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Abstract

Nano fluids have great significance towards heat transfer applications. It needs to study the nanofluid

flows through channels with heat transfer. A steady an incompressible two dimensional forced con-

vection laminar parallel flow through a microchannel and the effect of impinging plane jet flow in

a mini-channel using nanofluids studied numerically. In the present study, nanofluid flows through

channels are modeled by using a two-phase approach Eulerian-Eulerian model is used. The present

study is valid the Reynolds number up to laminar zone. The governing equations solved by using

finite volume schemes with first order implicit for time integration. Studied heat transfer charac-

teristics, the parallel flow through micro-channel Re from 109.54 to 285.6, observed heat transfer

enhancement with 17.63%, studied the effect of volume fraction in heat transfer with the parallel

flow and also studied the effect of base fluids that is the kerosene-based fluid has netted more heat

transfer than water-based nanofluid. With the jet flow as the Reynolds, number increases average

nusselt number also increases, and also observed the effect of volume fractions on the heat transfer

at Re = 200, as the volume fraction from(0.001% to 0.1%) there is an enhancement with 223.23%.

Studied the effect of aspect ratios on the heat transfer rate, observed that as the jet inlet to a

target surface distance increases average nusselt number decreases. From three different nanofluids

(H2O−Al2O3, H2O−Cuo, H2O−T iO2 ) at all volume fractions 0.1%, 1%, 2% the H2O−T iO2 has

better enhancement in heat transfer. Observed that the velocity and temperature difference between

the liquid phase and solid phases is very small and negligible. The present results are matching well

with experimental and numerical results available in the literature.
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Chapter 1

Introduction

1.1 Nanofluids

Basically, nanofluids are the suspensions of nanoparticles in a base fluid. The term nano-particle has

come from the Latin prefix nano, it is denoted by 10−9 part of a unit. Generally, the nano-term used

to denote the size of any unit. First-time nanofluids are introduced by the Choi and Eastman in

1995[1], nanofluids are engineered colloidal suspension of nanoparticles into the base fluid, typically

the water is taken as the base fluid. Nanofluids are generally considered the size of particles from(1-

100nm) suspended in the base fluids. Nanofluids in the heat transfer applications having their own

differences from the conventional fluids like solid-liquid suspensions. Nanofluids consists of a lot of

advantages[2]over the other conventional fluids.

Advantages:

• Having high surface area because of this there is more surface heat transfer between particles

and fluid.

• High dispersion stability with Brownian motion of particles.

• For same heat transfer intensity the required pumping power with nanofluid is less than the

pure liquid.

• Thermal conductivity of nanofluids will increases with nano-particles, with variable concen-

trations and maintaining good surface wettability so nanofluids can be used for many other

applications.

Nanofluids can be used for a lot of applications, now a days nanofluids can be used for more variety

in industries, transportation,energy production and in micro-electro-mechanical systems as well as

in electronics systems like in microprocessors.these are also used in biotechnology field,in cooling of

automobile engines,to cool welding equipments in less time and also for the cooling of high powered

microwave tubes and laser diode arrays. Nano-technology has a great impact on the future.

1



Figure 1.1: impact of nano technology on industrial sector[1]

The figure 1.1 shows the nanotechnology in various sectors usage [1].

The thermal conductivity of nanofluids have more importance towards the usage of materials, be-

cause the selection of material also the main thing to form good nanofluid, that means the nano-

particles thermal conductivity should be more, it has been proved that the thermal conductivity of

nanofluids have more thermal conductivity than base fluids.

The thermal conductivity of nanofluids depends on particle concentration, as the particle concentra-

tion increases the thermal conductivity of nanofluids also increases, it also depends on the particle

temperature, size of the particle. The stability and dispersion of particles also main things to define

the thermal conductivity of the nanofluids.

Figure 1.2: comparisons of thermal conductivity of various materials [2]

from figure 1.2 shows that the thermal conductivity of metals is high compared to metal oxides,

organic materials, and heat transfer base fluids. it shows that if we choose the nanoparticles with

metals there will be high thermal conductivity, which is dispersed into base fluids like water, ethylene

glycol, and mineral oil, etc. From figure1.2 it also shows that the thermal conductivity of copper is

highest so in most of the applications copper and aluminum metals have been used as nanoparticles

for better heat transfer rate which are dispersed into heat transfer fluids.

1.2 Nanofluids with microchannels

The study of heat transfer by using nanofluids is so much attracted because we can use these

nanofluids in a various phenomenon in equipment. Nowadays nanofluids have so much significance

with flow through microchannels. The first time the usage of nanofluids [3] that is the dispersion of

mini-sized particles into the liquids to achieve enhanced thermal properties, he explains was failed

due to large mass particles and formation of sedimentation then after that Choi et.al [4] introduced

2



new heat transfer fluids are nanofluids.

Microchannels were introduced by Tuckerman and Pease [5] both were designed and tested a small

and compact which is used for water-cooled heat transfer sink for a silicon circuit. So far we have

many industrial applications by using microchannels such as in microelectronic cooling that is cooling

of microchips processors,To exchange the heat transfer from one fluid to other fluid i.e. in industrial

heat exchangers,in automotive to cool the engines,renewable energies like in solar collectors to absorb

the heat from the sun rays that to transfer for usage, microchannels also used in nuclear reactors

etc..

1.3 Jet impingement with nanofluids

The jet impingement is the flow in the form of a jet which is vertical impingement in a channel.

The jet impingement is playing an important role in heat transfer phenomenon in channel flows and

this Impinging jet has many industrial applications [6], the jet flows with nanofluids will provide the

localized high heat transfer coefficients, because of the above reasons these impinging jets are mostly

applied to drying of textiles, film paper, to cool efficiently in less time, the very high temperature

containing gas turbine blades, also to freezing of tissue in cryosurgery, this jet impingement also

applied in manufacturing and material processing and also applied to electronic cooling. The jet

impingement in a channel generally constant wall temperature, constant heat flux mostly used at

bottom of the channel. The advantage of using jet impingement with nanofluids to increase the heat

transfer rate with nano-particles concentrations.

