MobileNet-V1 has a stack of 5 layers with 512 input and output feature maps

(layers 8-12 in (Table 4.1)). Similarly, MobileNet-V2 has stacks of repeated residual blocks with

same configuration e.g., layer 9-11 and layer 13-14 (Table 4.3)

4.2.1 MobileNet-V1 + GrAB

As shown in Table 4.1, MobileNet-V1 performs DWS convolution in all the layers except the first

convolution layer. Layers 8 to 12 have the same configuration and they account for 46% of total

computation. We use GrAB to optimize this part of the network by inserting GrAB between the

layers as well as by substituting layers with GrAB. First, we insert GrAB after 8th and 9th layers

and substitute 11th layer with GrAB as shown in Table 4.2.
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Experiments on ImageNet-1k: We perform experiments on ImageNet-1K dataset with a

group size of 1,4,8,16 and find that our model achieves 70.43% accuracy with the group size of 4.

We train the MobileNet-V1 for 90 epochs with batch size of 128 and use SGD optimizer with 0.9

momentum. The initial learning rate is 0.1 and it reduces to 1/10th every 30 epochs. Experimental

results on validation set with different group sizes are shown in the Table 4.4.

Models Positions #Params #FLOPs Top-1 (%) Top-5 (%)
1.0 MNet-V1 (vanilla) – 4.2M 569M 70.65 89.76

1.0 MNet-V1 + GrAB (g = 1) (8:1, 9:1, 11) 3.9M 517M 69.92 89.25
1.0 MNet-V1 + GrAB (g = 4) (8:1, 9:1, 11) 3.9M 517M 70.43 89.92
1.0 MNet-V1 + GrAB (g = 8) (8:1, 9:1, 11) 3.9M 517M 70.29 89.96
1.0 MNet-V1 + GrAB (g = 16) (8:1, 9:1, 11) 3.9M 517M 70.04 89.98

Table 4.4: Image classification accuracy (single-crop) of MobileNet-V1 with input size 224 on
ImageNet-1k validation set. Using three GrAB blocks, we achieve 9.2% and 6.4% reduction in
FLOPs and parmeters (respectively) with only 0.22% drop in the top-1 accuracy.

We achieve 70.43% accuracy when number of groups are 4 with 9% less FLOPs than original.

As we increase the number of groups there is negligible decrease in accuracy. The reason is that the

number of channels in each group reduces as we increase the number of groups which inhibits the

cross-channel information exchange.

We also perform experiments on scaled version of MobileNet-V1 architecture where number of

filters in each layer are scaled down by a factor (width multiplier) α, where α ∈ {0.5, 0.75}. Table

4.5 shows the results.

Models Positions #Params #FLOPs Top-1 (%) Top-5 (%)
0.75 MNet-V1 (vanilla) – 2.6M 325M 67.81 88.00

0.75 MNet-V1 + GrAB (g = 1) (8:1, 9:1, 11) 2.4M 296M 67.98 88.06
0.75 MNet-V1 + GrAB (g = 4) (8:1, 9:1, 11) 2.4M 296M 67.48 88.43

0.50 MNet-V1 (vanilla) – 1.3M 149M 63.22 84.93
0.50 MNet-V1 + GrAB (g = 1) (8:1, 9:1, 11) 1.2M 136M 63.30 84.70
0.50 MNet-V1 + GrAB (g = 4) (8:1, 9:1, 11) 1.2M 136M 63.25 84.81

Table 4.5: Results on Scaled MobileNet-V1 with GrAB

We achieve the highest accuracy with group size 1 instead of the group size 4. This happens

due to the fact that the scaled version of MobileNet-V1 already have few feature maps which gets

further divided into groups and leads to less number of feature maps per group as happened in case

of g = 4 thus very less information comes into the group.

In Table 4.4 we notice that the top-1 accuracy of MobileNet-V1 integrated with GrAB is lower

than the baseline network whereas top-5 accuracy is higher than the baseline (except g = 1). This

implies that mis-classification which lead to lower top-1 accuracy is correctly predicted in top-5

predictions by the GrAB integrated network.

