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Abstract

A healthy nation is a wealthy nation. Healthcare, being a universal area, concerns itself with the

entire humanity. Healthcare, as an industry, will continue to grow and thrive as long as humans

exist hence forming a large part of any countrys economy. In this context, the two most important

domains are epidemics and healthcare coverage. The role of public healthcare facilities in both these

domains is extensive. In this work, we introduce the application modules of an indigenously built

tool used to simulate dynamic movement in a multi-agent based environment having complex social

interactions. This work uses the tool to show it can be used in healthcare to perform probabilistic

analysis effectively.

During an epidemic outbreak, strategic deployment of healthcare resources, which are usually

limited in number, is very critical. In this work, dynamic health care units are used to represent those

dynamic resources which can travel among cities and cure a fraction of the infected population. We

have developed a tool based on agent based approach that effectively models the entire environment.

We also propose a few strategies for their movement and study their effect in controlling the epidemic.

Another application of this tool is provided in the domain of universal healthcare schemes. Uni-

versal healthcare means equality in access to medical facilities irrespective of any basis. With various

countries having a different organizational structure and existing levels of medical facilities, this work

models two of Indias well-known healthcare schemes and analyzes their performance differences. De-

veloped as an application module over the same tool, the models can be optimized or customized

to evaluate the schemes over various parameters. This analysis also provides an estimate of how

successful the scheme is likely to be.

v



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Types of Epidemiological Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Evolution of Epidemic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Classification of Computational Epidemiology Models . . . . . . . . . . . . . . . . . 3

1.4.1 Classification based on approach . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Use-time classification of models . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Epidemic Quantities of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computational Epidemiology 6

2.1 Mass Action Compartment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 SIR Model - Kermack & McKendrick (1927) . . . . . . . . . . . . . . . . . . 7

2.2 Evaluation of Mass Action Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Interaction Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Simulation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Agent Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Components of an Agent Based Model . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Advantages of Agent Based Models . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Areas of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Modeling Lifecycle of an Agent Based Model . . . . . . . . . . . . . . . . . . . . . . 14

3 Framework 16

3.1 Overview of the tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Structure of HStrat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Network of cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Social Contact Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.4 Transmission Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.5 Recovery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.6 Healthcare Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Resource Allocation 21

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Strategies for Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Staying Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 HCU Allocation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Universal Healthcare 26

5.1 Healthcare in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Universal Healthcare Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Patient Protection and Affordable Care Act (ObamaCare) . . . . . . . . . . . 29

5.2.2 Aarogyasri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 Pradhan Mantri Jan Arogya Yojana (PMJAY) . . . . . . . . . . . . . . . . . 30

5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Modeling Healthcare Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Direct Access Scheme (Model 1) . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Referred Care Scheme (Model 2) . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.3 Model design and implementation . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.4 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5.2 Results for Direct Access Scheme (Model 1) . . . . . . . . . . . . . . . . . . . 33

5.5.3 Results for Referred Care Scheme (Model 2) . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 38

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References 39

vii



Chapter 1

Introduction

Mankind has been plagued with epidemics for centuries. Since ancient times to the modern day, the

world has been periodically faced with epidemics at different scales. It is probably the only thing

which has affected people everywhere irrespective of time, location or any other factor. The above

fact in itself makes it one of the most critical problems and hence the need to address it. However,

even after centuries of technological advancement, there does not exist an efficient generic system

which can predict the cause and spread of infection in a specific population.

Formally, epidemiology is defined by the World Health Organization (WHO) as “the is the study

of the distribution and determinants of health-related states or events (including disease) and the

application of this study to the control of diseases and other health problems.” [1] Epidemiology is

literally the “study of what is upon people” (Greek words epi = on or upon, demos = people &

logos = the study of). Epidemiology focuses on the outbreak of a disease that affects many people

at the same time, & may spread through one or more communities. However, It does not include

diseases that exist permanently in a region like malaria in Africa.

The Greek physician Hippocrates, known as the father of medicine, coined the terms “epidemic”

and “endemic” and explained the difference between them. He, however, wanted to discover the

logic behind sickness. He is said to be the first person who had examined the relationships between

the occurrence of a disease and the environmental factors that influence its progression in a popu-

lation [2]. Epidemiological information forms the cornerstone of public health and can be used to

plan ahead of time to design precautionary and control measures in case of an epidemic. It can also

be used to shape policy decisions, evaluate strategies to curb the spread of infection and as a guide

to the management of patients who are already infected.

1.1 Motivation

The relevance of computational epidemiology today is more than ever. The world we live in today can

be described as a connected world. Today distances hold no bar in transportation and communication

between people. Despite the advantages, this has brought, this has become a critical factor in

the transmission of infection between different populations and even countries. Pathogens usually

spread through contacts in social networks when susceptible individuals come in contact with infected

people. These contacts can be viewed as dynamic links created by the everyday movement of people.

1



Earlier, the networks in which diseases were transmitted were restricted due to several social and

economic factors. This led to slower geographic dissemination of diseases. Today, regarding infectious

diseases that have emerged over recent years, pathogens can and have appeared unexpectedly, spread

rapidly and has had devastating effects impacting millions of people. In this regard, individual

behaviours become the centre of disease dynamics and controls. Factors like social distancing and

early detection go a far way in controlling the spread and effects of the epidemic. Monitoring

human social contact networks is equally difficult and critical due to their dynamic nature. The

behavioural adjustments amid an epidemic modify social contact networks and affect the epidemic’s

advancement. An epidemic today cannot be on measured in terms of the spread of infection. As

described by Andrea Apolloni in his work on Computational Epidemiology in a Connected World [3],

“An epidemic is not simply a diffusion over a network, but a coevolving system of multiple networks,

dynamic processes (spread of disease, fear, and so on), and individual behavioural adaptation.”

Epidemiology today is not just about predicting the spread of the pathogen in a network, but more

about the anticipation of the above said things and having a model or methodology that can adapt to

it. The blend of prediction, the expectation of complex social communications developing alongside

limited and postponed data makes computational the epidemiology among the most challenging

issues in social and computational science.

1.2 Types of Epidemiological Studies

Estimating disease recurrence in a population requires the stipulation of specific criteria. Epidemi-

ological studies can range from observational to experimental designs and can be categorized in the

following categories:

• Observational Study - In these studies, nature is permitted to follow through to its logical end

while epidemiologists observe from outside. They can be further classified as:

– Descriptive: A descriptive study tries to answer the ‘Ws’ of an epidemic. They try to

describe an epidemic based on parameters like - ‘who’, ‘what’, ‘where’ and ‘when’.

– Analytic - An analytic study of epidemic tries to answer how the epidemic spread. The aim

of this study is to examine the known associations further or hypothesize relationships.

• Experimental Study - The epidemiologists control all the factors in an experimental study and

try to figure out the effect of various factors in the spread of infection. This type of studies is

usually done in clinical or community trials and other interventions.

The term ’epidemiologic triad’ is the combination of a host, an agent and the environment

brought together to cause an epidemic outbreak. Identification of causal relationships between the

exposures and outcomes is an important aspect of epidemiology. However, something of even more

importance is to remember causal inference, i.e. the fact that correlation does not imply causation.