As the flow is vertical impingement on the bottom surface and the particles size is in nano, thereby

surface area is small hence localized heat transfer coefficients of nanofluid will increases by this heat

transfer rate will increase, Jet impingement is also can be circular slot, plane slot, with single or dou-

ble jet it depends on application in heat transfer problems and also the flow can be laminar,turbulent

it depends on the applications.

1.4 Literature survey

Studies have been done using a single phase method(homogenous method) modeling for nanofluid.

Koo and Kleinstreuer[7] both of them studied that the laminar flow through a microchannel with

single phase approach mixture of copper oxide nano-spheres dispersed into the water, ethylene gly-

col at low volume concentrations and they used large and higher Prandtl number carrier fluids,

nanoparticles at higher concentrations above 4%. Lelea et.al[8]this paper belongs to both numerical

and experimental the flow through a microtube, Reynolds number range upto 800, reported that

with different tube diameters 0.1,0.3,0.5 mm for this cases they compared the experimental results

with theoretical as well as with numerical modeling,water is taken as the working fluid. the cooling

performance using a microchannel heat sink, the both Jang and Choi [9] using nanofluids copper 6nm

in water and 2nm in water studied numerically. the heat transfer enhancement in turbulent tube

flow[10] using aluminum oxide nanoparticles studied numerically, in this paper, they have shown that

due to the increase of concentrations that affected the wall shear stress increases drastically. the

thermal performance of nanofluids studied by Li and Kleinstreuer[11] they have reported with the use

of Cuo-water nanofluids from volume fractions 1% to 4% with dp=28.6nm in microchannel mixture

3



flow the thermal performance increases with a small increment in pumping power. santra et.al[12]

they studied the laminar flow through two isothermally heated plates using copper-water nanofluid,

they reported that as the Reynolds number from(5-1500) and volume fractions(0.00 to 0.050) the

rate of heat transfer increases. The experimental studies had performed by Wu et.al[13]with single-

phase flow and heat transfer characteristics in a trapezoidal microchannel with water-aluminum

oxide nanofluid, volume fractions are 0,0.15%,0.26%, they showed with experiments the pressure

drop and flow friction is slightly higher for nanofluids compare to pure water,there is deposition of

this Al2o3 particles on the inner walls of microchannel as the temperature of wall increases.

Bianco et.al[14]the laminar flow through a circular tube using water-Al2o3 nanofluid, constant

uniform heat flux applied at the wall numerically studied, shown that maximum average heat transfer

coefficient difference between single-phase and two-phase models about 11%, convective heat transfer

coefficient for nanofluids is more than that of base fluids. Lotfi et.al[15] they studied that aluminum

oxide-water nanofluid flow through the horizontal tubes with forced convection numerically, they

also reported that the mixture model is more precise than eulerian-eulerian and single phase meth-

ods and also shown that effect of concentrations on the thermal parameters. Ford et.al[16] studied

the nanofluid heat transfer considered in a tube with a single phase and two-phase methods and

reported that with 0.2% concentration Cu-water nanofluid. they observed that relative error is 16%

between the experimental data and single phase model while the two-phase method is 8%. Recently

studied that, Kalteh et.al[17] used a EulerianEulerian two-fluid model to study heat transfer inside

a microchannel.they considered the probable velocity and temperature difference between phases in

their model. and they showed that in their results single phase model underestimate the average

Nusselt numbers for nanofluids.there are many experimental studies for nanofluids in macro and mi-

cro scales studied by wu.et al[13]they had investigated the heat transfer with water-Al2o3 nanofluid

in the entrance region of copper tube with a diameter 4.5mm,the tube applied with the constant

heat flux conditions.after that they observed that their measurements showed that the heat transfer

is more especially at the entrance region.

Heris et.al[18], they had compared experimental results with single phase(homogeneous) model,

observed that there is underestimate in heat transfer with a single phase model especially at higher

volume concentrations. the laminar forced convection heat transfer of an aluminum oxide-water

nanofluid inside an isothermally heated circular tube is studied experimentally[19]. In this, they

obtained the nusselt numbers for different Reynolds numbers and peclet numbers, the nusselt num-

bers of nanofluids more than the single phase results and also shown that heat transfer increases by

increasing concentrations of particles.Izadi et.al[20]performed the numerical investigation on forced

convection flow in a microscale duct using nanofluids they observed that the effect of volume con-

centrations on heat transfer at the thicker wall is more efficient. Jung et al.[21] they did experiments

over Al2o3-water nanofluids in a rectangular microchannel, they considered the particle diameter is

170 nm, with only 1.8% particle concentration there is 32% increase in heat transfer coefficient in

compared to single phase distilled water.

kalteh[22], investigated the effect of various nanoparticle and base liquid types on the nanoflu-

ids flow in a microchannel, used EulerianEulerian two-phase approach, compared the different
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nanoparticles(Al2O3, Sio2,Diamond etc) and different base fluids ( water,ethylene glycol etc..), they

also observed that heat transfer performance of diamond in water nanofluid was found better than

the rest of the nanofluids.Kalteh et.al[23] this is an experimental investigation used eulerian-eulerian

model for modeling nanofluid flows in microchannels, reported that for the laminar flow aluminum

oxide-water nanofluid the two-phase method is better than the homogenous method to predict

the heat transfer experimentally and two-phase results are showing that velocity and temperature

between two-phases is very small and negligible. Rajesh and Venkata subbaiah[24]both of them

investigated the conjugate performance, laminar forced convection flow in a microchannel using

different nanofluids Al2O3-water, silver,silver+Al2O3 hybrid nanofluids used,it is a single-phase ap-

proach,reported that at 3% volume concentration of Al2O3-water nanofluid the heat transfer en-

hances by 17% to 18% than pure water, by increasing Reynolds number inlet velocity increases with

this average heat transfer coefficient increases and the interface temperature between solid and liquid

decreases.