Fine-Grain classification: Fine-grain classification is very challenging due to high inter-class

similarity and substantial intra-class variation. We now show the effectiveness of GrAB on fine-

grained classification task. Table 4.6 and Table 4.7 show the experiments on UCSD-Birds 200 and

Stanford Dogs dataset, respectively.

The highest Top-1 accuracy reported is 64.44% on UCSD-Birds 200 and 63.30% on Stanford

Dogs dataset with number of groups g = 8.
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Models Positions #Params #FLOPs Top-1 (%) Top-5 (%)
1.0 MNet-V1 (vanilla) – 4.2M 569M 62.88 86.05

1.0 MNet-V1 + GrAB (g = 1) (8:1, 9:1, 11) 3.9M 517M 62.46 86.01
1.0 MNet-V1 + GrAB (g = 4) (8:1, 9:1, 11) 3.9M 517M 63.52 85.80
1.0 MNet-V1 + GrAB (g = 8) (8:1, 9:1, 11) 3.9M 517M 64.44 86.60
1.0 MNet-V1 + GrAB (g = 16) (8:1, 9:1, 11) 3.9M 517M 63.47 84.96

Table 4.6: Results on MobileNet-V1 with GrAB on UCSD-Birds 200 dataset

Models Positions #Params #FLOPs Top-1 (%) Top-5 (%)
1.0 MNet-V1 (vanilla) – 4.2M 569M 62.20 89.66

1.0 MNet-V1 + GrAB (g = 1) (8:1, 9:1, 11) 3.9M 517M 62.73 88.8
1.0 MNet-V1 + GrAB (g = 4) (8:1, 9:1, 11) 3.9M 517M 63.06 89.58
1.0 MNet-V1 + GrAB (g = 8) (8:1, 9:1, 11) 3.9M 517M 63.30 89.68
1.0 MNet-V1 + GrAB (g = 16) (8:1, 9:1, 11) 3.9M 517M 62.75 89.35

Table 4.7: Results on MobileNet-V1 with GrAB on Stanford Dogs dataset

4.2.2 MobileNet-V2 + GrAB

MobileNet-V2 has residual bottleneck blocks from layer 2 to 18 as mentioned in Table 4.3. Each

residual bottleneck block consists of 3 convolution layers. The first convolution layer use pointwise

convolution to expand the number of feature maps by a factor of k = 6; the second layer is the

depthwise convolution with filter size 3 × 3 and the third layer is standard convolution layer with

filter size 1 × 1. To train the network, we use SGD optimizer with 0.9 momentum and 0.00004

weight decay, initial learning rate is set to 0.045 and decays to 0.98× after every epoch. We train

the network for 400 epochs for ImageNet-1K classification.

Experiments on Imagenet-1k: Following the observations from MobileNet-V1 results on

ImageNet-1K dataset, we perform all the experiments of MobileNet-V2 on ImageNet-1K with g = 4.

Table 4.8 shows the results.

Models Positions #Params #FLOPs Top-1 (%) Top-5 (%)
MNet-V2 (Vanilla) – 3.4M 300M 71.60 90.19

MNet-V2 + GrAB (g = 4) (14, 17) 3.17M 255.01M 71.52 90.25
MNet-V2 + GrAB(g = 4) (16, 17) 2.77M 269.15M 70.74 89.15
MNet-V2 + GrAB (g = 4) (13, 14, 16, 17) 2.54M 224.16M 69.72 87.79

Table 4.8: Experiments on Imagenet using MobileNet-V2

Fine-Grain classification:

Since fine-grained datasets have much higher intra-class variation, we perform our experiments

with g=1, 4, 8, and 16. On Birds dataset, MNet-V2+GrAB performs better than vanilla MNet-V2

(Table 4.10). For instance, with g = 8 and using GrAB at positions (14, 17), the top-1 accuracy is

increased from 62.94% to 65.41% and top-5 accuracy is increased from 84.92% to 86.01%. Also, the

FLOPs and parameter count are reduced by 12.59% and 12.63%, respectively. Similarly, with g =

4 and using GrAB at positions (13,14,16,17), there is 25.28% and 25.27% reduction in FLOPs and

parameter count, respectively and the top-1 accuracy is 64.15%.