Correlation, or if nothing else relationship between two factors, is an essential yet not adequate

criteria for the derivation that one variable causes the other.
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1.3 Evolution of Epidemic Modeling

Epidemic modeling began in the year 1976 when Edward Jenners research on smallpox virus led

to the development of vaccines. Daniel Bernoulli at that time, developed mathematical models to

demonstrate the benefits of inoculation from a mathematical perspective. The term ‘epidemiology’

was coined in 1802 by the Spanish physician Villalba in his work Epidemiolog̀ıa Española [4] to

describe the study of epidemics. However, it was John Snow, father of (modern) epidemiology, who

was the first person to link the London cholera epidemic in 1854 to a particular water source. The

incident formally led to the development of the field of epidemiology. Today, cholera is an endemic

which usually occurs in poverty-stricken countries. In 1897, Ronald Ross and George Macdonald [5]

developed a mathematical model of mosquito-borne pathogen transmission. Anderson McKendrick

studied with Ross on antimalarial operations and pioneered many discoveries in stochastic processes.

The Kermack and McKendrick SIR model [6] of diffusion of infection in a population formed the

basis of epidemiological research for years to come. The SIR model proposed by them to represent

virus transmission used a set of nonlinear ordinary differential equations (ODEs) that associate a

transition rate to the mobility of agents between compartments. Later, developments and variations

to this came up in the form of SIER, SIS, SIERS, etc. models. All the above models are categorized

as compartment models and suffer from many drawbacks with the most limiting ones being these

models were deterministic and homogenous. Simply stated the models considered the complete

population as having similar characteristics and gave the same results on multiple runs irrespective

of the location or behaviour of people. To overcome the drawbacks of compartment models, Agent

Based Models (ABMs) were developed.

An Agent Based Model (ABM) can be viewed as a bottom-up approach to recreate a real life

dynamic system consisting of multiple entities, each with a different set of attributes and behaviours.

ABM s are stochastic models that treat every person as an individual in the form of an agent with

a unique behaviour based on a set of rules and try to simulate the expected path an infection can

follow. The concept behind following a bottom-up approach to discover the emergent phenomena

created by individual actions of the agents, which usually is not intuitional or easy to predict. ABMs

in recent times have come up as an alternative to the traditional mathematical mass action models

used for epidemiology. It has increasingly gained acceptance in recent years due to the promising

results achieved in various fields of social science. The use of ABMs in every field provides us with

numerous advantages over traditional mass action or mathematical models in every field. However,

with the advantages, ABMs require a lot of simulation and computation power in order to emulate

real world scenarios along with sophisticated models. However, with the progress in the field of

high performance computing, epidemiologists want to harness the computation power to solve the

epidemiological problems.

1.4 Classification of Computational Epidemiology Models

Mathematical models for epidemiology can be classified under different aspects. Models may be

classified on the approach followed by them or the time at which are used. Some of the classification

categories are described below.
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1.4.1 Classification based on approach

Formally, based on approach, epidemiological models can be classified as follows:

• Mass Action Compartment Models - These are differential rate based models which follow a

set of mathematical equations to depict the diffusion of infection in a network. These consist of

deterministic and stochastic ordinary differential equation based models. The examples include

Bernoulli [7], Ross, Kermack and McKendrick models for deterministic ODEs and Bartlett [8],

Bailey [9] and Brauer models for stochastic ODEs.

• Agent Based Models - These are interaction based models which are based over a network of

people. These can depict complex interactions in networks. Examples include RandomNets

(Barabasi, Meyer) and Realistic Social Networks (NDSSL, Salathe).

1.4.2 Use-time classification of models

Epidemiological models in real time can be classified based on their time of use as follows:

• Modeling before an epidemic - Modeling before an epidemic is usually done as precautionary

or preventive measures. The targets of this model include determining the (non) medical

intervention required, the feasibility of containment, the optimal size of the stockpile and best

use of supplies once an epidemic begins.

• Modeling during an epidemic - Modeling in real time during an epidemic is done to contain the

spread of the epidemic and form health measures to be adopted based on the current situation.

The objective of these models is quantifying transmission parameters, interpreting real time

epidemiological trends, measuring antigenic shift and assessing the impact of an intervention.

1.5 Epidemic Quantities of Interest

The following section lists the entities and quantities related to an epidemic which are useful and of

interest to us. Ideally, an epidemiological model should be able to give us information about these

terms. These quantities combine to form the results and are the basis of health policy drafted in

case of an epidemic.

• Susceptible Population (S) - The group of people who at current instant dont have the dis-

ease/pathogen but may catch it from their network or environment.

• Exposed Population (E) - The group of people who are the carriers the pathogen but havent

developed symptoms themselves.

• Infected Population (I) - The group of people who are currently infected by the pathogen. All

infected people are also the carriers of pathogen and therefore exposed as well.

• Recovered Population (R) - The group of people who were infected earlier but are now cured.

People in this category are assumed to develop immunity against the infection, meaning that

they cannot be infected again. If this is not the case, then they are assumed to lie in a

susceptible group. Depending on the infection, there may or may not be a group of recovered

population.

4



• Infection Rate (β) - Infection rate for infection is defined as the number of interactions made

by an infected person per time unit.

• Recovery Rate (γ) - Recovery rate of infection can be defined as the number of infected people

who are likely to recover per unit time. The recovery rate is inverse of infectious period/time

taken to recovery.

• Basic reproduction number R0 - It is the expected number of secondary cases produced by

a single primary infection in a completely susceptible population. For an infectious disease

with an average infectious period of 1
γ and transmission rate β, the value of R0 = β

γ . For an

infection to turn into an epidemic, the infection rate should be greater than the recovery rate.

This essentially transforms β > γ to R0 > 1.

• Epicurve - Graphical display of the numbers of incident cases in an outbreak or epidemic,

plotted over time is known as epicurve.

• Peak of an epidemic - The highest number of infections at any given instance is known as the

peak of the infection.

• Time to peak - The time unit at the peak of the epidemic is said to be the time to peak.

• Total number of infections - The cumulative of all infection population is known as the total

number of infections.

• Duration of an epidemic - The time when the number of daily infections falls below a daily

threshold, and the epidemic is assumed to be in control is known as the duration of the

epidemic.
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Chapter 2

Computational Epidemiology

Customarily, the study of disease transmission has been founded on information gathered by general

health agencies through health personnel in medical clinics, specialists’ workplaces, and out in the

field. Epidemiological studies began with a desire to predict the about the next epidemic but

till date have only been able to study the past. Now with the increase in processing power of

computer systems, researchers want to use it to create network systems to predict various factors

associated with epidemics. In his book Veterinary Epidemiology [10], Michael Thrusfield defined

computational epidemiology as “the application of computer science to epidemiological studies”.

Similarly, Habtemariam, in his work on population models [11] in 1988, explained the need and

effectiveness of computer based interaction models to understand the behaviour of complex biological

systems. These models suffer from the drawback of an oversimplification of complex interactions but

still provide an approach to conducting experiments as compared to classical laboratory experiments

which may neither be practical nor feasible.