Rajesh and Venkatasubbaiah[25], they considered single phase approach, they had shown that

the gold nanofluids with particle size less than 90 nm is preferable for enhancing heat transfer at

volume concentration 2%, at Reynolds number = 400, the enhancement varies from 41% to 90% for

gold nanofluid with diameter particle 30 nm while particle concentration ranging from 1.0 vol% to

3.0 vol%. experimental and multiphase analysis of the nanofluids on the conjugate performance of

microchannel at low Reynolds numbers[26], they used two-phase mixture model approach, at Re=50,

3% volume concentrationSWCNT nanofluids enhance the heat transfer by 35.37% in comparison

with deionized water for the input of heat flux 19,658w/m2. and they have shown that there is

decreasing in the nusselt number due to the dominating effect of thermal conduction at the solid

walls of the microchannel at low Reynold number. Thermal and hydraulic analysis of rectangular

microchannel with gallium copper oxide nano-suspension by Sarfraz et.al[27], they performed the

experiments over the base fluid gallium and dispersed particles copper oxide nano-suspension, at

Cuo wt 10% the maximum heat transfer coefficient is achieved whereas wt 15% due to agglomera-

tion of nanoparticles, the viscosity of gallium, heat transfer is decreased.high pressure drop was also

reported in case of gallium nanosuspensions in comparison with water and pure gallium.

Convective heat transfer analysis of refined kerosene with alumina particles for rocketry appli-

cations, sundaraj et.al[28], performed experimental study on kerosene base fluid with aluminium

oxide nanoparticles with low volume concentrations ranging from (0.01% to 0.05%), observed that

as the nanoparticle concentration increases from 0.01 to 0.05% there is 16.3% increment in heat

transfer.heat transfer in the confined slot jet flow at the low Reynolds number by Lee et.al[29] Re=

50 to 500 and with different height ratio from 2-5.they observed that the above critical Reynolds

number the thermal field and flow become time-dependent and asymmetric and flow become more

complex as the unsteadiness increases.at the unsteady region the NUavg due to flap motion of the jet

flow. Zhou and Lee [30] both studied the forced convective heat transfer using air impinging jet on a

heated flat plate experimentally, studied the effects of jet Reynolds number, nozzle to plate distance

both local and average nusselt numbers. experimental data correlated and compared with existing

previous results in the turbulent flow. Palm et.al[31]the study is about the nanoparticles suspension

in radial flow cooling systems numerically investigated, the flow is laminar forced convection flow
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between two co-axial parallel disks with central axial injection of this nanofluid (water-Al2o3),it is

a single phase approach,they observed by radial flow at low volume fractions at 4% thereby en-

hancing 25% increase in heat transfer coefficient compared to pure base fluid water. The natural

convective boundary layer flow[32]using nanofluid past a vertical plate is studied analytically,used

a model which include both Brownian motion and thermospheric by considering simplest boundary

conditions at the wall,similarity solutions obtained by using different non dimensional number like

Prandtl number Pr,Lewis number etc.laminar impinging jet on a flat plate with layer of porous ma-

terial investigated by Dorea et.al[33],this is a numerical study with non equilibrium models,studied

effects of porosity,permeability,ratio of fluid to solid thermal conductivity,reported that LNTE model

is more advantageous for highly porous material and layer of highly conducting which attached to

the cooling wall and for the high solid to fluid thermal conductivity ratio the temperature of the

solid phase increases, and the boundary layer at the wall become thicker. byLamraoui et.al[34],

they investigated numerically the thermal and dynamic fluid behavior on Newtonian as well on Non

Newtonian fluid using Al2o3water nanofluid with single phase approach in a confined slot impinging

jet, a jet Reynold number considered from Re 25 to 300 and particles volume fraction considered

from 0 to 5% ,they reported that local nusselt number gradually decreases from the stagnation point

of targeted surface to outlet section of the channel, the local nusselt number at the symmetry at

x=0, is highest and as the distance increase from the center of axis nusselt number decreases due

to decrease in local convection phenomenon with Re, observed that at same value of , Re the local

nusselt number is more for Non Newtonian fluid then Newtonian fluid for the entire target surface,

At jet axis x = 0 , a relative increase of 9.8% in heat transfer At φ = 5%, Re = 300, whereas the

comparison shows at φ=1% Re = 25 more significant improvement up to 22%.

They also stated that At sameRe, φ as the increases in the aspect ratio there is a decrease in

the local nusselt number due to the effect of the wall to jet inlet distance, as this distance increases

the effect of fluid temperature on wall decreases thereby nusselt number is decreasing. Delorenzo

et.al[35], these people studied on numerical study of laminar flow in confined impinging slot jets with

the nanofluids.it is a single approach problem which is solved numerically,they observed that the

local heat transfer coefficient and nusselt number values are highest at stagnation point i.e. (where

impinging going to happen) as we increase in volume concentration as well as Reynolds number.

They also observed that the maximum increase in heat transfer coefficient at φ = 5% and for the

aspect ratio H
W

= 8 is 32%.by using this approach required pumping power is increased as well as

Reynolds number and Volume concentration these are nearly 3.9 times greater than the values which

are calculated for the water.

1.5 Motivation

Studies in the past have not much emphasized with two-phase approach Eulerian-Eulerian model, in

the literature there are fewer studies have been done using this model, flow through a microchannel

with the use of nanofluids numerically. and also in literature few studies have done with impinging

slot jets flow in channels, with use of nanofluids by two-phase approach numerically.

A. Eulerian Eulerian two-phase model
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• In the literature, the convective heat transfer with nanofluids modeled using two approaches.

• Single phase approach.

• Two-phase approach.

• Eulerian-Eulerian model uses a two-phase approach.

• In this model assumes both phases to be an interpenetrating continuum.

• In this model, the continuity, momentum, energy equations are solved separately for each

phase.

This two-phase approach Eulerian-Eulerian model with nanofluid flows in a channel in the literature

fewer studies have been done, so there has been the motivation to the present investigation.

1.6 Objectives of the present study

The objective of the present study is to understand the flow and enhancement of heat transfer in an

incompressible laminar flow in a two dimensional rectangular microchannel, parallel flow with using

nanofluids, the effect of Impinging slot jets flow using nanofluids in a rectangular minichannel in the

laminar region.

The objectives of the present study summarized as follows.

