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Abstract

The main aim of this thesis is to study the theory of Sobolev spaces on Riemannian
manifolds. This thesis is divided into three parts, 1st we will learn Riemannian Ge-
ometry then Sobolev space on R™ at last we will define Sobolev space on Riemannian
Manifolds and we will learn some properties and embeddings of Sobolev space on
Riemannian Manifolds.

The Sobolev space over R" is a vector space of functions that have weak deriva-
tives. Motivation for studying these spaces is that solutions of partial differential
equations, when they exist, belong naturally to Sobolev spaces. The functions of
Sobolev space is not easy to handle, we shall approximate this functions by smooth
functions. We have calculated some inequalities on Sobolev space. With the help of
this inequalities we will embedded the Sobolev space in some LP space and Holder con-
tinuous space. Similarly on the manifold using covarient derivative we define Sobolev
Space Over Riemannian Manifold. Riemannian manifolds are natural extensions of
Euclidean space, the naive idea that what is valid for Euclidean space must be valid
for manifolds is false. But Sobolev embedding theorem for R™ does hold for compact

manifolds.
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Chapter 0O

List of symbols

A vector of the form a = (ay,...,q,) € N is called a multi-index of order

lal = a1 + -+ + ay.

o Doula) =

e C(U)=A{u:u— R|ucontinuous}

o C(U) ={ueCU) | uuniformly continuous}

o C*(U)={u:U — R |uis k times continuously differentiable}

o C*(U) = {u € C*U) | D*u is uniformly continuous for all |a| < k}

o C*°(U)={u:U — R | uis indefinitely differentiable.}

o C(U) =n2,CHU)

o C.(U), C*U), etc denote the functions in C'(U), C*(U) with compact support.
e VCCUmeans V C K C U, where K is compact (compactly contained)

o [7?

loc

(U)=A{u:U—-R|ueLP(V) for each V. CC U}

o WHrP(U), H*(U), etc denotes Sobolev spaces: see Section 6.2
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Chapter 1

Introduction

1.1 Differentiable manifold

Definition 1.1.1 (Differentiable manifold). A Differentiable manifold of dimension
n 1s a set M and a family of injective mappings x, : Uy, C R™ — M of open sets U,
of R™ into M such that:

1. U, 2a(Us) = M.

2. for any pair a, B, with x(Ua)Nag(Ug) = W (# @), the sets (W) and xgl(W)
are open sets in R™ and the mappings
rloxs: Xgl(W) — XY (W) are differentiable (Figure 1.1).

3. The family A = {(Us, x4)} is mazimal relative to the conditions (1) and (2),
meaning that if o : Uy C R™ — M is a map such that ;" o x and x o xy" are

differentiable for all x in A, then (Uy,xo) is in A.

The pair (Uy,x,) (or the mapping z,) with p € 2,(U,) is called a parametraza-
tion, (or system of coordinates) of M at p; x,(U,) is then called a coordinate neigh-
bourhood at p. A family {(U,,x,)} satisfying (1) and (2) is called a differentiable
structure(or Atlas) on M.

Remark. A differentiable structure on a set M induces a topology on M. Define
A C M tobeopensetin M iff x, '(ANxz,(U,)) is an open set in R" for all . The
empty set and M are open sets, the union of open sets is again an open set and that
the finite intersection of open sets remain a open set. The topology defined in such a

way that the sets x,(U,) are open and that mapping z, is continuous.

3



CHAPTER 1. INTRODUCTION

Figure 1.1:

Example 1.1.1. The Euclidean space R", The differentiable structure given by {R",id}.

1.2 Differentiable Maps

Definition 1.2.1. Let M{* and M3" be differentiable manifolds. A mapping ¢ : My —
M, is differentiable at p € My if given a parametrization y : V C R™ — My at ¢(p)
there ezists a parametrazation x : U C R™ — My at p such that ¢(x(U)) C y(V) and
the mapping

ylogox:UCR" = R™ (1.1)

is differentiable at 7' (p) (Figurel.2). The map ¢ is differentiable on an open set of
My if it 1s differentiable at all of the points of this open set.

As coordinate changes are smooth, this definition is independent of the parametriza-
tions chosen at ¢(p) and p. The mapping (1.1) is called the expression of ¢ in the

parametrazation x and y.

1.3 Tangent Space

We would like to extend the idea of tangent vector to the differentiable manifolds.
For regular surface in R?, a tangent vector at a point p of the surface is defined as

the “velocity” in R? of a curve in the surface passing through p. Since we do not

4



CHAPTER 1. INTRODUCTION

w(x(U)

x(U) )

y(¥)

ylowox

Figure 1.2:

have the support of the ambient space, we have to find a characteristic property of
the tangent vector which will substitute for the idea of velocity.

Let a: (—¢,e) — R™ be a differentiable curve in R”, with a(0) = p. Write
a(t) = (x1(t),...,x,(t)), t € (—€,€), (x1,...,2,) € R™.

Then o' (0) = (2,(0),...,2,(0)) = v € R". Now let f be a differentiable function
defined in a neighborhood of p. We can restrict f to the curve a and express the

directional derivative with respect to the vector v € R" as

= (Ze0g)s

Therefore, the directional derivative with respect to v is an operator on differentiable

d[EZ'
t=0 dt

d(foa)l _ - 0f
- 2

8@»

dt

=1

functions that depends uniquely on v. This is the characteristics property that we

are going to use to define tangent vectors on manifold.

Definition 1.3.1. Let o : (—e€,€) — M be a differentiable curve on a smooth manifold
M. Consider the set D of all functions f : M — R that are differentiable at (0) = p
(i.e., C* on a neighborhood of p). The tangent vector to the curve av at t = 0 is the
operator o’ (0) : D — R given by

d(foa)

CY/(O)(f): T _07 fGD
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A tangent vector to M at p is a tangent vector at t = 0 to some differentiable curve
a: (—e€) = M with «(0) = p. The tangent space at p is the space T,M of all

tangent vectors at p.

Choosing a parametrization z : U — M"™ at p = x(0), we can express the
function f and the curve « in this parametrazation by f o z(q) = f(x1,...,z,),
q = (x1,...,x,) € U, and the curve a(t),a : (—€,¢) — M «(0) = p by a(t) =
(x7 o) (t) = (z1(t),...,1,(t)), respectively. Therefore,

= C(fororon)

dt

t=0

- () 0= (L (2)40) !

i=1 i=1

Hence we can write the tangent vector a'(0) in the parametrazation x by

20 =3 ) i) (1.2

=1

—— —

E;L
—_
1

Figure 1.3:

Note: 1.3.1. The tangent vector to the curve o at p only depends on the derivative

of a in the local coordinate system.



CHAPTER 1. INTRODUCTION

Note: 1.3.2. Let B : (—e,e) — U(C R"), be a curve on U, 5(0) = 0, f(z;) =
(0,..0,2;,0,..0), a(z;) = x o f(x;).
o' (0) = ( ) by (1.2). Hence <ai> is a tangent vector at p of the coordinate curves
x; — x(0,..,0,2;,0,..0) (Figure 1.

then a(x;) is the coordinate curve on M «(0) = p,

Note: 1.3.3. T,M = {/(0) | o : (—¢,€) = M, differentiable curve with a(0) = p}
Define (i) (o (0) + B(0))f = '(0)(f) + F(O)(f), a'(0), #(0) € T,M, f € D. (i)
(A (0))(f) = A(@'(0)(f)), A € R. with this addition and multiplication T,M is a

vector space over R.

Note: 1.3.4. Every element of T,M can be written as linear combination of ( i
. &l
i=1,2,...n from (1.2). and {7, ..., 5.~

is a basis of T,M. Hence T,M 1is vector space of dimension n.

)
2
o)

9.1 is linearly independent. So, {&C s

Note: 1.3.5. It is clear from the definition of T,M the linear structure in T,M
defined above does not depend on the parametrazation x. The vector space T, M 1is

called the tangent space of M at p.

Definition 1.3.2. Let ¢ : My — My be a differentiable map between two smooth
manifolds of dimension n and m respectively. For p € M | the differential of ¢ at p
s the map

doy : TyMy — Ty Mo

given by do,(v) = (¢ o ) (0) = B(0) where a : (—e,€) — M is a curve satisfying
a(0)=p and o/(0) =v, f=¢oa

Proposition 1.3.1. The map d¢, : T,M, — Ty, My defined above is a linear map-
ping does not depend on the choice of the curve a (Figurel.4).

proof. Let z : U — M; and y : V — M, be parametrazation at p and ¢(p) respec-
tively ,such that ¢(z(U)) C y(V). Now the expression of ¢ in these parametrization,

We can write
y togpox(q) = (yl(xl, ey X))y YT, ,xn))

q=(x1,...,2,) €U, (y1,...,ym) €V
Now the expression of « in the parametrization x We obtain
v oalt) = (11(t), ..., 2a(t))

7
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. Hence,

yiloﬁ@):yilo(ﬁoa:y*loqﬁoxox*loa

= (@), 2a(), - Ym(@2 (1), (1))

3'(0) is the tangent vector at ¢(p). The expression for 3'(0) with respect to basis
{(%)0} of Ty M,, associated to the parametrazation y, is given by

90 =3 oo o) ()

=1

0= {>50(5) } ().

where x;(O),j =1,...,n are the component of v (= o’ (0)) in the local coordinate

H—

system. Hence 3'(0) does not depends on The choice of 7 as long as o’ (0) = v

ayl 4 aym /
<Z 8:cj Z 8% )

B(0) = dey(v) = (gg) (2(0))
1=1,... m;j=1,...,n,

where (ggl) denotes an m x n matrix and x;(O) denotes a column matrix with n
J

elements. Therefore, d¢, is a linear mapping of 7,,M; into T,,M, whose matrix in the

associated bases obtained from the parametrazation x and y is the matrix (g%)
J

Figure 1.4:
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Definition 1.3.3 (Diffeomorphism). Let M and N be differentiable manifolds. A
mapping ¢ : M — N is a diffeomorphism if it is differentiable, bijective, and it’s
inverse ¢~1 is differentiable. ¢ is said to be local diffeomorphism at p € M if there
exists neighbourhood U of p and V' of ¢(p) such that ¢ : U — V' is a diffeomorphism.

Definition 1.3.4 (Alternate Definition of Differential of a map). Let ¢ : My — M, be
a differentiable map between two smooth manifolds of dimension n and m respectively.
Forp e M | the differential of ¢ at p is the map

depy - TyMy — Ty My

given by
dop('(0)(f) = a'(0)(f 0 9)

where a: (—e, €) — My is a curve satisfying «(0) = p and f € C*(o(p)).

Now,
46,0 (0)(1) = o' (O)(f 0 6) = - (F 0 60 (1)) o

/

d
= (£ o B(1)) =0 = 5 (0)(£)
i.e., do(a’(0)) = B'(0) = (¢ 0 a)'(0)

So, the Definition 1.3.2. and Definition 1.3.4 are equivalent.

Proposition 1.3.2. Let ¢ : My — My and v : My — Mjz be a differentiable map

between differentiable manifolds then:

1. d(Yp 0 @), = diby(y) © depy

2. iy M — M, identitymap then d(in)p = in,m

9
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Proof 1. Let a'(0) € T,M, f € C®(1 0 ¢(p))

’

(db(p) © dby) (' (0)(f)
= (b ( d¢p<a’<o ))(f)
= (dop(a'(0)))(f o )

=a'(0 )(f0¢o¢)

= d(¢) 0 ¢),(a(0))(f)

i.e., d(1 o @), = dipy(p) © dopy,
Proof 2.

d(inn)y(a (0))(f)

a (0)(f o in)
(0)(f)

«

Therefore d(ip), is the identity map between the tangent spaces.

Proposition 1.3.3. Let ¢ : My, — M, is a diffeomorphism then do,
Ty M, is an isomorphism forallp € M.

Proof. Let ¢p = ¢~ 1 : My — M, p € M,.
We shall prove that (d¢,) " = d(ﬁ;(lp)
Now,
gy © ddp = d(1 0 ¢)p = dling, )p = 1,01,

dop o dpyp) = d(P 0 V) gy = d(ing,)o(p) = iT, ()Mo

Hence, d¢, is an isomorphism for all p € M.

Theorem 1.3.1. Let ¢ : M{" — M3} be a differentiable mapping and let p € M,y be
such that do, : TyMy, — Ty My is isomorphism. Then ¢ is a local diffeomorphism

at p.

Proof. Let x : Uy — M; and y : Vo — My be parametrazation at p and ¢(p)
respectively ,such that ¢(z(U;)) C y(Vz). Let 27 (p) = q. Now the expression of ¢ in

10
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INTRODUCTION

these parametrization, We can write

b=y logox:U = Vy

~

ql:(xlﬁ"'vxn)€U17(y17"-ayn)€‘/2

Since, d¢, is is an isomorphism then (by Proposition 1.3.1.)

O, Yn)
Oz, . .. ,xn)(Q) 70

o=y odox(n)= (n(@r,-..,2n), - Yn(z1,. ..

Then, by the inverse function theorem in R™, 3 two open sets U and V' of R" such
that ¢ € U, ¢(q) € V, ¢ is one-one, ¢(U) = V, ¢+ exists and ¢~1(V) = U and

¢t =x2"1o¢ oy is differentiable in V.

Hence, ¢ is bijection between z(U) and y(V'), and ¢! is differeniable on y(V).

So, ¢ is a local diffeomorphism at p.

1.4 Immersions and Embeddings

Definition 1.4.1. Let M™ and N™ be differentiable manifolds. A differentiable map-
ping ¢ : M — N is said to be an immersion if do, : T,M — Ty, N is injective for
all p € M. If in addition , ¢ is homeomorphism into (M) C N , where ¢(M) has
the subspace topology induce from N, we say that ¢ is an embedding. If M C N and

the inclusion map v : M — N is an embedding, We say that M is a sub-manifold of

N.

It can be seen that if ¢ : M™ — N™ is an immersion , then m < n ; the difference

n — m is called the codimension of the immersion ¢.

Definition 1.4.2 (Regular surface in R"). A subset M* C R™ is a reqular surface of

dimension k, k < n if for every p € M* there exists a neighborhood V of p of R™ and
a mapping x: U CRF — M NV of an open set U C R¥ onto M NV such that.

1. x is differentiable homeomorphism.
2. (dz,) : RF — R"™ is injective for all ¢ € U

11
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Example 1.4.1. The curve a : R — R? given by a(t) = (t3,t?) is a differentiable

mapping but is not an immersion because ' (0) = 0.

Example 1.4.2. The curve o : R — R? given by a(t) = (3 —4t,1*> — 4) is a differen-
tiable mapping and an immersion but not an embedding because «(2) = a(—2) = 0,

not injective.

Example 1.4.3. The map f : R — R? given by f(t) = (e'cos(t),e'sin(t)) is an
embedding of R to R2.

Example 1.4.4. Let M* C R" be a k dimension regular surface. The inclusion
i: M* — R" is an embedding, that is, M* is a submanifold of R™.

Proof: For all p € M* there exists a parametrization z : U C R¥ — M* of M* at
p. Let V be a neighborhood of p in R” and a parametrization j : V C R" — V of R”
at i(p) (j is the identity mapping). j~!oiox = x is differentiable, so i is differentiable
for all p € M*. From the condition (2) of the definition of regular surface (di),, is
injective so ¢ is an immersion and From the condition (1) of the definition of regular

surface i is homeomorphism onto its image. Hence M* is submanifold of R™.

Proposition 1.4.1. Let ¢ : M7 — M, n < m be an immersion of the differentiable
manifold My into the differentiable manifold Ms. For every p € My 3 a neighbourhood
V C My of p such that the restriction ¢ : V. — My 1s an embedding.