Computational epidemiology deals with the development of computational and mathematical

methods, tools and techniques to support epidemiology using various aspects of computer science.

The use of computational models for broader policy questions in epidemiology has opened up a

distinct view to solve the age old problems in this field. However, the use of newer technologies

poses a new set of problems to create a computation system. This field relates to the study of uses,

applications and challenges posed by the use of computation systems in the field of epidemiology.

Computational Epidemiology is a collective term including but not restricted to the following:

• Discrete Event Simulation (for Discrete & Continuous time)

• Numerical Computation (Scientific Computation)

• Web crawling & surveillance (Information Retrieval)

• Data Mining & Machine Learning (Statistics)

• Algorithms & optimization applied to scientific concerns

• High Performance Computing (Parallel & Distributed techniques)

Despite the works done in statistical epidemiology, some of the current areas of application of

computational epidemiology are:
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• Spread of epidemics in complex networks

• Surveillance of diseases in social media

• Opinion mining in social media (behave like viral epidemics)

2.1 Mass Action Compartment Model

Mass action compartment models, as previously explained, are traditional ordinary rate based models

which split the population into compartments that represent the different stages of a disease. A set

of nonlinear ordinary differential equations (ODEs) associates a transition rate to the mobility of

agents between compartments. The disease dynamics are characterized by a parameter R0, the

basic reproduction number. Traditional compartment models are the SIR (Susceptible-Infected-

Recovered) model and its variations (SI, SIR, SIS, SEIR, etc.). The SIR model was proposed by

Kermack & McKendrick in 1927 which formed the basis of mathematical modeling in epidemiology.

Mass action compartment models follow some simplifying assumptions to describe the system under

consideration.

• The transmission of infection is immediate on contact without any idle period.

• All the individuals in a compartment are equally susceptible or infected.

• The infection is transmitted by contact (direct or indirect) between a susceptible and an

infected individual.

• All the people in a compartment are homogeneous (having same behaviour & characteristics).

• SIR is a deterministic model since the population measure is sufficiently extensive to deal with

the changes in the spread of the infection

• The population under experimentation has a fixed size, i.e. no births, deaths or immigration

is considered to have taken place.

2.1.1 SIR Model - Kermack & McKendrick (1927)

The SIR model proposed by Kermack & McKendrick in 1927 [6] divides the total population into

three compartments, namely the susceptible, infected and recovered compartments. To begin the

SIR model, we initially identify the independent and dependent variables. The independent variable,

in this case, is time t. There are two categories of the dependent variable in the SIR model. The first

category of variables is the population dependent on time. We express the population as a function

of time. The number of susceptible individuals is:

S = S(t) (2.1)

The number of infected individuals is given by:

I = I(t) (2.2)
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Similarly, the number of recovered individuals is:

R = R(t) (2.3)

The second category of variables represents the fraction of the total population in each com-

partment. For a total population count of N , we have the susceptible fraction of the population

as:

s(t) =
S(t)

N
(2.4)

The infected fraction of the population is denoted by:

i(t) =
I(t)

N
(2.5)

Similarly, the recovered fraction of the population is:

r(t) =
R(t)

N
(2.6)

However, both the sets of dependent variables are proportional to each other and will give us the

same information about the progress of the epidemic. Also, at each time instant,

s(t) + i(t) + r(t) = 1 (2.7)

The rate of changes for the dependent variables is defined as follows:

• Assume that each infected individual has a fixed number of β contacts per day. Although all

these contacts may not necessarily be with the population in the susceptible compartment.

Assuming a homogeneous mixing of the population, the fraction of these contacts with sus-

ceptible people is s(t). Therefore, on average, there are βs(t) new infections spread by each

infected individual. Another simplifying assumption is that due to the large population size,

we can ignore the fact of encountering the same susceptible individual multiple times in a

single day.

• We also assume that a fixed fraction of γ of the infected population will recover on any given

day. This essentially means that the time to recover is 1
γ days.

On differentiating the dependent variables, we get the following SIR equations. The susceptible

equation depicts the rate of flow at which the susceptible population is getting infected.

ds

dt
= −βs(t)i(t) (2.8)

The recovered equation depicts the rate at which the infected people are recovering from the

infection.
dr

dt
= γi(t) (2.9)

The infected equation depicts the rate of change of population in the infected compartment.

It is a combination of the incoming flow of susceptible population and outgoing flow of recovered

population. To derive the infected equation, we should remember from Eq. 2.7:
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s(t) + i(t) + r(t) = 1

On differentiating this we get,

ds

dt
+
di

dt
+
dr

dt
= 0

From the above derived equations we have,

−βs(t)i(t) +
di

dt
+ γi(t) = 0

di

dt
= βs(t)i(t) − γi(t) (2.10)

The SIR model is completed by giving an initial condition for the differential equations. This

is usually the parametric values for the total population of N and an initial number of people in

the SIR compartments. The values of β and γ are based on the infection and can be adjusted as

required based on the data. Other similar variants of Kermack & McKendrick SIR model such SIS,

SEIR or SEIS work on similar assumptions and follow the above methodology.

2.2 Evaluation of Mass Action Models

The mass action models are quite general. They are used to simplify mathematical models for epi-

demiology. Considered as the workhorse for computational epidemiology, these models are consider-

ably quick to build and put to use. These can be easily modified to consider different compartments

or more recently variation in population size due to births, deaths and immigration. These models

are easy to solve, using well defined ODEs in mathematics. However, these models follow what can

be best explained as a black box approach and do not focus on factors like individual behaviour or

the mechanism of transfer of the disease. These models generalize the population as well and pay

no individual focus towards the local healthcare factors where the epidemic outbreak is considered

to have happened. Moreover, these dont even take into consideration the structure of the disease,

which in real life, play a pivotal role in the diffusion of infection. Depending on the disease, the

mode of transmission of infection could be directly in case of viral or bacterial agents or indirectly

due to vectors or carriers such as malaria by mosquitoes. Thus modeling for communicable disease

requires careful consideration. The table below summarizes the advantages and disadvantages of

compartment models.

2.3 Interaction Based Modeling

Interaction based approach and ABMs derive their roots from Complex Adaptive Systems (CAS) [12].

CAS was designed as a simple approach to understanding how individual behaviours affect the whole

system. CAS is a subset of nonlinear dynamical systems having multiple interdisciplinary uses. CAS

can provide insights about various factors in natural and social sciences consisting of heterogeneous

agents, system state transition and emergent phenomena. The CAS is a system with a complex
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Advantages Disadvantages

Compartment models are considered as
workhorse models for epidemiology

They assume the complete population to be
homogeneous

These are quick to build and implement
They are unable to capture complex human
interactions

Compartment models are easy to extend They suffer from behavioural generalization

ODEs are well developed and defined in math-
ematics

They follow a black box approach and hence
are difficult to refine

Table 2.1: Advantages & Disadvantages of Compartment Models

interaction of dynamic agents along with their relationships. CAS is considered to be adaptive and

self-dependent. They are viewed as a complex naturally visible accumulation of generally compara-

ble and in part associated miniaturized scale structures framed to adjust to the changing conditions

and increment their survivability as a full-scale structure. With many of the conceptual, implemen-

tation details and features being similar to ABMs, they are considered as the predecessor of what

we know today as ABM. However, with the focus being on high-level properties, CAS differs from

ABM due to the former having self-similarity and self-organization features.