• To study the effect of Reynolds number in a microchannel with parallel flow

• To study the effect of volume concentration with the parallel flow in a microchannel

• To study the effect of base fluids in parallel flow

• To study the effect of Reynolds number with impinging slot jets flow in a mini-channel.

• To study the effect of aspect ratio to the heat transfer in the jet flow in a mini-channel.

• To study the effect of volume concentrations with impingement.

• To study the heat transfer by using different nanofluids with the impingement.

1.7 Outline of the thesis

Two-phase approach nanofluid flows analysis in channels with heat transfer using parallel and Jet

Flows.

• Chapter 1 deals with an introduction to nanofluids with microchannel, jet impingement, liter-

ature survey for the present investigation followed by the motivation of the present study.

• Chapter 2 deals with the problem formulation with governing equations, boundary conditions.

• Chapter 3 deals with numerical methods and about the solvers.

• Chapter 4 deals with Results of a microchannel with the use of nanofluids
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• Chapter 5 deals with Results of impinging slot jets flow with the use of nanofluids

• Chapter 6 shows about conclusions
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Chapter 2

Mathematical formulation with

governing equations

2.1 Problem definitions

2.1.1 parallel flow in a microchannel with nanofluids

To study the enhancement of heat transfer using Eulerian-Eulerian two-phase model, in two-dimensional

an incompressible laminar flow through a rectangular microchannel with nanofluids.

The geometry details are taken from kalteh et.al[22] paper.

Height of the channel H=0.58mm, length of the channel=50mm.

Figure 2.1: microchannel

2.1.2 Impinging jet flow in a mini-channel with nanofluids

To study the enhancement of heat transfer using Eulerian-Eulerian two-phase model,in a two-

dimensional an incompressible impinging jet laminar flow through a channel with nanofluids.

the channel details all are taken from the lamraoui et.al[34]paper, the width of jet is W=6.2mm,

L=62mm, H=24.8mm
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Figure 2.2: impinging slot jets flow

2.2 Assumptions of the present study

• The flow is an incompressible

• In laminar region

• At steady state condition

• Two-dimensional

2.3 Governing equations

The two-phase Eulerian-Eulerian model considered for modelling the nanofluid flows through chan-

nels the equations 2.3.1, 2.3.2, 2.3.3 Eulerian-Eulerian equations for laminar case.

2.3.1 Continuity equations :

∂

∂t
(ǫlρl) +∇.(ǫlρl~vl) (2.1)

∂

∂t
(ǫsρs) +∇.(ǫsρs~vs) (2.2)

2.3.2 Momentum equations :

∂

∂t
(ǫlρl~vl) +∇.(ǫlρl~vl~vl) = −ǫl∇p+∇.[ǫlµl(∇~vl) +∇~vTl ] + ǫlρlg − FDrag (2.3)

∂

∂t
(ǫsρs~vs) +∇.(ǫsρs~vs~vs) = −ǫs∇p+∇.[ǫsµs(∇~vs) +∇~vTs ] + ǫsρsg + FDrag (2.4)

2.3.3 Energy equations :

∂

∂t
(ǫlcplTl) +∇.(ǫlcplTlvl) = ∇.(ǫlkl,l∇Tl) (2.5)

∂

∂t
(ǫscpsTs) +∇.(ǫscpsTsvs) = ∇.(ǫsks,s∇Ts) (2.6)
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For the liquid-particle two-phase flow,the relationship between liquid and particle volume fraction

is:

ǫl + ǫs = 1. (2.7)

where l is represents the liquid phase and s represents the solid phase

2.4 Boundary conditions

2.4.1 parallel flow in a microchannel

In the case of parallel flow in a microchannel using nanofluid water and aluminum oxide particles

for the parallel flow, the uniform velocity and temperature are specified at the inlet of the channel.

No slip boundary condition applied on the walls of the channel, at the outlet section of the channel,

the fully developed flow condition is assumed for both velocity and temperature fields. the top wall

of the channel is considered insulated and adiabatic boundary condition applied to it. Where the

bottom wall of the channel is applied with constant wall temperature boundary conditions.

2.4.2 Boundary conditions of parallel flow through a microchannel:

• At inlet horizontal uniform velocity and Temperature are specified.

u = ui, T = Ti (2.8)

• On the top wall of the channel is adiabatic and no-slip boundary conditions applied.

u = 0, v = 0,
∂T

∂y
= 0 (2.9)

• On the bottom wall of the channel is applied constant wall temperature and no-slip boundary

conditions applied to it.

T = Ts, u = 0, v = 0 (2.10)

• At the outlet of the channel, the fully developed flow boundary conditions are applied for both

velocity and temperature fields.
∂u

∂x
= 0,

∂T

∂x
= 0 (2.11)

2.4.3 Impinging slot jet flow through a mini-channel using nanofluids:

The impinging slot jets flow in a mini-channel with use nanofluids for the laminar flow. In this

problem the jet inlet is at the center of the channel which is impinging like plane jet, in this

case, uniform velocity and temperature is specified at inlet boundary, both left and right outlet

section of the channel considered be fully developed flow and whereas top wall is insulated and

adiabatic boundary condition is applied. On the bottom wall, constant wall temperature condition

is applied.No slip boundary condition applied on the walls of the channel.
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2.4.4 Boundary conditions of impinging slot jet flow in a mini-channel:

• At the inlet of the channel uniform vertical velocity and uniform temperature is specified.

v = vi, T = Ti (2.12)

• At both left and right outlet of the channel, the fully developed flow boundary conditions are

applied for both velocity and temperature fields.

∂u

∂x
= 0,

∂T

∂x
= 0 (2.13)

• On the top wall of the channel no-slip boundary condition is applied, the wall is insulated and

adiabatic boundary condition applied for temperature field.

u = 0, v = 0,
∂T

∂y
= 0 (2.14)

• On the bottom wall of the channel is applied constant wall temperature and no-slip boundary

conditions applied.

T = Tw, u = 0, v = 0 (2.15)
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Chapter 3

Numerical methods

To solve the two-phase Eulerian-Eulerian model laminar flow governing equations 2.3.1, 2.3.2, 2.3.3

the relevant software are chosen like OpenFOAM,Ansys fluent etc.

