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Abstract

The main aim of this thesis is to study the theory of Sobolev spaces on Riemannian

manifolds. This thesis is divided into three parts, 1st we will learn Riemannian Ge-

ometry then Sobolev space on Rn at last we will define Sobolev space on Riemannian

Manifolds and we will learn some properties and embeddings of Sobolev space on

Riemannian Manifolds.

The Sobolev space over Rn is a vector space of functions that have weak deriva-

tives. Motivation for studying these spaces is that solutions of partial differential

equations, when they exist, belong naturally to Sobolev spaces. The functions of

Sobolev space is not easy to handle, we shall approximate this functions by smooth

functions. We have calculated some inequalities on Sobolev space. With the help of

this inequalities we will embedded the Sobolev space in some Lp space and Hölder con-

tinuous space. Similarly on the manifold using covarient derivative we define Sobolev

Space Over Riemannian Manifold. Riemannian manifolds are natural extensions of

Euclidean space, the naive idea that what is valid for Euclidean space must be valid

for manifolds is false. But Sobolev embedding theorem for Rn does hold for compact

manifolds.
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Chapter 0

List of symbols

• A vector of the form α = (α1, . . . , αn) ∈ Nn
0 is called a multi-index of order

|α| = α1 + · · ·+ αn.

• Dαu(x) := ∂|α|u(x)

∂
α1
x1
...∂αnxn

• C(U) = {u : u→ R | u continuous}

• C(U) = {u ∈ C(U) | u uniformly continuous}

• Ck(U) = {u : U → R | u is k times continuously differentiable}

• Ck(U) = {u ∈ Ck(U) | Dαu is uniformly continuous for all |α| ≤ k}

• C∞(U) = {u : U → R | u is indefinitely differentiable.}

• C∞(U) = ∩∞k=0C
k(U)

• Cc(U), Ck
c (U), etc denote the functions in C(U), Ck(U) with compact support.

• V ⊂⊂ U means V ⊂ K ⊂ U , where K is compact (compactly contained)

• Lploc(U) = {u : U → R | u ∈ Lp(V ) for each V ⊂⊂ U}

• W k,p(U), Hk(U), etc denotes Sobolev spaces: see Section 6.2
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Chapter 1

Introduction

1.1 Differentiable manifold

Definition 1.1.1 (Differentiable manifold). A Differentiable manifold of dimension

n is a set M and a family of injective mappings xα : Uα ⊂ Rn → M of open sets Uα

of Rn into M such that:

1.
⋃
α xα(Uα) = M .

2. for any pair α, β, with xα(Uα)∩xβ(Uβ) = W (6= φ), the sets x−1
α (W ) and x−1

β (W )

are open sets in Rn and the mappings

x−1
α ◦ xβ : X−1

β (W )→ X−1
α (W ) are differentiable (Figure 1.1).

3. The family A = {(Uα, xα)} is maximal relative to the conditions (1) and (2),

meaning that if x0 : U0 ⊂ Rn → M is a map such that x−1
0 ◦ x and x ◦ x−1

0 are

differentiable for all x in A, then (U0, x0) is in A.

The pair (Uα, xα) (or the mapping xα) with p ∈ xα(Uα) is called a parametraza-

tion, (or system of coordinates) of M at p; xα(Uα) is then called a coordinate neigh-

bourhood at p. A family {(Uα, xα)} satisfying (1) and (2) is called a differentiable

structure(or Atlas) on M .

Remark. A differentiable structure on a set M induces a topology on M . Define

A ⊂M to be open set in M iff xα
−1(A∩xα(Uα)) is an open set in Rn for all α. The

empty set and M are open sets, the union of open sets is again an open set and that

the finite intersection of open sets remain a open set. The topology defined in such a

way that the sets xα(Uα) are open and that mapping xα is continuous.

3



CHAPTER 1. INTRODUCTION

Figure 1.1:

Example 1.1.1. The Euclidean space Rn, The differentiable structure given by {Rn, id}.

1.2 Differentiable Maps

Definition 1.2.1. Let Mn
1 and Mm

2 be differentiable manifolds. A mapping φ : M1 →
M2 is differentiable at p ∈ M1 if given a parametrization y : V ⊂ Rm → M2 at φ(p)

there exists a parametrazation x : U ⊂ Rn → M1 at p such that φ(x(U)) ⊂ y(V ) and

the mapping

y−1 ◦ φ ◦ x : U ⊂ Rn → Rm (1.1)

is differentiable at x−1(p) (Figure1.2). The map φ is differentiable on an open set of

M1 if it is differentiable at all of the points of this open set.

As coordinate changes are smooth, this definition is independent of the parametriza-

tions chosen at φ(p) and p. The mapping (1.1) is called the expression of φ in the

parametrazation x and y.

1.3 Tangent Space

We would like to extend the idea of tangent vector to the differentiable manifolds.

For regular surface in R3, a tangent vector at a point p of the surface is defined as

the “velocity” in R3 of a curve in the surface passing through p. Since we do not

4



CHAPTER 1. INTRODUCTION

Figure 1.2:

have the support of the ambient space, we have to find a characteristic property of

the tangent vector which will substitute for the idea of velocity.

Let α : (−ε, ε)→ Rn be a differentiable curve in Rn, with α(0) = p. Write

α(t) = (x1(t), . . . , xn(t)), t ∈ (−ε, ε), (x1, . . . , xn) ∈ Rn.

Then α
′
(0) = (x

′
1(0), . . . , x

′
n(0)) = v ∈ Rn. Now let f be a differentiable function

defined in a neighborhood of p. We can restrict f to the curve α and express the

directional derivative with respect to the vector v ∈ Rn as

d(f ◦ α)

dt

∣∣∣
t=0

=
n∑
i=1

∂f

∂xi

∣∣∣
t=0

dxi
dt

∣∣∣
t=0

=
(∑

i

x
′

i(0)
∂

∂xi

)
f

Therefore, the directional derivative with respect to v is an operator on differentiable

functions that depends uniquely on v. This is the characteristics property that we

are going to use to define tangent vectors on manifold.

Definition 1.3.1. Let α : (−ε, ε)→M be a differentiable curve on a smooth manifold

M . Consider the set D of all functions f : M → R that are differentiable at α(0) = p

(i.e.,C∞ on a neighborhood of p). The tangent vector to the curve α at t = 0 is the

operator α
′
(0) : D → R given by

α′(0)(f) =
d(f ◦ α)

dt

∣∣∣∣
t=0

, f ∈ D

5



CHAPTER 1. INTRODUCTION

A tangent vector to M at p is a tangent vector at t = 0 to some differentiable curve

α : (−ε, ε) → M with α(0) = p. The tangent space at p is the space TpM of all

tangent vectors at p.

Choosing a parametrization x : U → Mn at p = x(0), we can express the

function f and the curve α in this parametrazation by f ◦ x(q) = f(x1, . . . , xn),

q = (x1, . . . , xn) ∈ U , and the curve α(t), α : (−ε, ε) → M α(0) = p by α̂(t) =

(x−1 ◦ α)(t) = (x1(t), . . . , xn(t)), respectively. Therefore,

α
′
(0)(f) =

d

dt
(f ◦ α)

∣∣∣∣
t=0

=
d

dt
(f ◦ x ◦ x−1 ◦ α)

∣∣∣∣
t=0

=
d

dt
(f̂(x1(t), ..., xn(t)))

∣∣∣∣
t=0

, f̂ = f ◦ x

=
n∑
i=1

( ∂f̂
∂xi

)
0
x
′

i(0) =

( n∑
i=1

( ∂

∂xi

)
x
′

i(0)

)
(f̂)

Hence we can write the tangent vector α
′
(0) in the parametrazation x by

α
′
(0) =

n∑
i=1

( ∂

∂xi

)
0
x
′

i(0) (1.2)

Figure 1.3:

Note: 1.3.1. The tangent vector to the curve α at p only depends on the derivative

of α in the local coordinate system.

6



CHAPTER 1. INTRODUCTION

Note: 1.3.2. Let β : (−ε, ε) → U(⊂ Rn), be a curve on U , β(0) = 0, β(xi) =

(0, ..0, xi, 0, ..0), α(xi) = x◦β(xi). then α(xi) is the coordinate curve on M α(0) = p,

α
′
(0) =

(
∂
∂xi

)
by (1.2). Hence

(
∂
∂xi

)
0

is a tangent vector at p of the coordinate curves

xi → x(0, .., 0, xi, 0, ..0) (Figure 1.3).

Note: 1.3.3. TpM = {α′(0) | α : (−ε, ε)→M, differentiable curve with α(0) = p}
Define (i)

(
α
′
(0) + β′(0)

)
f = α′(0)(f) + β

′
(0)(f), α

′
(0), β′(0) ∈ TpM, f ∈ D. (ii)(

λα
′
(0)
)
(f) = λ

(
α
′
(0)(f)

)
, λ ∈ R. with this addition and multiplication TpM is a

vector space over R.

Note: 1.3.4. Every element of TpM can be written as linear combination of
(
∂
∂xi

)
0

,

i = 1, 2, ..., n from (1.2). and { ∂
∂x1
, ..., ∂

∂xn
} is linearly independent. So, { ∂

∂x1
, ..., ∂

∂xn
}

is a basis of TpM . Hence TpM is vector space of dimension n.

Note: 1.3.5. It is clear from the definition of TpM the linear structure in TpM

defined above does not depend on the parametrazation x. The vector space TpM is

called the tangent space of M at p.

Definition 1.3.2. Let φ : M1 → M2 be a differentiable map between two smooth

manifolds of dimension n and m respectively. For p ∈ M , the differential of φ at p

is the map

dφp : TpM1 → Tφ/(p)M2

given by dφp(v) = (φ ◦ α)
′
(0) = β

′
(0) where α : (−ε, ε) → M1 is a curve satisfying

α(0) = p and α′(0) = v, β = φ ◦ α

Proposition 1.3.1. The map dφp : TpM1 → Tφ(p)M2 defined above is a linear map-

ping does not depend on the choice of the curve α (Figure1.4).

proof. Let x : U →M1 and y : V →M2 be parametrazation at p and φ(p) respec-

tively ,such that φ(x(U)) ⊂ y(V ). Now the expression of φ in these parametrization,

We can write

y−1 ◦ φ ◦ x(q) =
(
y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)

)
q = (x1, . . . , xn) ∈ U, (y1, . . . , ym) ∈ V

Now the expression of α in the parametrization x We obtain

x−1 ◦ α(t) = (x1(t), . . . , xn(t))

7



CHAPTER 1. INTRODUCTION

. Hence,

y−1 ◦ β(t) = y−1 ◦ φ ◦ α = y−1 ◦ φ ◦ x ◦ x−1 ◦ α

=
(
y1(x1(t), . . . , xn(t)), . . . , ym(x1(t), . . . , xn(t))

)
β
′
(0) is the tangent vector at φ(p). The expression for β

′
(0) with respect to basis

{( ∂
∂yi

)0} of Tφ(p)M2, associated to the parametrazation y, is given by

β
′
(0) =

m∑
i=1

d

dt

(
yi(x1(t), . . . , xn(t))

)
t=0

(
∂

∂yi

)
0

β
′
(0) =

m∑
i=1

{ n∑
j=1

x
′

j(0)

(
∂yi
∂xj

)
p

}(
∂

∂yi

)
0

where x
′
j(0), j = 1, . . . , n are the component of v (= α

′
(0)) in the local coordinate

system. Hence β
′
(0) does not depends on The choice of γ as long as α

′
(0) = v

β
′
(0) =

( n∑
j=1

∂y1

∂xj
x
′

j(0), . . . ,
n∑
j=1

∂ym
∂xj

x
′

j(0)

)

β
′
(0) = dφp(v) =

(
∂yi
∂xj

)
(x
′

j(0))

i = 1, . . . ,m; j = 1, . . . , n,

where
(
∂yi
∂xj

)
denotes an m × n matrix and x

′
j(0) denotes a column matrix with n

elements. Therefore, dφp is a linear mapping of TpM1 into TpM2 whose matrix in the

associated bases obtained from the parametrazation x and y is the matrix
(
∂yi
∂xj

)
.

Figure 1.4:

8



CHAPTER 1. INTRODUCTION

Definition 1.3.3 (Diffeomorphism). Let M and N be differentiable manifolds. A

mapping φ : M → N is a diffeomorphism if it is differentiable, bijective, and it’s

inverse φ−1 is differentiable. φ is said to be local diffeomorphism at p ∈ M if there

exists neighbourhood U of p and V of φ(p) such that φ : U → V is a diffeomorphism.

Definition 1.3.4 (Alternate Definition of Differential of a map). Let φ : M1 →M2 be

a differentiable map between two smooth manifolds of dimension n and m respectively.

For p ∈M , the differential of φ at p is the map

dφp : TpM1 → Tφ(p)M2

given by

dφp(α
′
(0))(f) = α

′
(0)(f ◦ φ)

where α : (−ε, ε)→M1 is a curve satisfying α(0) = p and f ∈ C∞(φ(p)).

Now,

dφp(α
′
(0))(f) = α

′
(0)(f ◦ φ) =

d

dt
(f ◦ φ ◦ α(t)) |t=0

=
d

dt
(f ◦ β(t)) |t=0 = β

′
(0)(f)

i.e., dφp(α
′
(0)) = β

′
(0) = (φ ◦ α)

′
(0)

So, the Definition 1.3.2. and Definition 1.3.4 are equivalent.

Proposition 1.3.2. Let φ : M1 → M2 and ψ : M2 → M3 be a differentiable map

between differentiable manifolds then:

1. d(ψ ◦ φ)p = dψφ(p) ◦ dφp

2. iM : M →M, identity map then d(iM)p = iTpM

9



CHAPTER 1. INTRODUCTION

Proof 1. Let α
′
(0) ∈ TpM , f ∈ C∞(ψ ◦ φ(p))

(dψφ(p) ◦ dφp)(α
′
(0))(f)

=
(
dψφ(p)(dφp(α

′
(0))

)
(f)

=
(
dφp(α

′
(0))

)
(f ◦ ψ)

= α
′
(0)(f ◦ ψ ◦ φ)

= d(ψ ◦ φ)p(α
′
(0))(f)

i.e., d(ψ ◦ φ)p = dψφ(p) ◦ dφp

Proof 2.

d(iM)p(α
′
(0))(f)

= α
′
(0)(f ◦ iM)

= α
′
(0)(f)

Therefore d(iM)p is the identity map between the tangent spaces.

Proposition 1.3.3. Let φ : M1 → M2 is a diffeomorphism then dφp : TpM1 →
Tφ(p)M2 is an isomorphism forall p ∈M1.

Proof . Let ψ = φ−1 : M2 →M1, p ∈M1.

We shall prove that (dφp)
−1 = dφ−1

φ(p)

Now,

dψφ(p) ◦ dφp = d(ψ ◦ φ)p = d(iM1)p = iTpM1

dφp ◦ dψφ(p) = d(φ ◦ ψ)φ(p) = d(iM2)φ(p) = iTφ(p)M2

Hence, dφp is an isomorphism for all p ∈M1.

Theorem 1.3.1. Let φ : Mn
1 → Mn

2 be a differentiable mapping and let p ∈ M1 be

such that dφp : TpM1 → Tφ(p)M2 is isomorphism. Then φ is a local diffeomorphism

at p.

Proof . Let x : U1 → M1 and y : V2 → M2 be parametrazation at p and φ(p)

respectively ,such that φ(x(U1)) ⊂ y(V2). Let x−1(p) = q. Now the expression of φ in

10



CHAPTER 1. INTRODUCTION

these parametrization, We can write

φ̂ = y−1 ◦ φ ◦ x : U1 → V2

φ̂ = y−1 ◦ φ ◦ x(q1) =
(
y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)

)
q1 = (x1, . . . , xn) ∈ U1, (y1, . . . , yn) ∈ V2

Since, dφp is is an isomorphism then (by Proposition 1.3.1.)

∂(y1, . . . , yn)

∂(x1, . . . , xn)
(q) 6= 0

Then, by the inverse function theorem in Rn, ∃ two open sets U and V of Rn such

that q ∈ U , φ̂(q) ∈ V , φ̂ is one-one, φ̂(U) = V , φ̂−1 exists and φ̂−1(V ) = U and

φ̂−1 = x−1 ◦ φ−1 ◦ y is differentiable in V.

Hence, φ is bijection between x(U) and y(V ), and φ−1 is differeniable on y(V ).

So, φ is a local diffeomorphism at p.

1.4 Immersions and Embeddings

Definition 1.4.1. Let Mm and Nn be differentiable manifolds. A differentiable map-

ping φ : M → N is said to be an immersion if dφp : TpM → Tφ(p)N is injective for

all p ∈ M . If in addition , φ is homeomorphism into φ(M) ⊂ N , where φ(M) has

the subspace topology induce from N , we say that φ is an embedding. If M ⊂ N and

the inclusion map i : M → N is an embedding, We say that M is a sub-manifold of

N .

It can be seen that if φ : Mm → Nn is an immersion , then m ≤ n ; the difference

n−m is called the codimension of the immersion φ.

Definition 1.4.2 (Regular surface in Rn). A subset Mk ⊂ Rn is a regular surface of

dimension k, k ≤ n if for every p ∈Mk there exists a neighborhood V of p of Rn and

a mapping x : U ⊂ Rk →M ∩ V of an open set U ⊂ Rk onto M ∩ V such that.

1. x is differentiable homeomorphism.

2. (dxq) : Rk → Rn is injective for all q ∈ U

11



CHAPTER 1. INTRODUCTION

Example 1.4.1. The curve α : R → R2 given by α(t) = (t3, t2) is a differentiable

mapping but is not an immersion because α
′
(0) = 0.

Example 1.4.2. The curve α : R→ R2 given by α(t) = (t3− 4t, t2− 4) is a differen-

tiable mapping and an immersion but not an embedding because α(2) = α(−2) = 0,

not injective.

Example 1.4.3. The map f : R → R2 given by f(t) = (etcos(t), etsin(t)) is an

embedding of R to R2.

Example 1.4.4. Let Mk ⊂ Rn be a k dimension regular surface. The inclusion

i : Mk → Rn is an embedding, that is, Mk is a submanifold of Rn.

Proof: For all p ∈Mk there exists a parametrization x : U ⊂ Rk →Mk of Mk at

p. Let V be a neighborhood of p in Rn and a parametrization j : V ⊂ Rn → V of Rn

at i(p) (j is the identity mapping). j−1◦ i◦x = x is differentiable, so i is differentiable

for all p ∈ Mk. From the condition (2) of the definition of regular surface (di)p is

injective so i is an immersion and From the condition (1) of the definition of regular

surface i is homeomorphism onto its image. Hence Mk is submanifold of Rn.

Proposition 1.4.1. Let φ : Mn
1 →Mm

2 , n ≤ m be an immersion of the differentiable

manifold M1 into the differentiable manifold M2. For every p ∈M1 ∃ a neighbourhood

V ⊂M1 of p such that the restriction φ : V →M2 is an embedding.