2.3.1 Simulation Modeling

Interaction Based Modeling is a specific kind of simulation modeling technique which can be used

to find solutions to real world problems. A simulation model is a set of rules that defines how the

system will change its state in the future. Simulation modeling gives us a way to optimize our

solutions for the real world before actually implementing them. The need for simulation modeling

arises from the basic fact that it is not possible to have an analytical model for all the problems in

the world. In epidemiological applications, real life experimentation is not an option as we cannot

infect some population to test our strategies. We need to settle on choices based on limited data.

However, unlike in the real world, we can set up a scale model and run the simulations to test our

hypothesis before implementing them in the real world. This saves us a lot of money and effort that

goes into implementing an intervention or a policy at a large scale only to see it fail. Modeling a

real world problem can be divided into three stages - an abstraction of a real problem into a scale

model, analysis and optimization of the model, and mapping the solution back in the real world.

Some of the areas of application of simulation modeling are:

• High level abstraction areas - are typically the areas which deal in aggregates, global causal

dependencies and feedback dynamics. These models are known as macro level models with

fewer details and more focus on strategic implementation. Examples of these models are

population dynamics, marketplace & competition, ecosystem, health economics, R&D project

management, etc.

• Medium level abstraction areas - mainly deal with component or module aggregates of the

system. These models are known as meso level models with medium details and focus on the

tactical level. Some of the examples in this category are supply chain management, call centre,

asset management, electrical power grid, etc.

• Low level abstraction areas - usually deal with individual objects, exact sizes, distances and
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timings. These models are known as micro level models with more details and focus on the

operational level. Traffic micro models, pedestrian movement, computer hardware, automotive

control system, etc. are examples of this category.

2.4 Agent Based Modeling

Agent-based modeling is a powerful simulation modeling technique that has been used and gained

acceptance in an increasing number of areas, including applications to real world business problems.

Steven Banks [13] in his work on agent based models had written that revolutionary tools are

distinguished from other tools not because of their technological importance but because of the social

impact they have. In today’s world, when we see a sea of new tools and technologies every day, only

some of these can have a measurable impact on society. In this regard, Agent Based Modeling has set

itself apart from the others. The most important reason for the popularity of ABMs is the restrictions

imposed by traditional methods. As seen earlier, that list is long with the most important ones being

linearity, homogeneity and generalization. To overcome the disadvantages of compartment models,

epidemiologists have switched to interaction based approach for mathematical modeling. Interaction

based approach, popularly known as Agent Based Model, is designed to capture the behaviour of

each unique individual (agent) and its inherent fuzziness by representing every person as an agent.

An agent based model can be defined as a system of autonomous decision making entities. Each

agent in an ABM has a unique behaviour based on a set of rules. Agents execute various behaviours

appropriate for the system they represent. For an application like epidemiological modeling, it is

necessary to have a model which can capture the inherent nature complex nature of interactions

between different agents. The model can depict the behavioural and mobility patterns of the agents

based on its attributes and environmental responses. However, ABM simulations, especially for a

large number of agents, requires a lot of memory and can be computationally expensive.

2.4.1 Components of an Agent Based Model

At the core level, an ABM consists of agents, relationships between them and a set of rules fol-

lowed by them. Based on the agent attributes and rules, even the simplest agent based model can

exhibit complex behaviour pattern. In more sophisticated systems, the agents may incorporate net-

works, evolutionary algorithms or other learning techniques. ABM can be viewed as a decentralized,

bottom-up modeling approach. The method is said to be bottom up as it uses as building blocks

at the lowest level to build up a system using the individual behaviours which might simulate the

operation of a complex organizational system at a higher level. An ABM even though capable of

capturing complex structures and dynamics is easier to maintain. Such a system can be modelled

even in the absence of knowledge about the global interdependencies between entities as the model

itself will find those based on interactions.

An agent in ABM can be formally defined as “an autonomous decision making entity”. Agents are

the independent atomic entity. It is a discrete individual with a set of attributes and characteristics.

The behaviour of agents is governed by certain rules. The agents have particular decision making

capability based on the current state. The agents of a system are self-contained and live in a specific

environment where they interact with other agents. The purpose of an agent is to achieve a specific

goal, i.e. agents are always goal-directed. In high level ABMs, the agents may also have some
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memory or intelligence. Agents can contain both base-level rules for behaviour and the intelligence

to change them as well.

2.4.2 Advantages of Agent Based Models

ABMs hold an edge over traditional mathematical modeling techniques. The most trivial reason

behind the success of ABMs is that they overcome a lot of disadvantages of compartment models.

However, the ABMs don’t stop at this but give some added advantages as well, which make it useful

in many applications. Some of the advantages are:

• Emergent phenomena - ABMs can successfully capture the emergent phenomena of a group.

Emergent phenomena can be defined as “a groups collective behaviour” (which can be often

counterintuitive). The emergent formula is the result of interaction between agents in the

same or different modules. An emergent formula might show a behaviour which could be

quite distinct from individual behaviour. The characteristic of the emergent formula is that

it is usually challenging to understand and predict. In ABMs, a small change in a simple

individual rule can change the dynamics of the complete system and intuition is an inferior

guide in case of emergent behaviour beyond a specified complexity.

• Natural description - ABMs provide a natural description of the model as compared to tra-

ditional models. Due to the bottom-up approach, each entity has to follow a certain set of

rules which define his behaviour irrespective of any other factors or its impact on the system.

This is close to a real life organizational structure where each person has a dedicated job and

can explain it easily. However, it becomes quite tricky if we want to observe his behaviour in

context to the impact it has on the organizational dynamics. The bottom-up approach allows

us to capture individual behaviour, and the emergent phenomena combine it to find its effect

on the organization. ABM looks at an organization from the perspective of individuals and

their contribution in an organization rather than from an organization’s perspective.

• Flexibility - The flexibility of an ABM can be seen in numerous situations. ABMs can be best

represented as an object oriented approach for modeling. This enables the user to modify the

attributes and the rules of an agent. ABM provides a natural way of tuning the model and

complexity of agents. Another situation is being able to change the levels of abstraction and

aggregation.

2.5 Areas of Applications

Agent based modeling technique has a lot of application areas. They can particularly be used in

areas where we can exploit one or more advantages mentioned above. ABMs can be useful in the

following cases:

• ABMs can be used in cases where we have non-linear individual behaviours, or the behaviour

can be expressed as a cascade of if-else-then rules. It can also be used where agents have some

memory, show path dependence or have temporal correlations.

• ABMs can be used for models where we have heterogeneous interactions in a network.
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• ABMs are also useful in scenarios where the average for a system will not work since averages

tend to smoothen sharp changes which could have otherwise been amplified and have had a

more substantial impact.

• ABMs can be applied in circumstances where singular conduct is complex and can’t be ade-

quately characterized to total change rates.