3.1 Openfoam

OpenFOAM is free and it is open source as CFD toolbox and OpenFOAM stands for open source

field operation and manipulation.there are a lot of advantages over the other software. The advan-

tages are there is no license cost, there are lot applications and models are already available to use

them, the syntax of all differential equations we can easily understand, according to problem the

code can be modified it is user-defined one.

OpenFOAM consists of various solvers, these solvers are in various fields like:

• Incompressible flow solvers with RANS and LES

• Compressible flow solvers with RANS and LES handling capability

• Buoyancy Driven - flow solvers

• Multiphase flow solvers

• Solvers for Combustion Problems

• Solvers for conjugate problems

• Electromagnetic solvers

• Solid dynamic solvers

• Particle Tracking solvers

• Solvers for the DNS and LES

Present for my problem belongs to multiphase flow solver.
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3.1.1 Reacting two-phase Euler foam

It is a two-phase solver which consists of different phase systems and with different phase, models

are available in that they are

Phase systems:

• Heat and Momentum transfer Phase system

– These system includes both temperature and velocity solving equations for two phases

which can be a combination of liquid-solid,liquid-liquid, etc.

• Interface composition Phase change system

– These systems able to solve problems with different composition with a phase change at

the interface.

• Thermal Phase change system

– This system solves problems like boiling condensations, the temperature of one Phase will

change to other phases.

Phase Models: Solver consists of different models

• Pure phase model

– in this model both phase composition will be the same throughout the simulations, means

for example water will be always water, Aluminium particles always remain the same with

the composition.

• Reaction phase model

– with these model we can solve problems like combustions problems for example reac-

tion between oxygen and the fuel, both phases will react to each other and give new

composition.

• Isothermal phase model

– in this model the temperature throught the process is constant, there is no temperature

variation in the phases.

• Inert phase model

– It is for the Phases like noble gases which are stable throught the process.

3.1.2 Case folders

a. 0

In this Folder we can give the initial conditions of all required properties like temperature, pressure,

velocity, concentration etc.

b. Constant

In this folder we can define
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1. Gravitational acceleration.

2. Phase properties and required phase system: according to our application, we can define the

phases and their properties here.

3. Thermo-physical properties we have to define here like density, viscosity, etc.

c. Polymesh

Here we can define our problem boundary conditions:

For Example, the flow through a rectangular channel with the following boundary conditions defined

in OpenFOAM

Table 3.1: Type of boundary in openfoam.

Location Type of Boundary condition

Inlet Patch(flow from inlet of the channel)

topwall Wall

bottomwall Wall

outlet Patch(flow from outlet of the channel)

d. system In this folder we have sub folders to control the solver

• Controldict

– It is mainly used for case controls like timing information, write format.

• Start time

– Here we can give starting time of a case.

• End time

– End time of case can define here.

• Time step

– Here we will define the time-step for each iteration for the simulation.

• Latest time

– It is the time where the simulation will start from the starting of the previous time

simulation, so flexible and we can save time with this command in OpenFOAM

• Courant Number

– which is very important to control the time step for a particular simulation and its

maximum value should be the less than unity to prevent the diverging of the solution.

• Fvschemes
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– In open foam, the inbuilt code has been developed using the finite volume method, the

finite volume method will take every solution in the iteration using cell center value.

• Fvsolution

– Here we can give tolerances and maximum number of iterations of a particular properties

like pressure tolerance 1e− 07.

• DecomposeParadict

– It is a Command used for divide the mesh for parallel processing i.e. every processor will

work separately and give the solution for every time-step

• Fluent.msh

– These command is used to convert fluent mesh file into Foam mesh.

• Commands used for run the case

– Of41

– fluentMeshToFoamMesh

– DecomposePar

– mpirun -np -number of parallel processor solver name

3.1.3 solver final details

Solver name: Reacting two-phase Euler foam

Type: In Laminar case

Phase system: Heat and Momentum transfer phase system

Phase model: Pure phase model ( no reaction within the phases and the composition will not

change of a Particular phase

Diameter model: Constant (No change in the diameter of the dispersed phase)

Thermo physical model: herhothermo, which will use for maintaining the density and tempera-

ture of the particular phase at initially is the same,there is no change in temperature of the particular

boundary, for example, if we give inlet temperature of a phase like 298 K, density 999.99kg/m3 these

quantities remains the same throughout the simulation at inlet

Dispersed Phase : Al2O3(Aluminium oxide) particles will dispersed into the base fluid.

Continuous Phase : Water.
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3.1.4 Numerical schemes used with OpenFOAM solver

The OpenFOAM solver code has been developed with the use of the finite volume method, in this

method the solution will take the cell center value instead of every node value, to solve governing

equations of Eulerian-Eulerian two-phase model the following schemes used as follows,In OpenFOAM

all the equations, will be solved with according to their derivative term with corresponding scheme,

small time step 10−4 is taken to avoid numerical instability.

Table 3.2: openfoam solver schemes.

Derivatives Used scheme

Time ( ∂
∂t
, ∂2

∂t2
) Euler (Transient, First order implicit )

Gradient(∇) Gauss linear ( Linear interpolation or Central differencing, second order)

Divergence(∇.) Gauss linear (second order , bounded)

Laplacian(∇2) Gauss linear corrected (means linear, second order bounded)

The Eulerian-Eulerian model is a two-phase model having two continuity 2.3.1, two momentum

equations 2.3.2 followed by two energy equations 2.3.3, all the terms in the equations for the liquid

phase and solid phase solved separately using above schemes.

3.2 Ansys fluent

I have not to cope with the OpenFOAM solver to solve impinging of jet flow in a channel, so I have

selected Ansys fluent academic version F13.3 to solve my problem.

Fluent software it consists of the broad, physical modeling to handle or to model the flow like

turbulence, heat transfer with multiphase systems and other industrial application problems can be

solved by fluent.