Proof. Let x1 : U1 ⊂ Rn → M1 and x2 : U2 ⊂ Rm → M2 be a system of coordinate

at p and φ(p) respectively. Let us denote by (x1, ..., xn) the coordinate of Rn and

by (y1, ..., ym) the coordinate of Rm. In this coordinate , The expression for φ is the

mapping φ̃ = x−1
2 ◦ φ ◦ x1 can be written as,

φ̃ =
(
y1(x1, ..., xn), ..., ym(x1, ..., xn)

)
.

Let, q = x−1
1 (p), since φ is an immersion then dφp is injective for all p ∈M1 , that is(

∂yi
∂xj

)
, 1 ≤ i ≤ m, 1 ≤ i ≤ n is injective , so has rank n. Hence,

∂(y1, ..., yn)

∂(x1, ..., xn)
(q) 6= 0

To apply inverse function theorem, we introduce the mapping, Φ : U1×Rm−n=k → Rm

given by ,

Φ(x1, ..., xn, t1, ..., tk) =

12
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(y1(x1, ..., xn), ..., yn(x1, ..., xn), yn+1(x1, ..., xn) + t1, ..., yn+k(x1, ..., xn) + tk)

Where ,(t1, ..., tk) ∈ Rm−n=k. Here if we restricts Φ to U1 then Φ coincide with φ̃. dΦq

is the m×m matrix given by (
( ∂yi
∂xj

)n×n 0

0 Ik×k

)

det(dΦq) =
∂(y1, ..., yn)

∂(x1, ..., xn)
(q) 6= 0

It follows from the inverse function theorem ,that there exists a neighbourhood W1 ⊂
U1×Rk of q and W2 ⊂ Rm of Φ(q) such that , the restriction Φ|w1 is a diffeomorphism

onto W2. let Ṽ = W1 ∩ U1, Φ|Ṽ = φ̃|Ṽ and X1 ,x2 are diffeomorphism. We conclude

that, the restriction to V = x1(Ṽ ) of the mapping Φ = x2 ◦ φ̃ ◦x−1
1 : V → φ(V ) ⊂M2

is a diffeomorphism , Hence an embedding.

1.5 Examples of manifolds.

Example 1.5.1 (The tangent bundle). Let Mn be a differentiable manifold and let

TM = {(p, v); p ∈ M, v ∈ TpM}. We are going to provide the set TM with a

differentiable structure (of dimension 2n ); with such a structure TM will be called

the Tangent bundle of M .

Proof: Let {(Uα, xα)} be the maximal differentiable structure on M . Denoted by

(xα1 , ..., x
α
n) the coordinates of Uα and by { ∂

∂xα1
, ..., ∂

∂xαn
} the associated bases to the

tangent spaces of xα(Uα). For every α, Define

yα : Uα × Rn → TM,

by

yα(xα1 , ..., x
α
n, u1, ..., un) =

(xα(xα1 , ..., x
α
n),

n∑
i=1

ui
∂

∂xαi
), (u1, ..., un) ∈ Rn

Geometrically, this means that we are taking as coordinates of a point (u.v) ∈ TM
the coordinates of xα1 , ..., x

α
n of p together with the coordinates of v in the basis

13
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{ ∂
∂xα1

, ..., ∂
∂xαn
}.

We are going to show that {(Uα × Rn, yα)} is a differentiable structure on TM .

Since
⋃
α xα(Uα) = M and (dxα)q(Rn) = Txα(q)M , q ∈ Uα, q ∈ Uα, we have that⋃

α

yα(Uα × Rn) = TM,

which verifies the condition (1) of Definition 1.1.1. Now let

(p, v) ∈ yα(Uα × Rn) ∩ yβ(Uβ × Rn).

then

(p, v) = (xα(qα), dxα(vα)) = (xβ(qβ), dxβ(vβ)),

where qα ∈ Uα, qβ ∈ Uβ, vα, vβ ∈ Rn. Therefore,

y−1
β ◦ yα(qα, vα) = y−1

β (xα(qα), dxα(vα))

= ((x−1
β ◦ xα)(qα), d(x−1

β ◦ xα)(vα)).

Since x−1
β ◦ xα is differentiable, d(x−1

β ◦ xα) is as well. It follows that y−1
β ◦ yα is

differentiable, which verifies condition (2) of the definition 1.1.1. and completes the

example.

Example 1.5.2. The real projective space P n(R). Let us denote by P n(R) the set of

straight lines of Rn+1 which pass through the origin 0 = (0, . . . , 0) ∈ Rn+1; that is,

P n(R) is the set of “direction” of Rn+1.

Proof. We shall introduce a differentiable structure on P n(R). For this, on the set

Rn+1 − {0} we define the equivalence relation ∼ by

p ∼ q if and only if there exists a λ ∈ R−{0} such that p = λq where p, q ∈ Rn+1

Then P n(R) be the quotient space Rn+1 − {0}|∼. The points of P n(R) will be

denoted by [x1, . . . , xn+1]. Observe that if xi 6= 0,

[x1, . . . , xn+1] =
[x1

xi
, . . . ,

xi−1

xi
, 1,

xi+1

xi
, . . .

xn+1

xi

]
Define subsets V1, . . . , Vn+1, of P n(R), by:

Vi = {[x1, . . . , xn+1] : xi 6= 0}, i = 1, . . . , n+ 1

14
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Geometrically, Vi is the set of straight lines Rn+1 which pass through the origin and

do not belong to the hyperplane xi = 0. We are now going to show that we can take

the Vi’s as coordinate neighborhoods, where the coordinates on Vi are

y1 =
x1

xi
, . . . , yi−1 =

xi−1

xi
, , yi =

xi+1

xi
, . . . , yn =

xn+1

xi
.

For this, we will define mappings xi : Rn → Vi by

xi(y1, . . . , yn) = [y1, . . . , yi−1, 1, yi+1, . . . , yn], (y1, . . . , yn) ∈ R

and we will show that the family {(Rn, xi)} is a differentiable structure on P n(R).

Indeed, any mapping xi is clearly bijective while ∪xi(Rn) = P n(R). It remains to

show that that x−1
i (Vi ∩ Vj) is an open set in Rn and that x−1

j ◦ xi, j = 1, . . . , n+ 1,

is differentiable there. Now, if i > J , the points in x−1
i (Vi ∩ Vj) are of the form:

{(y1, . . . , yn) ∈ Rn : yj 6= 0}.

Therefore x−1
i (Vi ∩ Vj) is open set in Rn, and supposing that i > j(the case for i < j

is similar),

x−1
j ◦ xi(y1, . . . , yn) = x−1

j [y1, . . . , yi−1, 1, yi+1, . . . , yn]

= x−1
j

[
y1

yj
, . . . ,

yj−1

yj
, 1,

yj+1

yj
, . . . ,

yi−1

yj
,

1

yj
,
yi
yj
, . . . ,

yn
yj

]
=

(
y1

yj
, . . . ,

yj−1

yj
,
yj+1

yj
, . . . ,

yi−1

yj
,

1

yj
,
yi
yj
, . . . ,

yn
yj

)
Which is clearly differentiable.

In summary, the space of directions of Rn+1 (real projective space P n(R)) can

be covered by n + 1 coordinate neighborhood Vi, where Vi are made up of those

directions of Rn+1 that are not in the hyperplane xi = 0; in addition, in each Vi we

have coordinates (
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . .

xn+1

xi

)
where (x1, . . . , xn+1) are the coordinates of Rn+1.

Example 1.5.3. Let M be a differentiable manifold of dimension m and N be a

differentiable manifold of dimension n. Then the cartesian product M × N is a

differentiable manifold of dimension m+ n.

15
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Example 1.5.4. Regular surface of dimension k is a differentiable manifold of di-

mension k.

Proof: Let a subset Mk ⊂ Rn is a regular surface of dimension k, p ∈ Mk. Let

x : U(⊂ Rk) → Mk and y : V (⊂ Rk) → Mk are two parametrazation at p with

x(U) ∩ y(V ) = W 6= φ, then consider the mapping h = x−1 ◦ y : y−1(W )→ x−1(W ),

we have to show that h is a diffeomorphism.

Let r ∈ y−1(W ) and put q = h(r). Let (u1, ..., uk) ∈ U and (v1, ..., vn) ∈ Rn, and

write x in these coordinate as

x(u1, ..., uk) = (v1(u1, .., uk), ..., vn(u1, ..., uk)).

From condition (2) of the Definition of Regular surface we have,

∂(v1, ..., vk)

∂(u1, ..., uk)
(q) 6= 0

Extend x to the mapping F : U × Rn−k → Rn given by

F (u1, .., uk, tk+1, ..., tn)

= (v1(u1, ..., uk), ..., vk(u1, ..., uk), vk+1(u1, ..., uk) + tk+1, ..., vn(u1, ..., uk) + tn),

Where (tk+1, ..., tn) ∈ Rn−k. It is clear that F is differentiable and restriction of F to

U × {(0, ..., o)} coinside with x. And we have,

det(dFq) =
∂(v1, ..., vk)

∂(u1, ..., uk)
(q) 6= 0

. Then by inverse function theorem, which guarantees the existence of a neighborhood

Q of x(q) where F−1 exists and is differentiable. By the continuity of y, there exists

a neighborhood R ⊂ V of r such that y(R) ⊂ Q. The restriction of h to R, h|R =

F−1 ◦ y|R is a composition of differentiable mappings. Thus h is differentiable at r,

hence in y−1(W ). Similarly we can show that h−1 is differentiable. Hence regular

surface is a differentiable manifold.

Definition 1.5.1 (Regular value). Let F : U(⊂ Rn) → Rm be a differentiable map-

ping of an open set U of Rn. A point p ∈ U is defined to be a critical point of F if

the differential dFp : Rn → Rm is not surjective. The image F (p) of a critical point

16
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is called a critical value of F . A point a ∈ Rm that is not a critical value is said to

be is said to be a regular value of F . Any point a /∈ F (U) is trivially a regular value

of F and if there exists a regular avlue of F in Rm, then n ≥ m.

Example 1.5.5. Let F : U(⊂ Rn)→ Rm be a differentiable mapping of an open set

U of Rn, a ∈ F (U) be a regular value of F . Then F−1(a) ⊂ Rn is a regular surface

of dimension m− n = k. Hence F−1(a) ⊂ Rn is differentiable manifold of dimension

k.

Proof. To prove this We use the inverse function theorem. Let p ∈ F−1(a). De-

note by q = (y1, . . . , ym, x1, . . . , xk) an arbitary point of Rn=m+k and by F (q) =

(f1(q), . . . , fm((q)) its image by the mapping F . Since a is a regular value of F , dFp

is surjactive. therefore, we have

∂(f1, . . . , fm)

∂(y1, . . . , ym)
(p) 6= 0

Define a mapping φ : U ⊂ Rn → Rn+k by

φ(y1, . . . , ym, x1, . . . , xk) = (f1(q), . . . , fm(q), x1, . . . , xk).

Then,

det(dφ)p =
∂(f1, . . . , fm)

∂(y1, . . . , ym)
(p) 6= 0.

By the inverse function theorem, φ is a diffeomorphism of a neighborhood Q of p onto

a neighborhood W of φ(p). Let Km+k ⊂ W ⊂ Rn+k be a cube of center φ(p) and

put V = φ−1(Km+k ∩ Q). Then φ maps the neighborhood V diffeomorphically onto

Km+k = Km ×Kk. Define a mapping x : Kk → V by

x(x1, . . . , xk) = φ−1(a1, . . . , am, x1, . . . , xk),

Where (a1, . . . , am) = a. Here φ satisfies conditions (1) and (2) of the definition of

regular surface. Since p is arbitary, F−1(a) is a regular surface in Rn.

17
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1.6 Orientation

Definition 1.6.1. A smooth manifold M is orientable if M admits a differentiable

structure {(Uα, xα)} such that:

1. for every pair α, β with xα(Uα)∩xβ(Uβ) = W 6= φ, the differential of the change

of coordinates xβ ◦ xα has positive determinant.

In the opposite case M is nonorientable. If M is orientable, then an choice of

differentiable structure satisfying (1) is called an orientation of M. Furthermore, M

(equipped with such differentiable structure) is said to be oriented. We say that two

differentiable structure satisfying (1) determine the same orientation if their union

satisfies (1) too.

Note: 1.6.1. 1. An orientable and connected smooth manifold has exactly two

distinct orientations.

2. If M and N are smooth manifolds and f : M → N is a diffeomorphism, then

M is orientable if and only if N is orientable.

3. Let M and N be connected oriented smooth manifolds and f : M → N a

diffeomorphism. Then f induces an orientation on N . Which may or may

not coincide with the initial orientation of N . In the 1st case we say that f

preserves the orientation in the second case , f reverse the orientation.

Example 1.6.1. If M can be covered by two coordinate neighborhoods V1 and V2 in

such a way that the intersection V1 ∩ V2 is connected, then M is orientable.

Proof: Suppose that there exists an atlas {(V1, xα), (V2, yβ)} of M such that

W = V1∩V2 is connected. The mapping y−1
β ◦xα : x−1

α (W )→ y−1
β (W ) is diffeomorphic.

So det(y−1
β ◦xα)

′
(x) 6= 0 ∀x ∈ x−1

α (W ). Since x→ det(y−1
β ◦xα)

′
(x) is continuous and

x−1
α (W ) is connected, the determinant can not change its sign. If the sign is positive,

we are done. If the sign is negative, replace the chart (V2, yβ),yβ = (y1, ..., yn), by the

chart (V2, ỹβ), ỹβ = (−y1, y2, ..., yn). Then the atlas {(V1, xα),(V2, ỹβ)} satisfies (1).

Example 1.6.2. The sphere Sn is orientable.

Sn =

{
(x1, ..., xn+1) ∈ Rn+1;

n+1∑
i=1

x2
i = 1

}

18
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Proof. Let N = (0, .., 0, 1) be the nort pole and S = (0, ..., 0,−1) the south pole of

Sn. Define a mapping π1 : Sn − {N} → Rn (stereographic projection from the north

pole) that takes p = (x1, ..., xn+1) in Sn−{N} into the intersection of the hyperplane

xn + 1 = 0 with the lin ethat passes through p and N .

π1(x1, ..., xn+1) =
( x1

1− xn+1

, ...,
xn

1− xn+1

)
.

The mappng π1 is differentiable, injective and the maps Sn−{N} into the hyperplane

xn+1 = 0. The stereographic projection π2 : Sn − S → Rn from the south pole onto

the hyperplane xn+1 = 0 has the same properties.

Therefore, the parametrizations (Rn, π−1
1 ), (Rn, π−1

2 ) cover Sn. In addition, the

change of coordinates:

yj =
xj

1− xn+1

↔ y
′

j =
xj

1 + xn+1

,

(y1, ..., yn) ∈ Rn, j = 1, ..., n

is given by

y
′

j =
yj∑n
i=1 y

2
i

(Using the fact
∑n+1

k=1 x
2
k = 1). Therefore, the family {(Rn, π−1

1 ), (Rn, π−1
2 )} is a dif-

ferentiable structure on Sn. The intersection π−1
! (Rn) ∩ π−1

2 (RN) = Sn − {N ∪ S}
is connected, thus Sn is orierntable and family given determines an orientation of

Sn.

1.7 Vector fields; brackets.

Definition 1.7.1. A Vector field X on a differentiable manifold M is a correspon-

dence that associates to each point p ∈ M a vector X(p) ∈ TpM . In terms of map-

pings, X is a mapping from M into the tangent bundle TM The Field is differentiable

if the mapping X : M → TM is differentiable.

Consider a parametrazation x : U(⊂ Rn)→M we can write

X(p) =
n∑
i=1

ai(p)

(
∂

∂xi

)
p

,

19
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where each ai : U → R is a function on U and { ∂
∂xi
} is the basis of the tangent

space associated to x, i = 1, ..., n.

Proposition 1.7.1. A vector field X is differentiable if and only if the functions ai

are differentiable

Proof. Let, X : M → TM be a vector field. Let x : U → M and y : U × Rn →
TM be the parametrizations at p and X(p) ,respectively. Expressing X in these

parametrization, we can write

X̂(x1, ..., xn) = (x1, ..., xn, a1(x1, ..., xn), ..., an(x1, ..., xn))

Therefore X is differentiable if and only if the functions ai : U → R are differentiable.

We can also think of a vector field as a mapping X : D → F , where D is the set

of differentiable function on M and F is the set of function on M . Let f ∈ D and

X : D → F is defined by

f → Xf

Where, Xf : M → R is defined by,

p→ (Xf)(p) =
n∑
i=1

ai(p)

(
∂f

∂xi

)
(p),

So, the vector field is differentiable if and only if X : D → D, that is Xf ∈ D for all

f ∈ D. Let X(M) be the set of all vector fields of class C∞ on M . The interpretation

of X as an operator on D permits us to consider the iterates of X. For example, if X

and Y are differentiable vector fields on M and f ∈ D, we can consider the functions

X(Y f) and Y (Xf). In general, the operators XY , Y X will involve derivatives of

order two, and will not lead to vector fields. However, XY −Y X does define a vector

field.

Lemma 1.7.1. Given two differentiable vector fields X, Y ∈ X(M) on a smooth

manifold M , there exists a unique differentiable vector field Z ∈ X(M) such that

Zf = (XY − Y X)f , for every differentiable function f ∈ D

Proof. First, we prove that if Z exists, then it is unique. Assume the existence of
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such Z. Let p ∈M and let x : U →M be a parametrization at p, and let,

X =
∑
i

ai
∂

∂xi
Y =

∑
j

bj
∂

∂xj

be the expression of X and Y in these parametrization. Then for all f ∈ D,

X(Y f) = X

(∑
j

bj
∂f

∂xj

)
=
∑
i,j

ai
∂bj
∂xi

∂f

∂xj
+
∑
i,j

aibj
∂2f

∂xi∂xj
,

Y (Xf) = Y

(∑
i

ai
∂f

∂xi

)
=
∑
i,j

bj
∂ai
∂xj

∂f

∂xi
+
∑
i,j

aibj
∂2f

∂xi∂xj
.

Zf = XY f − Y Xf =
∑
i,j

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂f

∂xj

Which proves the uniqueness of Z.

To show existence, define Zα in each coordinate neighbourhood Xα(Uα) of a dif-

ferentiable structure {(Uα), xα} on M by the previous expression. By uniqueness,

Zα = Zβ on xα(Uα) ∩ xβ(Uβ) 6= φ, which allows us to define Z over the entire mani-

fold M .

The vector field Z given by Lemma 1.5.1 is called the bracket [X, Y ] = XY −Y X
of X and Y .

Proposition 1.7.2. If X, Y, Z ∈ X(M), a, b ∈ R and f, g ∈ D then:

1. [X, Y ] = −[Y,X] (anticommutativity),

2. [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity),

3. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (jacobi identity),

4. [fX, gY ] = fgf [X, Y ] + fX(g)Y − gY (f)X.

Proof. 1. [X, Y ] = XY − Y X = −(Y X −XY ) = −[Y,X]

2. [aX + bY, Z] = (aX + bY )Z − Z(aX + bY ) = aXZ + bY Z − aZX − bZY =

a(XZ − ZX) + b(Y Z − ZY ) = a[X,Z] + b[Y, Z]
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3. [[X, Y ], Z] = [XY − Y X,Z] = XY Z − Y XZ − ZXY + ZY X So,

[X, [Y, Z]] + [Y, [Z,X]] =

XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ − ZXY +XZY

Hence,

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

4. [fX, gY ] = fX(gY ) − gY (fX) = fgXY + fX(g)Y − gfY X − gY (f)X =

fg[X, Y ] + fX(g)X − gY (f)X.