Proof. Let 1 : Uy C R — M; and x5 : Uy C R™ — M5 be a system of coordinate
at p and ¢(p) respectively. Let us denote by (x1,...,x,) the coordinate of R™ and
by (y1, ..., Yym) the coordinate of R™. In this coordinate , The expression for ¢ is the
mapping gg = xgl o ¢ o x; can be written as,

(Zﬁ = (yl(l’l, ...,In), ---,ym(xla "'7$n>)'

Let, ¢ = z; '(p), since ¢ is an immersion then dg, is injective for all p € M, , that is
(%), 1 <1 <m,1<i<nisinjective , so has rank n. Hence,
J

a(yla >yn)
Ay, o) D70

To apply inverse function theorem, we introduce the mapping, ® : U; x Rm~"=F — R™
given by ,
(I)(l‘l, ey Ty tl, ceey tk) =

12
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(yl(xh ‘“71'71)7 “'7yn(x17 ...,xn),yn+1(x1, 7‘/1771) + tla "'7yn+k(‘r17 '-'7xn> + tk)

Where ,(t1, ..., t) € R™="=*_Here if we restricts ® to U; then ® coincide with . dd,

is the m x m matrix given by
(5% )nsn O
0 Tixk

det(ap) = TP ) o

It follows from the inverse function theorem ,that there exists a neighbourhood W; C
Uy x R¥ of g and Wy C R™ of ®(q) such that , the restriction ®|,, is a diffeomorphism
onto Wy. let V. =W, NU, |y = ¢~>|V and X, ,ry are diffeomorphism. We conclude
that, the restriction to V = 21(V) of the mapping ® = z50¢oz7! : V — ¢(V) C M,

is a diffeomorphism , Hence an embedding. ]

1.5 Examples of manifolds.

Example 1.5.1 (The tangent bundle). Let M™ be a differentiable manifold and let
TM = {(p,v);p € M,v € T,M}. We are going to provide the set TM with a
differentiable structure (of dimension 2n ); with such a structure TM will be called
the Tangent bundle of M.

Proof: Let {(U,,z,)} be the maximal differentiable structure on M. Denoted by
(2, ...,2%) the coordinates of U, and by {52, ..., 52} the associated bases to the
1 n

tangent spaces of x,(U,). For every a, Define

Yo : Uy X R" — TM,

Yo (2T, oy T Uty ey Uy,) =

(0% (0% - 8 n
(ma(xl,...,xn),Zui%), (ug,...,upn) €R
i=1 i

Geometrically, this means that we are taking as coordinates of a point (u.v) € TM

the coordinates of z¥,...,zo of p together with the coordinates of v in the basis

13
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We are going to show that {(U, x R",y,)} is a differentiable structure on 7M.
Since |J, za(Ua) = M and (dz,)q(R™) = Ty, ()M, q € Ua, q € Us, we have that

J¥a(Ua x R") = TM,

which verifies the condition (1) of Definition 1.1.1. Now let
(p,v) € Ya(Us x R") Nys(Us x R™).

then
(p,v) = (2a(qa), dralva)) = (75(qs), drs(vs)),

where ¢, € Uy, qs € Ug, v4,v3 € R". Therefore,
y,étl o ya(Qou”oz) = yﬂ_1<xa(QQ)7 dxa(”a))

= (25" © 2a)(¢a), d(z3" © a)(va))-

Since :cgl o x, is differentiable, d(xgl o x,) is as well. It follows that y/gl 0 Yo iS
differentiable, which verifies condition (2) of the definition 1.1.1. and completes the

example.

Example 1.5.2. The real projective space P"(R). Let us denote by P™(R) the set of
straight lines of R™ which pass through the origin 0 = (0,...,0) € R™; that is,
P™(R) is the set of “direction” of R"!,

Proof. We shall introduce a differentiable structure on P™(R). For this, on the set
R"*! — {0} we define the equivalence relation ~ by
p ~ ¢ if and only if there exists a A € R — {0} such that p = A\q where p,q € R"*!
Then P"(R) be the quotient space R"** — {0}|.. The points of P"(R) will be
denoted by [z1,...,z,11]. Observe that if z; # 0,
Ty Li-1 1 Li+1

[I‘l,...7mn+1]:|:—..., , L, )

xn+1
, .

Define subsets Vi, ..., V41, of P*(R), by:

%:{[xla"'axn—i-l]:mi?éo}, Z:].,,TL—{—]_

14
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Geometrically, V; is the set of straight lines R™™! which pass through the origin and
do not belong to the hyperplane x; = 0. We are now going to show that we can take
the V;’s as coordinate neighborhoods, where the coordinates on V; are

T Ti—1 T4l _ Tntl

Y= — - ¥i-1 = oy Yi = yore s Yn = .

For this, we will define mappings x; : R® — V; by

xi(yh"'?yn) = [yla"wyi*lal?yljrlu"'7yn]7 (ylu"'7yn) eR

and we will show that the family {(R", z;)} is a differentiable structure on P"(R).

Indeed, any mapping z; is clearly bijective while Uz;(R") = P*(R). It remains to
show that that x; ' (V; N'V;) is an open set in R™ and that xj’l owy, j=1,...,n+1,
is differentiable there. Now, if i > J, the points in x;*(V; N'V;) are of the form:

{1, yn) € R" 1 y; # O}

Therefore z; ' (V; N V}) is open set in R™, and supposing that i > j(the case for i < j
is similar),

xji1 Owi(yb s ;yn> = 'rgl[y17 e Yie1, 1;3/i+17 s 7yn]

ey

— j i1 1y n

:ml[ﬂ’_wmﬂjww Yisl 2 Y y_}
J .
Yj

yi vi vy Ty
_ <g Yi-1 Y1 Yo 1oy y_n)
yj? ) y] ) y] ) Y yj 7yj7 y]? Jyj

Which is clearly differentiable.

In summary, the space of directions of R"*! (real projective space P"(R)) can
be covered by n + 1 coordinate neighborhood V;, where V; are made up of those
directions of R™*! that are not in the hyperplane x; = 0; in addition, in each V; we

have coordinates

! Ti—1 Tit1 Tn+1
2w w0 m
where (z1,...,%,11) are the coordinates of R™*1. O

Example 1.5.3. Let M be a differentiable manifold of dimension m and N be a
differentiable manifold of dimension n. Then the cartesian product M x N 1is a

differentiable manifold of dimension m + n.

15



CHAPTER 1. INTRODUCTION

Example 1.5.4. Regular surface of dimension k is a differentiable manifold of di-

mension k.

Proof: Let a subset M* C R™ is a regular surface of dimension k, p € MF*. Let
r:U(CRF) - M*and y : V(C R¥) — M* are two parametrazation at p with
2(U)Ny(V) =W # ¢, then consider the mapping h =z Loy : y (W) = 21 (W),
we have to show that h is a diffeomorphism.

Let r € y~Y(W) and put ¢ = h(r). Let (uy,...,ux) € U and (vy, ...,v,) € R", and

write x in these coordinate as

x(Ury ey ug) = (V1 (Ugy ooy Ug), ony U (U, ooy Ug)).

From condition (2) of the Definition of Regular surface we have,

O(v1, ..., Ug) (q) £0

a(ula ) Uk;)

Extend z to the mapping F : U x R"™* — R" given by
F(Ul, -y Uk, tk—‘rl) ey tn)

= (U1 (U, ey Up )y ooy Vg (U vy U )y Vg1 (U ooy Ug) F Tty ooy Un (U, ooy Ug) + ),

Where (tgy1,...,tn) € R™ %1t is clear that F is differentiable and restriction of F to
U x{(0,...,0)} coinside with z. And we have,

0("01, ...,Uk) (q) 7& 0

det(dF,) = O(uy, ..., ug)

. Then by inverse function theorem, which guarantees the existence of a neighborhood
Q of z(q) where F'~! exists and is differentiable. By the continuity of y, there exists
a neighborhood R C V' of r such that y(R) C (. The restriction of h to R, h|g =
F~'oy|g is a composition of differentiable mappings. Thus & is differentiable at r,
hence in y~!(W). Similarly we can show that hA~! is differentiable. Hence regular

surface is a differentiable manifold.

Definition 1.5.1 (Regular value). Let F': U(C R") — R™ be a differentiable map-
ping of an open set U of R". A point p € U 1is defined to be a critical point of F if
the differential dF, : R® — R™ is not surjective. The image F(p) of a critical point

16
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is called a critical value of F'. A point a € R™ that is not a critical value is said to
be is said to be a regular value of F'. Any point a ¢ F(U) is trivially a regular value

of F' and if there exists a reqular avliue of F' in R™, then n > m.

Example 1.5.5. Let F: U(C R™) — R™ be a differentiable mapping of an open set
U of R", a € F(U) be a reqular value of F. Then F~'(a) C R" is a regqular surface

of dimension m —n = k. Hence F~'(a) C R" is differentiable manifold of dimension

k.

Proof. To prove this We use the inverse function theorem. Let p € F~'(a). De-
note by ¢ = (y1,.-.,Ym,T1,...,T) an arbitary point of R"="** and by F(q) =
(fi(q), ..., fm((q)) its image by the mapping F. Since a is a regular value of F, dF,

is surjactive. therefore, we have

Ofiy--y fm)

0(y1,.-.,ym)<p)7é0

Define a mapping ¢ : U C R" — R"** by

Oty Ymy Ty xk) = (f1(q), -+ oy fn(@), 21, - oo k).

Then,

8(fl; s 7fm>
Y1, s Ym)
By the inverse function theorem, ¢ is a diffeomorphism of a neighborhood ) of p onto
a neighborhood W of ¢(p). Let K™tk c W C R™** be a cube of center ¢(p) and
put V = ¢ 1(K™*N Q). Then ¢ maps the neighborhood V' diffeomorphically onto
K™tk = K™ x K*. Define a mapping = : K¥ — V by

det(do), = (p) # 0.

w(zy, ... x5) = ¢ Hay, ..., Qm,T1,. .., Tk),

Where (ay,...,a,) = a. Here ¢ satisfies conditions (1) and (2) of the definition of

regular surface. Since p is arbitary, F~!(a) is a regular surface in R". O

17
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1.6 Orientation

Definition 1.6.1. A smooth manifold M is orientable if M admits a differentiable
structure {(Uy, x4)} such that:

1. for every pair a, f with ©,(Uy)Nag(Ug) = W # ¢, the differential of the change

of coordinates xg o x, has positive determinant.

In the opposite case M is nonorientable. If M is orientable, then an choice of
differentiable structure satisfying (1) is called an orientation of M. Furthermore, M
(equipped with such differentiable structure) is said to be oriented. We say that two
differentiable structure satisfying (1) determine the same orientation if their union
satisfies (1) too.

Note: 1.6.1. 1. An orientable and connected smooth manifold has exactly two

distinct orientations.

2. If M and N are smooth manifolds and f : M — N 1is a diffeomorphism, then

M is orientable if and only if N is orientable.

3. Let M and N be connected oriented smooth manifolds and f : M — N a
diffeomorphism. Then f induces an orientation on N. Which may or may
not coincide with the initial orientation of N. In the 1st case we say that f

preserves the orientation in the second case , f reverse the orientation.

Example 1.6.1. If M can be covered by two coordinate neighborhoods Vi and Vy in

such a way that the intersection Vi N Vy is connected, then M is orientable.

Proof: Suppose that there exists an atlas {(V1,24), (V2,y3)} of M such that
W = V1NV, is connected. The mapping y/g)loxa cxt (W) — ygl(W) is diffeomorphic.
So det(yﬁ’1 ox,) () # 0 Vo € 21 (W). Since z — alet(yﬁ’1 014) () is continuous and
x ' (W) is connected, the determinant can not change its sign. If the sign is positive,

we are done. If the sign is negative, replace the chart (Va2,y5),y5 = (1, ..., Yn), by the
chart (Va, 43), ¥s = (—y1, Y2, ..., yn). Then the atlas {(V1, z,),(Va,ys)} satisfies (1).

Example 1.6.2. The sphere S™ is orientable.

n+1
S" = {({L‘l, ...,l’n+1) S Rn—H; ZZL‘ZQ = 1}
i=1

18
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Proof. Let N = (0,..,0,1) be the nort pole and S = (0, ...,0, —1) the south pole of
S™. Define a mapping m; : S™ — {N} — R" (stereographic projection from the north
pole) that takes p = (1, ...,z,11) in S™ —{ N} into the intersection of the hyperplane
Zn + 1 = 0 with the lin ethat passes through p and N.

X1 T,

(X1, ey Tpy1) = e :
1( 1y +1) (1 — Tpin 1— Tt
The mappng 7 is differentiable, injective and the maps S™ —{ N'} into the hyperplane
Zny1 = 0. The stereographic projection my : S™ — S — R" from the south pole onto
the hyperplane x,,.1 = 0 has the same properties.

Therefore, the parametrizations (R™, w;'), (R, w5 ') cover S™. In addition, the

change of coordinates:

.Z'j ’ ij

A — Tnt1 Ui L4 2p

(Y1, osyn) €ER™, j=1,..,n

is given by
/ yj

Yy =< 2

DY
(Using the fact 3771 7 = 1). Therefore, the family {(R”, 1), (R”, 7, ')} is a dif-
ferentiable structure on S™. The intersection 7, '(R") N1, '(RY) = S" — {N U S}

is connected, thus S™ is orierntable and family given determines an orientation of
ST, O

1.7 Vector fields; brackets.

Definition 1.7.1. A Vector field X on a differentiable manifold M is a correspon-
dence that associates to each point p € M a vector X (p) € T,M. In terms of map-

pings, X is a mapping from M into the tangent bundle T'M The Field is differentiable
if the mapping X : M — TM is differentiable.

Consider a parametrazation x : U(C R") — M we can write

X(p) = zn: a;(p) (ai)p,

=1
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where each a; : U — R is a function on U and {%} is the basis of the tangent

space associated to z, i =1,...,n.

Proposition 1.7.1. A vector field X is differentiable if and only if the functions a;

are differentiable

Proof. Let, X : M — TM be a vector field. Let z : U - M and y : U x R* —
TM be the parametrizations at p and X (p) ,respectively. Expressing X in these

parametrization, we can write

~

X(21, ey @) = (T4, ooy Ty @1 (X1, ooy T)y ooy A (X1, oy T)

Therefore X is differentiable if and only if the functions a; : U — R are differentiable.
O

We can also think of a vector field as a mapping X : D — F, where D is the set
of differentiable function on M and F is the set of function on M. Let f € D and
X : D — F is defined by

f—=Xf

Where, X f : M — R is defined by,

b= 00 = Y052 ) o)
i=1 !
So, the vector field is differentiable if and only if X : D — D, that is X f € D for all
f € D. Let X(M) be the set of all vector fields of class C* on M. The interpretation
of X as an operator on D permits us to consider the iterates of X. For example, if X
and Y are differentiable vector fields on M and f € D, we can consider the functions
X(Yf) and Y(Xf). In general, the operators XY , Y X will involve derivatives of

order two, and will not lead to vector fields. However, XY —Y X does define a vector
field.

Lemma 1.7.1. Given two differentiable vector fields X,Y € X(M) on a smooth
manifold M, there exists a unique differentiable vector field Z € X (M) such that
Zf = (XY =YX)f, for every differentiable function f € D

Proof. First, we prove that if Z exists, then it is unique. Assume the existence of
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such Z. Let p € M and let x : U — M be a parametrization at p, and let,
XY v T
be the expression of X and Y in these parametrization. Then for all f € D,

B Of\ <~ 0b; Of
_X(;bfax)_izjalaxiax] Z bfa ax]

of da; Of
Y(Xf)zY(Eaia—%):iZjbja% Ja axj'
b )
ZszYf—YszZ(CLiax] ba )85
i, ! J

Which proves the uniqueness of Z.

To show existence, define Z,, in each coordinate neighbourhood X, (U,) of a dif-
ferentiable structure {(U,),zo} on M by the previous expression. By uniqueness,
Zy = Zg on z,(U,) Nxs(Us) # ¢, which allows us to define Z over the entire mani-
fold M. O

The vector field Z given by Lemma 1.5.1 is called the bracket [X,Y] = XY —Y X
of X and Y.