3.2.1 Pre processing

The creation of geometry and meshing is done using academic ICEM CFD 13.0 version, after suc-

cessful meshing the mesh has to import into Ansys fluent.

All the required input conditions and the solution set up flow chart follows like:
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Figure 3.1: fluent solver settings
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Figure 3.2: solver settings
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3.2.2 Numerical schemes with Ansys fluent solver

Fluent software also developed inbuilt code with the finite volume method, the convergence solution

for every iteration is the cell center value, the Eulerian-Eulerian model is chosen to solve the imping-

ing of slot jets laminar flow with nanofluid in a channel, the simple phase coupled scheme is chosen

for the pressure-velocity coupling, smaller time step 10−3 is taken to avoid numerical instability.

The Numerical methods are chosen for this problem as follows.

Table 3.3: ansys fluent solver schemes

Transient Formulation ( Time discretization ) First order implicit

Gradient (continuity equations) Least square cell based

Momentum equations Second order upwind

Volume fraction First order upwind

Energy equations Second order upwind

Pressure velocity coupling Simple coupled scheme
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Chapter 4

Results of micro-channel flow using

nanofluids

An incompressible laminar flow through a horizontal rectangular microchannel using nanofluids with

two-phase approach Eulerian-Eulerian model studied numerically and observed the enhancement in

heat transfer with the effect of Reynolds number (Re), the effect of volume concentrations and effect

of base fluids.

4.1 Grid Independence test at Re = 285.86

An incompressible laminar flow through a rectangular microchannel using nanofluids with the

Eulerian-Eulerian two-phase approach numerically studied, the grid independence test is done with

the different grids 200x30,121x15,151x21 at Re = 285.86, 0.1% volume concentration with Al2O3

water nanofluid.

Figure 4.1: water U velocity profile with height of the channel

For the inlet Reynolds number Re=285.86 the velocity inlet is 0.2520m/s from 4.1 at steady

state,fully developed condition this velocity is became 1.5 times of the inlet velocity.
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Here the maximum velocity of water reached is 0.369m/s The figure 4.1 shows that there is no

change in velocity profiles with the three grids, wheres as the the figure 4.2 represents no changes

in temperature profiles of water that means the grid independence is done.

Figure 4.2: Water Temperature profile with different grids along the H of the channel

From the figure 4.2 we can say that at the bottom wall temperature is maximum around 309.9K

whereas at the top wall is 301.5K this graph plotted at the outlet section of the channel where the

flow is fully developed and at steady state condition. With the three different grids, the temperature

profile of water is not changing much that means the water carries the same temperature through

the height of the channel, no variation in temperature profile hence grid independence test is done.

4.2 velocity and temperature contours, Re = 285.86

Figure 4.3: U velocity of water

from the above figure 4.3 the flow becomes steady and satisfied fully developed flow. At the center

section of the microchannel where the flow velocity is maximum and at the wall of the channel the
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velocity is zero to satisfy the no-slip boundary condition. We can see the flow of water in the channel

with the streamlines are parallel that means the approximate shape of the velocity profile of water

is parabolic.

Figure 4.4: Water Temperature along the height of the channel

The figure 4.4 is the temperature contour, at the bottom wall of the channel the constant wall

temperature is applied,where as the top wall is insulated. From this 4.4 we can understand that

as the height of the channel increases from bottom wall the temperature is decreases. The thermal

boundary layer of water increases from inlet to outlet section along the length of the channel due

heat taken by fluid is increases.

4.3 Validation

4.3.1 Validation with experimental results

The validation of solver against the kalteh et.al[23] experimental results that is laminar flow through

a microchannel with water and Al2O3 nanofluid at Re = 285.86, 0.1% volume concentration.

The constant heat flux of 20.5k w/m2 is applied on the bottom wall of the channel, the size of

particles is 40 nm where as the particles viscosity is order of 1e−03[17]
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Table 4.1: code validation

Grid size NUavgkalteh et.al Experimental[23] NUavg Present Variation in(%)

121x15 7.710 7.949 3.10

151x21 7.710 7.879 2.191

200x30 7.710 7.8496 1.81

From table 4.1, among these three grids even though 200x30 grid is giving better closed NUavg

compare to other two grids(151x21,121x15) with experimental NUavg but the computational time

is large so 151x21 is chosen the convinient grid for producing the results of microchannel using

nanofluids.

4.3.2 Validation with single phase approach numerical results

Grid size is 151x21, Al2O3 water nanofluid with different Reynolds numbers

Table 4.2: code validation with single phase approach

Vol % and Re NUavgkalteh et.al Experimental[23] NUavg Present NUavg Rajesh[24]

Re = 285.86, 0.1% 7.7 7.87 7.6

Re = 243.0, 0.2% 8.1 7.49 7.1

Here the two-phase approach numerical results is validated with single phase approach average
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nusselt numbers at two different reynolds numbers,the numerical results of Rajesh and Venkatasubbaiah[24]

validated with present results. At Reynolds number 285.86 with 0.1% volume concentration the

present average nusselt number is close to [24] average nusselt number.

4.3.3 Effect of Reynolds number

The effect of reynolds number on the heat transfer at 0.1%, 0.2% volume concentrations Al2O3 and

water is continuous phase.

The figure 4.5, 4.6 is shows that as the Reynolds number increases heat transfer also increases.

Figure 4.5: NUavg vs RE

The figure 4.5 represents the study about the effect of Reynolds number,the x axis is Reynolds

number range from(Re = 109.54 to 285.86) and y axis represents the average nusselt number varia-

tion for each Reynolds number,and volume concentration is keeping constant means at same value

i.e. at φ=0.1%. As the Reynolds number increases the inlet velocity will increase and this will

create the fully developed flow very fast, due to this the heat carried by fluid will increases means

convection will increases from the bottom wall of the channel hence the average nusselt is increases.
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Figure 4.6: NUavg vs RE

The figure 4.6 also represents increase in heat transfer with increase of Reynolds at 0.2% volume

fraction for the Re range from (Re = 140 to 240),with increase in Reynolds number the fluid

molecules will carry more heat from the wall with less time there by thermal boundary layer thickness

gets reduced.