The bracket [X, Y ] can be also interpreted as a derivation of Y along the “trajectories”

of X.

Since a differentiable manifold is locally diffeomorphic to Rn, the fundamental

theorem on existence, uniqueness, and dependence on initial conditions of ordinary

differential equation (which is a local theorem) extends naturally to differentiable

manifolds. Which is stated below.

Theorem 1.7.1. Let X be a differentiable vector field on a differentiable manifold

M, and let p ∈ M . Then there exists a neighborhood U ⊂ M of p, an interval

(−δ, δ), δ > 0, and a differentiable mapping φ : (−δ, δ)×U →M such that the curve

t → φ(t, q), t ∈ (−δ, δ), q ∈ U , is the unique curve which satisfies ∂φ
∂t

= X(φ(t, q))

and φ(0, q) = q.

A curve α : (−δ, δ) → M which satisfies the conditions α
′
(t) = X(α(t)) and

α(0) = q is called a trajectory of the field X that passes through q for t = 0. The

above theorem guarantees that for each point of a certain neighborhood there passes

a unique trajectory of X and that the mapping so obtained depends differentiably on

t and on the “initial condition” q. The mapping φt : U →M is called the local flow

of X where φt(q) = φ(t, q).

Lemma 1.7.2. Let h : (−δ, δ) × U → R be differentiable mapping with h(0, q) = 0

for all q ∈ U . Then there exists a differentiable mapping g : (δ, δ) × U → R with

h(t, q) = tg(t, q); in particular,

g(0, q) =
∂h(t, q)

∂t

∣∣∣
t=0
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Proof. Define for fixed t,

g(t, q) =

∫ 1

0

∂h(ts, q)

∂(ts)
ds

tg(t, q) =

∫ 1

0

t
∂h(ts, q)

∂(ts)
d(s)

and, after change of variables, observe that

tg(t, q) =

∫ t

0

∂h(ts, q)

∂(ts)
d(ts) = h(t, q).

We can also express the bracket in following form.

Proposition 1.7.3. Let X, Y be differentiable vector fields on a differentiable man-

ifold M , let p ∈ M , and let φt be the local flow of X in a neighborhood U of p.

Then

[X, Y ](p) = lim
t→0

1

t
[Y − dφtY ](φt(p))

Proof. Let f be a differentiable function in a neighborhood of p. Putting

h(t, q) = f(φt(q))− f(q),

now applying the previous lemma we obtain a differentiable function g(t, q) such that

f ◦ φt(q) = f(q) + tg(t, q) and g(0, q) = Xf(q).

Now,

((dφtY )f))(φt(p)) = (Y (f ◦ φt))(p) = Y f(p) + t(Y g(t, p)).

Therefore,

lim
t→0

1

t
[Y − dφtY ]f(φtp) = lim

t→0

(Y f)(φtp)− Y f(p)

t
− (Y g(0, p))

= (X(Y f))(p)− (Y (X)f)(p)

= ([X, Y ]f)(p).

This completes the proof.
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Riemannian Metrics

We have natural way of measuring the length of vectors tangent to a surface S ⊂ Rn,

using the inner product 〈v, w〉 of two vectors tangent to S at a point p of S is simply

the inner product of these vectors in Rn. For abstract differentiable manifolds there

is no ambient space so, we have to define inner product in the tangent space at each

point. The definition of 〈 , 〉 permits us to measure not only the length of the curve

but also volume, angle between two curves and all the other “metric” ideas used in

geometry.

Definition 2.0.1 (Riemannian Metric). A Riemannian Metrics (or Riemannian

structure) on a differentiable manifold M is a correspondence which associates to

each point p of M an inner product <,>p (that is , a symmetric, bilinear, positive-

definite form) on the tangent space TpM

< . >p: TPM × TpM → R

Which varies differentiably with p ∈M .

The last condition means if x : U ⊂ Rn → M is a system of coordinate around

p ∈ M with x(x1, ..., xn) = q ∈ x(U) and ∂
∂xi

(q) = dxq(0, .., 1, ..., 0). Then each

function gij : U → R defined by

gij(x1, ..., xn) =<
∂

∂xi
(q),

∂

∂xj
(q) >(q)

is differentiable.
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The function gij is called the local representation of the Riemannian metric (or

the gij of the metric) in the coordinate system x : U ⊂ Rn → M . A differentiable

manifold with the Riemannian metric will be called a Riemannianmanifold.

Definition 2.0.2. Let M and N be Riemannian manifolds. A diffeomorphism f :

M → N is called an isometry if

< u, v >(p)=< dfp(u), dfp(v) >f(p), for all p ∈M,u, v ∈ TpM

Definition 2.0.3. Let M and N be Riemannian manifolds. A diffeomorphism f :

M → N is a local isometry at p ∈M if there is a neighborhood U ⊂M of p such that

f : U → f(U) is a diffeomorphism satisfying

< u, v >(p)=< dfp(u), dfp(v) >f(p), for all p ∈M,u, v ∈ TpM

Example 2.0.1. The almost trivial example. M = Rn with ∂
∂xi

identified with ei =

(0, . . . , 1, . . . , 0). The metric is given by 〈ei, ej〉 = δij.

Example 2.0.2. M = R2 the local expression of the previous metric in polar coordi-

nate.
∂

∂r
(r, θ) = (cosθ, sinθ) and

∂

∂θ
(r, θ) = (−rsinθ, rcosθ)

gij =

(
1 0

0 r2

)
Example 2.0.3. Let f : Mn → Nn+k be an immersion (that is f is differentiable and

dfp : TpM → Tf(p)M is injective for all p ∈ M . If N has a Riemannian structure, f

induces Riemannian structure on M . Defining,

< u, v >(p)=< dfp(u), dfp(v) >f(p), for all p ∈M,u, v ∈ TpM.

Since, < u, v >p is symmetric, < u, v >p≥ 0 and < u, u >p= 0 =⇒ < dfp(v), dfp(v) >f(p)=

0 =⇒ dfp(v) = 0 (since, dfp is injective ). The metric on M is then called the metric

induced by f , and f is isometric immersion.

In particular, when we have a differentiable function h : Mn+k → Nk and q ∈ N
is a regular value of h (that is , dhp : TPM → Th(p)N is surjective for all p ∈ h−1(q)).

It is known that h−1(q) ⊂ M is a submanifold of M of dimension n; hence, We can

put a Riemannian metric on it induced by the inclusion.
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Example 2.0.4. (The product metric) Let (M1, g1) and (M2, g2) are Riemannian

manifolds, the product M1×M2 has a natural Riemannian metric, the product metric,

defined by

g(X1 +X2, Y1 + Y2) := g1(X1, Y1) + g2(X2, Y2),

where Xi, Yi ∈ Tp(Mi) and T(p,q)(M1 ×M2) = TpM1 ⊕ TqM2 for all (p, q) ∈M1 ×M2.

If (x1, . . . , xn) is a chart on M1 and (xn+1, . . . , xn+m) is a chart on M2, then

(x1, . . . , xn+m) is a chart on M1 ×M2. In these coordinates the local representation

of the product metric, gij, can be written as,

(g1)11 · · · (g1)1n 0 · · · 0
... · · · ...

... · · · ...

(g1)n1 · · · (g1)nn 0 · · · 0

0 · · · 0 (g2)11 · · · (g2)1m

... · · · ...
... · · · ...

0 · · · 0 (g2)m1 · · · (g2)nm


A Riemannian metric allows us to compute the length of curves.

Definition 2.0.4. A differentiable mapping c : I → M of an open interval I ⊂ R
into a differentiable manifold M is called a (parametrized) curve.

Definition 2.0.5. A vector field V along a curve c : I(⊂ R) → M is mapping

V : I → TM that associates to every t ∈ I a tangent vector V (t) ∈ Tc(t)M . V

will be differentiable if the mapping V : I → TM is differentiable (that is for any

differentiable function f on M , the function t→ V (t)f is a differentiable function on

I).

The vector field dc( d
dt

), denoted by dc
dt

, is called the velocity field ( or tangent

vector field). A vector field along c can not necessarily be extended to a vector field

on an open set of M .

Definition 2.0.6. let M be a Riemannian manifold and c : I(⊂ R)→M be a curve.

The restriction of a curve c to closed interval [a, b] ⊂ I is called a segment. We

define the length of a segment by

l ba(c) =

b∫
a

〈
dc

dt
,
dc

dt

〉1/2

dt
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Definition 2.0.7. Let M be a differentiable manifold. A family of open sets Vα ⊂M

with
⋃
α Vα = M is said to be locally finite if every point p ∈ M has a neighborhood

W such that W ∩ Vα 6= φ for only a finite number of indices.

Definition 2.0.8 (Differential partition of unity). We say that a family fα of differ-

entiable functions fα : M → R is a Differential partition of unity if:

1. For all α, fα ≥ 0 and the support of fα is contained in a coordinate neighborhood

Vα = xα(Uα) of a differentiable structure {(Uβ, xβ)} of M .

2. The family {Vα} is locally finite.

3.
∑

α fα(p) = 1, for all p ∈ M (This condition make sense because for each p,

fα(p) 6= 0 only for finite number of indices).

We say that the partition of unity {fα} is subordinate to the covering {Vα}.

Theorem 2.0.1. A differentiable manifold M has a Differential partition of unity if

and only if every connected component of M is Hausdorff and has a countable basis.

Proposition 2.0.1. A differentiable manifold M(Hausdorff with countable basis) has

a Riemannian metric.

Proof. Let {fα} be a differentiable partition of unity on M subordinate to a covering

{Vα} of M by coordinate neighborhood. We can define a Riemannian metric < , >α=

gα on each V α induce by the system of local coordinate, whose local representation

is (gαij) = δi,j. Let us define

< u, v >p=
∑
α

fα(p) < u, v >α
p ∀p ∈M,u, v ∈ TPM.

since, the family of supports of fα is locally finite the above sum is finite. Hence

< , >p is well defined and smooth. It is bilinear and symmetric at each point. Since,

fα ≥ 0 and
∑

α fα = 1 it follows that < , >p is positive definite. So, this defines a

Riemannian metric on M .

Riemannian metric permits us to define a notion of volume element on a given

oriented manifold Mn.

Let p ∈M and let x : U ⊂ Rn →M be a parametrization about p which belongs

to a family of parametrization consists with the orientation of M(We say that such

27



CHAPTER 2. RIEMANNIAN METRICS

parametrization are positive). Consider a positive orthonormal basis {e1, ..., en} of

TpM and write Xi(p) = ∂
∂xi

(p) in the basis ei, Xi(p) =
∑

i,j ai,jeJ . Then

gik(p) =< Xi, Xk > (p) =
∑
jl

aijakl < ej, el >=
∑
j

aijakj

Since the volume vol(X1(p), ..., Xn(p)) of the parallelepiped formed by the vectors

(X1(p), ..., Xn(p) in TpM is equal to vol(e1, ..., en) = 1 multiplied by the determinant

of the matrix (ai,j), we obtain

vol(X1(p), ..., Xn(p)) = det(ai,j) =
√
det(gi,j)(p).

If y : V ⊂ Rn → M is another positive parametrization about p, with Yi(p) = ∂
∂yi

(p)

and hi,j =< Yi, Yj > (p), we obtain√
det(gi,j)(p) = vol(X1(p), ..., Xn(p))

= Jvol(Y1(p), ..., Yn(p)) = J
√
det(hi,j(p))

where J = det( ∂yi
∂xj

) = det(dy−1 ◦ dx)(p) > 0 is the determinant of the derivative of

the change of coordinates.

Now let R ⊂ M be a region (an open and connected), whose closer is compact.

WE suppose that R is contained in a coordinate neighborhood x(U) with a positive

parametrization x : U →M , and that the boundary of x−1(R) ⊂ U has measure zero

in Rn.

Let us define the volume vol(R) of R by the integral in Rn

vol(R) =

∫
x−1(R)

√
det(gi,j)dx1...dxn.

The expression is well-defined. Because if R is contained in another coordinate neigh-

borhood y(V ) with a positive parametrization y : V ⊂ Rn →M , we obtain from the

change of variable theorem for multiple integral, we have∫
x−1(R)

√
det(gi,j)dx1...dxn =

∫
y−1(R)

√
det(hi,j)dy1...dyn = vol(R)

which proves that the definition of volume does not depend on the choice of the
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coordinate system. The hypothesis of the orientability of M guarantee that vol(R)

does not change sign.

The integrand in the formula for the volume expression that is,√
det(gi,j)dx1...dxn

is a positive differential form of degree n, which is called a volume element ν on M .

To define the the volume of a compact region R, which is not contained in a

coordinate neighborhood it is necessary to consider a partition of unity φi subordinate

to a (finite) covering of R consisting of coordinate neighbourhoods x(Ui) and to take

vol(R) =
∑
i

∫
x−1(R)

φiν.

The above expression does not depend on the choice of the partition of unity. The

existence of a globally defined positive differential form of degree n (volume element)

leads to a notion of volume on a differentiable manifold. A Riemannian metric notion

is the only on of the ways through which a volume element can be obtained.
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Connections

If X and Y are vector fields in Euclidean space, we can define the directional derivative

∇XY of Y along X. This definition, however, no longer holds in a general manifold,

because let S ⊂ R3 be a surface and let c : I → S be a parametrized curve in

S. The vector dV
dt

(t), t ∈ I, does not in general belongs to the tangent space of S.

The concept of differentiating a vector field is not a ”intrinsic” geometric notion on

S. To overcome this problem we consider, instead of the usual derivative dV
dt

(t), the

orthogonal projection of dV
dt

(t) on Tc(t)S. This orthogonally projected vector is called

the covarient derivative of V and denoted by DV
dt

(t). The covarient derivative of V is

the derivative of V as seen from the ”viewpoint of S”.

3.1 Affine Connection

Let us indicate by X(M) the set of all vector field of class C∞ on M and by D(M)

the ring of real-valued functions of class C∞ defined on M .

Definition 3.1.1 (Affine Connection). An Affine connection ∇ on a differentiable

manifold M is a mapping

∇ : X(M)× X(M)→ X(M)

which is denoted by (X, Y )→ ∇XY and which satisfies the following properties :

1. ∇fX+gYZ = f∇XZ + g∇YZ.

2. ∇X(Y + Z) = ∇XY +∇XZ.
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3. ∇X(fY ) = f∇XY +X(f)Y,

in which X, Y, Z ∈ X(M) and f, g ∈ D(M)

Proposition 3.1.1. Let ∇ be an affine connection on M , X, Y ∈ X(M), p ∈M, then

(∇XY )p ∈ TpM depends only on Xp and the value of Y along a curve tangent to X

at p.

Proof. Let x : U(⊂ Rn) → M be a system of coordinate at p, and X =
∑
i

xiXi ,

Y =
∑
j

yjYj, where Xi = ∂
∂xi

. Now,

∇XY = ∇X(
∑
j

yjXj) =
∑
j

yj∇XXj +
∑
j

X(yj)Xj

=
∑
j

yj∇∑
i xiXi

Xj +
∑
j

(
∑
i

xiXj(yj))Xj

=
∑
i,j

xi, yj∇XiXj +
∑
i,j

xiXi(yj)Xj

Let ∇XiXj =
∑
k

Γki,jXk, Γki,j are differentiable function defined on U in a coordinate

system (U, x). So we have

∇XY =
∑
k

(
∑
i,j

xiyjΓ
k
i,j +X(yk))Xk (3.1)

So, ∇XY (p) depends only on xi(p), yj(p) and X(yk)(p). However xi(p), yj(p) depends

on Xp, Yp. and X(yk)(p) = d
dt
yk(c(t))|t=0, depend on the the value of Yk along the

curve c whose tangent vector at p = c(0) is Xp.

Proposition 3.1.2. Let M be a differentiable manifold with an affine connection ∇.

There exists a unique correspondence which associates to a vector field V along the

differentiable curve c : I → M another vector field DV
dt

along c, called the covariant

derivative of V along c, such that:

1. D
dt

(V +W ) = DV
dt

+ DW
dt

2. D
dt

(fV ) = df
dt
V + f DV

dt
, where W is a vector field along c and f is differentiable

function on I.

3. If V is induced by a another vector field Y ∈ X(M), i.e., V (t) = Y (c(t)), then
DV
dt

= ∇ dc
dt
Y .
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Proof. Let us suppose initially that there exists a correspondence satisfying (1), (2)

and (3). Let X : U ⊂ Rn → M be a system of coordinate with c(I) ∩ x(U) 6= φ

and let (x1(t), ..., xn(t)) be the local expression of c(t), t ∈ I. Let Xi = ∂
∂xi

. Then we

can express the field V locally as V =
∑
j

vjXj, j = 1, ..., n, where vj = vj(t) and

Xj = Xj(c(t)). By (1) and (2) we have

DV

dt
=
∑
j

dvj

dt
Xj +

∑
j

vj
DXj

dt
.

By (3) of Definition 3.1.1

DXj

dt
= ∇dc/dtXj = ∇

(
∑ dxi

dt
Xi)
Xj =

∑
i

dxi
dt
∇XiXj, i, j = 1, ..., n

Therefore,
DV

dt
=
∑
j

dvJ

dt
Xj +

∑
i,j

dxi
dt
vj∇xiXj. (3.2)

The expression shows that if there is a correspondence satisfying the condition of

proposition 2.2, then such a correspondence is unique.

To show the existence , define DV
dt

in X(U) by 3.2. DV
dt

possesses the desire

properties. If y(W ) is another coordinate neighborhood, with y(W ) ∩ x(U) 6= φ and

we define DV
dt

in y(W ) by 3.2 the definition agree in y(W ) ∩ x(U), by the uniqueness

of DV
dt

in x(U). It follows that the definition can be extended over all of M , and this

conclude the proof.

Definition 3.1.2. Let M be a differentiable manifold with an affine connection ∇. A

vector field V along a curve c : I →M is called parallel when DV
dt

= 0, for all t ∈ I.

Proposition 3.1.3. Let M be a differentiable manifold with an affine connection ∇.

LEt c : I → M be a differentiable curve in M and let V0 be a vector tangent to M

at c(t0), t0 ∈ I(i.e., V0 ∈ Tc(t0)M). Then there exists a unique parallel vector field V

along c, such that V (t0) = V0 ,(V (t) is called the parallel transport of V (t0) along c).

Proof. Suppose that the theorem was proved for the case in which c(I) is contained

in a local neighborhood. By compactness, for any t1 ∈ I, the segment c([t0, t1]) ⊂M

can be covered be a finite number of coordinate neighborhoods, in each of which V
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can be defined, by hypothesis. From uniqueness, the definition coincide when the

intersections are not empty, thus allowing the definition of V along all of [t0, t1].

We have only, therefore, to prove the theorem when c(I) is contained in a co-

ordinate neighborhood x(U) of a system of coordinates x : U ⊂ Rn → M . Let

x−1(c(t)) = (x1(t), . . . , xn(t)) be the local expression for c(t) and let V0 =
∑

j v
j
0Xj,

where Xj = ∂
∂xj

(c(t0)).