Proposition 1.7.2. If X,Y,Z € X(M), a,b € R and f,g € D then:
1. [X,Y] = —[Y, X] (anticommutativity),
2. [aX +bY, Z] = a[X, Z] + b]Y, Z] (linearity),
3. [[X,Y], 2] +[[Y, 2], X] + [[Z, X],Y] = 0 (jacobi identity),
4. [fX,gY] = faf[X. Y]+ fX(9)Y — gV (f)X.
Proof. L [ X,)Y]=XY -YX=—(YX-XY)=—-[Y, X]

2. [aX +bY,Z] = (aX +bY)Z — Z(aX +bY) = aXZ +bY Z — aZX — bZY =
a(XZ - ZX)+b(YZ = ZY) = a[X, Z] + b]Y, Z]
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3. [[X,Y],Z) = [XY —-YX,Z|=XYZ-YXZ—ZXY + ZY X So,
X, [Y, 2]+ [V, [Z, X]] =

XYZ - XZY - YZX+ZYX+YZX -YXZ - ZXY +XZY

Hence,
[X,Y],Z]+[[Y,Z], X]+ [[Z,X],Y] =0

4. [fX,9Y] = fX(gY) — gV (fX) = f9XY + [X(9)Y — gfYX — gV (f)X =
falX, Y]+ fX(9)X —gY (f)X.
0

The bracket [ X, Y] can be also interpreted as a derivation of Y along the “trajectories”
of X.

Since a differentiable manifold is locally diffeomorphic to R", the fundamental
theorem on existence, uniqueness, and dependence on initial conditions of ordinary
differential equation (which is a local theorem) extends naturally to differentiable
manifolds. Which is stated below.

Theorem 1.7.1. Let X be a differentiable vector field on a differentiable manifold
M, and let p € M. Then there exists a neighborhood U C M of p, an interval
(—0,0), 6 > 0, and a differentiable mapping ¢ : (—06,0) x U — M such that the curve
t — o(t,q), t € (=6,0), q € U, is the unique curve which satisfies % = X(¢(t,q))
and ¢(0,q) = q.

A curve o : (=6,6) — M which satisfies the conditions o (t) = X(a(t)) and
a(0) = q is called a trajectory of the field X that passes through ¢ for t = 0. The
above theorem guarantees that for each point of a certain neighborhood there passes
a unique trajectory of X and that the mapping so obtained depends differentiably on
t and on the “initial condition” q. The mapping ¢, : U — M is called the local flow

of X where ¢(q) = ¢(t,q).

Lemma 1.7.2. Let h: (=9,0) x U — R be differentiable mapping with h(0,q) = 0
for all ¢ € U. Then there exists a differentiable mapping g : (§,6) x U — R with
h(t,q) = tg(t,q); in particular,

Oh(t,q)
ot li=o

9(07 Q) =
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Proof. Define for fixed t,

g(t,q) = —82((2;]) ds

0
L Oh(ts,q)
tg(t,q) = | t——2q(s
o) = [ D)
and, after change of variables, observe that
" Oh(ts,q)

tg(t,q) = i Wd(t?) = h(t, q).

We can also express the bracket in following form.

Proposition 1.7.3. Let X, Y be differentiable vector fields on a differentiable man-
ifold M, let p € M, and let ¢; be the local flow of X in a neighborhood U of p.

Then 1
m —[Y — d¢Y|(¢:(p))

=1i
t—0 t

X, Y](p)

Proof. Let f be a differentiable function in a neighborhood of p. Putting

h(t,q) = f(¢:u(q)) — f(a),

now applying the previous lemma we obtain a differentiable function g(t, ¢) such that

foouq) = flq) +tg(t,q) and g(0,q) = X f(q).

Now,
((deY) ) (@e(p) = (Y (f o ¢0))(p) =Y f(p) + t(Yg(t, p))-
Therefore,
fim 2 — o] (o) = i PP ZTIB) 0.
= (XX N))p) - ¥(X)f)p)
= (X, Y]1)(p)-
This completes the proof. O
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Chapter 2
Riemannian Metrics

We have natural way of measuring the length of vectors tangent to a surface S C R”,
using the inner product (v, w) of two vectors tangent to S at a point p of S is simply
the inner product of these vectors in R™. For abstract differentiable manifolds there
is no ambient space so, we have to define inner product in the tangent space at each
point. The definition of (, ) permits us to measure not only the length of the curve
but also volume, angle between two curves and all the other “metric” ideas used in

geometry.

Definition 2.0.1 (Riemannian Metric). A Riemannian Metrics (or Riemannian
structure) on a differentiable manifold M is a correspondence which associates to
each point p of M an inner product <,>, (that is , a symmetric, bilinear, positive-

definite form) on the tangent space T, M
< .>pTpM xT,M — R
Which varies differentiably with p € M.

The last condition means if x : U C R"™ — M is a system of coordinate around
p € M with z(xy,...,z,) = ¢ € z(U) and %(q) = dzy(0,..,1,...,0). Then each
function g¢;; : U — R defined by

9ij (w1, oy ) =< P (), a_:cj<Q) >(q)
is differentiable.
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The function g;; is called the local representation of the Riemannian metric (or
the g;; of the metric) in the coordinate system = : U C R® — M. A differentiable

manifold with the Riemannian metric will be called a Riemannian mani fold.

Definition 2.0.2. Let M and N be Riemannian manifolds. A diffeomorphism f :
M — N s called an isometry if

< u, v >p=< dfp(u), dfy(v) >, forallp € M,u,v e T,M

Definition 2.0.3. Let M and N be Riemannian manifolds. A diffeomorphism f :
M — N is a local isometry at p € M if there is a neighborhood U C M of p such that
f:U = f(U) is a diffeomorphism satisfying

< U, v >y =< dfp(u), dfy(v) > @), forallp € M,u,v € T,M

Example 2.0.1. The almost trivial example. M = R"™ with % tdentified with e; =
(0,...,1,...,0). The metric is given by (e;, e;) = 0;;.

Example 2.0.2. M = R? the local expression of the previous metric in polar coordi-
nate.

d . o) ,
E(T’ 0) = (cosh, sinf) and %(7’, 0) = (—rsinb, rcost)

1 0
gij = 0 2

Example 2.0.3. Let f : M™ — N""* be an immersion (that is f is differentiable and
dfy : T,M — Ty M is injective for all p € M. If N has a Riemannian structure, f

induces Riemannian structure on M. Defining,
< u,v > =< dfp(u), dfp(v) >, forallp € M,u,v € T,M.

Since, < u,v >, is symmetric, < u,v >p > 0 and < u,u >,= 0 = < df,(v), dfp(v) > )=
0 = dfy(v) =0 (since, df, is injective ). The metric on M is then called the metric
nduced by f, and f is isometric immersion.

In particular, when we have a differentiable function h : M™% — N* and ¢ € N
is a reqular value of h (that is , dh, : TpM — Ty N is surjective for all p € h™*(q)).
It is known that h™='(q) C M is a submanifold of M of dimension n; hence, We can

put a Riemannian metric on it induced by the inclusion.
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Example 2.0.4. (The product metric) Let (My,g1) and (M, g2) are Riemannian
manifolds, the product My X My has a natural Riemannian metric, the product metric,
defined by

g(X1+ X0, Y1 +Y2) = g1(X1, Y1) + g2( X, Y2),

where X;,Y; € T,(M;) and Ty, o (My x My) = T,M, ® T, M, for all (p,q) € My x M.
If (z1,...,2,) is a chart on My and (Tpy1,...,Tnem) @S a chart on My, then
(1, ., Tpym) 18 @ chart on My x M. In these coordinates the local representation

of the product metric, g;j, can be written as,

(g - (@) O - 0
(G1)m -+ (G1)nn 0 - 0
0 cee 0 (92)11 - (92)1m

A Riemannian metric allows us to compute the length of curves.

Definition 2.0.4. A differentiable mapping ¢ : I — M of an open interval I C R

into a differentiable manifold M is called a (parametrized) curve.

Definition 2.0.5. A vector field V' along a curve ¢ : I(C R) — M is mapping
V i I — TM that associates to every t € I a tangent vector V(t) € TyyM. V
will be differentiable if the mapping V : I — TM is differentiable (that is for any
differentiable function f on M, the functiont — V(t)f is a differentiable function on
I).

The vector field dc(%) denoted by d‘;, is called the welocity field ( or tangent
vector field). A vector field along ¢ can not necessarily be extended to a vector field

on an open set of M.

Definition 2.0.6. let M be a Riemannian manifold and ¢ : [(C R) — M be a curve.

The restriction of a curve ¢ to closed interval [a,b] C I is called a segment. We

b
/ de dc
dt’ dt
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Definition 2.0.7. Let M be a differentiable manifold. A family of open sets V,, C M
with |J, Vo = M s said to be locally finite if every point p € M has a neighborhood
W such that W NV, # ¢ for only a finite number of indices.

Definition 2.0.8 (Differential partition of unity). We say that a family f. of differ-
entiable functions f, : M — R is a Differential partition of unity if:

1. For all o, fo, > 0 and the support of f. is contained in a coordinate neighborhood
Vo = 24(Uys) of a differentiable structure {(Ug,z3)} of M.

2. The family {V,} is locally finite.

3. > . falp) =1, for all p € M (This condition make sense because for each p,
fa(p) # 0 only for finite number of indices).

We say that the partition of unity {f.} is subordinate to the covering {V,}.

Theorem 2.0.1. A differentiable manifold M has a Differential partition of unity if

and only if every connected component of M is Hausdorff and has a countable basis.

Proposition 2.0.1. A differentiable manifold M (Hausdorff with countable basis) has

a Riemannian metric.

Proof. Let {f.} be a differentiable partition of unity on M subordinate to a covering
{V,} of M by coordinate neighborhood. We can define a Riemannian metric <, >“=
g¢ on each Va induce by the system of local coordinate, whose local representation
is (g5;) = dij- Let us define

< u,v >p:Zfa(p) <wu,v >y Vp € M,u,v €TpM.

since, the family of supports of f, is locally finite the above sum is finite. Hence
<, >, is well defined and smooth. It is bilinear and symmetric at each point. Since,
fo >0and ) f, =1 it follows that <, >, is positive definite. So, this defines a

Riemannian metric on M. O

Riemannian metric permits us to define a notion of volume element on a given
oriented manifold M™.
Let pe M and let x : U C R®™ — M be a parametrization about p which belongs

to a family of parametrization consists with the orientation of M (We say that such
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parametrization are positive). Consider a positive orthonormal basis {ey,...,e,} of

T,M and write X;(p) = 22 (p) in the basis e;, X;(p) = >ij@iges. Then

gin(p) =< Xi, X > (p) = Y ajjam < ¢j,e1 >= Y _ ;a1
jl J

Since the volume vol(Xi(p), ..., Xn(p)) of the parallelepiped formed by the vectors
(X1(p), ..., Xn(p) in T,,M is equal to vol(ey, ..., e,) = 1 multiplied by the determinant

of the matrix (a;;), we obtain

VOl(X1(p), s Xn(p) = det(ar;) = \/det(g.)(p):

If y : V. C R® — M is another positive parametrization about p, with Y;(p) = -2-(p)
and h; ; =<Y;,Y; > (p), we obtain

det(gi5)(p) = vol(X1(p), .-, Xn(p))

= Jool(Yy(p), ..., Yn(p)) = Jy/det(hi;(p))

where J = det(g?y;) = det(dy~"' o dz)(p) > 0 is the determinant of the derivative of
the change of coordinates.

Now let R C M be a region (an open and connected), whose closer is compact.
WE suppose that R is contained in a coordinate neighborhood z(U) with a positive
parametrization z : U — M, and that the boundary of x7'(R) C U has measure zero
in R".

Let us define the volume vol(R) of R by the integral in R"

vol(R :/ det(g; j)dx;...dz,.
()= [, et

The expression is well-defined. Because if R is contained in another coordinate neigh-
borhood y(V') with a positive parametrization y : VC R™ — M, we obtain from the

change of variable theorem for multiple integral, we have

/ \/det(g; ;)dxy...dx, = / \/det(h; j)dy;...dy, = vol(R)
z~1(R) y~H(R)

which proves that the definition of volume does not depend on the choice of the
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coordinate system. The hypothesis of the orientability of M guarantee that vol(R)
does not change sign.

The integrand in the formula for the volume expression that is,
det(g; j)dx;...dx,

is a positive differential form of degree n, which is called a volume element v on M.
To define the the volume of a compact region R, which is not contained in a
coordinate neighborhood it is necessary to consider a partition of unity ¢; subordinate

to a (finite) covering of R consisting of coordinate neighbourhoods z(U;) and to take

vol(R) = Z /—1(R) v

The above expression does not depend on the choice of the partition of unity. The
existence of a globally defined positive differential form of degree n (volume element)
leads to a notion of volume on a differentiable manifold. A Riemannian metric notion

is the only on of the ways through which a volume element can be obtained.
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Connections

If X and Y are vector fields in Euclidean space, we can define the directional derivative
VxY of Y along X. This definition, however, no longer holds in a general manifold,
because let S C R? be a surface and let ¢ : I — S be a parametrized curve in

S. The vector %(t), t € I, does not in general belongs to the tangent space of S.

The concept of differentiating a vector field is not a "intrinsic” geometric notion on
S. To overcome this problem we consider, instead of the usual derivative %(t), the
orthogonal projection of %(t) on T S. This orthogonally projected vector is called
the covarient derivative of V' and denoted by %(t). The covarient derivative of V' is

the derivative of V' as seen from the ”viewpoint of S”.

3.1 Affine Connection

Let us indicate by X(M) the set of all vector field of class C* on M and by D(M)

the ring of real-valued functions of class C'*° defined on M.

Definition 3.1.1 (Affine Connection). An Affine connection V on a differentiable
manifold M is a mapping

V:iX(M)xX(M)— X(M)
which is denoted by (X,Y) — VxY and which satisfies the following properties :
1. VfX+gyZ = vaZ + gVyZ.
2. Vx(Y+2)=VxY +VxZ
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3. Vx(fY) = fVxY + X([)Y,
in which X,Y,Z € X(M) and f,g € D(M)

Proposition 3.1.1. Let V be an affine connection on M, X, Y € X(M),p € M, then
(VxY), € T,M depends only on X,, and the value of Y along a curve tangent to X
at p.

)

Proof. Let x : U(C R™) — M be a system of coordinate at p, and X = inX

Y = ZyjY}, where X; = %. Now,

7

j

VxY = Vx( Zyj ZvaXX +ZX y)X

= Z%VZ ,;ZXX +Z ZxX ;)

= in, ;i Vx, X5+ Z x; X

Leth X, Xj = Z Fi j;’(k, Fﬁ ; are differentiable function defined on U in a coordinate

system (U, z). So we have
VxY = Z szyjr + X () X (3.1)

So, VxY(p) depends only on z;(p), y;(p) and X (yx)(p). However z;(p), y;(p) depends
on X,,Y,. and X (y;)(p) = Lyk(c(t))|i—o, depend on the the value of Y}, along the

curve ¢ whose tangent vector at p = ¢(0) is X,. O

Proposition 3.1.2. Let M be a differentiable manifold with an affine connection V.
There exists a unique correspondence which associates to a vector field V' along the

differentiable curve ¢ : I — M another vector field 2 d along c, called the covariant

t
deriwative of V' along ¢, such that:

L D(V4+W)=DL oW

2. %(fV) = V + 27 o> where Wis a vector field along ¢ and f is differentiable

function on I.

3. If V is induced by a another vector field Y € X(M), i.e., V(t) = Y(c(t)), then
G = VY
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Proof. Let us suppose initially that there exists a correspondence satisfying (1), (2)
and (3). Let X : U C R* — M be a system of coordinate with ¢(I) N z(U) # ¢
and let (xq(¢),...,z,(t)) be the local expression of ¢(t),t € I. Let X; = 8—561_. Then we
can express the field V locally as V = Zvaj,j =1,...,n, where v/ = v/(t) and
J
X; = X;(c(t)). By (1) and (2) we have
DV dv] DX
= X
o w2

By (3) of Definition 3.1.1

DX; dxZ .
9 = Vit Xj = V dsz)X E ,7=1,...,n
Therefore,
DV dx; .
% — ] + E U]vxin. (3.2)

j
The expression shows that if there is a correspondence satisfying the condition of
proposition 2.2, then such a correspondence is unique.