4.3.4 effect of volume concentration

At reynolds number Re = 243.2, for 0.1% and 0.2% volume concentrations observed the increament

in heat transfer.

Table 4.3: average nusselt number variation with φ %

0.1% volume concentration 0.2% volume concentration

Re = 243.2 Re = 243.2

NUavg =7.489 NUavg=7.721

This study is about the effect of volume fraction on heat transfer, at same Reynolds number(Re =

243.2) as we increase the volume fraction from 0.1% to 0.2% the concentration of the particles i.e.

volume density will increase due to this the thermal conductivity of nanofluid will increases hence

the heat transfer increases.
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4.3.5 effect of base fluids

The base fluids are water and kerosene, at Re = 400, with constant wall temperature condition, at

the bottom wall of the channel temperature is 310K, the inlet temperature is 293K.

The Al2O3 nano-particles dispersed into the above base fluids,the size of the particle is 40nm.

Figure 4.7: Length vs mean tempararure

For both base fluids kerosene and water from the figure 4.7 the x axis represents the length

of the channel and y-axis the mean temperature variation. The mean temperature for the water-

based nanofluid is gradually increasing along the length of the channel whereas for kerosene-based

nanofluid up to sudden length is gradual increases then fall down due to the effect of properties of

kerosene nanofluid.

Figure 4.8: Length vs NUlocal
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The figure 4.8 represents the variation of local nusselt number along the length of the channel for

both water-based nanofluid as well as for kerosene-based nanofluid, the nusselt number at beginning

of the length is more due to the temperature between fluid and wall is high as the length is increases

this temperature difference is decreases hence the nusselt number will decrease. and velocity inlet

for kerosene is more due to its properties as well as the Prandtl number also high for the kerosene

compared to water. The table 4.4 represents the kerosene-based nanofluid will more heat transfer

than the water-based nanofluid at same Re = 400, φ=1%.

Table 4.4: average nusselt number variation with basefluids

Base fluid Nano-particles Re NUavg

water Al2O3(1%) 400 7.463

Kerosene Al2O3(1%) 400 8.690

The table 4.4 shows the effect of base fluids in heat transfer at same Reynolds number
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Chapter 5

Results of impinging slot jet flow

using nanofluids

An incompressible two-dimensional impinging slot jet laminar flow in a channel with using nanofluids

with two-phase approach Eulerian-Eulerian model studied numerically. And observed that enhance-

ment in heat transfer with the effect of Reynolds number(Re), volume concentrations, different

aspect ratios, and different nanofluids.

5.1 Grid independence test

At Re=200, 0.1% volume concentration with water-aluminium oxide nanofluid, grids 440X120,

490X150, 560X175 showed the grid independence from velocity and temperature profiles.

The profiles are with half part of channel i.e right portion of the channel from the center of impinge-

ment to the outlet.

Figure 5.1: horizontal velocity of water L vs H

The figure 5.1 shows the horizontal velocity of water at Reynolds number(Re = 200) with volume

fraction is 1%, the profile is plotted at x = 0.32 which is near to the impinging zone. The velocity

near to impinging zone is zero which satisfies no-slip boundary condition after that suddenly increases
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due to hitting effect then falls down to zero, from this figure the velocity profiles are not changing

with three different grids then grid independence done with velocity profile along with the height of

the channel.

Figure 5.2: horizontal velocity of water L vs H

The variation of temperature profile of water along the height of the channel is given by figure

5.2 at the bottom wall temperature is maximum it will decreases as the height increases From the

5.1, 5.2 the velocity and temperature profiles are not showing any variation with respect to three

different grids it means the grid independence has done, among these grids 490X150 is chosen to

save computational time.

5.2 Velocity and temperature contours at Re = 200

At Re = 200, φ = 1%, H/W = 4 aspect ratio, water-aluminium oxide nanofluid

Inlet jet temperature is 293K, constant bottom wall temperature is 313K

Figure 5.3: Velocity contour of water L vs H
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From the figure 5.3 shows the variation of velocity of water jet through the length and height of

the channel, the inlet velocity which is initialized vertically through a rectangular slot which is at

the center of the channel. After the impingement of cold fluid molecules on to the targeted surface,

their path will change both sides of the channel and velocity will become less. Here the velocity is

maximum at the inlet of the slot after impingement it will decrease, the streamlines show that the

path of flow after the impingement. And at the walls of the channel velocity is zero to satisfy no-slip

boundary condition the equations 2.3.1, 2.3.2, 2.3.3 Eulerian-Eulerian equations for laminar case.

Figure 5.4: Temperature contour of water L vs H

The figure 5.4 shows the variation of temperature contour of water throughout the length and

height of the channel. The bottom wall temperature is constant which is 313K, where the jet inlet

temperature is 293K, this cold fluid molecules impinge on the targeted surface, from the figure we

can see that the impinging zone became as cold fluid then their rate of heat transfer between wall

and fluid is increased. The temperature getting changed from the stagnation zone to the outlet

section of the channel which is shown by stream contours of temperature field.

5.3 Validation

Validation of solver with numerical results of lamraoui et.al [34]

At Re=200, φ =1% ,Al2O3 - water nanofluid and aspect ratio H/W = 4,particle size is 30 nm.
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Figure 5.5: local nusselt number variation along L

The figure 5.5 shows the validation of present solver against [34] numerical results, the x axis

represents non dimensional length and y is local nusselt number variation from impinging zone

to right outlet section of the channel, at the impinging zone nusselt number is high due to more

heat transfer between fluid and wall then gradually decreases again there is an increment in nusselt

number due to effect of impingement.

The figure 5.6 shows the validation of present solver with [34, 35] numerical results at Re=100, φ

=1% ,Al2O3 - water nanofluid and aspect ratio H/W = 4,particle size is 30 nm.

Figure 5.6: local nusselt number variation along L
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The present solver local nusselt number variation along the length of the channel is very much

matching with the numerical results of [34, 35],at Re=200,100 with volume fraction is 1%.