• In situations where activities are a progressively natural method for depicting the framework,

for example, a hierarchical structure, ABMs can be useful to demonstrate the framework.

• ABMs are useful in situations where stochasticity is involved in agent behaviour that may lead

to change in the state of the system.

ABMs today are useful in various social, economic and political science problems. With the

increase in complexity to analyze these areas, ABMs are gaining both applications and acceptance.

Based on the above use cases, some of the real life applications of ABMs are:

• Network Flows - A flow network can be depicted as a directed graph with each edge having a

flow and capacity(maximum flow). A flow network can be used to solve multiple problems like

maximizing the flow, minimizing the cost, finding the source of flow, etc. Real world examples

of flow networks are evacuation from a building in case of fire, traffic flow in an area, data flow

in an internet network or even customer flow management. Crowd stampedes during a fire

evacuation or at times without any significant reason other than to reach the destination in

time have caused a loss of life and infrastructure. Panic is a common reaction observed during

such situations which make it very difficult to model it computationally or control it in real life.

Agents in a network flow tend to have a variety of responses which can be captured with an

ABM. The result of collective panic or any interventions at that time is the emergent behaviour

of the system. Another similar example is the traffic flow with a focus on solving problems

such as traffic light timings, accident minimization and congestion minimization and recovery

due to bad driving habits. Industrial applications related to this are have been developed such

as TranSims [14] at the Los Alamos National Laboratory (LANL) in the United States and

are under progress as a part of the Smart Cities project in India.

• Strategic Positioning - Situations or conditions in which a strategy is required for placement

or position of an item or an agent concerning the environment can use ABMs for strategic

positioning. It can be used in places like stock markets, shopping marts and strategic economic

simulations. The stock market is one of the most fluctuating fields in the world with the

largest environment comprising the whole wide world. Any action of an individual or any

organization in any part of the world can trigger a one-way movement in the market which

usually gets caught on very soon. ABMs are an acceptable technique to try and simulate what

the possible outcomes in particular scenarios are. A live application [15] has been developed for

the National Association of Security Dealers Automated Quotation (NASDAQ), the American

stock exchange to analyze the effects of changes in its trading policies. Another example of

strategic placement is of products at a shopping mart. The idea behind the problem is that

the shopkeeper wants the customers to take longest possible paths so that they buy more

products, but the customers would want the shortest path so that they can quickly finish their
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Figure 2.1: Modeling Lifecycle of an ABM

shopping. This can be considered a high-end example of minimax problem. ABMs such as

SimStore [16] have been developed which simulate such a problem.

• Organizations - Corporations and organizations are a direct application area for ABMs. Mod-

eling operational risk and organizational design are two popular applications of ABMs in

organizations. It is very trivial to understand how a bottom-up technique will be able to cap-

ture the emergent formula in an organization. Operational risk is the probability of having a

loss due to employee errors, system failures or any other external activity such as fraud. An

ABM can be used to estimate the loss in such cases and how it will have an effect on the

system. Moreover, we can use the ABM to design interventions as well as test them using

an ABM. Similarly, organizational design and induction of resources in a particular project or

organization and its effect can be modelled using an ABM.

• Diffusion - Diffusion in a network captures the underlying mechanism of how events propagate

in a complex network. Events like the spread of the virus in a computer network, the spread

of infection in an epidemic, viral market or transmission of fake news in social media. ABMs

are used to find the hubs and transmission rates in these cases. ABM can be applied in these

cases where people are influenced or affected by their contact network, be it online or offline.

ABM can be created for an application like the spread of fake news in a Twitter network or

real life. Similarly, ABMs have already been created for epidemiology and computer virus

networks. The ABMs can be used to decide on public policy based on the result. The policies

decided should strike a balance between the regular working of a system vs control measures.

2.6 Modeling Lifecycle of an Agent Based Model

Similar to a software development model, the modeling of an ABM is done in multiple cyclic phases.

The modeling life cycle can be broadly divided into five stages described below and represented in

Figure 2.1.
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• Stage 1 - The modeling begins with concept development and articulation stage. The target

of this stage is having an idea of what is expected from the model.

• Stage 2 - The requirements definition stage follows next. The target of this stage is to make

the model goal specific.

• Stage 3 - The design stage follows next with the objective of giving the model a definitive

structure and function.

• Stage 4 - The implementation stage refers to the development, coding and testing of the model.

• Stage 5 - Once the implementation is finished, the model is deployed for use in the operational-

ization stage.
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Chapter 3

Framework

Resource allocation and intervention management are the two highest priority tasks which need to

be done during an epidemic. Strategic deployment of healthcare resources during an epidemic is

critical to prevent its rapid spread. In this work, we propose a tool that considers a complex network

setting and some limited healthcare resources and then performs a statistical simulation to find the

performance of various strategies.

3.1 Overview of the tool

To solve the above-given problem description, we have developed DyNeMoC as a generic tool which

is customizable to simulate various problems pertaining to dynamic movement of agents on graphs.

Examples of these problems are computational epidemiology (discussed later), variants of cops and

robbers problem and diffusion of news/infection in a network. DyNeMoC has a multi-layered archi-

tecture which is depicted in figure 3.1. The tool is divided into two main parts: the core components

and application based components. The core components consist of the agent module and the city

module. It essentially holds information about the agents and the city. For the agent module, these

include the agent id, current location and list of neighbours of each agent. For the city module,

it includes the city id and agent id of the people currently residing in the city. For the simulation

in various scenarios, an application-based module is provided to contain the information required

for the specific application. In the case of epidemiological modeling, the application specific infor-

mation consists of the original location (home city), health status (SIR), infection timestamp, scan

status and neighbour list for the current timestamp. This work, HStrat, primarily focuses on the

application of the tool in epidemiology.

3.2 Structure of HStrat

The HStrat simulator is designed to capture dynamic movement phenomenon across multiple cities.

Building on the structure of DyNeMoC, HStrat has a configuration file containing the experimental

parameters which are taken as input by the tool. The structure of HStrat is explained below.
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Figure 3.1: Architecture of DyNeMoC (for Epidemiological Application)

3.2.1 Network of cities

The model has a graphical representation of M cities, where M is input by the user. Implemented as

a part of a core module, the vertices of an undirected graph are used to represent the different cities.

The edges represent the path or connections between these cities. The tool, by default, considers

all the cities to be interconnected as all major cities have a direct path to each other. However, the

user is provided with the ability to modify the intercity connection as per his experiment. The total

population of N people is distributed among these M cities based on some ratio. By default, the

tool takes the value of M as 50 and distributes the population in the ratio of population in the top

50 cities in India.

3.2.2 Social Contact Network

The people within the cities form an intracity connection. This network implemented as a core

component forms the social contact network of people. The model can be provided with an option

of either having a random connection or following a BA Topology [17]. BA Topology is used by

default since it best represents random scale-free dynamic networks. The BA network of every agent

is updated at each time step based on his movement.