The results with Dogs dataset are shown in Table4.10. Here also, our technique reduces the

computational and storage costs significantly for all configurations, while improving the accuracy

for most of the configurations. Clearly, GrAB is highly effective for fine-grained image classification.
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2*Model 2*Positions 2*#Params 2*#FLOPs g=1 g=4 g=8 g=16
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

MNet-V2 (vanilla) – 3.4M 300M top-1 = 62.94, top-5 = 84.92
MNet-V2 + GrAB 13 3.28 277.51 63.01 85.17 63.05 83.48 63.05 84.79 64.32 84.62
MNet-V2 + GrAB 16 3.08 284.57 63.98 86.22 64.44 84.87 65.03 85.63 63.47 84.45
MNet-V2 + GrAB (9,13) 3.23 267.40 63.43 85.55 63.47 84.41 63.10 84.96 62.21 84.62
MNet-V2 + GrAB (16,17) 2.77 269.15 64.19 85.46 64.57 84.92 64.61 85.25 65.03 85.64
MNet-V2 + GrAB (14,17) 3.17 255.01 63.35 85.29 64.70 86.98 65.41 86.01 63.31 84.92
MNet-V2 + GrAB (13,14,16,17) 2.54 224.16 64.11 86.77 64.15 84.92 63.22 85.21 63.98 85.12

Table 4.9: Results on MobileNet-V2 with GrAB on UCSD-Birds 200 dataset

2*Model 2*Positions 2*#Params 2*#FLOPs g=1 g=4 g=8 g=16
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

MNet-V2 (vanilla) – 3.4M 300M top-1 = 61.81, top-5 = 86.88
MNet-V2 + GrAB 13 3.28 277.51 61.63 86.58 61.8 86.68 62.05 87.3 60.31 86.63
MNet-V2 + GrAB 16 3.08 284.57 62.60 88.20 62.90 87.30 63.01 88.00 61.70 87.40
MNet-V2 + GrAB (9, 13) 3.23 267.40 61.73 87.08 61.73 86.86 62.66 87.86 62.08 88.11
MNet-V2 + GrAB (16, 17) 2.77 269.15 63.28 88.86 64.30 89.58 64.10 88.58 62.48 88.41
MNet-V2 + GrAB (14, 17) 3.17 255.01 62.86 87.88 62.50 88.03 64.33 89.31 61.67 87.18
MNet-V2 + GrAB (13, 14, 16, 17) 2.54 224.16 63.20 88.86 63.53 88.63 62.75 88.18 62.50 88.56

Table 4.10: Results on MobileNet-V2 with GrAB on Stanford Dogs dataset

4.3 Attention visualization

In this section, we show the effectiveness of our approach of compute-efficient feature re-distribution,

through the human-interpretable visual explanation. For this purpose, we use the Grad-Cam++

[61] which is a generalized formulation of Grad-CAM [62] and provides heatmaps with better object

completeness. We apply the Grad-Cam++ visualization on MobileNet-V1 and MobileNet-V2 using

images from Caltech-UCSD Birds 200 test set. Figure 4.4 shows the visualization results where the

masked regions in the images are important (considered by the networks) for predicting the class.

In Figure 4.4, we compare the visualization results MobileNet-V1 and MobileNet-V2 with the

GrAB intergated versions of respective networks. From the visual observations of masks generated

by Grad-CAM++, we see that GrAB intergated versions of MobileNets covers the target images

better than the baseline networks. This implies that, the integration of GrAB in baseline networks

helps in better use of features and increases the representational power of networks. In other words,

attention maps in GrAB helps in learning better use of features.
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Input image MNet-V1 MNet-V1+GrAB MNet-V2 MNet-V2+GrAB

Figure 4.4: Grad-CAM++ visualization results. Here the input images are Painted bunting,
Hooded Oriole, Scarlet Tanager, and Bohemian Waxwing (in order). MNet-V1 and MNet-V2 are
MobileNet-V1 and MobileNet-V2 respectively.
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