To show the existence , define % in X(U) by 3.2. D V possesses the desire
properties. If y(W) is another coordinate neighborhood, Wlth y(W)Nz(U) # ¢ and
we define Z¥ in y(W) by 3.2 the definition agree in y(W) Nz (U), by the uniqueness
of 2 —1n z(U). It follows that the definition can be extended over all of M, and this

conclude the proof. O

Definition 3.1.2. Let M be a differentiable manifold with an aﬂine connection V. A
vector field V along a curve ¢ : I — M s called parallel when 2Y- =0, for allt € 1.

Proposition 3.1.3. Let M be a differentiable manifold with an affine connection V.
LEt ¢ : I — M be a differentiable curve in M and let Vi be a vector tangent to M
at c(to), to € I(i.e., Vo € TouyM). Then there exists a unique parallel vector field V
along ¢, such that V(to) = Vo ,(V(t) is called the parallel transport of V (to) along c).

Proof. Suppose that the theorem was proved for the case in which ¢(7) is contained
in a local neighborhood. By compactness, for any ¢; € I, the segment ¢([tg,t;]) C M

can be covered be a finite number of coordinate neighborhoods, in each of which V'
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can be defined, by hypothesis. From uniqueness, the definition coincide when the
intersections are not empty, thus allowing the definition of V' along all of [to, t1].

We have only, therefore, to prove the theorem when ¢(I) is contained in a co-
ordinate neighborhood z(U) of a system of coordinates = : U C R™ — M. Let
7 c(t)) = (:vl(t) ., @,(t)) be the local expression for c(t) and let Vo = > . X,
where X; = ( (to))

Suppose that there exists a vector field V' in X (U) which is parallel along ¢ with
V(to) = Vo. Then V = >~ 07 X; satisfies

= Zdvj . Za;xZUJVXX

Zhj

Putting Vii =D Fij &, and replacing 7 with £ in the first sum, We obtain,

DV dv® dx
- = - Zrk =
di Zk:{ a 2]: ar } 0

The system of n differential equation in v¥(¢),

dv d:v
’rk = k=1,... .

27‘7

possesses a unique solution satisfying the initial conditions v*(¢y) = v§. It then follows
that, if V' exists, it is unique. Moreover, since the system is linear, any solution is
defined for all ¢ € I, which then proves the existence(and uniqueness) of V' with the
desired properties.

m

3.2 Riemannian Connection

Definition 3.2.1. Let M be a differentiable manifold with an affine connection V
and a Riemannian metric { , ). A connection is said to be compatible with the metric
(', ), when for any smooth curve ¢ and any pair of parallel vector fields P and P

along ¢, we have <P, Pl> =constant.
Proposition 3.2.1. Let M be a differentiable manifold with an affine connection V
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1s compatible with the metric if and only if for any vector fields V' and W along the

differentiable curve ¢ : I — M we have

d D D
VW) = (5 W)+ (v,

£< : ( ,7% tel (3.4)

Proof. Let V and W be two parallel vector field along ¢ then % = % = 0. Then

L(V,W) =0, so (V, W) =constant. Hence V is compatible with the (, ).

To prove converse let us choose an orthonormal basis { P (to), . . ., Pu(to) } of Toe) M, to €
I. Using Proposition 3.1.3, we acn extend the vectors P;(tg),i = 1,...,n, along ¢ by
parallel transport. Because V is compatible with the metric,{ Pi(t),..., P,(t)}is an
orthonormal basis of T'c(t)M, for any t € I. Therefore, We can write

V=> up W=) wP, i=1..n

where v'and w' are differentiable functions on I. It follows that

DV B dvt DW B dw*

@ Tt Ta T a

Therefore,

DV DW dvi . AW
oWV >_Z{dtw+ dt U}

)

= %{ va} = %(v, w).

(2

Proposition 3.2.2. A connection V on a Riemannian manifold M is compatible

with the metric if and only if

X(Y,Z) = (VyY,Z) + (Y,VxZ), X,Y,Z € X(M) (3.5)

Proof. Let, V is compatible with the metric. Let p € M and let ¢: I — M be a
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differentiable curve with c(tg) = p, to € I, and with %|,_g = X (p). Then

X)(Y. 2) = 50V e,

= (Vxp)Y, Z)p + Y, Vxp2)p
So,
XY, Z) = (VxY,Z)+ (Y,VxZ), X,Y,Z€X(M).

Converse automatically follows from the defination.
O

Definition 3.2.2. An affine connection V on smooth manifold M s said to be sym-
metric when V.Y —VyX = [X,|Y] for all X, Y € X(M).

Remark. In a coordinate system (U, x) the fact that V is symmetric implies that

forall i, =1,...,n,

X

kK _ 1Tk
So, Il = T,

Definition 3.2.3. (Riemannian Connection)
Given a Riemannian manifold M, with the metric g. An affine connection V on M
is called a Riemannian (or Levi-Civita) connection on M if V satisfies the following

conditions:
1. 'V is symmetric.
2. V is compatible with the Riemannian metric.

Theorem 3.2.1 (Levi-Civita). Given a Riemannian manifold M, there ezists a

unique affine connection V on M satisfying the following conditions:
1. V 1is symmetric.

2. V 1s compatible with the Riemannian metric.

Proof. Suppose initially the existence of such a V. Then
XY, Z)=(VxY,Z)+(Y,Vx, Z)
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Y(Z,X> - <VyZ, X> + <Z, VYX>
Z(X,Y) = (VzX,Y) + (X,V.Y)

adding first two equation and subtracting the last equation, we have, using the sym-

metry of V, we get,

XY, 2)+Y{(Z,X) = Z(X,Y)

= (VxY, Z) + (Y, Vx, Z) + (Vy Z,X) + (Z,Vy X)
—(V2X,Y) — (X, V.Y)

= (VxY,2) = (VzX,Y) + (Vy Z,X) = (V5Y, X) + (VxY, Z) — (Vy X, Z)
+(Z,VyX) + (Z,VyX)

Hence,

<Za vYX)

= %{X(Y, Z)+Y(Z,X) - Z(X)Y) = ([X, Z],Y)

(Y 2.X) — (X, Y1,Z>}

Suppose V! and V? are Riemannian connections. Since the right-hand side of the

previous equation is independent of the connection, we have
(Z,VyX = V3 X) =0

Hence, V! = V?

To prove existence, define V by

(Z,VyX) = %{X(Y, Z)+Y(Z,X) = Z(X,Y) — (X, Z],Y)

(Y. 21, X) — X, Y1,Z>} (3.6)

It suffices to show that such V exists in each coordinate chart since, the uniqueness

guarantees that connections agree if the charts overlap. Let (U, z),x = (z1,...,2,),
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be a chart. Using 3.6 and [X;, X;] = 0, where X; = ;2. We have

(Vx,X;, Xg) = (Xi(Xj,Xk> + X ( Xk, Xi) — Xk<Xi,Xj>) (3.7)

N | —

This is the same as 1
Frlgjglk = 5(X,-gjk + Xjgri — XiGij)-

Let (¢%) be the inverse matrix of (g;;), i.e. g™ = . Multiplying both sides of

the above equality by ¢*™ and summing over k = 1,2,...,n, we get
= % Z(Xigjk + Xg8 — Xrgis) g™ (3.8)
k
This formula defines V in U. Furthermore, from (3.8) we get I'/} = I'}[j, i.e. V is
symmetric. And it is compatible with the metric, since from 3.6 we get
XY, Z)=(VxY,Z)+(Y,VxZ), X,Y,Z e X(M).
This completes the proof. O

Remark: For the Euclidean space R™, we have Ffj = 0. And covarient derivative

have this expression

DV dvF b p AT
- = - 5 g 2
! Z{ LA T }Xk.

k i,J

Hence, in Euclidean space covarient derivative coincides with the usual derivative.
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Chapter 4
Geodesics

In this chapter we will discuss about the curve geodesic as a curve with zero acceler-

ation. And a geodesic minimizes arc length for points “sufficiently close”.

4.1 The geodesic flow

Definition 4.1.1. Let M be a Riemannian manifold, together with its Riemannian
. . . . . d
connection. A parametrized curve v : I — M is a geodesic at tg € I if %(d—Z) =0
at the point to; if v is a geodesic at t, for allt € I, we say that v is a geodesic. If
la,b] C I and~ : I — M is a geodesic, the restriction of 7y to [a, b] is called a geodesics

segment joining y(a) to v(b).

If v: I — M is a geodesic, then

d dy dy, ,Ddy dy dy Ddy,

dtdt’dt’ " dtdt’ dt

that is, the length of the tangent vector Z—Z is constant. We assume, from now on ,
that \fl—ﬂ = ¢ # 0, that is, we exclude the geoidesic which reduce to a points. The arc

length s of ~, starting from a fixed origin, say t = tg, is given by

td"}/
st:/ —\dt = c(t — ty).
()= | |Gl = et~ 1o

Therefore, the parameter of the geodesic is proportional to arc length. When the pa-

rameter is actually arc length, that is, ¢ = 1, we say that the geodesic 7y is normalized.
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CHAPTER 4. GEODESICS

Now we are going to determine the local equation satisfied by a geodesic v in a

system of coordinates (U, z) about y(tp). In U, a curve v

will be geodesic if and only if
D d7 Z d? xk Dk dx; dxj (9
dt dt dt? L dt dt ) oz

Hence the second order system

A’z dx; dz;
—= reE=229 g k=1,... 4.1
2 T e, (4.1)

12

yields the desire equation.

To study the system (4.1), it is convenient to consider the tangent bundle 7'M,
which will also be useful in future situation.

TM is the set of pairs (¢,v),q € M,v € T,M. If (U, z) is system of coordinates
on M, then any vector in T,M, ¢ € z(U), can be written as > , yia%i' Taking
(X1, TpyY1- - -, Yn) as a coordinates of (¢,v) in TU

Observe that TU = U x R", that is, the tangent bundle is locally a product. In
addition, the canonical projection 7 : TM — M given by 7(q,v) = q is differentiable.

Any differentiable curve ¢ — 7(t) in M determines a curve t — (y(t), Cé—Z(t)) in
TM. If v is a geodesic then, on TU, the curve

dxy(t) dx,(t)

t— (x1(t),...,2n(F), e
(a(0), - al), )
satisfies the system
dwk = Yk
d
%:—Ziyjfijiyj k=1,...,n (4.2)
in terms of coordinates (z1,...,%n,Y1,...,Yn) on TU. Therefore the second order

system (4.11) on U is equivalent to the first order system (4.2) on TU.
Theorem 4.1.1. Let X be a differentiable vector field on the open set V' in the
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manifold M, and let p € M. Then there exists an open set Vo C V., p € Vg, a
number 6 > 0, and a differentiable mapping ¢ : (—9,9) x Vo — V' such that the curve
t— o(t,q), t € (—0,0), q € Vo, is the unique trajectory of X which at the instant
t = 0 passes through the point q, for every q € Vg

The mapping ¢, : Vo — V' is given by ¢:(q) = ¢(t, q) is called the flow of X on V.

Lemma 4.1.1. There exists a unique vector field G on T'M whose trajectories are of

the form t — (y(t),~ (t)), where 7y is a geodesic on M.

Proof. We shall first prove the uniqueness of GG, supposing its existence. consider
a system of coordinates (U,x) on M. From the hypothesis, the trajectories of G
on TU are given by t — (y(t),7 (t)) where v is a geodesic. It follows that ¢ —
((t),~'(t)) where ~ is a solution of the system of differentiable equation (4.2). From
the uniqueness of the trajectories of such system, we conclude that if G' exists, then
it is unique.

To prove the existence of G, define it locally by the system (4.2). Using the

uniqueness, we conclude that G is well-defined on T'M. O

Definition 4.1.2. The vector field G defined above is called the geodesic field on T M
and its flow is called the geodesic flow on T M.

Applying Theorem 4.1.1 to the geodesic field G at teh point (p,0) € T,M, we
obtain the following fact:

For each p € M there exists an open set U in TU, where (U, x) is a system of
coordinates at p and (p,0) € U, a number § > 0 and a C*> mapping, ¢ : (—0,0) XU —
TU, such that t — ¢(t,q,v) is a unique trajectory of G which satisfies the initial
condition ¢(0, ¢,v) = (¢,v), for each (¢,v) € U.

It is possible to choose U in the form
U={(qv)eTU:qeVandv € T,M with |v| < €},

where V' C U is a neighborhood of p € M. Putting v = mo ¢, where 7 : T"M — M is

the canonical projection, we can describe the previous result in the following way.

Proposition 4.1.1. Given p € M, there exists an open set V. C M, p € V, numbers
0 > 0and €; > 0 and a C* mapping

vi(=0,8) xU > M, U={(¢q,v) e TU : q €V andv € T,M with |v| < €}
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such that the curve t — ~(t,q,v), t € (=4,9) is the unique geodesic of M which, at the
instant t = 0, passes through q with velocity v, for each ¢ € V' and for each v € T,M
with |v]| < €.

Proposition 4.1.1. asserts that if |v| < €1, the geodesic ¥(t, ¢, v) exists in an interval
(0,0) and is unique. Actually, it is possible to increase the velocity of a geodesic by
decreasing its interval of definition, or vice-versa. This follows from the following

lemma.

Lemma 4.1.2. (Homogeneity of a geodesic.)
If the geodesic y(t, q,v) is defined on the interval (9, 0), then the geodesic y(t, q,av),a €
R,a > 0, is defined on the interval (—2,%) and

v(t, q,av) = v(at, q,v).

Proof. Let, h : (—=2,2) — M be a curve given by h(t) = y(at,q,v). Then h(0) = ¢
and “(0) = av. In addition, since h'(t) = ay'(at,q,v) In addition, since h'(t) =
alpy/ (at7 q7 U)?

D dh / /

a(%) = vh/(t)h (t) = aQV'y/(at,q,v)’y (at7 q7,U) = 0

where, for the 1st equality, we extend A (t) to a neighborhood of h(t) in M. Therefore,

h is a geodesic passing through ¢ with velocity av at instant ¢ = 0. By the uniqueness,

h(t) = ~(at, q,v) = 7(t,q, av).

]

Proposition 4.1.1, together with this lemma of homogeneity, permits us to make
the interval of definition of geodesic uniformly large in a neighborhood of p. More

precisely, we have the following fact.

Proposition 4.1.2. Givenp € M, there exists an open setV C M, p € V, a numbers
€ >0 and a C* mapping

v:i(=2,2) xU - M, U={(qw) eTM :qe€V andw € T,M with |w| < €}

such that the curve t — ~(t,q,v), t € (=2,2) is the unique geodesic of M which,
at the instant t = 0, passes through q with velocity w, for each q € V' and for each
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w e T,M with |w| < €.

Proof. The geodesic ¥(t, ¢, v) of Proposition 4.1.1 is defined for [t| < ¢ and for |v| < €.

From the lemma of homogenicity, v(, ¢, %) is defined for |¢| < 2. Taking e < 5%, we

obtain that the geodesic (¢, g, w) is defined for |¢| < 2 and |w| < e. O

By analogous argument, we can make the velocity of geodesic uniformly large
in a neighborhood of p. Proposition 4.1.2. permits us to introduce the concept of

exponential map in the following manner.

Definition 4.1.3. Let p € M and let U C TM be an open set. Then the map
exp:U — M 1is given by the above proposition

exp(q,v) =~v(1,¢q,v), (¢,v) el

is called the exponential map on U, where v is a geodesic. We define, exp, : B.(0) C
T,M — M by exp,(v) = exp(q,v).

Where B,(0) an open ball with center at origin 0 of 7, M and of radius e.
Geometrically, exp,(v) is the point of M obtain by going out the length equal to

|v|, starting from ¢, along a geodesic which passes through ¢ with velocity equal to

v

o]

Proposition 4.1.3. Given q € M, there exists an € > 0 such that exp, : B.(0) C
T,M — M s diffeomorphism of B.(0) onto an open subset of M.

Proof. Let us calculate d(exp,)o :

Alerpol) = (eap (1))
= L0l

d
= E(v(l,q,v))hzo =0

Hence, d(exp,)o is the identity of T, M, and it follows form the inverse function the-

orem that exp, is a local diffeomorphism on a neighborhood of 0. O
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Example 4.1.1. Let M = R", since the covarient deriwative coincide with the usual
deriwative, the geodesics are straight lines parametrized proportionally to arc length.