Suppose that there exists a vector field V in X(U) which is parallel along c with

V (t0) = V0. Then V =
∑
vjXj satisfies

0 =
DV

dt
=
∑
j

dvj

dt
Xj +

∑
i,j

dxi
dt
vj∇XiXj.

Putting ∇Xj
Xi

=
∑

k ΓkijXk, and replacing j with k in the first sum, We obtain,

DV

dt
=
∑
k

{
dvk

dt
+
∑
i,j

vj
dxi
dt

Γkij

}
= 0

The system of n differential equation in vk(t),

dvk

dt
+
∑
i,j

vj
dxi
dt

Γkij = 0, k = 1, . . . , n, (3.3)

possesses a unique solution satisfying the initial conditions vk(t0) = vk0 . It then follows

that, if V exists, it is unique. Moreover, since the system is linear, any solution is

defined for all t ∈ I, which then proves the existence(and uniqueness) of V with the

desired properties.

3.2 Riemannian Connection

Definition 3.2.1. Let M be a differentiable manifold with an affine connection ∇
and a Riemannian metric 〈 , 〉. A connection is said to be compatible with the metric

〈 , 〉, when for any smooth curve c and any pair of parallel vector fields P and P
′

along c, we have
〈
P, P

′〉
=constant.

Proposition 3.2.1. Let M be a differentiable manifold with an affine connection ∇
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is compatible with the metric if and only if for any vector fields V and W along the

differentiable curve c : I →M we have

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉, t ∈ I (3.4)

Proof. Let V and W be two parallel vector field along c then DV
dt

= DW
dt

= 0. Then
d
dt
〈V,W 〉 = 0, so 〈V,W 〉 =constant. Hence ∇ is compatible with the 〈 , 〉.

To prove converse let us choose an orthonormal basis {P1(t0), . . . , Pn(t0)} of Tx(t0)M, t0 ∈
I. Using Proposition 3.1.3, we acn extend the vectors Pi(t0), i = 1, . . . , n, along c by

parallel transport. Because ∇ is compatible with the metric,{P1(t), . . . , Pn(t)}is an

orthonormal basis of Tc(t)M , for any t ∈ I. Therefore, We can write

V =
∑
i

viPi, W =
∑
i

wiPi, i = 1, . . . , n.

where viand wi are differentiable functions on I. It follows that

DV

dt
=
∑
i

dvi

dt
Pi,

DW

dt
=
∑
i

dwi

dt
Pi.

Therefore,

〈DV
dt

,W 〉+ 〈V, DW
dt
〉 =

∑
i

{
dvi

dt
wi +

dW i

dt
vi
}

=
d

dt

{∑
i

viwi
}

=
d

dt
〈V,W 〉.

Proposition 3.2.2. A connection ∇ on a Riemannian manifold M is compatible

with the metric if and only if

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, X, Y, Z ∈ X(M) (3.5)

Proof. Let, ∇ is compatible with the metric. Let p ∈ M and let c : I → M be a
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differentiable curve with c(t0) = p, t0 ∈ I, and with dc
dt
|t=0 = X(p). Then

X(p)〈Y, Z〉 =
d

dt
〈Y, Z〉|t=to

= 〈∇X(p)Y, Z〉p + 〈Y,∇X(p)Z〉p

So,

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, X, Y, Z ∈ X(M).

Converse automatically follows from the defination.

Definition 3.2.2. An affine connection ∇ on smooth manifold M is said to be sym-

metric when ∇xY −∇YX = [X, Y ] for all X, Y ∈ X(M).

Remark. In a coordinate system (U, x) the fact that ∇ is symmetric implies that

for all i, j = 1, ..., n,

∇XiXj −∇XjXi = [Xi, Xj] = 0, Xi =
∂

∂xi
,

So, Γki,j = Γkj,i

Definition 3.2.3. (Riemannian Connection)

Given a Riemannian manifold M , with the metric g. An affine connection ∇ on M

is called a Riemannian (or Levi-Civita) connection on M if ∇ satisfies the following

conditions:

1. ∇ is symmetric.

2. ∇ is compatible with the Riemannian metric.

Theorem 3.2.1 (Levi-Civita). Given a Riemannian manifold M , there exists a

unique affine connection ∇ on M satisfying the following conditions:

1. ∇ is symmetric.

2. ∇ is compatible with the Riemannian metric.

Proof. Suppose initially the existence of such a ∇. Then

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇X , Z〉
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Y 〈Z,X〉 = 〈∇YZ,X〉+ 〈Z,∇YX〉

Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇zY 〉

adding first two equation and subtracting the last equation, we have, using the sym-

metry of ∇, we get,

X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

= 〈∇XY, Z〉+ 〈Y,∇X , Z〉+ 〈∇YZ,X〉+ 〈Z,∇YX〉

− 〈∇ZX, Y 〉 − 〈X,∇zY 〉

= 〈∇XY, Z〉 − 〈∇ZX, Y 〉+ 〈∇YZ,X〉 − 〈∇ZY,X〉+ 〈∇XY, Z〉 − 〈∇YX,Z〉

+ 〈Z,∇YX〉+ 〈Z,∇YX〉

Hence,

〈Z,∇YX〉

=
1

2

{
X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉 − 〈[X,Z], Y 〉

− 〈[Y, Z], X〉 − 〈[X, Y ], Z〉
}

Suppose ∇1 and ∇2 are Riemannian connections. Since the right-hand side of the

previous equation is independent of the connection, we have

〈Z,∇1
YX −∇2

YX〉 = 0

Hence, ∇1 = ∇2

To prove existence, define ∇ by

〈Z,∇YX〉 =
1

2

{
X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉 − 〈[X,Z], Y 〉

− 〈[Y, Z], X〉 − 〈[X, Y ], Z〉
}

(3.6)

It suffices to show that such ∇ exists in each coordinate chart since, the uniqueness

guarantees that connections agree if the charts overlap. Let (U, x), x = (x1, . . . , xn),
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be a chart. Using 3.6 and [Xi, Xj] = 0, where Xi = ∂
∂xi

. We have

〈∇XiXj, Xk〉 =
1

2

(
Xi〈Xj, Xk〉+Xj〈Xk, Xi〉 −Xk〈Xi, Xj〉

)
(3.7)

This is the same as

Γlijglk =
1

2
(Xigjk +Xjgki −Xkgij).

Let (gij) be the inverse matrix of (gij), i.e. glkg
km = δlm. Multiplying both sides of

the above equality by gkm and summing over k = 1, 2, . . . , n, we get

Γmij =
1

2

∑
k

(Xigjk +Xjgki −Xkgij)g
km. (3.8)

This formula defines ∇ in U . Furthermore, from (3.8) we get Γmij = Γmji , i.e. ∇ is

symmetric. And it is compatible with the metric, since from 3.6 we get

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, X, Y, Z ∈ X(M).

This completes the proof.

Remark: For the Euclidean space Rn, we have Γkij = 0. And covarient derivative

have this expression

DV

dt
=
∑
k

{
dvk

dt
+

k∑
i,j

Γkijv
j dxi
dt

}
Xk.

Hence, in Euclidean space covarient derivative coincides with the usual derivative.
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Chapter 4

Geodesics

In this chapter we will discuss about the curve geodesic as a curve with zero acceler-

ation. And a geodesic minimizes arc length for points “sufficiently close”.

4.1 The geodesic flow

Definition 4.1.1. Let M be a Riemannian manifold, together with its Riemannian

connection. A parametrized curve γ : I → M is a geodesic at t0 ∈ I if D
dt

(dγ
dt

) = 0

at the point t0; if γ is a geodesic at t, for all t ∈ I, we say that γ is a geodesic. If

[a, b] ⊂ I and γ : I →M is a geodesic, the restriction of γ to [a, b] is called a geodesics

segment joining γ(a) to γ(b).

If γ : I →M is a geodesic, then

d

dt
〈dγ
dt
,
dγ

dt
〉 = 〈D

dt

dγ

dt
,
dγ

dt
〉+ 〈dγ

dt
,
D

dt

dγ

dt
〉 = 0

that is, the length of the tangent vector dγ
dt

is constant. We assume, from now on ,

that |dγ
dt
| = c 6= 0, that is, we exclude the geoidesic which reduce to a points. The arc

length s of γ, starting from a fixed origin, say t = t0, is given by

s(t) =

∫ t

t0

∣∣dγ
dt

∣∣dt = c(t− t0).

Therefore, the parameter of the geodesic is proportional to arc length. When the pa-

rameter is actually arc length, that is, c = 1, we say that the geodesic γ is normalized.

38



CHAPTER 4. GEODESICS

Now we are going to determine the local equation satisfied by a geodesic γ in a

system of coordinates (U, x) about γ(t0). In U , a curve γ

γ(t) = (x1(t), . . . , xn(t)).

will be geodesic if and only if

0 =
D

dt
(
dγ

dt
) =

∑
k

(
d2xk
dt2

+
∑
i,j

Γkij
dxi
dt

dxj
dt

)
∂

∂xk
.

Hence the second order system

d2xk
dt2

+
∑
i,j

Γkij
dxi
dt

dxj
dt

= 0 k = 1, . . . , n, (4.1)

yields the desire equation.

To study the system (4.1), it is convenient to consider the tangent bundle TM ,

which will also be useful in future situation.

TM is the set of pairs (q, v), q ∈ M, v ∈ TqM . If (U, x) is system of coordinates

on M , then any vector in TqM , q ∈ x(U), can be written as
∑n

i=1 yi
∂
∂xi

. Taking

(x1, . . . , xn, y1. . . . , yn) as a coordinates of (q, v) in TU

Observe that TU = U × Rn, that is, the tangent bundle is locally a product. In

addition, the canonical projection π : TM →M given by π(q, v) = q is differentiable.

Any differentiable curve t → γ(t) in M determines a curve t → (γ(t), dγ
dt

(t)) in

TM . If γ is a geodesic then, on TU , the curve

t→ (x1(t), . . . , xn(t),
dx1(t)

dt
, . . . ,

dxn(t)

dt
)

satisfies the system
dxk
dt

= yk
dyk
dt

= −
∑

i,j Γkijyiyj k = 1, . . . , n (4.2)

in terms of coordinates (x1, . . . , xn, y1, . . . , yn) on TU . Therefore the second order

system (4.11) on U is equivalent to the first order system (4.2) on TU .

Theorem 4.1.1. Let X be a differentiable vector field on the open set V in the
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manifold M , and let p ∈ M . Then there exists an open set V0 ⊂ V , p ∈ V0, a

number δ > 0, and a differentiable mapping φ : (−δ, δ)× V0 → V such that the curve

t → φ(t, q), t ∈ (−δ, δ), q ∈ V0, is the unique trajectory of X which at the instant

t = 0 passes through the point q, for every q ∈ V0

The mapping φt : V0 → V is given by φt(q) = φ(t, q) is called the flow of X on V .

Lemma 4.1.1. There exists a unique vector field G on TM whose trajectories are of

the form t→ (γ(t), γ
′
(t)), where γ is a geodesic on M .

Proof. We shall first prove the uniqueness of G, supposing its existence. consider

a system of coordinates (U, x) on M . From the hypothesis, the trajectories of G

on TU are given by t → (γ(t), γ
′
(t)) where γ is a geodesic. It follows that t →

(γ(t), γ
′
(t)) where γ is a solution of the system of differentiable equation (4.2). From

the uniqueness of the trajectories of such system, we conclude that if G exists, then

it is unique.

To prove the existence of G, define it locally by the system (4.2). Using the

uniqueness, we conclude that G is well-defined on TM .

Definition 4.1.2. The vector field G defined above is called the geodesic field on TM

and its flow is called the geodesic flow on TM .

Applying Theorem 4.1.1 to the geodesic field G at teh point (p, 0) ∈ TpM , we

obtain the following fact:

For each p ∈ M there exists an open set U in TU , where (U, x) is a system of

coordinates at p and (p, 0) ∈ U , a number δ > 0 and a C∞ mapping, φ : (−δ, δ)×U →
TU , such that t → φ(t, q, v) is a unique trajectory of G which satisfies the initial

condition φ(0, q, v) = (q, v), for each (q, v) ∈ U .

It is possible to choose U in the form

U = {(q, v) ∈ TU : q ∈ V and v ∈ TqM with |v| < ε1},

where V ⊂ U is a neighborhood of p ∈M . Putting γ = π ◦ φ, where π : TM →M is

the canonical projection, we can describe the previous result in the following way.

Proposition 4.1.1. Given p ∈M , there exists an open set V ⊂M , p ∈ V , numbers

δ > 0and ε1 > 0 and a C∞ mapping

γ : (−δ, δ)× U →M, U = {(q, v) ∈ TU : q ∈ V and v ∈ TqM with |v| < ε1}
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such that the curve t→ γ(t, q, v), t ∈ (−δ, δ) is the unique geodesic of M which, at the

instant t = 0, passes through q with velocity v, for each q ∈ V and for each v ∈ TqM
with |v| < ε1.

Proposition 4.1.1. asserts that if |v| < ε1, the geodesic γ(t, q, v) exists in an interval

(δ, δ) and is unique. Actually, it is possible to increase the velocity of a geodesic by

decreasing its interval of definition, or vice-versa. This follows from the following

lemma.

Lemma 4.1.2. (Homogeneity of a geodesic.)

If the geodesic γ(t, q, v) is defined on the interval (δ, δ), then the geodesic γ(t, q, av), a ∈
R, a > 0, is defined on the interval (− δ

a
, δ
a
) and

γ(t, q, av) = γ(at, q, v).

Proof. Let, h : (− δ
a
, δ
a
) → M be a curve given by h(t) = γ(at, q, v). Then h(0) = q

and dh
dt

(0) = av. In addition, since h
′
(t) = aγ

′
(at, q, v) In addition, since h

′
(t) =

aγ
′
(at, q, v),

D

dt
(
dh

dt
) = ∇h′ (t)h

′
(t) = a2∇γ′ (at,q,v)γ

′
(at, q, v) = 0

where, for the 1st equality, we extend h
′
(t) to a neighborhood of h(t) in M . Therefore,

h is a geodesic passing through q with velocity av at instant t = 0. By the uniqueness,

h(t) = γ(at, q, v) = γ(t, q, av).

Proposition 4.1.1, together with this lemma of homogeneity, permits us to make

the interval of definition of geodesic uniformly large in a neighborhood of p. More

precisely, we have the following fact.

Proposition 4.1.2. Given p ∈M , there exists an open set V ⊂M , p ∈ V , a numbers

ε > 0 and a C∞ mapping

γ : (−2, 2)× U →M, U = {(q, w) ∈ TM : q ∈ V and w ∈ TqM with |w| < ε}

such that the curve t → γ(t, q, v), t ∈ (−2, 2) is the unique geodesic of M which,

at the instant t = 0, passes through q with velocity w, for each q ∈ V and for each
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w ∈ TqM with |w| < ε1.

Proof. The geodesic γ(t, q, v) of Proposition 4.1.1 is defined for |t| < δ and for |v| < ε1.

From the lemma of homogenicity, γ(t, q, δv
2

) is defined for |t| < 2. Taking ε < δε1
2

, we

obtain that the geodesic γ(t, q, w) is defined for |t| < 2 and |w| < ε.

By analogous argument, we can make the velocity of geodesic uniformly large

in a neighborhood of p. Proposition 4.1.2. permits us to introduce the concept of

exponential map in the following manner.

Definition 4.1.3. Let p ∈ M and let U ⊂ TM be an open set. Then the map

exp : U →M is given by the above proposition

exp(q, v) = γ(1, q, v), (q, v) ∈ U

is called the exponential map on U , where γ is a geodesic. We define, expq : Bε(0) ⊂
TqM →M by expq(v) = exp(q, v).

Where Bε(0) an open ball with center at origin 0 of TqM and of radius ε.

Geometrically, expq(v) is the point of M obtain by going out the length equal to

|v|, starting from q, along a geodesic which passes through q with velocity equal to
v
|v| .

Proposition 4.1.3. Given q ∈ M , there exists an ε > 0 such that expq : Bε(0) ⊂
TqM →M is diffeomorphism of Bε(0) onto an open subset of M .

Proof. Let us calculate d(expq)0 :

d(expq)0(v) =
d

dt
(expq(tv))|t=0

=
d

dt
(γ(1, q, tv))|t=0

=
d

dt
(γ(1, q, v))|t=0 = v

Hence, d(expq)0 is the identity of TqM , and it follows form the inverse function the-

orem that expq is a local diffeomorphism on a neighborhood of 0.
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Example 4.1.1. Let M = Rn, since the covarient derivative coincide with the usual

derivative, the geodesics are straight lines parametrized proportionally to arc length.

The exponential map is clearly the identity map.

4.2 Minimizing Properties of Geodesics

Definition 4.2.1. A segment of the geodesic γ : [a, b] → M is called minimizing if

l(γ) ≤ l(c), where l( ) denotes the length of the curve and c is an arbitrary piecewise

differentiable curve joining γ(a) and γ(b)

In the proof of Gauss lemma, we shall use the following terminology.

Definition 4.2.2. Let A be a connected set in R2, U ⊂ A ⊂ U , U open, such that the

boundary ∂A of A is piecewise differentiable curve with vertex angles different from π.

A parametrized surface in M is a differentiable mapping s : A ⊂ R2 → M . (Observe

that to say that s is differentiable on A means that there exists an open set U ⊃ A

to which s can be extended differentiably. The condition on the vertex angles of A is

necessary to ensure that the differential of s does not depend on the given extension.)

A vector field V along s is a mapping which associates to each q ∈ A a vector

V (q) ∈ Ts(q)M , and which is differentiable in the following sense: if f is a differentiable

function on M ,then the mapping q → V (q)f is differentiable.

Let (u, v) be cartesian coordinates on R2 For v0 fixed, the mapping u→ s(u, v0),

where u belongs to a connected component of A ∩ v = v0, is a curve in M , and

ds( ∂
∂u

), which we indicate by ∂s
∂u

is a vector field along this curve. This defines ∂s
∂u

for all (u, v) ∈ A and ∂s
∂u

is a vector field along s. The vector field ∂s
∂u

, is defined

analogously.

If V is a vector field along s : A → M , let us define the covariant derivative
DV
∂u

and DV
∂v

in the following way. DV
∂u

(u, v0) is the covariant derivative along the

curve u→ s(u, v0) of the restriction of V to this curve. This defines DV
∂u

(u, v) for all

(u, v) ∈ A. DV
∂u

is defined analogously.

Lemma 4.2.1. (symmetry)

If M is a differentiable manifold with a symmetric connection and s : A → M is a

parametrized surface then:
D

∂u

∂s

∂v
=
D

∂v

∂s

∂u
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Lemma 4.2.2. (Gauss)

Let p ∈ M and let v ∈ TpM such that exppv is defined. Let w ∈ TpM ≈ Tv(TpM).