5.4 Stream function contours of Dispersed phase(Aluminium

oxide particles)

The impinging jet flow in a mini-channel with different Reynolds, The present below stream function

contours are at three diffrent reynolds numbers with aluminium-oxide and water nano fluid, volume

concentration taken is 2%, The aspect ratio(H/W)=4 for all figures 5.7,5.8, 5.9.

Figure 5.7: Stream function contour at RE=100

From the above figure, we can observe that the stream function vortices are so close to the

impingement zone then after some distance from the impinging zone the streamlines are becoming

parallel.

Figure 5.8: Stream function contour at RE=200

From figure 5.8 the streamlines at Re=200 the vortices are stretched and becomes large compared

to Re=100.

Figure 5.9: Stream function contour at RE=300

The above figure shows that the large vortices are formed after the impingement, as the Reynolds

becomes more hitting intensity of particles increases, the vortices will form little be away from the

impinging zone.
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5.5 Effect of Reynolds number

At φ = 2% , aspect ratio H/W = 4, particle size (dp) =30 nm.

Figure 5.10: NUavg with Reynolds number

from figure 5.10 we can say that as the Reynolds number varies from (Re=100 to 550) the average

nusselt number increases from 0.99 to 3.49 it means the heat transfer increases. When the Reynolds

number increases the jet inlet velocity increases due to this impingement intensity at the targeted

surface is increases due to this heat transfer rate increases between nano fluid and wall.

5.6 Effect of volume concentration

At Re=200 with aspect ratio H/w = 4
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Figure 5.11: heat transfer coefficient along L

The figure 5.11 shows the variation of heat transfer coefficient from stagnation zone to right

outlet section of the channel,as the volume fraction increases the nano-particles increases due to this

the convection between base fluid and particle is increases overall thermal conductivity will increases

there by heat transfer will increases.

Figure 5.12: NUavg vs φ

From above figure at the very low volume concentration(0.001%) the average nusselt number is

0.77 where as at 2% NUavg is 1.99

from figure 5.12 shows that NUavg increases with volume concentrations and the figure 5.11 shows

that variation of heat transfer coefficient from jet impingement targeted surface zone to outlet of

the section of the channel at different volume concentrations.
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5.7 Effect of aspect ratio

At Re=200, φ =0.1% , for three aspect ratios 2,4,6.

Table 5.1: average nusselt number variation with aspect ratio

Reynolds number Aspect ratio NUavg

Re=200 H/W = 2 2.183

Re=200 H/W = 4 1.654

Re=200 H/W = 6 1.257

From the table 5.1 at same Reynolds number as the aspect ratio(H/W) means jet inlet to targeted

surface distance increases the average nusselt number decreases, due to the cold fluid molecules

impinging intensity will decrease hence the rate of heat transfer between fluid and wall decreases.

5.8 Effect of nanofluids

At Reynolds number 200 with different nanofluids which are T io2 -water, Al2O3 -water,Cuo - water

with φ = 0.1%, 1%, 2% and dp is 30nm
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Table 5.2: effect of nanofluids

Reynolds number Type of nanofluid φ = 0.1%,NUavg φ = 1%,NUavg φ = 2%,NUavg

Re=200 water-Al2O3 1.2017 1.5246 1.7086

Re=200 water-Cuo 1.3218 1.7238 1.8237

Re=200 water-T io2 1.5820 1.8355 2.0013

The table 5.2 which shows the effect of different nanofluids on the heat transfer at Re = 200 for

different volume concentrations.

From the 5.2 at volume fractions 0.1%, 1%, 2% the average nusselt number is increases for three

nanofluids but titanium oxide-water nanofluid showing more heat transfer than others due to the

properties of T io2.

5.9 Velocity profiles of both phases at different locations

At Re = 200, φ=1% the figure 5.13 shows the vertical velocity variations of both liquid and particles

along the height of the channel, at the location x = L/2 .

The vertical velocity at the wall is zero and as the height increases at inlet section this velocity is

maximum for both water and Aluminium particles
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Figure 5.13: vertical inlet velocity along H

The figure 5.14 At Re = 200 the horizontal velocity of both phases at location x=L/4 the velocity

profile is parabolic in nature, it shows that the velocity of both phases follows same profile with very

negligible difference.

Figure 5.14: vertical velocity along Height of the channel
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Figure 5.15: U velocity along Height of the channel

The figure 5.15 represents the horizontal velocity profile of both phases at outlet section of the

channel i.e. at x=L variation from the bottom wall to top wall is pure parabolic and the velocity

differences between both liquid and solid phases are almost negligible.
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Chapter 6

Conclusions

Numerically have been studied an incompressible two dimensional laminar parallel flow through a

microchannel using nanofluids, the impinging jet flow through a mini-channel using nanofluids by

software OpenFOAM and ANSYS FLUENT. The following points are concluded from the simula-

tions.

• Validated present solver against experimental[23] results.

• Studied that with the parallel flow in a microchannel, as the increase of Reynolds number

from(109.54 to 285.86), heat transfer enhances by 17.63%.

• At Re = 243.2 with parallel flow using Al2O3-water nanofluid, as the increment in particle

concentration from(0.1% to 0.2%) heat transfer enhances by 3.01%.

• AtRe = 400, φ=1% The kerosene-based nanofluid has shown higher heat transfer than water-

based nanofluid.

• Validated present solver against numerical results of [35, 34] at Re=200,100 with impinging

jet flow.

• Studied the effects of Reynolds number as Re increases from 100 to 550, heat transfer enhances

by 223.23%

• At Re = 200 with jet impingement as the increment in concentration from(0.001% to 0.1%)

heat transfer enhances by by 71.4%

• Observed atRe = 200 the effect of aspect ratios(H/W= 2,4,6) on the heat transfer that is as

the aspect ratio increases average nusselt number decreases due to the impingement to target

surface distance increases.

• Observed that at different locations the velocity differences between both the phases(liquid,

solid) so small and negligible.

• Studied the effect of different nanofluids(water−Al2O3,water-Cuo,water-T io2),among these

nanofluids at Re=200, volume fractionsφ = 0.1%, 1%, 2% at all volume fractions the T io2-

water nanofluid has done better performance in heat transfer than other two nanofluids.
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