3.2.3 Mobility Model

As described in the problem statement, we assume that a person has a home city. However, dynamic

movement is possible in the tool. Implemented in the application based component, the mobility

model consists of movement policy of people. A custom transition probability matrix can be provided

by the user as input. By default, the model a high probability (around 0.8) of a person staying at his

home location and the remaining is divided equally among the remaining locations. When a person
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makes a transition, his current location is updated. Based on the current location, the person is

assigned a new set of neighbours based on probability. However, when he returns to his home, he

joins his original contact network with the same neighbours.

3.2.4 Transmission Model

The transmission model defines at what the rate the infection is transmitted among the population.

Implemented in the application based component, the probability of infection depends on the number

of infected neighbours and total numbers of neighbours in a persons contact network. The model

allows the infection model to be modified or completely replaced with a rate based infection model.

The tool by default has three states an agent can have, namely, susceptible, infected and recovered.

The user has the choice to modify the states and replace the infection model with one of his choices,

such as SEIR, SIRS, etc. The current model calculates the infection probability as:

P (i) =
No. of infected neighbours

Total no. of neighbours
(3.1)

3.2.5 Recovery Model

The tool implements an application based recovery model which allows the infected people to recover

naturally with some probability. However, since the chances of this happening in an epidemic scenario

are less, the predefined value of recovery rate, γ, is very less with more focus on dynamic health care

resources. The recovery model follows an exponential rate of increase of recovery probability with

the increase in the number of days. The recovery probability is calculated as:

P (r) = 1 − (1 − (
1

tr
)di) (3.2)

where di is no. of days since infection & tr is the average recovery period or 1
recovery rate .

3.2.6 Healthcare Model

This tool focus on optimal resource allocation in times of epidemic. These resources could represent

various things, including healthcare professionals, medicines, vaccinations, interventions and other

various resources. We have implemented, what we call, dynamic Health Care Units (HCUs) which

represent temporary medical facilities capable of treating people infected due to the epidemic. We

assume that these HCUs are capable of testing as well as recovering the people. Once an infected

person is given an intervention, we assume him to be cured of the infection as he cannot spread the

infection. Each of these HCUs can test and cure a limited number of persons each day. This limit

K, can be input by the user to represent the capacity of the HCUs. Once an HCU has treated the

people, it can either stay in the same city for another day or move to a new city. In any case, each

city is allocated only one HCU. The decision of the HCU staying or moving is another strategic

decision which is taken care of by the tool. The model has a limited number of HCUs (usually lesser

than the number of cities) as we want a resource allocation strategy which in real life will be limited

and costly as well.
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3.3 Implementation Details

The above tool developed from scratch in Java to make it platform independent and python has been

used for generating input. An object oriented approach has been selected for the implementation as it

is best suited to depict an agent based approach. As described above, the tool is highly customizable

for the users to implement their scenarios and test the strategies. The tool has an Agent class which

implements the agent module and a city class to implement city module. Objects of these classes can

be created based on user input. These two classes form our graph structure and population for the

model. The attributes of objects are then initialized based on some rules. The user has the ability

to add new attributes and specify the initialization rules for them. The tool has other classes which

implement the modules described above viz. Infection model, recovery model and HCU model. Each

of these models can be customized as well. These modules update the attributes of the agents and

provide us with the results of the simulation. Parallel programming using multithreading approach

has been used to improve the performance of the tool. It exploits the fact the people in different

cities are unrelated and independent and hence can be updated simultaneously. Figure 3.2 depicts

how multithreading has implemented for parallel execution. Once the simulation is completed, the

results are stored in the hard disk.

Figure 3.2: Multithreading as implemented in DyNeMoC
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3.3.1 Simulation Process

This subsection describes a sample simulation run and also serves as a manual on how to run the

tool.

• The tool takes a configuration file as input which contains all the input parameters such as

the number of agents and their attribute values, movement thresholds, infected rate, recovery

rate, file paths, etc.

• After deciding the input parameters, the graph input is generated using a python script (graph

generation.py).

• After generating the graph structure, agents are generated based on input parameters using a

shell script (Generate Input.sh).

• Once input is generated, the simulation is begun with a shell script (Simulation.sh).

The user part is completed here, and the tool begins the simulation. The simulation is done as

follows:

• The system takes the input parameters and initializes all the agents. This includes changing

the state of some random agents to infected based on input.

• The tool then runs the infection module and finds the probability of every agent being infected.

Based on the probability, the next state of the agent is decided.

• After the infection module, the recovery module is called to find the agents who will recover

naturally from the disease. Based on their recovery probability, their next state is set to

recovered.

• The HCU module is called to sample some population and cure the infected people from the

sample. All the infected people get cured by HCU.

• The movement module is called to find the next location of all the agents based on the move-

ment probability.

• All the updates in the above steps are done in parallel for high performance.

• After all the simulations, the transitions take place and simulation begins for the next day.

20



Chapter 4

Resource Allocation

4.1 Problem Statement

We consider a real life setting of people residing in multiple cities interconnected with each other.

All the people belong to exactly one of these cities which can be said to be his home city. Every

person will have a social contact network consisting of people from his town. It is assumed that the

person will interact with other people in his contact network. Despite having a home city, there is

a chance that people travel outside their city for multiple reasons. This leads to having a model

capable of depicting these dynamic movements as well. During an epidemic, some people randomly

get infected by some pathogen, which causes a communicable disease. Now when an infected person

interacts with other susceptible persons in his contact network, there is a probability he will spread

the infection. This will lead to an epidemic situation. In order to control the epidemic, some

healthcare resources are deployed with the capability of treating the infected people, which will slow

down the spread of the infection. The objective of this work is to implement multiple deployment

strategies and find out their performance under various constraints. This work has been published at

the Sixth Social Networking Workshop, 11th International Conference on Communication Systems

& Networks (COMSNETS), 2019 [18].

4.2 Strategies for Resource Allocation

As described in subsection 3.2.6 above, the HCUs have a strategic decision to make about their

movement. Their movement can be seen as a resource allocation problem that we want to solve with

our tool. This section describes the staying algorithm followed by them, along with the allocation

strategies.

4.2.1 Staying Algorithm

The HCUs have an upper limit of K people they can test and treat in a single day. However,

based on the level of infection spread in the city, there will be a possibility that the city needs more

medical supplies. In such a scenario, the HCU will decide to stay back for another day. The decision

of whether an HCU should stay back or move to a new location is decided by an algorithm which

tries to find the optimum threshold of the fraction of people who should be infected out of K tested
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people indicating that there is still a high level of spread of the infection. This means that if the

fraction of infected people out of the tested sample is less than a certain threshold Thm, then the

HCU will infer that the infection level is not high and move to a new city. The algorithm followed

is given below.

Algorithm 1: Staying Algorithm for HCU

Sample K people without replacement;
if no. of infected people ≥ Thm then

stay for another day;
else

move to a different city;
end

4.2.2 HCU Allocation Strategies

HCUs being dynamic agents have the capacity of being allocated to a new city. However, the

movement is crucial as this has a huge impact on the performance of the model in terms of the

spread of an epidemic. Three strategies have been described below, which have been implemented

in the tool. The user, like earlier, has the option of implementing and testing his own strategy.