Then

〈(dexpp)v(v), (dexpp)v(w)〉 = 〈v, w〉

Proof. First we shall prove that (dexpq)v = v. Let us consider a curve α : I → TpM

st. α(0) = v, α
′
(0) = v ∈ Tv(TpM) ∼= TpM , so α(t) = v + tv. Now,

(dexpp)v(v) =
d

dt
(expp ◦ α(t))|t=0

=
d

dt
(expp(v + tv))|t=0

=
d

dt
(γ(1, p, v + tv))|t=0

=
d

dt
(γ(1 + t, p, v))|t=0

=
d

dt
(γ(s, p, v))|s=1 = v

since, velocity of γ is constant. Now, let w = wT +wN , where wT is the parallel to v

and wN is normal to v, so, wT = av, a ∈ R.

〈(dexpp)v(v), (dexpp)v(w)〉 = 〈(dexpp)v(v), (dexpp)v(wT )〉

+ 〈(dexpp)v(v), (dexpp)v(wN)〉 (4.2)

and

〈(dexpp)v(v), (dexpp)v(wT )〉 = a〈(dexpp)v(v), (dexpp)v(wT )〉

= a〈v, v〉 = 〈v, wT 〉

〈(dexpp)v(v), (dexpp)v(wT )〉 = 〈v, wT 〉 (4.3)

Let, v(s) is a curve in TpM with v(0) = v V
′
(0) = wN and |v(s) = constant.

Since, exppv is defined, there exists ε > 0 such that expp(u) is defined for u =

tv(s), 0 ≤ t ≤ 1, −ε < s < ε. Consider a parametrized surface f : A → M ,

A = {(t, s) : 0 ≤ t ≤ 1,−ε < s < ε} given by f(t, s) = expptv(s), the curve

44



CHAPTER 4. GEODESICS

t→ f(t, s0) are geodesics

Now, ∂f
∂s

(1, 0) is the tangent vector to the curve s → f(1, s) at s = 0 (By defn.).

Hence,
∂f

∂s
(1, 0) =

d

ds
f(1, s)|s=0 =

d

ds
(expp(v(s)))|s=0

and

(dexpp)v(wN) = (dexpp)v(0)(wN) =
d

ds
(expp(v(s)))|s=0

Hence,
∂f

∂s
(1, 0) = (dexpp)v(wN).

Similarly we can get,
∂f

∂t
(1, 0) = (dexpp)v(v).

Now,

〈∂f
∂s
,
∂f

∂t
〉(1, 0) = 〈(dexpp)v(wN), (dexpp)v(v)〉

In addition for all (t, s) we have

∂

∂t
〈∂f
∂s
,
∂f

∂t
〉 = 〈D

dt

∂f

∂s
,
∂f

∂t
〉+ 〈∂f

∂s
,
D

dt

∂f

∂t
〉

The last term of the equation is zero, since ∂f
∂t

is the tangent vector to a geodesic.

From the symmetry lemma the 1st term of the sum transformed into

〈D
dt

∂f

∂s
,
∂f

∂t
〉 = 〈D

ds

∂f

∂t
,
∂f

∂t
〉 =

1

2

∂

∂s
〈∂f
∂t
,
∂f

∂t
〉 = 0.

So, 〈∂f
∂t
, ∂f
∂t
〉 is independent of t. Now,

lim
t→0

∂f

∂s
(t, 0) = lim

t→0
(dexpp)tv(twN) = 0 (4.4)

Since, 〈∂f
∂s
, ∂f
∂t
〉 is independent of t. So, from 4.4

〈∂f
∂s
,
∂f

∂t
〉(1, 0) = 〈∂f

∂s
,
∂f

∂t
〉(0.0) = 0

So, form 4.2

〈(dexpp)v(v), (dexpp)v(w)〉 = 〈v, wT 〉+ 0 = 〈v, wT 〉+ 〈v, wN〉 = 〈v, w〉.
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This completes the proof.

If expp is a diffeomorphism of a neighborhood V of the origin in in TpM , exppV =

U is called a normal neighborhood of p. If Bε(0) is such that Bε(0) ⊂ V , we call

exppBε(0) = Bε(p) the normal ball (or geodesic ball) with center p and radius ε. From

the Gauss lemma, the boundary of a normal ball is a hypersurface (submanifold of

codimension 1) in M orthogonal to the geodesics that start from 4, it is denoted by

Sε(p) and called the normal sphere (or geodesic sphere) at 4. The geodesics in Bε(p)

that begin at p are referred to as radial geodesics.

We now show that geodesics locally minimize the arc length. More precisely, we

have the following fact.

Proposition 4.2.1. Let p ∈M , U a normal neighborhood of p, and B ⊂ U a normal

ball of center p. Let γ : [0, 1]→ B a geodesic segment with γ(0) = p. If c : [0, 1]→M

is any piecewise differentiable curve joining γ(0) to γ(1) then l(γ) ≤ l(c) and if

equality holds then γ([0, 1]) = c([0, 1]).

It should be noted that the proposition above is not global. If we consider a

sufficiently large arc of a geodesic it can cease minimizing the arc length after awhile.

For example the geodesics on the sphere which start at a point p are no longer

minimizing after they pass through the antipode of p.
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Curvature

In this chapter we introduce the Riemann curvature, sectional and the Ricci and

scalar curvature of a Riemannian manifold. Riemann curvature intuitively measures

how much a Riemannian manifold deviates from being Euclidean.

5.1 Curvature

Definition 5.1.1 (Curvature). The curvature R of a Riemannian manifold M is

a correspondence that associates to every pair X, Y ∈ X(M) a mapping R(X, Y ) :

X(M)→ X(M) given by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, Z ∈ X(M),

where ∇ is the Riemannian connection of M .

Observe that if M = Rn, then R(X, Y )Z = 0 for all X, Y, Z ∈ X(Rn). In fact,

if the vector field Z is given by Z = (z1, . . . , zn), with the components of Z coming

from the natural coordinates of Rn, since for Rn all Γkij = 0, we obtain

∇XZ = (Xz1, . . . , Xzn),

hence

∇Y∇XZ = (Y Xz1, . . . , Y Xzn),
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which implies that

∇X∇YZ −∇Y∇XZ = ([X, Y ]z1, . . . , [X, Y ]zn) = ∇[x,y]Z

So,

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[x,y]Z = 0.

We are able to think of R as a way of measuring how much M deviates from being

Euclidean.

If we consider a system of coordinates around p ∈ M , and we have [Xi, Xj] = 0,

and we obtain

R(Xi, Xj)Xk = (∇Xj∇Xi −∇Xi∇Xi)Xk

from this we can say that, the curvature measures the non-commutativity of the

covarient derivative.

Proposition 5.1.1. The curvature R of a Riemannian manifold has the following

properties.

(1) R is bilinear in X(M)× X(M), that is,

R(fX1 + gX2, Y1) = fR(X1, Y1) + gR(X2, Y1)

R(X1, fY1 + gY2) = fR(X1, Y1) + gR(X2, Y2)

where f, g ∈ D(M), and X1, X2, Y1, Y2 ∈ X(M)

(2) For any X, Y ∈ X(M), the curvature operator R(X, Y ) : X(M)→ X(M) is linear,

that is,

R(X, Y )(Z +W ) = R(X, Y )Z +R(X, Y )W.

R(X, Y )fZ = fR(X, Y )Z

Proposition 5.1.2. (Bianchi Identity)

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Proof. Its follows directly form the definition of Riemannian curvature and the sym-

metry of the Riemannian connection.

From now on we shall write 〈R(X, Y )Z, T 〉 = (X, Y, Z, T ).
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Proposition 5.1.3. (1) (X, Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0

(2) (X, Y, Z, T ) = −(Y,X,Z, T )

(3) (X, Y, Z, T ) = −(X, Y, T, Z)

(4) (X, Y, Z, T ) = (Z, T,X, Y ).

Now, let us consider a coordinate system (U, x) at the point p ∈M and ∂
∂xi

= Xi.

Then,

R(Xi, Xj)Xk =
∑
l

Rl
ijkXl.

Thus Rl
ijk are the components of the curvature R in (U, x). If

X =
∑
i

uiXi, Y =
∑
j

vjXj, Z =
∑
k

wkXk,

we obtain from the linearity of R,

R(X, Y )Z =
∑
i,j,k,l

Rl
ijku

ivjwkXl.

To express Rl
ijk in term of the coefficients γkij of the Riemannian connection, we have,

R(Xi, Xj)Xk = ∇Xj∇XiXk −∇Xi∇XjXk

= ∇Xj(
∑
l

ΓlikXl)−∇Xi(
∑
l

ΓljkXl),

Then By direct calculation we get,

Rs
ijk =

∑
l

Γlikγ
s
jl −

∑
l

Γljkγ
s
il +

∂

∂xj
Γiks−

∂

∂xi
Γsjk.

Now,

〈R(XiXj)Xk, Xs〉 =
∑
l

Rl
ijkgls := Rijks,

We can write the identities of the Proposition 5.1.3. as

Rijks +Rjkis +Rkijs = 0

Rijks = −Rjiks
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Rijks = −Rijsk

Rijks = Rksij.

5.2 Sectional curvature

let V be a real vector space (of dimension at least 2) equipped with an inner-product

〈 , 〉, for each x, y ∈ V denote the area of the parallelogram determined by the pair

of vectors x and y by

|x ∧ y| :=
√
|x|2|y|2 − |〈x, y〉|2

Proposition 5.2.1. Let σ ⊂ TpM be a two-dimensional subspace of the tangent space

TpM and let x, y ∈ σ be two linearly independent vectors. Then

K(x, y) =
(x, y, x, y)

|x ∧ y|2

does not depend on the choice of the vectors x, y ∈ σ.

Proof. First, observe that it is possible to transform the basis {x, y} for σ into any

other basis for σ using compositions of the operations:

1. {x, y} → {y, x}

2. {x, y} → {λx, y}

3. {x, y} → {x+ λy, y}

Hence, it suffices to prove that K is invariant under these operations

(1) Clearly, |x ∧ y| = |y ∧ x|, and so it suffices to show that 〈R(y, x)y, x〉 =

〈R(x, y)x, y〉, which follows by applying Proposition 5.1.3.

〈R(y, x)y, x〉 = −〈R(x, y)y, x〉 = 〈R(x, y)x, y〉.

(2) Suppose λ ∈ R \ {0}. Since |λx ∧ y| = |λ||x ∧ y|, it suffices to note that

〈R(λx, y)(λx), y〉 = λ2〈R(x, y)x, y〉 by the bilinearity of R on X(M) × X(M) and

linearity of R(., .) on X(M).

(3) Suppose λ ∈ R, Then we have

|(x+ λy) ∧ y|2 = |x+ λy|2|y|2 − |〈x+ λy, y〉|2
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= (|x|2 + 2λ〈x, y〉+ λ2|y|2)|y|2 − (〈x, y〉2 + λ2|y|4 + 2λ〈x, y〉|y|2)

= |x|2|y|2 − |〈x, y〉|2

|x ∧ y|2

and so it remains to show that 〈R(x + λy, y)(x + λy), y〉 = 〈R(x, y)x, y〉 For this,

observe that the bilinearity of R on X(M) × X(M) and linearity of R(., .) on X(M)

yield

〈R(x+ λy, y)(x+ λy), y〉 = 〈R(x, y)(x+ λy), y〉+ λ〈R(y, y)(x+ λy), y〉

= 〈R(x, y)x, y〉+ λ〈R(x, y)y, y〉+ λ〈R(y, y)x, y〉+ λ2〈R(y, y)y, y〉

and, hence, the result follows by applying parts (2) and (3) of Proposition (2.5) to

obtain 〈R(y, y)y, y〉 = 0 and 〈R(y, y)x, y〉 = 〈R(x, y)y, y〉 = 0.

Definition 5.2.1 (Sectional Curvature). Let (M, 〈 , 〉) be any Riemannian manifold

equipped with the Levi-Civita connection. For a point p ∈ TpM and a two-dimensional

subspace σ ⊂ TpM , the real number K(x, y) = K(σ), where {x, y} is any basis of σ,

is called the sectional curvature of σ at p, is given by

K(σ) = K(x, y) =
〈R(x, y)x, y〉
|x ∧ y|2

Where, |x ∧ y|2 = 〈x, x〉〈y, y〉 − 〈x, y〉2.

Sectional curvature is important because of its relationship to the curvature oper-

ator R. In particular for any p ∈M , knowing the values K(σ) for all two-dimensional

subspaces of σ of TpM completely determines R. We make this precise with the

following lemma:

Lemma 5.2.1. Let V be a vector space of dimension ≥ 2, provided with an inner

product 〈 , 〉. Let R : V ×V ×V → V and R
′
: V ×V ×V → V be tri-linear mappings

such that conditions:

1. 〈R(x, y)z, t〉+ 〈R(y, z)x, t〉+ 〈R(z, x)y, t〉 = 0

2. 〈R(x, y)z, t〉 = −〈R(y, x)z, t〉
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3. 〈R(x, y)z, t〉 = −〈R(x, y)t, z〉

4. 〈R(x, y)z, t〉 = 〈R(z, t)x, y〉

are satisfied by

(x, y, z, t) = 〈R(x, y)z, t〉, (x, y, z, t)
′〈R′(x, y)z, t〉

. If x, y are two linearly independent vectors, We may write,

K(σ) =
〈R(x, y)x, y〉
|x ∧ y|2

, K
′
(σ) =

〈R′(x, y)x, y〉
|x ∧ y|2

,

where σ is the bi-dimensional subspace generated by two linearly independent vectors

{x, y}. If for all σ ⊂ V, K(σ) = K
′
(σ), then R = R

′
.

Proof. It suffices to prove that (x, y, z, t) = (x, y, z, t)
′

for any x, y, z, t ∈ V . Observe

first that, by hypothesis, we have (x, y, x, y) = (x, y, x, y)
′
, for all x, y ∈ V . Then

(x+ z, y, x+ z, y) = (x+ z, y, x+ z, y)
′

hence

(x, y, x, y) + 2(x, y, z, y) + (z, y, z, y) = (x, y, x, y)
′
+ 2(x, y, z, y)

′
+ (z, y, z, y)

′

and, therefore

(x, y, z, y) = (x, y, z, y)
′

Using what we have just proved, we obtain

(x, y + t, z, y + t) = (x, y + t, z, y + t)
′

hence

(x, y, z, t) + (x, t, z, y) = (x, y, z, t)
′
+ (x, t, z, y)

′

which can be written further as

(x, y, z, t)− (x, y, z, t)
′
= (y, z, x, t)− (y, z, x, t)

′

It follows that, the expression (x, y, z, t) − (x, y, z, t)
′

is invariant by the cyclic per-
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mutation of the first three elements. Therefore, by (1) of Proposition 1.5, we have

3[(x, y, z, t)− (x, y, z, t)
′
] = 0,

hence

(x, y, z, t) = (x, y, z, t)
′

for all x, y, z, t ∈ V

Lemma 5.2.2. Let M be a Riemannian manifold and p a point of M . Define a

tri-linear mapping R
′
: TpM × TpM × TpM → TpM by

〈R′(X, Y,W ), Z〉 = 〈X,W 〉〈Y, Z〉 − 〈Y,W 〉〈X,Z〉,

for all X, Y,W,Z ∈ TpM . Then M has constant sectional curvature equal to K0 if

and only if R = K0R
′
, where R is the curvature of M .

Proof. Assume that the sectional curvature at p is constant, K(p, σ) = K0, for all σ ⊂
TpM and set 〈R′(X, Y,W, ), Z〉 = (x, y, w, z)

′
. R

′
satisfies the following properties:

1. (X, Y,W,Z)
′
+ (Y,W,X,Z)

′
+ (W,X, Y, Z)

′
= 0

2. (X, Y,W,Z)
′
= −(Y,X,W,Z)

′

3. (X, Y,W,Z)
′
= −(X, Y, Z,W )

′

4. (X, Y,W,Z)
′
= (W,Z,X, Y )

′

Then by definition we have 〈R(X, Y )X, Y 〉 = Ko|x ∧ y|2 for all X, Y ∈ TpM since,

(X, Y,X, Y )
′
= 〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2,

we have for all pair of vectors X, Y ∈ TpM ,

R(X, Y,X, Y ) = K0(|X|2|Y |2 − 〈X, Y 〉2) = K0R
′
(X, Y,X, Y ).

By Lemma 5.2.1, it implies that for all X, Y,W,Z,

R(X, Y,W,Z) = R
′
(X, Y,W,Z)
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hence R = K0R
′
.

Conversely, assume that K0R
′
(X, Y,W ) = R(X, Y,W ) for all X, Y,W ∈ TpM and

K0 ∈ R.

as 〈R′(X, Y,X), Y 〉 = |X ∧ Y |2 for any two dimensional subspace σ ⊂ TpM and any

pair {X, Y } of linearly independent vectors in TpM . We have,

K(X, Y ) =
〈R(X, Y,X), Y 〉
|X ∧ Y |2

=
K0|X ∧ Y |2

|X ∧ Y |2
= K0

corollary 5.2.1. Let M be a Riemannian manifold, p a point of M and {e1, . . . , en},
n = dim M , an orthonormal basis of TpM . Define Rijkl = 〈R(ei, ej)ek, el〉, i, j, k, l =

1, . . . , n. Then K(p, σ) = K0 for all σ ⊂ TpM , iff

Rijkkl = K0(δikδjk − δilδjk),

where

δij =

1 if i = j

0 if i 6= j

In other words, K(p, σ) = K0 for all σ ⊂ TpM if and only if Rijij = −Rijji = K0 for

all i 6= j, and Rijkl = 0 in others cases.

5.3 Ricci and scalar curvature

We conclude this chapter by defining the Ricci and scalar curvatures of a Riemannian

manifold. These are obtained by taking certain combination of sectional curvature

and these play an important role in Riemannian geometry

Definition 5.3.1. (Ricci and scalar curvature)

Let p ∈ M and x = zn be a unit vector in TpM , we take an orthonormal basis

{z1, z2, . . . , zn−1} of the hyperplane in TpM orthogonal to x. The Ricci curvature at

p in the direction x is defined by

Ricp(x) =
1

1− n
∑
i

〈R(x, zi)x, zi〉, i = 1, . . . , n− 1.
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The scalar curvature at p is defined by

K(p) =
1

n

∑
j

Ricp(zj) =
1

n(n− 1)

∑
ij

〈R(zi, zj)zi, zj〉 j = 1, . . . , n.

These expressions are called the Ricci curvature in the direction x and the scalar

curvature at p, respectively.
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Sobolev Space on Rn
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Chapter 6

Weak derivatives and Sobolev

Spaces

In this part we will study the theory of Sobolev space on Rn, which turn out to be

the proper setting in which to apply ideas of functional analysis to glean information

concerning partial differential equation.

6.1 Weak derivatives

Definition 6.1.1. Weak derivatives Suppose u, v ∈ L1
loc(U), and α is a multi index.

We say that v is the αth- weak partial derivative of u, written Dαu = v, provided∫
U

uDαφdx = (−1)|α|
∫
U

vdx (6.1)

for all test functions φ ∈ C∞c (U).

Remark: Classical derivatives are defined pointwise as limit of difference quotients.

Weak derivatives, on the other hand, are defined in an integral sense. By changing a

function on a set of measure zero we do not affect its weak derivatives.

Lemma 6.1.1. A weak αthth-partial derivative of u, if it exists, is uniquely defined

up to a set of measure zero.