The exponential map is clearly the identity map.

4.2 Minimizing Properties of Geodesics

Definition 4.2.1. A segment of the geodesic «y : [a,b] — M s called minimizing if
[(v) < l(c), where I( ) denotes the length of the curve and ¢ is an arbitrary piecewise

differentiable curve joining y(a) and v(b)
In the proof of Gauss lemma, we shall use the following terminology.

Definition 4.2.2. Let A be a connected set in R?, U ¢ A C U, U open, such that the
boundary 0A of A is piecewise differentiable curve with vertex angles different from .
A parametrized surface in M is a differentiable mapping s : A C R? — M. (Observe
that to say that s is differentiable on A means that there exists an open set U D A
to which s can be extended differentiably. The condition on the vertex angles of A is

necessary to ensure that the differential of s does not depend on the given extension.)

A vector field V along s is a mapping which associates to each ¢ € A a vector
V(q) € TyqM, and which is differentiable in the following sense: if f is a differentiable
function on M then the mapping ¢ — V(q)f is differentiable.

Let (u,v) be cartesian coordinates on R? For v fixed, the mapping u — s(u, vp),

where u belongs to a connected component of A N v =1y, is a curve in M, and

ds(%), which we indicate by % is a vector field along this curve. This defines g—z
for all (u,v) € A and 2% is a vector field along s. The vector field 5, is defined
analogously.

If V' is a vector field along s : A — M, let us define the covariant derivative

% and % in the following way. %(u,vo) is the covariant derivative along the
DV

curve u — s(u, vg) of the restriction of V' to this curve. This defines 3 -(u, v) for all

(u,v) € A. BY is defined analogously.

Lemma 4.2.1. (symmetry)
If M s a differentiable manifold with a symmetric connection and s : A — M is a

parametrized surface then:
D o0s D 0s

dudv  dvdu
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Lemma 4.2.2. (Gauss)

Let p € M and let v € T,M such that exp,v is defined. Let w € T,M ~ T,(T,M).
Then

((dexpy)o(v), (deapy)s(w)) = (v, w)
Proof. First we shall prove that (dexp,), = v. Let us consider a curve av: I — T,M

st. a(0) =v, a'(0) =v € T,(T,M) = T,M, so a(t) = v+ tv. Now,

(deapy)o(v) = 5

~(capy 0 a(t) limo

d
= E(expp(v + tv))|i=o

dt( v(1, p,v + tv))|i=o
d
= 40t
d

= S0P )]s =

since, velocity of 7 is constant. Now, let w = wy 4+ wy, where wy is the parallel to v

and wy is normal to v, so, wr = av,a € R.

((dexpy)o(v), (deapy)s(w)) = ((dewpp)y(v), (dexpp)o(wr))
+ ((dexpy)y(v), (dexpy)o(wn))  (4.2)

and

((deapp)o(v), (dexpy)o(wr)) = al(dexpy )y (v), (dexpp)v(wr))

a{v,v) = (v, wr)

((dexpp)u(v), (dexpy)y(wr)) = (v, wr) (4.3)

Let, v(s) is a curve in T,M with v(0) = v V'(0) = wy and |v(s) = constant.
Since, exp,v is defined, there exists € > 0 such that exp,(u) is defined for v =
to(s), 0 <t <1, —e < s < e. Consider a parametrized surface f : A — M,
A= {(ts) :0<t<1—e< s < e} given by f(t,s) = expytv(s), the curve
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t — f(t, sg) are geodesics

Now, g—ﬁ(l, 0) is the tangent vector to the curve s — f(1,s) at s = 0 (By defn.).

Hence,

of d d
%(170) = gf(l,sﬂs:o = %(expp(U(S)ms:o
and p
(dexpp)o(wn) = (dewpy)oo)(wn) = —-(expy(v(s)))ls=o
Hence,

2(1,0) = (dexpy), ().

Similarly we can get,
of

T —(1,0) = (dexpy).(v).

Now,

L) (1,0) = {(deap,)(wn). (deapy)o(0)

In addition for all (¢, s) we have

o ,0f of DOof of of Dof
ai'as o)~ \Gas o' T a5 d ot

The last term of the equation is zero, since % is the tangent vector to a geodesic.

From the symmetry lemma the 1st term of the sum transformed into

(DOF 0, DOf of, 10 0f 0,

dtds’ ot’  ‘dsot’ot’  20s‘ot’ ot’

So, (%, %) is independent of ¢. Now,
li of t,0) = lim(d t 0 4.4
lim 2 (1,0) = lim(deap, o () = (1.4)

Since, (%, g—{> is independent of ¢. So, from 4.4

AL 0,00 =2 W00y <0

So, form 4.2

((dexpy)o(v), (dewpp)o(w)) = (v, wr) +0 = (v, wr) + (v, wWN) = (v, W),

45



CHAPTER 4. GEODESICS

This completes the proof. O

If exp, is a diffeomorphism of a neighborhood V' of the origin in in T,M, exp,V =
U is called a normal neighborhood of p. If B.(0) is such that B.(0) C V , we call
exp,Be(0) = B.(p) the normal ball (or geodesic ball) with center p and radius e. From
the Gauss lemma, the boundary of a normal ball is a hypersurface (submanifold of
codimension 1) in M orthogonal to the geodesics that start from 4, it is denoted by
Se(p) and called the normal sphere (or geodesic sphere) at 4. The geodesics in B(p)
that begin at p are referred to as radial geodesics.

We now show that geodesics locally minimize the arc length. More precisely, we

have the following fact.

Proposition 4.2.1. Let p € M, U a normal neighborhood of p, and B C U a normal
ball of center p. Let ~y : [0,1] — B a geodesic segment with v(0) = p. Ifc:[0,1] - M
is any piecewise differentiable curve joining v(0) to (1) then I(v) < l(c) and if
equality holds then ([0, 1]) = ¢([0, 1]).

It should be noted that the proposition above is not global. If we consider a
sufficiently large arc of a geodesic it can cease minimizing the arc length after awhile.
For example the geodesics on the sphere which start at a point p are no longer

minimizing after they pass through the antipode of p.
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Chapter 5
Curvature

In this chapter we introduce the Riemann curvature, sectional and the Ricci and
scalar curvature of a Riemannian manifold. Riemann curvature intuitively measures

how much a Riemannian manifold deviates from being Fuclidean.

5.1 Curvature

Definition 5.1.1 (Curvature). The curvature R of a Riemannian manifold M is
a correspondence that associates to every pair X,Y € X(M) a mapping R(X,Y) :
X(M) — X(M) given by

R(X, Y)Z =VyVxZ —-VxVyZ + V[ny]Z, Z € 3€(M),

where V is the Riemannian connection of M.

Observe that if M = R™, then R(X,Y)Z = 0 for all X,Y,Z € X(R"). In fact,
if the vector field Z is given by Z = (z1,..., z,), with the components of Z coming

from the natural coordinates of R", since for R" all Ffj = 0, we obtain
V)(Z = (XZl, Ce ,XZn),

hence
VyVxZ =(YXz,...,YXz,),
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which implies that
VXVYZ — Vyvxz = ([X, Y]Zl, Ce [X, Y]Zn) = V[l«’y]Z
So,
R(X, Y)Z =VyVxZ —-VxVyZ+ V[m’y}Z =0.

We are able to think of R as a way of measuring how much M deviates from being
Euclidean.
If we consider a system of coordinates around p € M, and we have [X;, X;] = 0,
and we obtain
R(X;, X;)Xe = (Vx,Vx, — Vx,Vx,) Xi

from this we can say that, the curvature measures the non-commutativity of the

covarient derivative.

Proposition 5.1.1. The curvature R of a Riemannian manifold has the following
properties.
(1) R is bilinear in X(M) x X(M), that is,

R(le + 9X27Y1) - fR(Xh}/l) + gR(X27}/1>

where f,g € D(M), and Xy, X2, Y1,Ys € X(M)
(2) For any X,Y € X(M), the curvature operator R(X,Y) : X(M) — X(M) is linear,
that is,

RX,Y)(Z+W)=R(X,Y)Z + R(X,Y)W.

RIX,Y)fZ = fR(X.Y)Z
Proposition 5.1.2. (Bianchi Identity)

R(X,Y)Z + R(Y,2)X + R(Z,X)Y = 0.

Proof. Tts follows directly form the definition of Riemannian curvature and the sym-

metry of the Riemannian connection. O]
From now on we shall write (R(X,Y)Z,T) = (X,Y, Z,T).
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Proposition 5.1.3. (1) (X,Y, Z,T)+ (Y, Z, X, T)+ (Z,X,Y,T) =0
(2)(X,)Y,Z,T)=—-(Y,X,Z,T)
(3) (X,Y,Z2,T)=—(X,Y,T,2)
(4) (X,Y, Z,T)=(Z,T,X,Y).

Now, let us consider a coordinate system (U, z) at the point p € M and % = X,
Then,
R(X:, X;) Z R, X

Thus R}, are the components of the curvature R in (U, x). If
X =) uX;, Y= vX; Z=)Y w'X,
i j k
we obtain from the linearity of R,

R(X,Y)Z =) Ruvuw*X,.

,5,k,l

To express R! i 10 term of the coefficients fyu of the Riemannian connection, we have,

R(XZ,XJ)Xk - VXjVXiXk - VXZ-VX]-X]@

= Vi, (Q_ThX) — Vi, (D ThXo),
l l

Then By direct calculation we get,

S 0 5
ijk = Z F'Lk,}/ﬂ Z F]k’nl zks 8[[2 ij.

Now,
<R<X X Xk‘? Z Rz]kgls = RZ]k’S,

We can write the identities of the Proposition 5.1.3. as
Rijis + Rjkis + Riijs = 0
Rijk:s = _Rjiks
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Rz’jks = —Rijsk:

Rijks = szsij .

5.2 Sectional curvature

let V' be a real vector space (of dimension at least 2) equipped with an inner-product
(, ), for each x,y € V denote the area of the parallelogram determined by the pair

of vectors x and y by

[ Ayl = Ve Ply2 — [z, y)?
Proposition 5.2.1. Let 0 C T,M be a two-dimensional subspace of the tangent space

T,M and let x,y € o be two linearly independent vectors. Then

(z,y,2,9)
K(x,y) = ——"—+
does not depend on the choice of the vectors x,y € o.

Proof. First, observe that it is possible to transform the basis {x,y} for ¢ into any

other basis for ¢ using compositions of the operations:
L Az,y} = {y, 2}
2. {x,y} = {Ae,y}

3. {z,y} = {z+ \y,y}

Hence, it suffices to prove that K is invariant under these operations
(1) Clearly, |z A y| = |y A x|, and so it suffices to show that (R(y,z)y,z) =
(R(z,y)x,y), which follows by applying Proposition 5.1.3.

<R(y,$)y,$> = —<R<$,y)y,$> = <R((L’,y)l‘,y>

(2) Suppose A € R\ {0}. Since |Az Ay| = |A||z Ay, it suffices to note that
(RO, y)(Az),y) = A(R(x,y)z,y) by the bilinearity of R on X(M) x X(M) and
linearity of R(.,.) on X(M).

(3) Suppose A € R, Then we have

[z + Ay) Ay)? =2+ MyPlyl® — [{@+ Ay, )|
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= (|z|* + 22Xz, y) + Nly*)|yl* — (@, 9)* + X|y|* + 2\ (z, y)|y]*)
= [z*|y|* = [{z, y)|?
|z Ayl

and so it remains to show that (R(z + Ay,y)(z + \y),y) = (R(z,y)z,y) For this,
observe that the bilinearity of R on X(M) x X(M) and linearity of R(.,.) on X(M)
yield

(R(z + My, y) (@ + Ay), y) = (R(2,y)(z + \y), y) + MRy, y)(x + Ay), y)

= (R(z,y)z,y) + MR(z,y)y, y) + MRy, y)z, y) + X(R(y, )y, y)

and, hence, the result follows by applying parts (2) and (3) of Proposition (2.5) to

obtain (R(y,y)y,y) = 0 and (R(y,y)z,y) = (R(z,y)y,y) = 0.
0

Definition 5.2.1 (Sectional Curvature). Let (M, (, )) be any Riemannian manifold
equipped with the Levi-Civita connection. For a point p € T,M and a two-dimensional
subspace o C T,M, the real number K(x,y) = K (o), where {z,y} is any basis of o,

1s called the sectional curvature of o at p, is given by

kel = (B y)ey)
Where, |x A y|2 = (v, 2){y,y) — (x,y)2.

Sectional curvature is important because of its relationship to the curvature oper-
ator R. In particular for any p € M, knowing the values K (o) for all two-dimensional
subspaces of ¢ of T,M completely determines R. We make this precise with the

following lemma:

Lemma 5.2.1. Let V' be a vector space of dimension > 2, provided with an inner
product (|, ). Let R: VXV xV =V and R : VxV xV =V be tri-linear mappings

such that conditions:
1. (R(z,y)z,t) + (R(y, 2)x, t) + (R(z,2)y,t) =0
2. (R(z,y)z,t) = —(R(y, x)z,t)
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4. (R(z,y)z,t) = (R(z,t)z, y)
are satisfied by
(2,9, 2,t) = (R(z,9),1), (2,,21) (R (2,9)z1)
. Af x,y are two linearly independent vectors, We may write,

<R(x,y)$,y> K/(O') _ (R/(:B,y):v,y)

K(o) —
Y AP

9

where o s the bi-dimensional subspace generated by two linearly independent vectors

{x,y}. If forallo CV, K(0) = K'(0), then R=R.

Proof. 1t suffices to prove that (z,vy,2,t) = (2,9, z,t) for any x,y, z,t € V. Observe
first that, by hypothesis, we have (z,y,z,y) = (x,y,2,y) , for all z,y € V. Then

(‘r—’_Z?ny—i_Z?y) - <I+Z7y7x+z7y)/
hence
(9, 2,9) + 2(x, 9, 2,9) + (2,9, 2,9) = (&, 9,2, 9) + 22,9, 2,9) +(2,9,2,9)

and, therefore

(Ia Y, z, y) = (1:7 Y, <, y)/

Using what we have just proved, we obtain
(wy+tzy+t)=(zy+tzy+t)

hence
<x7 y? Z? t) + <x7 t? Z? y) - (‘/1/‘7 y’ 27 t)’ + (x7 t? Z? y)/

which can be written further as

(':C7y7z7t> - ($;y727t)/ = (yazwrat) - (%%%ﬂl
It follows that, the expression (x,y, z,t) — (z,y,2,t) is invariant by the cyclic per-
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mutation of the first three elements. Therefore, by (1) of Proposition 1.5, we have

3[(1‘,]/,2,75) - <x7y727t)l] = 07

hence

(x,y,2,t) = (ac,y,z,t)/ for all x,y,z,t €V

]

Lemma 5.2.2. Let M be a Riemannian manifold and p a point of M. Define a
tri-linear mapping R’ T,M x T,M x T,M — T,M by

<RI(X>Y7 W>7Z> = <X7 W><Y7 Z> - <}/7 W><X7 Z>7

for all X, YW, Z € T,M. Then M has constant sectional curvature equal to Ky if
and only if R = KoR', where R is the curvature of M.

Proof. Assume that the sectional curvature at p is constant, K (p, o) = K, for all o C
T,M and set (R(X,Y,W,),Z) = (z,y,w,2) . R satisfies the following properties:

L (X, YW, 2) +(Y,W,X,Z2) + W,X,Y,Z) =0

2. (X, YW, 2) = (Y, X, W, Z)

3. (X,Y,W,2) = —(X,Y,Z,W)

4. (X, YW, 2) = (W, Z,X,Y)
Then by definition we have (R(X,Y)X,Y) = K,|x Ay|* for all X,Y € T,,M since,

(X, Y, X,Y) = (X, X)(V,Y) = (X,Y)?,
we have for all pair of vectors X,Y € T,M,
RX,Y,X,Y) = K (| X)?|Y]? = (X,Y)?) = KoR (X,Y, X,Y).
By Lemma 5.2.1, it implies that for all X, Y, W, Z,
R(X,Y,W,Z)=R(X,Y,W, 2)
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hence R = KyR'.