• Random Allocation - The most primitive and basic is the random strategy where HCUs are

allocated randomly to any city based on equal probabilities. However, the probability in this

as seen traditionally is not 1
m as the current city and cities that have already been allocated

an HCU are removed from consideration.

• Population Based Allocation - This strategy allocates HCUs among the cities based on weighted

probability. The probability is in the ratio of the initial population of the cities. This means

that a city with a higher population has a higher chance of being allocated an HCU. However,

since a weighted probability is used and a top-K approach, the smaller cities also have a chance

of being allocated an HCU. The idea behind this strategy is to exploit the consensus that a

more populated city tend to have more infection. Following this approach, the probability for

a city being allocated an HCU is:

p(cityi) =
No. of infected people in cityi
Total no. of infected people

(4.1)

• Infection Based Allocation - The infection based allocation follows a different approach as

compared to the above strategies. In the above strategies, we allocate HCUs based on the

assumption that we are unaware of the overall level of spread of infection. It can also be seen

as having no information about the number of resources needed in a city. However, if we

do have some ground information, then we can use it to have a smarter allocation strategy.

This strategy separates the testing capability of the HCU and provides each city with a local

testing facility. This enables each city to test patients parallelly at each timestep irrespective

of the location of HCU. However, these testing facilities cannot cure the patients as only HCUs

have those resources. Instead, the testing information is passed to a central control where the

allocation of HCUs is done. The allocation is done based on the weighted probability of the

need for resources of a particular city with respect to the total requirement of resources (or
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Figure 4.1: Infection curve for different HCU movement strategies for 10 HCUs

the number of infected people). Thus, a city will have the following probability of an HCU

being allocated to it:

p(cityi) =
No. of infected people in cityi
Total no. of infected people

(4.2)

4.3 Experiments & Results

4.3.1 Experimental Setup

To set up the experimental environment, we have generated a graphical structure of 50 cities with

a total population of 20000 people. Agents are allowed to move among the cities with different

probabilities. Experiments were conducted with the probability of people staying at home city, local

probability, P (home), as 0.80, 0.85, 0.90 and 0.95. For the HCUs, the capacity K is set to 100 and

the movement thresholds Thm were set to 0.2, 0.4, 0.6 and 0.8. The effect of varying the number

of HCUs was observed with HCUs in the range between 0 & 10. The recovery rate γ, in all these

experiments was set to 0.005. In the next section, we report simulation results in terms of epidemic

curves while varying other parameters and allocation strategies.

4.3.2 Results

In this section, we describe the experiment conducted and the observations from the different results.

We ran the experiments with above parameters having the initial infected population as 2% of the

total population.

• Experiment 1: In this experiment, we assess the performance of the various allocation or

movement techniques followed by the HCUs. The techniques under consideration are Random

allocation, Population based allocation and infection based allocation techniques.
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Observation: The presentation of 10 HCUs following distinctive movement procedures is

assessed with estimations of P (home) and Thm as 0.95 and 0.8 separately. In Figure 4.1, we

can see that the infection based movement methodology plays out the best since because of

the communicate correspondence, it can achieve most infected cities and clear greatest disease.

This is trailed by the population based movement technique, which can be best credited to

the way that cities with more population are probably going to have more elevated amounts

of diseases. The random movement technique plays out the most unfortunate as it doesn’t

pursue a fixed pattern and consequently neglects to clear an extensive piece of disease.

• Experiment 2: In this experiment, we analyze the effect of different HCU movement thresh-

olds Thm while keeping all the other parameters constant. The thresholds are used to decide

the cutoff level at which the HCUs should move to a new city.

Observation: The performance for Thm of 0.2, 0.4, 0.6 and 0.8 with P (home) as 0.95 for

10 HCUs following random allocation is assessed. From Figure 4.2, we can see that a higher

value of Thm results in a lower crest in the infection curve. This shows for the parameters

considered in the experiment, HCUs should move to work in a different city if just a small

fraction of the inspected populace tests positive for the disease.

Figure 4.2: Infection curve for different movement thresholds, Thm, for 10 HCUs

• Experiment 3: In this experiment, we assess the effect of movement of people for different

local probabilities P (home), on the execution of HCUs. This experiment analyzes how the

movement of people among various affects the spread of infection.

Observation: The presentation of HCUs for estimations of P (home) as 0.80, 0.85, 0.90 and

0.95 with Thm as 0.2 for 10 HCUs following random movement technique is assessed. From

Figure 4.3, it tends to be seen that if there should arise an occurrence of an epidemic, it is

better if the general population have lesser movement as it hinders the spread of infection.

• Experiment 4: In this experiment, we vary the number of HCUs and study its effect on

controlling the experiment. Though an increasing number of HCUs should perform better,
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Figure 4.3: Infection curve for various local probabilities, P (home), for 10 HCUs

there will be a cost associated with it, so a cost-effect analysis is required.

Observation: The presentation of Infection based movement strategy for no. of HCUs as 2,

4, 6, 8 & 10 is assessed with estimations of P (home) and Thm as 0.95 and 0.8 separately. In

Figure 4.4, we can see that there is a diminishing in infection with the expansion in no. of

HCUs. The bend with 0 HCU gives us the benchmark correlation for increment in the execution

of HCUs. On closer perception, we can likewise observe that there is a postponement in the

time to peak for infections as the HCUs increment in number.

Figure 4.4: Infection curve for Infection based movement strategy for various HCUs
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Chapter 5

Universal Healthcare

Healthcare can be defined as “the maintenance or improvement of health via the prevention, di-

agnosis, and treatment of disease, illness, injury, and other physical and mental impairments in

people” [19]. It includes taking preventive measures or necessary medical procedures to improve an

individuals health. Healthcare covers procedures ranging from administering basic medicine to ad-

vanced surgery. These administrations are normally offered through a health care framework made

up of medical clinics and doctors. Healthcare is a quickly developing field, and a portion of the main

areas of concentration in the healthcare business are given below:

• Clinical Healthcare - This incorporates the medical specialists, medical attendants, and col-

laborators who assess, diagnose and treat patients, and regularly give safeguard care to enable

patients to keep up excellent health. A couple of instances of clinical specializations incorporate

cardiology, dentistry, emergency operations, paediatrics, and so on.

• Recovery Therapist - These include medical professionals who help patients during recovery and

rehabilitation from some physical or mental damage. These include rehabilitation counselors,

physiatrists, psychologists, prosthetists, etc.

• Healthcare Administration - These are non-clinical roles which aim at management services in

the healthcare area. These include hospital-, medical resource- or nursing management,

• Public Health - This area focuses on larger groups of the general population rather than a few

individuals and tries to design universal health policies for the general public. These include

epidemiologists, health policy managers, biostatistics, etc.

However, in general, when healthcare is talked about, it refers to clinical healthcare. The same

convention is followed in this chapter from hereon. Even though healthcare may have different

meanings based upon various environments and circumstances, healthcare systems usually have a

primary healthcare center serving as the first contact point in the structure. Hospitals and medical

facilities offering advanced care form the secondary and tertiary levels of treatment. Health care can

be characterized as either public or private, which essentially means that the healthcare provider

(like doctors and hospitals) can either be private or government. The various levels of healthcare

are described below:
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• Primary care - This alludes to the health experts who have the primary purpose as consultation

for the patients. It alludes to crafted by health experts who go about as the principal purpose

of discussion. Such an expert would typically be a general physician, such as a family doctor.