Proof. Assume that v, ṽ ∈ L1
loc(U) satisfies∫

U

u(x)Dαφ(x)dx = (−1)α
∫
U

u(x)φ(x)dx = (−1)α
∫
U

ṽ(x)φ(x)dx
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for all φ ∈ C∞c (U). This implies∫
U

(v(x)− ṽ(x))φ(x)dx = 0 ∀φ ∈ C∞c (U).

Hence, v − ṽ = 0 almost everywhere.

Example 6.1.1. Let n = 1, U = (0, 2) and

u(x) =

{
x if 0 < x ≤ 1

1 if 1 < x < 2
v(x) =

{
1 if 0 < x ≤ 1

0 if 1 < x < 2

Now for all φ ∈ C∞c (U)∫ 2

0

u(x)φ
′
(x)dx =

∫ 1

0

u(x)φ
′
(x)dx+

∫ 2

1

u(x)φ
′
(x)dx

=

∫ 1

0

xφ
′
(x)dx+

∫ 2

1

1φ
′
(x)dx

= xφ(x)|10 −
∫ 1

0

φ(x)dx+

∫ 2

1

φ
′
(x)dx

= φ(1)−
∫ 1

0

φ(x)dx+ φ(2)− φ(1)

= −
∫ 1

0

φ(x)dx =

∫ 2

0

v(x)φ(x)dx.

Hence,
∫ 2

0
u(x)φ

′
(x)dx = −

∫ 2

0
v(x)φ(x)dx, for all φ ∈ C∞c (U). v(x) is the weak

derivative of u(x).

Example 6.1.2. n = 1, U = (0, 2) and

u(x) =

x if 0 < x ≤ 1

2 if 1 < x < 2

In order to check, that u does not have a weak derivative we have to show that there

does not exist any function u ∈ L1
loc(U) satisfying∫ 2

0

u(x)φ
′
(x)dx = −

∫ 2

0

v(x)φ(x)dx
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for all φ ∈ C∞c (U). Assume there exists a v ∈ L1
loc(U) satisfying the previous equation.

Then,

−
∫ 2

0

v(x)φ(x)dx =

∫ 2

0

u(x)φ
′
(x)dx =

∫ 1

0

xφ
′
(x)dx+

∫ 2

1

2φ
′
(x)dx

= xφ(x)|10 −
∫ 1

0

φ(x)dx+ 2(φ(2)− φ(1)) = −φ(1)−
∫ 1

0

φ(x)dx

is valid for all φ ∈ C∞c (U). We choose a sequence (φm)∞m=1 of smooth functions

satisfying

0 ≤ φm ≤ 1, φm(1) = 1 and φm(x)→ 0 as m→∞, ∀x 6= 1

Now, replacing φ by φm we get

1 = φm(1) =

∫ 2

0

v(x)φm(x)dx−
∫ 1

0

φm(x)dx.

We take the limit for m→∞

1 = limm→∞φm(1) = limm→∞

[ ∫ 2

0

v(x)φm(x)dx−
∫ 1

0

φm(x)dx

]
= 0.

a contradiction.

6.2 The Sobolev spaces W k,p(U)

Let U ⊆ Rn open. Let 1 ≤ p ≤ ∞ and k be a non-negative integer.

Definition 6.2.1. The Sobolev space The Sobolev space W k,p(U) is the space of all

locally integrable functions u : U → R such that for every multiindex α with |α| ≤ k

the weak derivative Dαu exists and Dα ∈ Lp(U).

Definition 6.2.2. We define the norm of u ∈ W k,p(U) to be

‖u‖Wk,p(U) =

( ∑
|α|≤k

∫
U

|Dαu(x)|pdx
) 1

p

, if 1 ≤ p <∞,
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‖u‖Wk,∞(U) =
∑
|α|≤k

ess supx∈U |Dαu(x)|.

Theorem 6.2.1. For each k ∈ N0 and 1 ≤ p ≤ ∞ the Sobolev space Wk,p(U) is a

Banach space.

Remark. (1) If p = 2, we usually write

Hk(U) = W k,2(U), (k = 0, 1, . . . )

Hk is a Hilbert space with respect to the inner product

〈u, v〉 =
∑
|α|≤k

∫
U

Dαu(x)Dαv(x)dx.

Definition 6.2.3. (1) Let {um}∞m=1, u ∈ W k,p(U). We say that um converges to u

in W k,p(U), written as

um → u in W k,p(U)

provided limm→∞ ‖um − u‖Wk,p(U) = 0.

(2) We write

um → u in W k,p
loc (U)

to mean

um → u in W k,p(V )

for each V ⊂⊂ U

Definition 6.2.4. We denote by W k,p
0 (U), the closer of C∞c (U) in W k,p(U).

Theorem 6.2.2. (Properties of Weak derivatives) Assume u, v ∈ W k,p(U), |α| ≤ k,

|α| ≤ k. Then,

1. Dαu ∈ W k−|α|,p(U) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multiindices

α, β with |α|+ |β| ≤ k.

2. For each λ, µ ∈ R, λu + µu ∈ W k,p(U) and Dα(λu + µv) = λDαu + µDαv,

|α| ≤ k

3. If V is open subset of U , then u ∈ W k,p(V ).
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4. If ζ ∈ C∞c (U), than ζu ∈ W k,p(U) and

Dα(ζu) =
∑
β≤α

(
α

β

)
DβζDα−βu (Leibniz′sformula)
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Approximation in Sobolev Spaces

In order to study the deeper properties of Sobolev spaces, without returning contin-

ually to the definition of weak derivatives, we need procedures for approximating a

function in a Sobolev space by smooth functions. These approximation procedures

allow us to consider smooth functions and then extend the statements to functions

in the Sobolev space by density arguments. We have to prove that smooth functions

are in fact dense in W k,p(U). The method of mollifiers provides the tool.

7.1 Smoothing by convolution

Definition 7.1.1. (1) Let η ∈ C∞(Rn) be given by

η(x) =

Ce1/(|x|2−1) if |x| < 1

0 if |x| ≥ 1

with constant C > 0 chosen such that
∫
Rn η(x)dx = 1.

(2) For each ε > 0 we define

ηε(x) =
1

εn
η(
x

ε
).

We call η the standard mollifier. The functions ηε are C∞ and satisfy∫
Rn
ηεdx = 1, spt(ηε) ⊂ B(0, ε).
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Definition 7.1.2. Let U ⊆ Rn be open and ε > 0. Let

Uε = {x ∈ U : d(x, δU) > ε} = {x ∈ U : B(x, ε) ⊆ U},

where B(x, ε) = {y ∈ Rn : |x− y| < ε}.

Definition 7.1.3. If f : U → R is locally integrable, define its mollification

f ε := ηε ∗ f in Uε.

That is, for x ∈ Uε

f ε(x) =

∫
U

ηε(x− y)f(y)dy =

∫
B(0,ε)

ηε(y)f(x− y)dy

Theorem 7.1.1. (Properties of mollifiers)

(1) f ε ∈ C∞(Uε).

(2) f ε → f a.e. as ε→ 0

(3) If f ∈ C(U) , then f ε → f uniformly on compact subsets of U .

(4) If 1 ≤ p <∞ and f ∈ Lploc(U), then f ε → f in Lploc(U).

7.2 Local approximation by smooth functions

Lemma 7.2.1. Let Uε ⊂ U . Assumed that f ∈ L1
loc(U) admits a weak derivative Dαf

for some multiindex α Then

Dα(f ∗ ηε)(x) = ηε ∗Dαf(x), for all x ∈ Uε

Note that the derivative of the mollification Dα(f ∗ ηε) exists in the classical sense.
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Proof.

Dα(f ∗ ηε)(x) =

∫
U

Dα
xηε(x− y)f(y)dy

= (−1)|α|
∫
u

Dα
y ηε(x− y)f(y)dy

= (−1)|α|+|α|
∫
U

ηε(x− y)Dαf(y)dy

=

∫
U

ηε(x− y)Dαf(y)dy

= ηε ∗Dαf(x).

Theorem 7.2.1. (Local Approximation by Smooth function)

Let u ∈ W k,p(U), 1 ≤ p <∞. Let ε > 0 and set

uε(x) = (ηε ∗ u)(x), x ∈ Uε,

where ηε is the mollifier, then

(1) uε ∈ C∞(Uε) for each ε > 0,

(2) uε → u in W k,p
loc (U), as ε→ 0.

Proof. u ∈ W k,p(U), therefore u ∈ L1
loc(U). Hence, by previous lemma for all |α| ≤ k

Dα(f ∗ ηε)(x) = ηε ∗Dαf(x), for all x ∈ Uε

Now, for all V ⊂⊂ U , by previous lemma and Properties of mollifiers we have,

‖uε − u‖p
Wk,p(V )

=
∑
|α|≤k

‖Dαuε −Dαu‖pLp(V ) → 0

as ε→ 0. This completes the proof.
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7.3 Global approximation by smooth functions

Now we will approximate the function of W k,p(U) globally and we do not assume

anything about the smoothness of boundary.

Theorem 7.3.1. Let U ⊂ Rn be open and bounded. Let u ∈ W k,p(U), 1 ≤ p < ∞.

Then there exists a sequence (Um)m∈N in C∞(U) ∩W k,p(U) such that

lim
m→∞

‖um − u‖Wk,p(U) = 0

Proof. Let,

Ui = {x ∈ U : d(x, ∂U) >
1

i
}, i ∈ N

Then Ui ⊆ Ui+1 and

U =
∞⋃
i=1

{x ∈ U : d(x, ∂U) >
1

i
}.

Let Vi = Ui+3 − U i. Then #{j ∈ N : Vi ∩ Vj 6= 0} ≤ 3. Therefore each x ∈ U is

an element of at least one and at most three sets of the family (Vi)i∈N. We choose

V0 ⊂⊂ U such that

U =
⋃
i∈N0

Vi

Let (ξi)
∞
i=0 be a smooth partition of unity subordinate to the family of open sets

(Vi)
∞
i=0, i.e.

0 ≤ ξi ≤ 1, ξi ∈ C∞c (Vi), for all i ∈ N0,
∞∑
i=0

ξi = 1 on U

Let u ∈ W k,p(U). Then we have that ξiu ∈ W k,p(U) and support ξiu ⊂⊂ Vi. Let

δ > 0 be fixed. By Theorem 2.2.1 we can choose εi > 0 such that ui = ηεi ∗ (ξiu)

satisfies

‖ui − ξiu‖Wk,p(U) ≤
δ

2i+1

supp ui ⊂ Wi := Ui+4U i ⊃ Vi.

We define

v(x) :=
∞∑
i=0

ui(x), x ∈ U
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v ∈ C∞(U), since for every x ∈ U we have that #{i ∈ N0 : ui(x) 6= 0} ≤ 3. We have

u = u.1 =
∞∑
i=0

ξiu

Therefore,

‖u− v‖Wk,p(U) = ‖
∞∑
i=0

ξu−
∞∑
i=0

ui‖Wk,p(U)

≤
∞∑
i=0

‖ξiu− ui‖Wk,p(U) ≤
∞∑
i=0

δ2−i−1 = δ.

Note that ‖v‖Wk.p(U) ≤ ‖v − u‖Wk,p(U) + ‖u‖Wk,p(U) <∞. Summarizing we have that

∀δ > 0, ∃v ∈ W k,p(U) ∩ C∞(U) : ‖u− v‖Wk,p(U) ≤ δ
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Extensions

In general, many properties of W k,p(U) can be inherited from W k,p(Rn) provided U is

”nice”. The goal of this section is to extend functions in the Sobolev space W k,p(U) to

become functions in the Sobolev space W k,p(Rn). Indeed, we need a strong theorem.

Observe for instance that extending u ∈ W k,p(U) by setting it zero in Rn−U will not

in general work, as we thereby create such a discontinuity along ∂U that the extended

function no longer has a weak partial derivative. We must invent a way to extend u

that preserves the weak derivatives across ∂U .

Theorem 8.0.1. (Extension Theorem) Assume U ⊂ Rn is open and bounded and

∂U is C1. Let V ⊂ Rn be open and bounded such that U ⊂⊂ V . Then there exists a

bounded linear operator

E : W 1,p(U)→ W 1,p(Rn)

such that for all u ∈ W 1,p(U).

1. Eu = u a.e. in U

2. Eu has support within V ,

3. ‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

The constant C depending only on p, U , and V .
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Sobolev inequalities and

Embeddings

In this chapter we prove a class of inequalities of the form

‖u‖X ≤ C‖u‖Wk,p(U) (9.1)

where X is a Banach space, i.e. we consider the question: ”If u ∈ W k,p(U), does u

belong automatically to a certain other Banach space X? Inequalities of the form

(4.1) are called Sobolev type inequalities. This kind of estimates give us information

on the embeddings of Sobolev spaces into other spaces.

We say that a Banach space E is continuously embedded into another Banach

space F , written E ↪→ F if there exists a constant C such that for all x ∈ E.

‖x‖F ≤ ‖x‖E

This means that the natural inclusion map i : E → F , x→ x is continuous.

We start the investigations with the Sobolev spaces W 1,p(U) and will observe that

these Sobolev spaces indeed embed into certain other spaces, but which other spaces

depends upon whether

(1) 1 ≤ p < n

(2) p = n

(3) n < p ≤ ∞
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9.1 Gagliardo-Nirenberg-Sobolev inequality

For this section lat us assume

1 ≤ p < n

Motivation. We first demonstrate that if any inequality of the form

‖u‖Lq(Rn) ≤ C‖Du‖Lp(Rn) (9.2)

for certain constants C > 0, 1 ≤ q < ∞ and functions u ∈ C∞c (Rn) holds, then the

number q cannot be arbitary. Let u ∈ C∞c (Rn), u 6= 0 and define for λ > 0

uλ(x) := u(λx) (x ∈ Rn)

We assume that (4.2) holds and apply it to uλ, i.e. there exists a constant C such

that for all λ > 0

‖uλ‖Lq(Rn) ≤ C‖Duλ‖Lp(Rn) (9.3)

Now, ∫
Rn
|uλ(x)|qdx =

∫
Rn
|u(λx)|qdx =

1

λn

∫
Rn
|u(y)|qdy

and ∫
Rn
|Duλ(x)|pdx = λp

∫
Rn
|Du(λx)|pdx =

λp

λn

∫
Rn
|Du(y)|pdy

Hence, by (4.3) we get

( 1

λn
) 1
q ‖u‖Lq(Rn) ≤ C

(λp
λn
) 1
p‖Du‖Lp(Rn)

and therefore

‖u‖Lq(Rn) ≤ Cλ1−n
p

+n
q ‖Du‖Lp(Rn).

If 1 − n
p

+ n
q
6= 0 we acn obtain a contradition by sending λ to 0 or ∞, depending

on whether 1 − n
p

+ n
q
> 0 or 1 − n

p
+ n

q
< 0. Thus, if in fact the desired inequality

(4.2) holds, we must necessarily have 1− n
p

+ n
q

= 0. This implies that 1
q

= 1
p
− 1

n
and

therefore q = np
n−p .

Definition 9.1.1. If 1 ≤ p < n, the Sobolev conjugate of p is p∗ = np
n−p , (p∗ > p)

Theorem 9.1.1. (Gagliardo-Nirenberg-Sobolev inequality)

69



CHAPTER 9. SOBOLEV INEQUALITIES AND EMBEDDINGS

Let 1 ≤ p < n. There exists a constant C, depending only on n and p such that

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn)

for all u ∈ C1
c (Rn).

Proof. Assume p = 1. Note that u has compact support. Therefore, we have for each

i = 1, . . . , n and x ∈ Rn

u(x) =

∫ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi

and

|u(x)| ≤
∫ ∞
−∞

Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi

Then

|u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞

Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi
) 1

n−1

.

We integrate the above inequality with respect to x1 and obtain:∫ ∞
−∞
|u(x)|

n
n−1dx1

≤
∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞

Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi
) 1

n−1

dx1

=

(∫ ∞
−∞
|Du|dy1

) 1
n−1
∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|Du|dyi

) 1
n−1

dx1

Applying the general Hölder inequality with pi = 1
n−1

, i = 1, . . . , n− 1 we obtain

∫ ∞
−∞
|u(x)|

n
n−1dx1 ≤

(∫ ∞
−∞
|Du|dy1

) 1
n−1
( n∏

i=2

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi

) 1
n−1
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Now we integrate with respect to x2 and obtain.∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1dx1dx2

≤
∫ ∞
−∞

(∫ ∞
−∞
|Du|dy1

) 1
n−1

dx2

∫ ∞
−∞

( n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi

) 1
n−1

dx2

=

(∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dy2

) 1
n−1
∫ ∞
−∞

n∏
i=1,i 6=2

I
1

n−1

i dx2

where

I1 =

∫ ∞
−∞
|Dy|dy1|; and Ii =

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi for i = 3, . . . , n.

Applying the general Hölder inequality once more we obtain∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1dx1dx2

≤
(∫ ∞

−∞

∫ ∞
−∞
|Du|dx1dy2

) 1
n−1
(∫ ∞

−∞

∫ ∞
−∞
|Du|dy1dx2

) 1
n−1

n∏
i=3

(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dx2dyi

) 1
n−1

We continue by integrating with respect to x3, . . . , xn and and using Hölder’s general

inequality to obtain finally∫
Rn
|u|

n
n−1dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|Du|dx1 . . . dyi . . . dxn

) n
n−1

=

(∫
Rn
|Du|dx

) n
n−1

This is the Gagliardo-Nirenberg-Sobolev inequality for p = 1.

We consider now the case 1 < p < n. Let v := |u|γ for some γ > 1. We apply
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Gagliardo-Nirenberg-Sobolev inequality for p = 1 to v. Then, by Hölder inequality

(∫
Rn
|u|

γn
n−1dx

)n−1
n

≤
∫
Rn
|D|u|γ|dx = γ

∫
Rn
|u|γ−1|Du|dx

≤ γ

(∫
Rn
|u|(γ−1) p

p−1dx

) p−1
p
(∫

Rn
|Du|pdx

) 1
p

.

We choose γ so that γn
n−1

= (γ − 1) p
p−1

. That is, we set

γ =
p(n− 1)

n− p
> 1

in which case γn
n−1

= (γ − 1) p
p−1

= np
n−p = p∗. Therefore, we get

(∫
Rn
|u|p∗dx

)n−1
n

≤ γ

(∫
Rn
|u|p∗dx

) p−1
p
(∫

Rn
|Du|pdx

) 1
p

.

what is equal to

(∫
Rn
|u|p∗dx

)n−1
n
− p−1

p

≤ γ

(∫
Rn
|Du|pdx

) 1
p

Hence, we get (∫
Rn
|u|p∗dx

) 1
p∗

≤ C

(∫
Rn
|Du|pdx

) 1
p

This completes the proof.

Note. C∞c (Rn) := W k,p
0 (Rn) = W k,p(Rn) and from the Gagliardo-Nirenberg-

Sobolev inequality we get,

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) ≤ K‖u‖W 1,p(Rn).

Hence, W 1,p(Rn) continuously embedded in Lp
∗
(Rn).

Theorem 9.1.2. (Estimates for W 1,p, 1 ≤ p < n)

Let U ⊆ Rn open and bounded and suppose ∂U is C1. Assume 1 ≤ p < n, and

u ∈ W 1,p(U). Then u ∈ Lp∗(U), with the estimate

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U)
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the constant C depending only on p, n and U .