Conversely, assume that KoR' (X,Y, W) = R(X,Y,W) for all X,Y,W € T,M and
K, € R.
as (R'(X,Y,X),Y) = |X AY|? for any two dimensional subspace o C T, M and any
pair {X,Y} of linearly independent vectors in T,,M. We have,

<R(X7Y7X)7Y> _ KO‘X/\YP o

K(X,Y) = - K
(X, Y) X AY]? X AY]? 0

]

corollary 5.2.1. Let M be a Riemannian manifold, p a point of M and {ey, ..., e,},
n = dim M, an orthonormal basis of T,M. Define R, = (R(ei,e;)ex, er), i,7,k, 1 =
1,...,n. Then K(p,o) = Ky for allo C T,M, iff

Rijier = Ko(dinje — 0udj),
where
1 ifi=j
0 ifi# g
In other words, K(p,o) = Ky for all o C T,M if and only if R;;;j; = —Rij; = Ko for

alli # j, and R;ji = 0 in others cases.
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5.3 Ricci and scalar curvature

We conclude this chapter by defining the Ricci and scalar curvatures of a Riemannian
manifold. These are obtained by taking certain combination of sectional curvature

and these play an important role in Riemannian geometry

Definition 5.3.1. (Ricci and scalar curvature)

Let p € M and x = 2, be a unit vector in T,M, we take an orthonormal basis
{z1,22,..., 2n_1} of the hyperplane in T,M orthogonal to x. The Ricci curvature at
p in the direction x is defined by

1
1—-n

Ric,(z) Z(R(m,zi)x,zi% i1=1,...,n—1.

2
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The scalar curvature at p is defined by

K(p) = %ZRZCP(ZJ> = ﬁ Z(R(Zi,Zj)Zi,Zj> 7=1,...,n.

ij

These expressions are called the Ricci curvature in the direction x and the scalar

curvature at p, respectively.
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Sobolev Space on R"
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Chapter 6

Weak derivatives and Sobolev

Spaces

In this part we will study the theory of Sobolev space on R", which turn out to be
the proper setting in which to apply ideas of functional analysis to glean information

concerning partial differential equation.

6.1 Weak derivatives

1
loc

Definition 6.1.1. Weak derivatives Suppose u,v € L, .(U), and « is a multi index.

We say that v is the o'~ weak partial derivative of u, written D%u = v, provided

/UuDagbdx: (—1)|a|/vdx (6.1)

U

for all test functions ¢ € C°(U).

Remark: Classical derivatives are defined pointwise as limit of difference quotients.
Weak derivatives, on the other hand, are defined in an integral sense. By changing a

function on a set of measure zero we do not affect its weak derivatives.

Lemma 6.1.1. A weak a'"th-partial derivative of w, if it exists, is uniquely defined

up to a set of measure zero.

Proof. Assume that v,0 € L}, (U) satisfies

loc

[ w1y [ w@ois = (<1 [ @)oo

U
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for all ¢ € C°(U). This implies

/U(v(x) —0(x))p(x)de =0 Vo e C(U).

Hence, v — v = 0 almost everywhere.

Example 6.1.1. Let n =1, U = (0,2) and

r if O<x<1 1 if 0<z<1
u(x) = v(z)

1 if l<z<? "0 if l<z<2

Now for all ¢ € C(U)

/0 Qu(a:)qs’(x)dx = /O 1u(a:)¢’(a:)d:c+ /1 2u(x)¢’(x)da:
= /01 zd (x)dx + /12 1¢ (z)dx
= ao@li— [ oo+ [ 6
= o(1)~ [ olwde +6(2) - 001
_ _/01 o(z)dr /O2v(x)¢(x)dx.

Hence, f02 u(z)¢ (z)dx = —fozv(:n)qb(x)dx, for all ¢ € C*(U). v(z) is the weak

derivative of u(x).

Example 6.1.2. n =1, U = (0,2) and

x if0<x <1
2 ifl<z<?2

In order to check, that u does not have a weak derivative we have to show that there

does not exist any function u € L}, .(U) satisfying

/0 (@) () = — /0 " () b(a)da
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forallp € C(U). Assume there exists av € L}, (U) satisfying the previous equation.

Then,
- /0 2v(3:)¢(x)dx: /0 2u(x)¢’<x)dx: /0 1 ¢ (w)dz + /1 22¢’(x)dx

D)l - / o) +2(6(2) — 6(1)) = (1) / o()dz

is wvalid for all ¢ € C(U). We choose a sequence (¢n,)5_, of smooth functions

satisfying
0<¢m <1, ¢n(l)=1and ¢,(zr) = 0asm — oo, Vo #1

Now, replacing ¢ by ¢,, we get

1= om0 = [ v)ontie ~ [ on)ts

We take the limit for m — oo

1 = limumoo®m (1) = LMoo { /0 2v(x)¢m(x)dx - /0 1 ¢m(x>dx] ~0.

a contradiction.

6.2 The Sobolev spaces W*?(U)

Let U C R™ open. Let 1 < p < oo and k be a non-negative integer.

Definition 6.2.1. The Sobolev space The Sobolev space W*P(U) is the space of all
locally integrable functions u : U — R such that for every multiindex o with |o| < k
the weak derivative D*u exists and D* € LP(U).

Definition 6.2.2. We define the norm of u € W*P(U) to be

fullersiy = (3 [ 107 rpdx) Cif1<p<oo,

la| <k
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|| wr.coory = Z ess supgey | Du(z)|.

| <k

Theorem 6.2.1. For each k € Ny and 1 < p < oo the Sobolev space Wy ,(U) is a

Banach space.

Remark. (1) If p = 2, we usually write
H*U) =W"(U), (k=0,1,...)

H* is a Hilbert space with respect to the inner product

(u,v) = Z /UDau(x)Dav(a:)dx.

| <k

Definition 6.2.3. (1) Let {u,}>_,, u € W*P(U). We say that u,, converges to u
in WEP(U), written as
U — w0 WHP(U)

provided limy, o0 [[Un, — vllpwrp@ry = 0.
(2) We write
Uy — 1 in WEP(U)

loc

to mean
Uy, — u in WRP(V)

for each V.CcC U
Definition 6.2.4. We denote by Wy*(U), the closer of C2°(U) in W*P(U).

Theorem 6.2.2. (Properties of Weak derivatives) Assume u,v € WHP(U), |a| < k,
la| < k. Then,

1. D*u € Wk=lel»(U) and DP(D*u) = DY(DPu) = D**Pu for all multiindices
a, B with |a] + 8] < k.

2. For each A\, € R, Mu+ pu € W*P(U) and D*(A\u + pv) = AD% + uD%v,
ol <k

3. If V is open subset of U, then u € W*P(V).
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4. If ( € C=(U), than (u € WEP(U) and

D*(Cu) = Z ( g ) DP¢D* Py (Leibniz's formula)
B<a
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Chapter 7
Approximation in Sobolev Spaces

In order to study the deeper properties of Sobolev spaces, without returning contin-
ually to the definition of weak derivatives, we need procedures for approximating a
function in a Sobolev space by smooth functions. These approximation procedures
allow us to consider smooth functions and then extend the statements to functions
in the Sobolev space by density arguments. We have to prove that smooth functions
are in fact dense in W*?(U). The method of mollifiers provides the tool.

7.1 Smoothing by convolution

Definition 7.1.1. (1) Let n € C*(R™) be given by

Cet/(#F=1) if lx] <1
n(z) = ‘
0 if lof 21

with constant C' > 0 chosen such that [, n(z)dr = 1.

(2) For each € > 0 we define
1 =z

Ne(r) = E—nn( )-

We call n the standard mollifier. The functions n. are C* and satisfy

€

/ nedzr =1, spt(n.) C B(0,¢).
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Definition 7.1.2. Let U C R"™ be open and € > 0. Let

U={zxeU:dxz,0U)>e} ={xeU:B(z,e) CU},

where B(z,e) = {y € R" : |z — y| < €}.

Definition 7.1.3. If f : U — R s locally integrable, define its mollification
fe=nxf inU.

That is, for x € U,

fé(x) = / nez — ) f(y)dy = / e =)y

Theorem 7.1.1. (Properties of mollifiers)

(1) fe € C=(U,).

(2) f¢—= f a.e. ase —0

(3) If f € C(U) , then f¢— f uniformly on compact subsets of U.
(4) If 1 <p < oo and f € L} (U), then f¢— f in L} (U).

loc loc

7.2 Local approximation by smooth functions

Lemma 7.2.1. Let U. C U. Assumed that f € L},.(U) admits a weak derivative D* f

loc

for some multiindex o« Then
D*(f *ne)(x) =ne = D f(x), forall z € UL

Note that the derivative of the mollification D*(f % n.) exists in the classical sense.
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Proof.

Uf *ne)(x /Jymm— fly)dy
—1)l /DZ‘ne(x —y)f(y)dy
_ (_1)lol+al v — o\ D®
(-1) / ne@ — ) D*F (y)dy
- / ne( — y)D° f(y)dy

=ne x D f ().

Theorem 7.2.1. (Local Approximation by Smooth function)
Letw € WkP(U), 1 < p < oo. Let e >0 and set

ut(x) = (e x u)(z), =€ U,
where n. is the mollifier, then
(1) u® e C*(U,) for each e >0,

(2) u€ — win WP(U), as e — 0.

loc

Proof. uw € W*P(U), therefore u € L} _(U). Hence, by previous lemma for all |o| < k

D(f xn.)(x) =nex D*f(z), forall z € U,

Now, for all V' CC U, by previous lemma and Properties of mollifiers we have,

luf = wlfyiny = D 1D = Dullfy ) —

la|<k
as € — 0. This completes the proof. O
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7.3 Global approximation by smooth functions

Now we will approximate the function of W*?(U) globally and we do not assume

anything about the smoothness of boundary.

Theorem 7.3.1. Let U C R"™ be open and bounded. Let u € WHP(U), 1 < p < co.
Then there exists a sequence (Up)men in C°(U) N WHEP(U) such that

m—o00

Proof. Let,
1
Ui:{xEU:d(:l:,GU)>g}, 1eN

Then Uz Q Ui—i-l and
= 1
U= U:d(z,0U -}

i=1
Let V; = Ui 3 — U;. Then #{j e N:V;nV; # 0} < 3. Therefore each x € U is
an element of at least one and at most three sets of the family (V;);en. We choose

Vo CC U such that
U=|JV

i€Ng
Let (&), be a smooth partition of unity subordinate to the family of open sets
(Vi) Le.

0<& <1, GECR(V)), forallieNy, Y &=1onU
1=0

Let w € WkP(U). Then we have that &u € WHP(U) and support {u CC V. Let
§ > 0 be fixed. By Theorem 2.2.1 we can choose ¢; > 0 such that u’ = 5, * (§u)

satisfies
; )
HU’ _fiuHWk,p(U) S 9i+1
supp u' C Wy == ,-+4Ui o V.
We define

v(z) = Zuz(x), relU
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v € C(U), since for every x € U we have that #{i € Ny : u'(z) # 0} < 3. We have

u=u.l= i{zu
=0

Therefore,

oo [e.e]
o= llwerwy =1 3_€u =3 _wllwesq)
=0 =0

= [§iu — UiHka(U) < Z 527t = 6,
i=0 0

Note that ||v||wrr@w) < [[v —ullwrr@y + |ullwes@) < 0o. Summarizing we have that

V6 >0, Jv e WFP(U)NC®U) : |lu—vllwrswy <6
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Extensions

In general, many properties of W*?(U) can be inherited from W*P(R") provided U is
"nice”. The goal of this section is to extend functions in the Sobolev space W*?(U) to
become functions in the Sobolev space W*?(R™). Indeed, we need a strong theorem.
Observe for instance that extending u € W*P(U) by setting it zero in R" — U will not
in general work, as we thereby create such a discontinuity along QU that the extended
function no longer has a weak partial derivative. We must invent a way to extend u

that preserves the weak derivatives across OU .

Theorem 8.0.1. (Extension Theorem) Assume U C R™ is open and bounded and
oU is Ct. Let V. C R™ be open and bounded such that U CC V. Then there exists a

bounded linear operator

E: WY (U) - Wh(R")
such that for all w € W2(U).
1. Fu=wua.e inU
2. Eu has support within V,
5. | Bullwrr@ny < Cllullwiem).

The constant C' depending only on p, U, and V.
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Chapter 9

Sobolev inequalities and
Embeddings

In this chapter we prove a class of inequalities of the form
lullx < Cllullwssw,) (9.1)

where X is a Banach space, i.e. we consider the question: ”If u € W*?(U), does u
belong automatically to a certain other Banach space X7 Inequalities of the form
(4.1) are called Sobolev type inequalities. This kind of estimates give us information
on the embeddings of Sobolev spaces into other spaces.

We say that a Banach space E is continuously embedded into another Banach

space F', written £/ — F if there exists a constant C' such that for all x € E.

lellr < llzlle

This means that the natural inclusion map ¢ : £ — F, x — z is continuous.
We start the investigations with the Sobolev spaces W?(U) and will observe that
these Sobolev spaces indeed embed into certain other spaces, but which other spaces

depends upon whether

(1) 1<p<n
(2) p=n
(3) n<p<oo
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9.1 Gagliardo-Nirenberg-Sobolev inequality

For this section lat us assume

1<p<n

Motivation. We first demonstrate that if any inequality of the form
lllzageny < €l Dul oo (9.2)

for certain constants C' > 0, 1 < ¢ < oo and functions u € C°(R™) holds, then the
number ¢ cannot be arbitary. Let u € C°(R"), u # 0 and define for A > 0

un(z) :=u(Ax) (x €R")

We assume that (4.2) holds and apply it to u,, i.e. there exists a constant C' such
that for all A > 0
|urlla@ny < C||Dul| o @wny (9.3)

Now,

1
jua(@)|*de = [ |u(A)|["de = — | |u(y)|*dy
R® R® A" Jgn

and

Ap
/ | Du () Pdz = N7 / Du)Pdr =5 [ |Duty)pdy
n n RTL
Hence, by (4.3) we get

1,1 wRY;
(57) Ml < C(55) 7 IDulloeny

and therefore
[l pogny < CX' ™24 || Duf| ooy

If1-— % + % # 0 we acn obtain a contradition by sending A to 0 or oo, depending

on whether 1 — % + % >0or1— % + % < 0. Thus, if in fact the desired inequality

(4.2) holds, we must necessarily have 1 — 2 4 2 = 0. This implies that é = ]% — L and

np

therefore ¢ = ey

Definition 9.1.1. If 1 < p < n, the Sobolev conjugate of p is p* = £ (p* > p)

n—p’

Theorem 9.1.1. (Gagliardo-Nirenberg-Sobolev inequality)
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Let 1 < p < n. There exists a constant C, depending only on n and p such that
HUHLP*(R") < C|Dul| o wn)

for all uw € CL(R™).

Proof. Assume p = 1. Note that u has compact support. Therefore, we have for each

t1=1,....,nand z € R

T
u(m):/ U, (T1, o Ti 1, Uiy Tiady -+ o5 T )AY;

—00

and -
\U($)|§/ Du(xy, ... %1, Yi, i1y - - -, Tn) |y,

Then )
" n 0 n—1
u(z)|[=T < H (/ Du(xh--~axz‘—hymxz‘ﬂ,~->$n)|d%‘) .
i=1 NV~

We integrate the above inequality with respect to x; and obtain:

| @l

[e.9]
1

oo N [e’e) n—1
S / H (/ Du('xl;--'7xi—1ayi7$i+la"'7$n)|dyi) dxl
T =1 -

= </ |Du|dy1> ) / H</ |Du|dyi> ) dxy
—0o0 —00 ;9 —o0

1,...,n—1 we obtain

Applying the general Holder inequality with p; = ﬁ, 1

/ lu(z)|"Tdr, < (/ |Du|dy1> (H/ / |Du|dx1dyi)
—o0o —o0 j—9 J —00 J —c0
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Now we integrate with respect to x, and obtain.