Proof. The Extension Theorem yields that there exists an extension u = Eu ∈
W 1,p(Rn), such that

u = u in U, u has compact support

‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

Because u has compact support we know from Theorem 7.2.1 that there exists a

sequence (Um)∞m=1 of functions in C∞c (Rn) such that

um → u in W 1,p(Rn)

Now according to Theorem 9.1.1 we have that for all l,m ≥ 1

‖um − ul‖Lp∗ (Rn) ≤ ‖Dum −Dul‖Lp(Rn).

Thus, by last last two equation we get

um → u in Lp
∗
.

By the Gagliardo-Nirenberg-Sobolev inequality we have

‖um‖Lp∗ (Rn) ≤ C‖Dum‖Lp(Rn)

and hence,

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) ≤ C‖u‖W 1,p(Rn).

Therefore, by the properties of the extension u we have

‖u‖Lp∗ (U) = ‖u‖Lp∗ (U) ≤ ‖u‖Lp∗ (Rn) ≤ C‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

This completes the proof.

Theorem 9.1.3. (Estimates for W 1,p
0 , 1 ≤ p < n)

Let U ⊆ Rn open and bounded. Assume 1 ≤ p < n, and u ∈ C∞c (Rn) := W 1,p
0 (U).
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Then we have the estimate

‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for each q ∈ [1, p∗], the constant C depending only on p, q, n and U .

Proof. Let u ∈ W 1,p
0 (U). Then there exists a sequence (um)∞m=1 in C∞c (U) such that

um → u in W 1,p(U). Now we extend each function um to be 0 on Rn \U . Analogously

to the above proof we get from the Gagliardo-Nirenberg-Sobolev inequality (Theorem

9.1.1) the following estimate

‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U)

Since U is bounded, then for every 1 ≤ q ≤ p∗ the following estimate holds

‖u‖Lq(U) ≤ ‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U)

Remark. Let u ∈ W 1,p
0 (U), U is bounded, then we have ‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for each q ∈ [1, p∗], and p∗ > p, Hence ‖u‖Lp(U) ≤ C‖Du‖Lp(U). Now,

‖Du‖Lp(U) ≤ ‖u‖W 1,p(U) ≤ (1 + C)‖Du‖Lp(U).

So, on W 1,p
0 (U) the norm ‖Du‖Lp(U) and ‖u‖W 1,p(U) are equivalents.

9.2 Morrey’s Inequality

Morrey’s inequality gives the continuous embedding of the Sobolev spacesW 1,p(U), p >

n into spaces of Hölder continuous functions, the so called Hölder spaces.

Throughout this chapter let U ⊆ Rn be open and 0 < γ ≤ 1

Definition 9.2.1. (Hölder continuous)

A function u : U(⊆ Rn) → R is said to be Hölder continuous with exponent γ (0 <

γ ≤ 1), if there exists a constant C > 0 such that for all x, y ∈ U . |u(x)− u(y)| ≤
C|x− y|γ
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Example 9.2.1. f(x) =
√
x , x ∈ [0, 1] is a Hölder continuous function with exponent

γ = 1
2
.

Definition 9.2.2. (1) If u : U → R is bounded and continuous, we write

‖u‖∞ = supx∈U |u(x)|

(2) The γth- Hölder seminorm is defined by

[u]0,γ := supx 6=y∈U
|u(x)− u(y)|
|x− y|γ

The γth- Hölder norm is defined by

‖u‖0,γ = ‖u‖∞ + [u]0,γ.

Definition 9.2.3. Let k ∈ N0 and 0 < γ ≤ 1. The Hölder space Ck,γ(Ū) consists of

all functions Ck(Ū) for which the norm

‖u‖k,γ =
∑
|α|≤k

‖Dαu‖∞ +
∑
|α|=k

[Dαu]0,γ

is finite. where [u]0,γ = supx 6=y∈U
|u(x)−u(y)|
|x−y|γ

The Hölder space consists of all the functions that are Ck and whose k-th partial

derivatives are bounded and Hölder continuous.

Theorem 9.2.1. (Ck,γU, ‖.‖k,γ) is a Banach Space.

Theorem 9.2.2. (Morrey’s inequality)

Let n < p ≤ ∞ Then there exists a constant C, depending only on n and p such that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn)

for all u ∈ C1(Rn), where γ = 1− n/p.

Proof. We will show that there exists a constant C(n) such that for any B(x, r) ⊆ Rn

1

|B(x, r)|

∫
B(x,r)

|u(y)− u(x)|dy ≤ C

∫
B(x,r)

|Du(y)|
|x− y|n−1

dy. (9.4)
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Let x ∈ Rn, r > 0 be fixed. Let w ∈ ∂B(0, 1) and s < r. Then

|u(x+ sw)− u(x)| ≤
∫ s

0

| d
dt
u(x+ tw)|dt

=

∫ s

0

|Du(x+ tw).w|dt =

∫ s

0

|Du(x+ tw)|dt

Hence,∫
∂B(0,1)

|u(x+ sw)− u(x)|dS(w) ≤
∫
∂B(0,1)

∫ s

0

|Du(x+ tw)|dt dS(w). (9.5)

We apply Fubini to the right hand side and apply integration in polar coordinates to

obtain ∫
∂B(0,1)

∫ s

0

|Du(x+ tw)|dt dS(w) =

∫
∂B(0,1)

∫ s

0

|Du(x+ tw)|dt dS(t)

=

∫
B(x,s)

|Du(y)

|y − x|n−1
dy

Now, multiplying equation (9.5) by sn−1 and integrating from 0 to r with respect to

s, yields the inequality:∫ r

0

∫
∂B((0,1)

|u(x+sw)−u(x)|dS(w)sn−1 ds ≤
∫ r

0

sn−1

∫
∂B(0,1)

|Du(y)|
|y − x|n−1

dy ds. (9.6)

On the left-hand side of (9.6) we apply integration in polar coordinates to obtain∫
B(x,r)

|u(v)− u(x)|dv ≤
∫ r

0

sn−1ds

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy

=
rn

n

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

Note that |B(x, r)| = rn|B(0, 1)| = rnC(n). Hence we have∫
B(x,r)

|u(v)− u(x)|dv ≤ C(n)|B(x, r)|
∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

So, equation (9.4) is proved.
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Now, fix, x ∈ Rn. We apply equation (9.4) as follows

|u(x)| ≤ 1

|B(x, 1)|

∫
B(x,1)

|u(x)− u(y)|dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)|dy

≤
∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)|dy

=

∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +

∫
B(x,1)

|u(y)| dy

|B(x, 1)|

≤
∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +

(∫
B(x,1)

|u(y)|p dy

|B(x, 1)|

) 1
p

.

The last inequality holds, since (B(x, 1), dy
|B(x,1)

) is a probability space. We apply

Hölder’s inequality to the first term on the right-hand side and obtain

|u(x)| ≤
(∫

B(x,1)

|Du(y)|pdy
) 1

p
(∫

B(x,1)

1

|y − x|
(n−1)p
p−1

dy

) p−1
p

+ C‖u‖Lp(B(x,1))

Hence, by integration in polar coordinates we have

(∫
B(x,1)

1

|y − x|
(n−1)p
p−1

dy

) p−1
p

= C(n)

∫ 1

0

rn−1

r
(n−1)p
p−1

dr =

∫ 1

0

r−
n−1
p−1 dr

Since, P > n, we have n−1
p−1

< 1. Therefore,

∫ 1

0

r−
n−1
p−1 dr = C(n, p)r

p−n
p−1 |10 = C(n, p)

Summarizing we have

|u(x)| ≤ C(n, p)‖u‖W 1,p(Rn).

Since x was arbitrary, we can conclude

supx∈Rn|u(x)| ≤ C‖u‖w1,p(Rn) (9.7)

Choose any two points x, y ∈ Rn andf write r := |x−y|. Let W = B(x, r)∩B(y, r).
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Then

|u(x)− u(y)|

≤ 1

|W

∫
W

|u(x)− u(z)|dz +
1

|W

∫
W

|u(x)− u(z)|dz

≤ C

|B(x, r)

∫
B(x,r)

|u(x)− u(z)|dz +
C

|B(y, r)|

∫
B(y,r)

|u(y)− u(z)|dz

=: A+B

By the inequality (9.4) we obtain

A ≤ C

∫
B(x,r)

|Du(z)|
|x− z|n−1

dz

≤
(∫

Rn
|Du(z)|pdz

) 1
p
(∫

B(x,r)

1

|x− z|
(n−1)p
p−1

dz

) p−1
p

≤ C(n, p)‖Du‖Lp(Rn)r
1−n

p

= C(n, p)‖Du‖Lp(Rn)|x− y|1−
n
p

The same estimate holds for B. Therefore, we have the following estimate

|u(x)− u(y)| ≤ C‖Du‖Lp(Rn)|x− y|1−
n
p

which implies
|u(x)− u(y)|
|x− y|1−

n
p

≤ C‖Du‖Lp(Rn)

for all x, y ∈ Rn. Thus,

[u]0,γ = sup
x 6=y∈Rn

|u(x)− u(y)|
|x− y|γ

≤ C‖Du‖Lp ≤ C‖u‖W 1,p(Rn). (9.8)

The inequalities (9.7) and (9.8) yields the statement.

Theorem 9.2.3. (Estimates for W 1,p, n < p ≤ ∞)

Let U ⊆ Rn open and bounded and suppose ∂U is C1. Assume n < p ≤ ∞, and

u ∈ W 1,p(U). Then u has a version u∗ ∈ C0,γ(Ū) for γ = 1− n
p

with estimate

‖u∗‖C0,γ(Ū) ≤ C‖u‖W 1,p(U)
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The constant C depends only on n, p and U .

Proof. According to Extension theorem there exists a compactly supported function

u = Eu ∈ W 1,p(Rn) such that u = u on U and

‖u‖W 1,p(Rn) ≤ ‖u‖W 1,p(U)

Since u has compact support, we obtain from Theorem 7.2.1 the existence of functions

um ∈ C∞c (Rn) such that

‖um − u‖W 1,p(Rn) → 0

Now according to Morrey’s inequality we have for all m, l ∈ N

‖um − ul‖C0,γ(Rn) ≤ C‖um − ul‖W 1,p(Rn)

(um)∞m=1 converges to u in W 1,p(Rn), therefore it is Cauchy sequence in C0,γ(Rn).

Since this is a complete Banach space, there exists a function u∗ ∈ C0,γ(Rn) such

that

‖um − u∗‖C0,γ(Rn) → 0.

From previous two equation we see that u = u∗ a.e. on Rn, i.e. u∗ is a version of u.

Note that u = u a.e. on U hence, u∗ is a version of u on U .

Applying Morrey’s inequality to the functions um ∈ C∞c (Rn) i.e.

‖um‖C0,γ(Rn) ≤ C‖um‖W 1,p(Rn)

ade therefore we have,

‖u∗‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

By the definition of the norm ‖.‖C0,γ we have

‖u∗‖C0,γ(U) ≤ C‖u∗‖C0,γ(Rn).

This completes the proof.

79



CHAPTER 9. SOBOLEV INEQUALITIES AND EMBEDDINGS

9.3 Compact Embedding

The Gagliardo-Nirenberg-Sobolev inequality shows that W 1,p(U) is continuously em-

bedded into Lp
∗
(U), if 1 ≤ p < n.Now we show that W 1,p(U) is in fact compactly

embedded into some Lq(U) space.

Definition 9.3.1. (compactly embedded)

Let X and Y be Banach spaces, X ⊂ Y . We say X is compactly embedded in Y

(X ⊂⊂ Y ) if and only if the operator

Id : X → Y , x→ x

is continuous and compact, i.e.

1. ∃C ∀x ∈ X, ‖x‖Y ≤ C‖x‖X

2. for all sequences (xn)∞n=1 in X with supn‖xn‖X ≤ ∞ there exists a subsequence

(xni)
∞
i=1 and y ∈ Y such that ‖I(xni)− y‖Y →∞ as i→∞.

Theorem 9.3.1. (Rellich-Kondrachov Compactness Theorem)

Let U ⊆ Rn open and bounded and suppose ∂U is C1. Assume 1 ≤ p < n. Then

W 1,p(U) ⊂⊂ Lq(U),

for all 1 ≤ q < p∗, p∗ = np
n−p

Sketch the proof :

(1) Take {um} bounded sequence in W 1,p(U). We need to find a subsequence which

is Cauchy in Lq(U).

(2) Use the extension theorem to extend {um} to a larger set V and such that {um}
vanishes outside V .

(3) Now let uεm = ηε ∗ um. It turns out that

uεm → um in Lq(V ) as ε→ 0, uniformly in m.

(4) for each ε > 0, {uεm} is uniformly bounded and equicontinuous. Thus by the

Arzela-Ascoli theorem, for each fixed ε > 0, there is a subsequence of {uεm} converges
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uniformly, and thus converges in Lq(V ).

(5) from (3) and (4) we will get

lim supj,k→∞‖umj − umk‖Lq(V ) ≤ δ,

(6) Now taking δ = 1, 1
2
, 1

3
, . . . and repeatly subtract subsequences, we obtain a

Cauchy sequence via the standard diagonal argument.

Proof. We fix q ∈ [1, p∗). Let u ∈ W 1,p(U). From Theorem 9.1.2 we get

‖u‖Lp ≤ C‖u‖W 1,p(U).

Hence, the operator Id : W 1,p → Lq is continuous.

We have to show compactness. Let (ûm)∞m=1 ∈ W 1,p(U) , supm‖ûm‖W 1,p(U) ≤ A. We

show that there exists a subsequence (ûmk)
∞
k=1 of the bounded sequence (ûm)∞m=1 and

a u ∈ Lq(U) so that ‖ûmk − u‖Lq(U) → 0 as k → ∞. By the extension theorem we

may assume that

1. (um)∞m=1 is in W 1,p(Rn) with um|U = ûm

2. for all m ∈ N there exists V with U ⊂⊂ V such that suppum ⊂ V ,

3. supm‖ûm‖W 1,p(Rn) ≤ ∞

We first consider the smooth functions

uεm = ηε ∗ um ∈ C∞c (Rn). (ε > 0, m ∈ N).

We may assume that for all m ∈ N the support of uεm is in V .

Claim 1.

uεm → um in Lq(V ) as ε→ 0, uniformly in m.
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Verification: If um is smooth then

uεm(x)− um(x) =

∫
B(0,1)

η(y)(um(x− εy)− um(x)) dy

=

∫
B(0,1)

η(y)

∫ 1

0

d

dt
um(x− εty) dt dy

= −ε
∫
B(0,1)

η(y)

∫ 1

0

Dum(x− εty).y dt dy

Thus, ∫
V

|uεm(x)− um(x)|dx ≤ ε

∫
B(0,1)

η(y)

∫ 1

0

∫
V

|Dum(x− εty)| dx dt dy

≤ ε

∫
V

|Dum(z)|dz.

Summarizing we have for um ∈ C∞c (Rn) with supp uεm ∈ V the estimate

‖uεm − um‖L1(V ) ≤ ε‖Dum‖L1(V ) (9.9)

By approximation Theorem this estimate holds for um ∈ W 1,p(V ). Since V is open

and bounded, we obtain

‖uεm − um‖L1(V ) ≤ ε‖Dum‖L1(V ) ≤ εC‖Dum‖Lp(V )

By assumption we have supm‖u‖W 1,p(V ) <∞. Therefore,

lim
ε→0

supm‖uεm − um‖L1(V ) = 0 (9.10)

Note that 1 ≤ q < p∗. Let 0 ≤ θ ≤ 1 such that

1

q
=

1− θ
1

+
θ

p∗

We apply the interpolation inequality for Lp-norms to obtain

‖uεm − um‖Lq(V ) ≤ ‖uεm − um‖1−θ
L1(V )‖u

ε
m − um‖θLp∗ (V ).
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Theorem (9.1.2) gives

‖uεm − um‖Lq(V ) ≤ ‖uεm − um‖1−θ
L1(V )‖u

ε
m − um‖θW 1,p(V ).

By equation (9.10)

lim
ε→0

supm∈N‖uεm − um‖Lq(V ) = 0 (9.11)

Claim 2: for each ε > 0, {uεm} is uniformly bounded and equicontinuous. Veri-

fication: Let, x ∈ Rn.

|uεm(x)| ≤
∫
B(x,ε)

ηε(x− y)|um(y)|dy

≤ supx∈Rn|ηε(x)|
∫
V

|um(y)|dy

≤ 1

εn
‖um‖L1(V )

≤ C

εn
‖um‖Lp(V ) ≤

C

εn
<∞

Hence,

supm∈N‖uεm‖ ≤
C

εn
. (9.12)

Similarly, for m = 1, 2, . . .

|Duεm(x)| ≤
∫
B(x,ε)

|Dηε(x− y)||um(y)|dy ≤ C

εn+1
(9.13)

Hence,

supm∈N‖Duεm‖∞ ≤
C

εn+1
(9.14)

Equation (9.12) and (9.14) proves the claim.

Now, fix δ > 0. we will show that there exists a subsequence (umj)
∞
j=1 ⊂ (um)∞m=1

such that

lim sup
j,k→∞

‖umj − umk‖Lq(V ) ≤ δ,

From the first claim, to select ε0 so small that

‖uεm − um‖Lq(V ) ≤
δ

2

for m = 1, 2, . . .
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We now observe that since the functions (um)∞m=1, and thus the functions (uεm)∞m=1,

have support in some fixed bounded set V ⊂ Rn, Now using claim 2 and Arzela-Ascoli

compactness criterion to obtain a subsequence (umj)
∞
j=1 ⊂ (uεm)∞m=1 which converges

uniformly on V . In particular therefore

lim sup
j,k→∞

‖uεmj − u
ε
mk
‖Lq(V ) = 0 (9.15)

Now, from last two equations imply

lim sup
j,k→∞

‖umj − umk‖Lq(V ) ≤ δ, (9.16)

Now taking δ = 1, 1
2
, 1

3
, . . . and by standard diagonal argument, we extract a subse-

quence (uml)
∞
l=1 ⊂ (um)∞m=1 satisfying

lim sup
l,k→∞

‖uml − umk‖Lq(V ) = 0.

This completes the proof.

9.4 Poincaré‘s inequality

For all u ∈ W 1,p
0 (U). Then we have the estimate ‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U) (1 ≤ p < n).

But for all u ∈ W 1,p(U) this does not hold, where U ⊆ Rn open and bounded.

However when the boundary ∂U is C1 for all u ∈ W 1,p
0 (U) we can get this kind of

inequality with some extra term.

Notation. (u)U = -
∫
udy := average of u over U .

Proposition 9.4.1. Let U ⊆ Rn open and bounded and connected. Let u ∈ W 1,p(U)

and Du = 0 a.e. in U . Then u is constant a.e. on U .

Theorem 9.4.1. (Poincaré‘s inequality)

Let U ⊆ Rn open, bounded and connected. suppose ∂U is C1. Assume 1 ≤ p ≤ ∞.

Then there exists a constant C, depending only on n, p and U , such that

‖u− (u)U‖Lp(U) ≤ C‖Du‖Lp(U)

for all u ∈ W 1,p(U).

84



CHAPTER 9. SOBOLEV INEQUALITIES AND EMBEDDINGS

Proof. By contradiction. We assume that the statement is not true, i.e.

∀k ∈ N ∃uk ∈ W 1,p(U) : ‖uk − (uk)U‖Lp(U) > k‖Duk‖Lp(U). (9.17)

We define

vk :=
uk − (uk)U

‖uk − (uk)U‖Lp(U)

,

Then ‖vk‖Lp(U) = 1 and (vk)U = 0. The gradient of vk

Dvk =
Dvk

‖uk − (uk)U‖Lp(U)

,

satisfies by the assumption (9.17)

‖Dvk‖Lp(U) =
‖Duk‖Lp(U)

‖uk − (uk)U‖Lp(U)

<
1

k
.

Hence,

‖vk‖W 1,p(U) ≤ C(n, p)(‖Dvk‖Lp(U) + ‖vk‖Lp(U)) ≤ C(n, p)
(
1 +

1

k

)
and

supk∈N‖vk‖W 1,p(U) ≤ 2C(n, p).

By Rellich-Kondrachov Compactness Theorem there exists a subsequence (vkj)
∞
j=1

and a v ∈ Lp(U) with ‖v‖Lp(U) = 1 and (v)U = 0 such that

lim
j→∞
‖vkj − v‖Lp(U) = 0

Let, φ ∈ C∞c (U). Then, using Lebesgue’s Theorem and the definition of the weak

derivative, we have∫
vφxidx = lim

j→∞

∫
vkjφxjdx = − lim

j→∞

∫
(vkj)xiφdx = 0

where the last equality follows from limj→∞ ‖Dvkj‖Lp(U) = 0. Hence, Dv = 0. Since

U is connected, from the previous Proposition it implies that v is constant a.e on U .

As (v)U = 0 we have v = 0 a.e. on U , which is a contradiction to ‖u‖Lp(U) = 1.
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Theorem 9.4.2. (Poincaré’s inequality for a ball)

Let 1 ≤ p ≤ ∞, then there exists a constant C, that depends only on n and p, such

that

‖u− (u)B(x,r)‖Lp(B(x,r)) ≤ Cr‖Du‖Lp(B(x,r))

for each ball B(x, r) ⊆ Rn and each function u ∈ W 1,p(B(x, r)).

Remark. Let u ∈ W 1,n(Rn) and B(x, r) ⊆ Rn. Then by the Theorem 4.4.2. we

get,

(∫
B(x,r)

|u(y)− (u)B(x,r)|n
dy

|B(x, r)|

) 1
n

≤ Cr

(∫
B(x,r)

|Du(y)|ndy
)
|
1
n

≤ Cr

|B(x, r)| 1n
‖Du‖Ln(Rn)

=
C

|B(0, 1)| 1n
‖Du‖Ln(Rn).

By Hölder’s inequality we obtain for the left-hand side

∫
B(x,r)

|u(y)− (u)B(x,r)|
dy

|B(x, r)|
≤
(∫

B(x,r)

|u(y)− (u)B(x,r)|n
dy

|B(x, r)|

) 1
n

.

Hence, ∫
B(x,r)

|u(y)− (u)B(x,r)|
dy

|B(x, r)|
≤ C‖Du‖Ln(Rn),

where C only depends on n.

Definition 9.4.1. (Space of bounded mean oscillation)

A function f ∈ L1
loc(Rn) is called of bounded mean oscillation if

supB(x,r)⊆Rn

∫
B(x,r)

|f(y)− (f)B(x,r)|
dy

|B(x, r)|
<∞

The space of all such functions is called the space of functions of bounded mean os-

cillation (BMO(Rn)) and the left-hand side of equation defines a norm ‖u‖BMO(Rn)

on this space.

‖u‖BMO(Rn) ≤ C‖Du‖Ln(Rn) ≤ C‖u‖W 1,n(Rn)

86



CHAPTER 9. SOBOLEV INEQUALITIES AND EMBEDDINGS

Therefore, we have W 1,n(Rn) is continuously embedded into BMO(Rn).
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Chapter 10

Sobolev Spaces on Riemannian

Manifolds

In this chapter we shall define Sobolev Spaces on Riemannian Manifolds, then we

shall some density properties of the Sobolev Spaces on Riemannian Manifolds and

some embedding.

10.1 Definitions

Let (M, g) be a smooth Riemannian manifold and {(Ωk, φk} is a differentiable struc-

ture(or Atlas) on M , where φk : Ωk(⊂ M) → Rn . For k integer, and u : M → R
smooth, we denote by ∇k the covarient derivative of u. The component of ∇u in local

coordinates are given by (∇u)i = ∂iu and the component of ∇2u in local coordinates

are given by (∇2u)ij = ∂iju − Γkij∂ku. Now |∇ku|, the norm of ∇ku defined in the

local chart by

|∇k(u)|2 = gi1,j1 . . . gik,jk(∇ku)i1,...,ik(∇ku)j1,...,jk

Definition 10.1.1. For an integer k and p ≥ 1 real, we denoted by Cpk(M) the space

of smooth functions u ∈ C∞(M) such that |∇ku| ∈ Lp(M) for any j = 0, 1, . . . , k.

Hence,

Cpk(M) =
{
u ∈ C∞(M) s.t. ∀j = 0, 1, . . . , k,

∫
M

|∇ku|pdν(g) < ∞
}

Where, in local coordinates, dν(g) =
√
det(gi,j)dx, and where dx stands for the
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Lebesgue’s volume element of Rn

Note. So if M is compact, then Cpk(M) = C∞(M) for all k and p ≥ 1.

Definition 10.1.2. (Sobolev Spaces on Riemannian Manifold)

The Sobolev space Hp
k(M) is the completion of Cpk(M) with respect to the norm

‖u‖Hp
k

=
k∑
j=0

(∫
M

|∇ku|pdν(g)

)1/p

1 ≤ p <∞

Note. (1) any Cauchy sequence in (Cp
k(M), ‖.‖Hk

p
) is a Cauchy sequence in the

Lebesgue space (Lp(M), ‖.‖p).
(2) any Cauchy sequence in (Cp

k(M), ‖.‖Hk
p
) that converges to 0 in the Lebesgue

space (Lp(M), ‖.‖p) also converges to 0 in (Cp
k(M), ‖.‖Hk

p
).

(3) As a consequence of (1) and (2) One can look at Hp
k(M) as a subspace of Lp(M)

made of functions u ∈ Lp(M) which are limits in (Lp(M), ‖.‖p) of a Cauchy sequence

(um) in (Cp
k(M), ‖.‖Hk

p
). and define ‖u‖Hp

k
as before, where |∇ju|, 0 ≤ j ≤ k, is now

the limit in (Lp(M), ‖.‖p) of the Cauchy sequence (∇jum).

(4) Hp
k(M) is a Banach space.

Proposition 10.1.1. If 1 < p <∞, Hp
k(M) is reflexive Banach space.

Proof. Hp
k(M) is closed subspace of a finite Cartesian product space of spaces Lp(M).

And Lp(M) is a reflexive Banach space for (1 < p < ∞), finite Cartesian product

space of reflexive space is reflexive space. Since a closed subspace of a reflexive Banach

space is also reflexive, thus Hp
k(M) is reflexive if 1 < p <∞.

Proposition 10.1.2. If p = 2, H2
k(M) is a Hilbert space when equipped with the

equivalent norm

‖u‖ =

√√√√ k∑
j=0

∫
M

|∇ku|2dν(g)

The scalar product 〈., .〉 associated to ‖.‖ is defined by

〈u, v〉 =
k∑

m=0

∫
M

(
gi1j1 . . . gim,jm(∇mu)i1...im(∇mv)j1...jm

)
dν(g)

Proof. Here in H2
k(M), ‖.‖ and ‖.‖Hp

k
are equivalents. And 〈 . 〉 satisfies the following

four properties.
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1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈au, w〉 = a〈u,w〉

3. 〈u,w〉 = 〈w, u〉

4. 〈u, u〉 = 0 if u = 0

for u ∈ H2
k(M). Now, if 〈u, u〉 = o then,

〈u, u〉 =
k∑

m=0

∫
M

(
gi1j1 . . . gim,jm(∇mu)i1...im(∇mu)j1...jm

)
dν(g) = 0

for, m = 0 we get, ∫
M

u2dν(g) = 0

Hence, if 〈u, u〉 = o then u = 0 a.e. on M .

So, 〈 , 〉 is a inner product. And H2
k(M) is complete so is a Hilbert space.

Proposition 10.1.3. If M is compact, Hp
k(M) does not depend on the Riemannian

metric.

Proof. M be a compact manifold endowed with two Riemannian metrics g and g̃. Now

since M is compact, M can be covered by a finite number of charts (Ωm, φm)m=1,2,...,N

such that for any m the components gmij of g in (Ωm, φm) satisfy

1

C
g̃i,j ≤ gkij ≤ Cg̃ij,

as bilinear forms, where C > 1. Let ηm be a smooth partition of unity subordinate
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to the covering (Ωm). Now let u ∈ Hp
k(Mg̃) with respect to the metric g̃ then

‖ηku‖Hp
k (Mg)

=
k∑
j=0

(∫
M

|∇jηku|pdν(g)

) 1
p

=
m∑
j=0

(∫
φk(Ωk)

|∇jηku ◦ φ−1
k |

p
√
det(gkij) dx

) 1
p

≤ K

m∑
j=0

(∫
φk(Ωk)

|∇jηku ◦ φ−1
k |

p
√
det(g̃kij) dx

) 1
p

=
k∑
j=0

(∫
M

|∇jηku|pdν(g̃)

) 1
p

= ‖ηku‖Hp
k (Mg̃)

Now,

u =
N∑
k=1

ηku.

Hence, u ∈ Hp
k(Mg) with respect to the metric g. This completes the proof.

Theorem 10.1.1. If Ω is bounded, open subset of Rn, and if u : Ω→ R is Lipschitz,

then u ∈ Hp
1 (Ω) for all p ≥ 1

Lemma 10.1.1. Let (M, g) be a smooth Riemannian manifold, and u : M → R a

Lipschitz function on M with compact support. Then u ∈ Hp
1 (M) for any p ≥ 1.

In particular, if M is compact, any Lipschitz function on M belongs to the Sobolev

spaces Hp
1 (M), p ≥ 1.

Proof. Let u : M → R a Lipschitz function on M with compact support. Let

(Ωk, φk)k=1,2,...,N be a family of charts such that K ⊂ ∪Nk=1Ωk and such that for

any k = 1, . . . , N ,

φk(Ωk) = B0(1)

and
1

C
δi,j ≤ gki,j ≤ Cδi,j,
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Where C > 0 and B0(1) is the Euclidean ball of Rn of center 0 and radius 1. gkij are

the component of g in (Ωk)k=1,2,...,N . For any k = 1, . . . , N

uk = (ηku) ◦ φ−1
k : Rn → R

is a Lipschitz on B0(1) for the Euclidean metric. By previous theorem we get uk ∈
Hp

1 (B0(1)) for any p ≥ 1. Now,

‖ηku‖Hp
1 (M)

=
1∑
j=0

(∫
M

|∇jηku|pdν(g)

) 1
p

=
1∑
j=0

(∫
Ωk

|∇juk ◦ φk|pdν(gk)

) 1
p

=

(∫
Ωk

|uk ◦ φk|pdν(gk)

) 1
p

+

(∫
Ωk

|∇uk ◦ φk|pdν(gk)

) 1
p

=

(∫
φk(Ωk)

|uk|p
√
det(gkij) dx

) 1
p

+

(∫
φk(Ωk)

|∇uk|p
√
det(gkij) dx

) 1
p

≤ K

((∫
φk(Ωk)

|uk|pdx
) 1

p

+

(∫
φk(Ωk)

|∇uk|pdx
) 1

p
)

<∞

So, ηku ∈ Hp
1 (M). Now,

u =
N∑
k=1

ηku ∈ Hp
1 (M).

This completes the proof.

10.2 Density Properties

Definition 10.2.1. The Sobolev space H̊p
k(M) is the closer of the set D(M) of smooth

functions with compact support in M in Hp
k(M).

We know that H̊p
k(Rn) = Hp

k(Rn). Now, does it holds for the manifolds? For

complete manifolds it does hold. We shall prove this for k = 1, however the situation

is more complicated when k ≥ 2 and we need some assumption on the manifold.
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Theorem 10.2.1. If (M, g) is complete, then, for any p ≥ 1, H̊p
1 (M) = Hp

1 (M).

Proof. Let f : R→ R be defined by

f(t) = 1 when t ≤ 0 f(t) = 1− t when 0 ≤ t ≤ 1, f(t) = 0 when t ≥ 1

and let u ∈ Cp
1 (M) where p ≥ 1 is some given real number. Let x be some point of

M and set

uj(y) = u(y)f(dg(x, y)− j)

where dg is the distance associated to g, j is an integer, and y ∈M . By the previous

proposition uj ∈ Hp
1 (M) for any j, and since uj = 0 outside a compact subset of M ,

one easily gets that for any j, uj is the limit in Hp
1 (M) of some sequence of functions

in D(M). One just has to note here that if (um) ∈ Cp
1 (M) converges to uj in Hp

1 (M),

and if α ∈ D(M), then (αum) converges to αuj in Hp
1 (M). Then, one can choose

α ∈ D(M) such that α = 1 where uj 6= 0. Independently, one clearly has that for any

j, (∫
M

|uj − u|pdν(g)

) 1
p

≤
(∫

M\Bx(j)

|u|pdν(g)

) 1
p

and (∫
M

|∇(uj − u)|pdν(g)

) 1
p

≤
(∫

M\Bx(j)

|∇u|pdν(g)

) 1
p

+(∫
M\Bx(j)

|u|pdν(g)

) 1
p

where Bx(j) is the geodesic ball of center x and radius j. Hence, (uj) converges to u

in Hp
1 (M) as j goes to +∞. This ends the proof of the theorem.

10.3 Sobolev Embeddings

In Euclidean space Rn we have seen the Sobolev embeddings, in this section we shall

discuss on what condition that kind of embeddings hold for the manifolds.

Lemma 10.3.1. Let (M, g) be a complete Riemannian n-manifold. Suppose that the

embedding H1
1 (M) ⊂ Ln/(n−1)(M) is valid. Then for any real numbers q ∈ [1, n)

satisfying 1/p = 1/q − 1/n, then Hq
1(M) ⊂ LP (M).
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Proof. Let A ∈ R, from the given condition for any u ∈ H1
1 (M)(∫

M

|u|n/(n−1)dν(g)

)(n−1)/n

≤ A

∫
M

(
|∇u|+ |u|

)
dν(g).

Let q ∈ (1, n), p = nq/(n− q) and u ∈ D(M). Set φ = |u|p(n−1)/n Applying Hölder‘s

inequality, we get that(∫
M

|u|pdν(g)

)(n−1)/n

=

(∫
M

|φ|n/(n−1)dν(g)

)(n−1)/n

≤ A

∫
M

(
|∇φ|+ |φ|

)
dν(g)

=
Ap(n− 1)

n

∫
M

|u|p
′

|∇u|dν(g) + A

∫
M

|u|p(n−1)/ndν(g)

≤ Ap(n− 1)

n

(∫
M

|u|p
′
q
′

dν(g)

)1/q
′(∫

M

|∇u|qdν(g)

)1/q

+ A

(∫
M

|u|p
′
q
′

dν(g)

)1/q
′(∫

M

|u|qdν(g)

)1/q

where 1
q

+ 1
q′

= 1 and q
′
= p(n−1)

n
− 1. And p

′
q
′
= p since 1

p
= 1

q
− 1

n
.

For any u ∈ D(M).

(∫
M

|u|pdν(g)

)(n−1)/n

≤ Ap(n− 1)

n

(∫
M

|u|pdν(g)

)1/q
′

×((∫
M

|∇u|qdν(g)

)1/q

+

(∫
M

|u|qdν(g)

)1/q)
Now,

(∫
M

|u|pdν(g)

)n−1
n
− 1

q
′

≤ Ap(n− 1)

n

((∫
M

|∇u|qdν(g)

)1/q

+

(∫
M

|u|qdν(g)

)1/q)
.
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Hence,

‖u‖Lp(M) ≤ C
(
‖u‖Lq(M) + ‖∇u‖Lq(M)

)
Since, (M, g) is complete, then, for any p ≥ 1, H̊p

1 (M) = Hp
1 (M). this completes the

proof.

Theorem 10.3.1. (Sobolev Embedding for Compact manifold)

Let (M, g) be a compact Riemannian n-manifold. Then for any real numbers q ∈ [1, n)

satisfying 1/p = 1/q − 1/n, then Hq
1(M) ⊂ LP (M).

Proof. By previous lemma, we just have to prove that the embedding

H1
1 (M) ⊂ Ln/(n−1)(M)

is valid. Now since M is compact, M can be covered by a finite number of charts

(Ωm, φm)m=1,2,...,N such that for any m the components gmij of g in (Ωm, φm) satisfy
1
2
δi,j ≤ gmi,j ≤ 2δi,j as bilinear forms. Let ηm be a smooth partition of unity subordinate

to the covering (Ωm). For any u ∈ C∞(M) and any m, we have∫
M

|ηmu|n/(n−1)dν(g) ≤ 2n/2
∫
Rn
|(ηmu) ◦ φ−1

m (x)|n/n−1dx

and ∫
M

|∇(ηmu)|dν(g) ≥ 2−(n+1)/2

∫
Rn
|∇((ηmu) ◦ φ−1

m )(x)|dx

By G.N.S inequality (‖u‖Ln/(n−1)(Rn) ≤ C‖Du‖L1(Rn)) we have,

(∫
Rn
|(ηmu) ◦ φ−1

m (x)|n/(n−1)dx

)(n−1)/n

≤ 1

2

(∫
Rn
|∇((ηmu) ◦ φ−1

m )(x)|dx

)
.
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Then for any m and u ∈ C∞(M)(∫
M

|u|n/(n−1)dν(g)

)(n−1)/n

≤
N∑
m=1

(∫
M

|ηmu|n/(n−1)dν(g)

)(n−1)/n

≤ 2n−1

N∑
m=1

∫
M

|∇(ηmu)|dν(g)

≤ 2n−1

∫
M

|∇u|dν(g) + 2n−1

(
maxM

N∑
m=1

|∇ηm|
)∫

M

|u|dν(g)

≤ A

(∫
M

|∇u|dν(g) +

∫
M

|u|dν(g)

)

Hence,

‖u‖Ln/(n−1)(M) ≤ A
(
‖u‖L1(M) + ‖∇u‖L1(M)

)
Since, M is compact, then Cpk(M) = C∞(M) for all k and p ≥ 1. So, this completes

the proof.

10.4 Example of PDE on Riemmannian Manifold

Yamabe Problem

(M, g) is smooth compact Riemannian manifold, to find a metric g̃ conformal to g such

that the scalar curvature of (M, g̃) is a function K = constant. If g̃ = u4/(n−2)g (n ≥
3), u > 0, one has to solve

−∆gu+Rgu = Ku
n+2
n−2 , u ∈ H1(M), u > 0

where ∆g denotes the Laplace-Beltrami operator and Rg is the scalar curvature of

(M, g).
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