// )| 71 day iy -
g/ (/ |Du|dy1) de/ (H/ / ]Du|da:1dyl) "y

il oo 1
— (/ / |Du]da:1dy2) / H [[Hdmg
T i=1,i#2

where
I :/ | Dyldy:|; and I :/ / |Duldxydy; fori=3,....n

Applying the general Holder inequality once more we obtain

[
< </ / |Du]dx1dy2) (/ / |Du|dy1dx2>
e e e L

H </ / / ]Du|d:c1d:c2dyi>

=3

We continue by integrating with respect to xs, ..., x, and and using Holder’s general

inequality to obtain finally

‘u|n"1dx§H</ / \Du]dq:l...dyi...d:l:n>n_
R i=1 - -
e
= (/ |Du|d$)

This is the Gagliardo-Nirenberg-Sobolev inequality for p = 1.

We consider now the case 1 < p < n. Let v := |u|” for some v > 1. We apply
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Gagliardo-Nirenberg-Sobolev inequality for p = 1 to v. Then, by Holder inequality

n—1

(/ |u|nwldaj) ' S/ |D]u|7|dx—7/ |u|""!| Du|dx

b

p—1 1
§7< |u|(71)17p1dx) ’ ( |Du|pdx>p.
Rn Rn

We choose 7 so that > = (v —1)-2;. That is, we set

—1
o pln=1) _
n—p
in which case 2™ = (v — l)p%1 = "Tpp = p*. Therefore, we get

n—1 n

n-1 p=1 1
( |u|p*dm) < 7( |u|p*dx) ’ ( |Du]pdx) "\
Rr R™ Rn

] . ]
R™
1

1
( lu p*dx)p < C’( |Du|pdx>p
Rr R™

This completes the proof. n

n—1_p—1

p=1 1
ﬁdw) s < 7( |Du|pdx) ’
R

Hence, we get

Note. Cx(R") := WJP(R") = WH*?(R") and from the Gagliardo-Nirenberg-

Sobolev inequality we get,
[ul| Lo gy < CllDul|r@ny < Klulwrr@n.

Hence, W1P(R") continuously embedded in LP" (R").

Theorem 9.1.2. (Estimates for WP, 1 <p < n)
Let U C R"™ open and bounded and suppose OU is C*. Assume 1 < p < n, and
u € WHP(U). Then u € LP"(U), with the estimate

Hu“LP*(U) < CHUHWLP(U)
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the constant C depending only on p, n and U.

Proof. The Extension Theorem yields that there exists an extension w = Fu €
WHP(R"), such that

u = wu in U, u has compact support

[@llwrr@ny < Cllullwiew)-

Because u has compact support we know from Theorem 7.2.1 that there exists a

sequence (Up,)5°_; of functions in C'°(R™) such that
Uy, — U in WHP(R™)
Now according to Theorem 9.1.1 we have that for all [,m > 1
|Um — will o+ gy < | Dt — D || Lo (.-
Thus, by last last two equation we get
Uy — T in LP".
By the Gagliardo-Nirenberg-Sobolev inequality we have
HumHLP*(Rn) < C|| D[ o (rn)

and hence,

[l 3+ oy < Cll Dl gogery < Clllrogee.
Therefore, by the properties of the extension u we have
1wl o= 0y = [[8]] o () < Tl o gy < Cllal|wre@ny < Cllullwrr@y-

This completes the proof.

Theorem 9.1.3. (Estimates for W,?, 1 <p <n)
Let U C R™ open and bounded. Assume 1 < p < n, and u € C*(R") := W, *(U).
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Then we have the estimate
[ull Loy < CllDul| o
for each q € [1,p*], the constant C depending only on p, q, n and U.

Proof. Let u € Wy*(U). Then there exists a sequence (u,)°_, in C°(U) such that
Uy, — u in WHP(U). Now we extend each function u,, to be 0 on R®\ U. Analogously
to the above proof we get from the Gagliardo-Nirenberg-Sobolev inequality (Theorem
9.1.1) the following estimate

[ull Lo @y < ClIDull oo
Since U is bounded, then for every 1 < g < p* the following estimate holds
[ull oy < llull oy < ClIDul| o)
0

Remark. Let u € Wy?(U), U is bounded, then we have |u|| Loy < C||Dul| oo
for each ¢ € [1,p*], and p* > p, Hence ||u|zr@) < C||Dul|rry. Now,

1Dl oy < Nlullwrowy < (1+O)[Dullrw).

So, on W, ?(U) the norm | Dul| ey and [Ju||w1e@y are equivalents.

9.2 Morrey’s Inequality

Morrey’s inequality gives the continuous embedding of the Sobolev spaces W (U), p >
n into spaces of Holder continuous functions, the so called Holder spaces.
Throughout this chapter let U C R™ be open and 0 < v <1

Definition 9.2.1. (Hélder continuous)

A function u : U(C R") — R is said to be Hélder continuous with exponent v (0 <
v < 1), if there exists a constant C' > 0 such that for all z,y € U.  |u(z) —u(y)| <
Cle —y|”
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Example 9.2.1. f(x) = /z , z € [0,1] is a Hélder continuous function with exponent
v=13
Definition 9.2.2. (1) If u: U — R is bounded and continuous, we write

[ulloe = supaev|u(z)]

(2) The v~ Hélder seminorm is defined by

_ u(z) — u(y)]
[U]O,'y ‘= SUPg+ycU |{L’ — y|,y
The ~*'- Hélder norm is defined by
[ulloq = llullos + [u]o,-

Definition 9.2.3. Let k € Ny and 0 < v < 1. The Hélder space C*7(U) consists of

all functions C*(U) for which the norm

il = 3 1Dl + S (Dl

la|<k |a|=k

[u(z)—u(y)]

is finite. where [uloy = SUP,4ycv "R

The Holder space consists of all the functions that are C* and whose k-th partial

derivatives are bounded and Holder continuous.
Theorem 9.2.1. (C*U, |.||.,) is a Banach Space.

Theorem 9.2.2. (Morrey’s inequality)
Letn < p < oo Then there exists a constant C', depending only on n and p such that

||| commny < Cllullwiemn

for all u € CY(R"), where vy =1 —n/p.
Proof. We will show that there exists a constant C'(n) such that for any B(z,r) C R”

1

[Du(y)]
‘B(‘rv T)’ B(z,r)

’n—l

uly) ~ u(w)ldy < € dy (o)

B(z,r) ’SL’ -y
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Let z € R",r > 0 be fixed. Let w € 0B(0,1) and s < r. Then

lu(z 4+ sw) —u(x)| < /08 ]%u(m + tw)|dt

:/ |Du(x+tw).w|dt:/ Due + tw)dt
0 0

Hence,

u(x + sw) — u(x)|dS(w SDuyc w)|dt dS(w). .
/83(0’1)1(+ ) — u(z)| ()S/GB(O,I)/O‘ (z + tw)|dt dS(w) (9.5)

We apply Fubini to the right hand side and apply integration in polar coordinates to

obtain

/ / |Du(x+tw)|dtd5(w):/ / \Du( + tw)|dt dS(t)
aB(0,1) Jo aB(0,1)
D
L[,
B(z,s) ’y - x’n—

Now, multiplying equation (9.5) by s"~! and integrating from 0 to r with respect to
s, yields the inequality:

" D
/ / fu(z+ sw) — u()|dS (w)s" 1ds</ - 1/ DUy s, (0.6)
0 JoB((0,1) dB(0,1) ly — 95|

On the left-hand side of (9.6) we apply integration in polar coordinates to obtain

" D
/ lu(v) — u(z)|dv < / s"lds/ |u—(y)_|1dy
B(z,r) 0 B(z,r) |y - ‘T|n
_ | Du(y)]

n B(z,r) |y - x|n—1
Note that |B(x,r)| = r"|B(0,1)| = r"C(n). Hence we have

| Du(y)|
u(v) —ulz)|dv < C B(z,r) —d
[ ) @l < Contpn [ o2y

So, equation (9.4) is proved.
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Now, fix, z € R". We apply equation (9.4) as follows

< dy+ / dy
o) < oy ) o) o o

< / ﬂdw% fuy)ldy

B(z,1) ‘y - x‘n ! ’B('T7 1)| B(z,1)
| Du(y)| / dy
= —d?/ + w7
/B(z,l) ly — |1 B(z,1) |B(z,1)]

1

[ Du(y)] </ dy )”

< T —dy + uW)P ) -
/B(m,l) ly — x|t B(x,l)’ )l |B(x,1)|

The last inequality holds, since (B(x,1), ‘Bj—ifl)

Holder’s inequality to the first term on the right-hand side and obtain

) is a probability space. We apply

1 p—1
P 1 p
u(e)] < < / |Du<y>|de) ( [ dy) + Cllull o sy
B(z,1) B(z,1) ’y — x’ p—1

Hence, by integration in polar coordinates we have
p—1

1 1 11 -
(/ mdy) :C’(n)/ T dr—/ r r=1dr
B(x,1) |y — Q;| p—1 0 r »p-1 0

Since, P > n, we have Zf_i < 1. Therefore,

1 —n
| = Ctu e = cnp)
0

Summarizing we have
[u(z)] < C(n, p)[ullwismn-

Since x was arbitrary, we can conclude

supgern [u(@)] < Clul]yon (9.7)

Choose any two points z,y € R™ andf write r := |x—y|. Let W = B(z,r)NB(y, ).
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Then

ju()

/|u \dz+ /|u —u(z)|dz

swwﬂé(\<»ﬂwwH— %|/W) u(2)|dz
= A+ B

By the inequality (9.4) we obtain

ASC/ ADula)] .
B(

(z,r) |x_z|n !

p—1

v 1 =
S </ |Du<Z)|de) </ de)
" B(z,r) |gj — Z| p—1

< C(n,p)||Dul pognyr

= C(n,p)|| Dul| ony |z — y|' >
The same estimate holds for B. Therefore, we have the following estimate
[u(@) = u(y)| < CllDullrny| —y|*~

which implies

u(r) —u
1) =41 < ) D e
[z =yl
for all z,y € R". Thus,
u(z) —u
[u]o,, = sup Ju(z) = uly)| < C||Dul|r < Cllullwremn)- (9.8)

r#yEeR" ‘;C - y"y
The inequalities (9.7) and (9.8) yields the statement. O

Theorem 9.2.3. (Estimates for W', n < p < 0)
Let U C R"™ open and bounded and suppose OU is C1. Assume n < p < oo, and
u € WYP(U). Then u has a version u* € COV(U) for v =1— » with estimate

lwlleos@y < Cllullwaw)
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The constant C' depends only on n, p and U.

Proof. According to Extension theorem there exists a compactly supported function
u = Fu € WP(R") such that u =% on U and

[ullwrr@ny < [[ullwrew)

Since w has compact support, we obtain from Theorem 7.2.1 the existence of functions
U € C2°(R™) such that

Now according to Morrey’s inequality we have for all m,l € N
||um - UZHC’O»"/(R") < CHum - ulHleP(R”)

(u)2_, converges to w in W1P(R™), therefore it is Cauchy sequence in C%7(R").
Since this is a complete Banach space, there exists a function u* € C%7(R") such
that

||um — U*HCO,’y(Rn) — 0

From previous two equation we see that w = u* a.e. on R", i.e. u* is a version of w.

Note that w = u a.e. on U hence, u* is a version of u on U.

Applying Morrey’s inequality to the functions u,, € C(R") i.e.
[l con@ny < Cllumllwregn)
ade therefore we have,
[u*[|com@ny < Cllallwremny < Cllullwrrw).
By the definition of the norm |[|.||C%7 we have
[0 con @y < Cllu*llcon@n-

This completes the proof.
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9.3 Compact Embedding

The Gagliardo-Nirenberg-Sobolev inequality shows that WP (U) is continuously em-
bedded into LP"(U), if 1 < p < n.Now we show that W1P(U) is in fact compactly
embedded into some L4(U) space.

Definition 9.3.1. (compactly embedded)
Let X and Y be Banach spaces, X C Y. We say X is compactly embedded in Y
(X CcCY) if and only if the operator

Id: X =Y, x—=z

18 continuous and compact, i.e.
1. 3CVr € X, |zlly < C|z||x

2. for all sequences ()22 in X with sup,||z,||x < oo there exists a subsequence

(Xn,)32, and y € Y such that ||I(x,,) — ylly — 0o as i — oo.

Theorem 9.3.1. (Rellich-Kondrachov Compactness Theorem,)
Let U C R™ open and bounded and suppose OU is C*. Assume 1 < p < n. Then

WP (U) cc LY(U),
f01"ozll1§q<p*,p*:n"—_";7

Sketch the proof :
(1) Take {u,,} bounded sequence in WP(U). We need to find a subsequence which
is Cauchy in LI(U).
(2) Use the extension theorem to extend {u,,} to a larger set V' and such that {u,,}
vanishes outside V.

(3) Now let uf, = 1. * u,,. It turns out that
us, — Uy, in LY(V) as € — 0, uniformly in m.

(4) for each € > 0, {u$,} is uniformly bounded and equicontinuous. Thus by the

Arzela-Ascoli theorem, for each fixed € > 0, there is a subsequence of {u¢,} converges
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uniformly, and thus converges in L, (V).

(5) from (3) and (4) we will get

lim Supj,k;—mo“umj — Umy, ||Lq(V) S 5’

(6) Now taking § = 1, %, %, ... and repeatly subtract subsequences, we obtain a

Cauchy sequence via the standard diagonal argument.

Proof. We fix q € [1,p*). Let u € W'?(U). From Theorem 9.1.2 we get
[ullzr < Cllullwiew)-

Hence, the operator Id : WP — L4 is continuous.

We have to show compactness. Let ({y,)5o_; € WHP(U) |, supy || |[wir@) < A. We
show that there exists a subsequence (1, )72, of the bounded sequence (,,)e_; and
au € LIU) so that ||dm, — ullre@wy — 0 as & — oo. By the extension theorem we

may assume that

Lo ()20, is in WHP(R™) with upy,|p =

m=

2. for all m € N there exists V with U CcC V such that suppu,, C V,

3. SUPp ||t ||wrp@ny < 00

We first consider the smooth functions
us, = Ne * Uy, € C°(R™). (¢ >0, meN).

We may assume that for all m € N the support of uf, isin V.

Claim 1.

us, = U, in LY(V) as € — 0, uniformly in m.
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Verification: If u,, is smooth then

U () — () = / P00 ) ) dy

1
d
=/ n(y)/ @um(w—ety)dtdy
B(0,1) 0
1
——c [ 9w [ Dunla — ety)yatdy
B(0,1) 0

Thus,

1
/\u )\da;<e/ n(y)/ /\Dum(:v—etyﬂdxdtdy
B(0,1) o Jv

< e/ | Dty (2)|d 2.
1%
Summarizing we have for u,, € C>°(R"™) with supp u, € V the estimate
[y, — Um||L1(V) < €||Dum||L1(v) (9.9)

By approximation Theorem this estimate holds for u,, € W'?(V). Since V is open

and bounded, we obtain
Hu —um||L1 < eHDum||L1 < GCHDUmHLp(v
By assumption we have supy, ||u|lw1.») < co. Therefore,
11_1}1% SuPm |[ty, — Ul L1y =0 (9.10)

Note that 1 < ¢ < p*. Let 0 < 6 <1 such that

We apply the interpolation inequality for LP-norms to obtain

ety = il < ety = w5 iy = 0 0
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Theorem (9.1.2) gives
gy = oy < lluf = w7y g = Sy

By equation (9.10)

11_1}15 SUPmen||Us, — Um||Lavy =0 (9.11)

Claim 2: for each € > 0, {ug,} is uniformly bounded and equicontinuous. Veri-
fication: Let, x € R".

S, ()] < /B = )l

< supsean ()] / () dy
\%
1

< E_nHUmHLl(V)
C C
< _nHumHLP(V) S . <
€ €
Hence,
. C
supmen||us, || < = (9.12)
Similarly, for m =1,2,...
. C
| Dy, ()] < | Dne(x — )| lum(y)|dy < —— (9.13)
B(z,e€) €
Hence,
C

supmen|| Dug, [oo < (9.14)

€nJrl
Equation (9.12) and (9.14) proves the claim.

Now, fix § > 0. we will show that there exists a subsequence (t,;)52; C (Um)m=;
such that

lim sup ||Umj — Uy, HL‘Z(V) S 67
J,k—00

From the first claim, to select €0 so small that

[0 = [ Laqvy <

N

form=1,2,...
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o0
m=1>

o0

and thus the functions (uf,)>_,,

We now observe that since the functions (u,,)

have support in some fixed bounded set V' C R", Now using claim 2 and Arzela-Ascoli

o0

compactness criterion to obtain a subsequence (u,;)32; C (uy,)no—; which converges

uniformly on V. In particular therefore

limsup [Juy,, — ug,, ey =0 (9.15)
J,k—00

Now, from last two equations imply

lim sup ||Um; — tm, ||Laqvy <6, (9.16)
J,k—o0
Now taking 6 = 1, %, %, ... and by standard diagonal argument, we extract a subse-

quence (U, )2, C (um)5w_, satisfying

lim sup ||uml - UmkHLQ(V) =0.
l,k—o0

This completes the proof. O

9.4 Poincaré‘s inequality

For all u € W, *(U). Then we have the estimate ull o* 0y < CllDul[ oy (1 < p < n).
But for all w € W'?(U) this does not hold, where U C R"™ open and bounded.
However when the boundary oU is C! for all u € W,*(U) we can get this kind of
inequality with some extra term.

Notation. (u)y = f udy = average of u over U.

Proposition 9.4.1. Let U C R" open and bounded and connected. Let u € W'P(U)

and Du =0 a.e. in U. Then u is constant a.e. on U.

Theorem 9.4.1. (Poincaré’s inequality)
Let U C R™ open, bounded and connected. suppose OU is C'. Assume 1 < p < oo.

Then there exists a constant C, depending only on n, p and U, such that
lv = (@ullrw) < CllDul|Low)

for all u € WP (U).
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Proof. By contradiction. We assume that the statement is not true, i.e.
Vk € N du, € Wl’p(U) : Huk — (uk)UHLp(U) > kHDukHLp(U). (917)

We define
L U — (Uk)U
Vg .

e — (we)ull ey

Then ||v||zr@)y = 1 and (vg)y = 0. The gradient of vy,

ka

ur — (ur)v |l ey

DUk =

)

satisfies by the assumption (9.17)

Dug|| e 1
[1Dvkl| oy = HukH— (UB)U(”L)”(U) N
Hence,
ooy < O (ID0 sy + oelisn) < Clop) (14 1)
and

supgen||vk|lwir@y < 2C(n, p).

By Rellich-Kondrachov Compactness Theorem there exists a subsequence (vy;)32,
and a v € LP(U) with ||v||zr(vy = 1 and (v)y = 0 such that

‘]].i)rﬁlo Hvkj - UHLP(U) =0

Let, ¢ € C°(U). Then, using Lebesgue’s Theorem and the definition of the weak

derivative, we have

/vgzﬁmidx = lim /vk].gzﬁx].dx = — lim /(vk].)mgzﬁdx =0
j—o0 j—ro0

where the last equality follows from lim; o || Dy, || zr@y = 0. Hence, Dv = 0. Since
U is connected, from the previous Proposition it implies that v is constant a.e on U.

As (v)y = 0 we have v = 0 a.e. on U, which is a contradiction to ||ul[ze@y =1. O
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Theorem 9.4.2. (Poincaré’s inequality for a ball)
Let 1 < p < 00, then there exists a constant C, that depends only on n and p, such
that

| — () B || 2r(Bar)) < COT||Dul| 1o (B(zr)

for each ball B(xz,r) C R"™ and each function u € WYP(B(x,r)).

Remark. Let u € W' (R") and B(z,r) C R". Then by the Theorem 4.4.2. we

get,
( / fuly) — (u) |"d—y)’ll < cr( / |Du<y>|"dy) E
B(z,r) Bler) |B(ZI§', T)| o B(z,r)

Cr
< ———|[|Dul[pnn)
|B(z,7)|»
C

= — | Dullzne.
B0, 1)

By Holder’s inequality we obtain for the left-hand side

W () — Wren =2 )"
/B(LT) |U(y) ( )B(z,r)||B(x7T)| S (/B(;,;’r)l <y> ( )B(x,r)| |B<I’,T)|) .

Hence,

[ ) ~ @l il < Clou|
u\y) — \u)B(z,r > Ul L (R™),
Bar) B ) 0

where C' only depends on n.

Definition 9.4.1. (Space of bounded mean oscillation)
A function f € Li (R"™) is called of bounded mean oscillation if

loc

dy
A / @) = D] = < oo
(@) B(z,r) (@) |B(.§L’7 7’)‘

The space of all such functions is called the space of functions of bounded mean os-
cillation (BMO(R™)) and the left-hand side of equation defines a norm |u||prmon

on this space.
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Therefore, we have W™ (R") is continuously embedded into BMO(R").
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PART 3

Sobolev Space On Riemannian
Manifolds
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Chapter 10

Sobolev Spaces on Riemannian
Manifolds

In this chapter we shall define Sobolev Spaces on Riemannian Manifolds, then we
shall some density properties of the Sobolev Spaces on Riemannian Manifolds and

some embedding.

10.1 Definitions

Let (M, g) be a smooth Riemannian manifold and {(Q, ¢} is a differentiable struc-
ture(or Atlas) on M, where ¢y : Q(C M) — R™ . For k integer, and u : M — R
smooth, we denote by V* the covarient derivative of w. The component of Vu in local
coordinates are given by (Vu); = ;u and the component of V?u in local coordinates
are given by (Vu);; = 0;ju — I'};0,u. Now |[V¥u|, the norm of V*u defined in the
local chart by

IVFW)]? = g7t g™ (V)i (VR

..........

Definition 10.1.1. For an integer k and p > 1 real, we denoted by Cy (M) the space
of smooth functions u € C°°(M) such that |V*u| € LP(M) for any j = 0,1,... k.

Hence,
Ch(M)={ueC®M)st.¥j=0,1,....k, / [VFulPdv(g) < oo}
M

Where, in local coordinates, dv(g) = +/det(g;;)dx, and where dx stands for the
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Lebesgue’s volume element of R™
Note. So if M is compact, then C}Y(M) = C>*(M) for all k and p > 1.

Definition 10.1.2. (Sobolev Spaces on Riemannian Manifold)
The Sobolev space Hy (M) is the completion of C.(M) with respect to the norm

k 1/p
il =3 ([ i) 1<
j=0 \IM

Note. (1) any Cauchy sequence in (CF(M), ||.||xx) is a Cauchy sequence in the
Lebesgue space (LP(M), ||.]],)-

(2) any Cauchy sequence in (Cy (M), |[|.||mx) that converges to 0 in the Lebesgue
space (LP(M), ||.|[,) also converges to 0 in (CF(M), ||.||mx)-

(3) As a consequence of (1) and (2) One can look at Hj, (M) as a subspace of LP(M)
made of functions u € LP(M) which are limits in (LP(M), ||.||,) of a Cauchy sequence
(um) in (CF(M), ||.|lx)- and define |[u|[z» as before, where [V7ul, 0 < j <k, is now
the limit in (LP(M), ||.]|,) of the Cauchy sequence (Viu,,).

(4) HZ(M) is a Banach space.

Proposition 10.1.1. If 1 < p < oo, H(M) is reflexive Banach space.
Proof. HZ(M) is closed subspace of a finite Cartesian product space of spaces L?(M).
And LP(M) is a reflexive Banach space for (1 < p < o0), finite Cartesian product

space of reflexive space is reflexive space. Since a closed subspace of a reflexive Banach

space is also reflexive, thus H} (M) is reflexive if 1 < p < oo. O

Proposition 10.1.2. If p = 2, H}(M) is a Hilbert space when equipped with the

equivalent norm

k
EEND Y MLTR0
i=0 7 M
The scalar product {.,.) associated to ||.|| is defined by
oy =3 [ (g . .gzwm<vmu>il...im<vmv>j1...jm)du(g)
m=0 "M

Proof. Here in HZ(M), ||| and ||.||z» are equivalents. And (. ) satisfies the following

four properties.
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1 (u+v,w) = (u,w) + (v, w)
2. (au, w) = afu, w)

3. (u, w) = (w, u)

4. (u,u) =0if u=0

for u € HZ(M). Now, if (u,u) = o then,

k
(uu) = / <9“j1 = -gim’jm(VmU)il...im(VmU)jlu.jm)dV(g) =0
m=0 M

/M u?dv(g) =0

Hence, if (u,u) = o then uw =0 a.e. on M.

for, m = 0 we get,

So, {, ) is a inner product. And HZ(M) is complete so is a Hilbert space. ]

Proposition 10.1.3. If M is compact, H (M) does not depend on the Riemannian

metric.

Proof. M be a compact manifold endowed with two Riemannian metrics g and g. Now
since M is compact, M can be covered by a finite number of charts (Qy,, ¢ )m=12,. N

such that for any m the components gi* of g in (€2, ¢y,) satisfy

1 ~ k ~
Egi,j < Gi; < Cgij,

as bilinear forms, where C' > 1. Let 7, be a smooth partition of unity subordinate
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to the covering (€2,,,). Now let u € HY(Mj;) with respect to the metric § then

HﬁkU”H,f(Mg)

i ([ |vjnkuwpdu<g>);

=0

Vo 6y Jdet(gh) daz) ”
Z (/¢k(9k) . !

<

by

m 1
<k ([ wimae i) i)
=0 k()
k 1
=3 ([ wmapa)
j=0 N’ M
= HﬁkUHH{;(Mg)

Now,
N
u= E M.
k=1

Hence, u € H;(M,) with respect to the metric g. This completes the proof.
O

Theorem 10.1.1. If Q is bounded, open subset of R, and if u : 2 — R s Lipschitz,
then w € HY(Q) for allp > 1

Lemma 10.1.1. Let (M, g) be a smooth Riemannian manifold, and v : M — R a
Lipschitz function on M with compact support. Then uw € HY(M) for any p > 1.
In particular, if M is compact, any Lipschitz function on M belongs to the Sobolev
spaces HY (M), p > 1.

Proof. Let uw : M — R a Lipschitz function on M with compact support. Let
(Q, Pr)r=12.. ~ be a family of charts such that K C UL, and such that for
any k=1,..., N,
Ok () = Bo(1)
and
1
c

0ij < gffj < Cdiy,

92
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Where C' > 0 and By(1) is the Euclidean ball of R™ of center 0 and radius 1. gfj are

the component of ¢ in (Q4)g=12. . n. Forany k=1,..., N

,,,,,

up = (qu) o ¢t R™ - R

is a Lipschitz on By(1) for the Euclidean metric. By previous theorem we get uy €
HY(By(1)) for any p > 1. Now,

||77kUHHf(M)
1

([ wnaits)
M

(/ Vi, o ¢k|pdy(gk))
0 Qg
(/ luy, o ¢k|pdu(gk)) + ( |Vuy o ¢k\pdu(gk)>
Q Qp,
_ (/ ugl?yJdet(gh) d:c)” n (/ (V[ det(gh) dx)”

k() Ok ()
< K<(/ |uk|pd:v) T (/ |Vuk|pd:v) p) < 00
1 (%) Ok ()

So, nru € HY(M). Now,

(]

N
u= anu € HY(M).
k=1

This completes the proof.

10.2 Density Properties

Definition 10.2.1. The Sobolev space H,f(M) is the closer of the set D(M) of smooth
functions with compact support in M in H} (M).

We know that HP(R") = HP(R"). Now, does it holds for the manifolds? For
complete manifolds it does hold. We shall prove this for £ = 1, however the situation

is more complicated when k£ > 2 and we need some assumption on the manifold.
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Theorem 10.2.1. If (M, g) is complete, then, for any p > 1, H'(M) = HP(M).

Proof. Let f: R — R be defined by
f(t)=1whent <0 f(t)=1—twhen 0<t <1, f({) =0 when t > 1
and let uw € C7(M) where p > 1 is some given real number. Let z be some point of

M and set
ui(y) = u(y) f(dy(z,y) — 7)

where d, is the distance associated to g, j is an integer, and y € M. By the previous
proposition u; € HY (M) for any j, and since u; = 0 outside a compact subset of M,
one easily gets that for any j, u; is the limit in HY(M) of some sequence of functions
in D(M). One just has to note here that if (u,,) € CY(M) converges to u; in HY (M),
and if & € D(M), then (au,,) converges to au; in H{(M). Then, one can choose
a € D(M) such that a = 1 where u; # 0. Independently, one clearly has that for any
Js

([ —u|Pdu<g>);’ <(/ - ru\pdwg));

([ v —u)|pdu<g>);’ ([ - rwrpdwg))’l#
([ . |u|pdu<g>)’1’

where B, (j) is the geodesic ball of center x and radius j. Hence, (u;) converges to u
in H{ (M) as j goes to +o00. This ends the proof of the theorem. O

and

10.3 Sobolev Embeddings

In Fuclidean space R™ we have seen the Sobolev embeddings, in this section we shall

discuss on what condition that kind of embeddings hold for the manifolds.

Lemma 10.3.1. Let (M, g) be a complete Riemannian n-manifold. Suppose that the
embedding H (M) c L™"=V(M) is valid. Then for any real numbers q¢ € [1,n)
satisfying 1/p = 1/q — 1/n, then H{(M) C LY (M).
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Proof. Let A € R, from the given condition for any v € Hi (M)

(@\uyn/(nl)dqg))(“—n/“ gA/M(]Vu]+ |ul)dv(g).

Let ¢ € (1,n), p=nqg/(n —q) and u € D(M). Set ¢ = |u|P™~Y/" Applying Holder's
inequality, we get that

([ |u|pdu<g>)(nwn
= ([ ereag)
<a [ (19el+ 1) anto)

= 2= (Vulavt) +4 [ Pt )
n M M

(/ P du(g ) (/ Vultdi(g ) :
+A(/ P du(g > (/ lul7du(g )

where % + q—l, =landq = 7’_("”*1) —

For any u € D(M).

1. And p'¢’ = p since % =

Q=
|
3=

/7

([ i) <20 )
((/ |Vu|Qdu<g>)l/q+ ([ |u|Qdu<g>)l/q)
([ |u|pdu<g>)n"l
<A=b((f |w|Qdu<g>)l/q+( / |u|qdy<g))“q>
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Hence,
lullzeary < C(lullzaary + V]| aary)

Since, (M, g) is complete, then, for any p > 1, HP(M) = H?(M). this completes the
proof. O]

Theorem 10.3.1. (Sobolev Embedding for Compact manifold)
Let (M, g) be a compact Riemannian n-manifold. Then for any real numbers q € [1,n)

satisfying 1/p = 1/q — 1/n, then HY(M) C LY (M).

Proof. By previous lemma, we just have to prove that the embedding
HY (M) c L™=Y (M)

is valid. Now since M is compact, M can be covered by a finite number of charts
(Qms Gm)m=12,...n such that for any m the components gi* of g in (Qy,, ¢) satisty
%&-J <gh < 20, ; as bilinear forms. Let 7,, be a smooth partition of unity subordinate

to the covering (€,,). For any u € C°(M) and any m, we have
/ [V du(g) < 22 [ () © ¢ (@) da
M -

and
/M IV (nmu)|dr(g) > 272V ((nu) 0 6,1 () |da

R"

By G.N.S inequality (|[u[pn/@m-1)@n) < C||Dul|p1@ny) we have,

(n=1)/n 1
( | () © ¢y, ()" ("1)6137) <5 <
Rn 2
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Then for any m and u € C*(M)

N
m=1 M

§A< M|Vu|dy(g)+ |u|dv(g)>

M

Hence,

Jul| prr-nary < A(lJullLrany + 1Vl L any)

Since, M is compact, then Cy (M) = C>(M) for all k and p > 1. So, this completes
the proof. O

10.4 Example of PDE on Riemmannian Manifold

Yamabe Problem

(M, g) is smooth compact Riemannian manifold, to find a metric g conformal to g such
that the scalar curvature of (M, §) is a function K = constant. If § = u* =2 g (n >

3), u > 0, one has to solve
—Agu+ Ryu = Kui, ue HY (M), u>0

where A, denotes the Laplace-Beltrami operator and R, is the scalar curvature of
(M, g).
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