Primary care is frequently utilized as the term for the health care benefits that assume a role

in the neighbourhood network.

• Secondary care - Secondary Healthcare refers to the second tier of the healthcare system. In

secondary healthcare, patients from primary health care are referred to specialists in higher

hospitals for treatment. Secondary care incorporates intense care, fundamental treatment for

a brief timeframe, sickness, damage, or other health condition. In India, the health centres

for secondary health care include district hospitals and community health centre at the block

level.

• Tertiary care - Tertiary Healthcare refers to the third level of the health framework, where

particular consultative care is given more often than not on referral from primary and secondary

medical care. Services like intensive care units and advanced diagnostic support form the

critical features of tertiary health care. In India, tertiary care service is provided by advanced

medical research institutes.

5.1 Healthcare in India

State governments are responsible for healthcare in India. State governments give healthcare admin-

istrations and health instruction, while the central government offers authoritative and specialized

administrations. The health care framework in India is universal. Figure 5.1 gives an overview

of the organization of the health system in India. That being stated, there is an extraordinary

inconsistency in the quality and inclusion of medical treatment in India. However, there are nu-

merous distinctions in quality among rural and urban regions. Rural areas frequently experience

the ill effects of doctor deficiencies, and variations between states imply that occupants of some

states, regularly have less access to satisfactory healthcare than inhabitants of other states. Rural

areas in India have a deficiency of medical experts. About 74% of specialists are in urban regions

that serve 28% of the population living in urban zones [20]. This is a noteworthy issue for rustic

access to healthcare. The absence of medical resources makes people resort to private healthcare

suppliers. There is also a lack of infrastructure for health benefits in rural territories, which makes

healthcare resources scarce. Urban public hospitals have twice the number of beds as rural hospitals,

which are deficient in provisions. The issue of healthcare access emerges in rural areas as well as

in quickly developing small urban regions. Here, there are less accessible alternatives for healthcare

administrations, and there are less sorted out government bodies. In this way, there is regularly an

absence of responsibility and collaboration in healthcare divisions in little urban zones. Moreover,

factors like different residential areas and socioeconomic status create even further inequalities in

healthcare.

Similar to the rural-urban variations, healthcare provided by public and private sector varies a lot

as well. The public health care system, which was initially created to provide a means to healthcare

access regardless of socioeconomic status incorporates 18% of complete outpatient care and 44%

of complete inpatient care [20]. Although India has a comprehensive health care framework, the
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Figure 5.1: Healthcare in India

absence of inclusion and foundation in the public division implies that numerous Indians go to the

private area for healthcare needs. On a basic level, government health administrations are accessible

to all natives under the taxation based public framework. By and by, bottlenecks in getting to such

services force families to look for private care, bringing about high personal expenses. Nonetheless,

dependence on public and private healthcare areas differs altogether between states. A few reasons

are cited for depending on the private as opposed to the public sector; the fundamental reason being

low quality of care in the public division. As far as healthcare quality in the private segment is

concerned, a report by Sanjay Basu et al. [21], showed that health care suppliers in the private area

were bound to go through a longer duration of procedure with their patients and lead physical tests

as a piece of the visit contrasted with those working in public healthcare. Due to several reasons,

middle and upper-class people, in general, utilize public healthcare lesser than those with a lower

standard of living. This alternative is more difficult for poor people as they cannot bear the high

costs of private healthcare facilities. In any case, the higher personal expenses to cover the costs

of private healthcare strain the financial resources of a family, making it challenging to maintain a

basic standard of living. The higher expenses of the private division, be that as it may, are far from

numerous Indians, producing interest for private health protection in India. The individuals who

can stand to buy private insurance to help pay for the expenses of private health care. However, a

large section of Indian citizens requires health coverage since personal expenses make up a significant

part of medicinal costs in India.
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5.2 Universal Healthcare Schemes

Universal healthcare aims at affordable healthcare to citizens of a state or country by providing

financial protection. A healthcare scheme is built around delivering a specific benefits package to

all individuals with the objective of improving healthcare outcomes by offering improved healthcare

services at a lesser or even without a cost. The goal of universal healthcare is to create an environment

in which every individual irrespective of socioeconomic status or any other factor has access to

the best medical care available. The term universal healthcare, in any way, does not mean that

coverage is provided for everything. Instead, it focuses on the fact that everyone has access to

quality healthcare facilities. The crucial aspects of a scheme on which it can be evaluated are -

the target demographic, medical facilities covered and the amount of medical cover provided by

the plan. A universal healthcare scheme is described by the World Health Organization (WHO) as

“a situation where all individuals and communities receive the health services they need without

suffering financial hardship.” [22] The Director-General of WHO described universal health coverage

as the “single most powerful concept that public health has to offer since it unifies services and

delivers them in a comprehensive and integrated way.” [23] Some of the universal healthcare schemes

which are currently implemented have been described in further subsections.

5.2.1 Patient Protection and Affordable Care Act (ObamaCare)

Popularly referred to as Obamacare or abbreviated as ACA, The Patient Protection and Affordable

Care Act (PPACA) [24] [25] was enacted by President Barack Obama on March 23, 2010, as a

national healthcare plan to provide affordable healthcare facilities in the United States of America

(USA). This was a landmark scheme in the history of the USA as it did not just provide insurance

but made a significant difference in the American healthcare industry as a whole. With the primary

objective of providing affordable healthcare and reduce the health-related expenses of an ordinary

person, Obamacare can be described as a combination of three major components, as described

below.

• The major component of the ACA was providing the healthcare insurance itself. However,

before this, a common practice which is followed majorly by all insurance companies was

excluding people with pre-existing conditions. An alternative to this is provided by some

companies to include the pre-existing conditions by paying the extra premium amount, which

again is high. Due to this, people who most needed the insurance were the ones often without

it leading to either lack of proper medical care or unaffordable expenses affecting their daily

lives. The ACA allowed everyone, including those with pre-existing conditions, to get health

cover at affordable prices and put a check to the rising costs of healthcare.

• However, since the people with pre-existing conditions were most likely to require medical care,

the ACA needed to ensure that the insurance companies should be able to afford the costs.

This was done by subjecting the people to one of the two conditions - that either everyone

should have health insurance for at least nine months in a year or a tax would be levied on

them. This increased the number of healthy patients taking health insurance as well and

contributing to the premium costs rather than having a few individuals bear it.
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• The above two components were concerned majorly between the public and the insurance

companies. So the third component was the federal subsidies provided by the government to

enable everyone to afford the required insurance.

5.2.2 Aarogyasri

With the aim of the government to achieve “Health for All”, Aarogyasri [26] was presented as a

flagship healthcare scheme in 2014 by the then state government of Andhra Pradesh, India. However,

post the splitting of the state into Telangana and Andhra Pradesh, this scheme was adopted by and

adapted to the state of Telangana under the management of Aarogyasri Health Care Trust. For

the state of Andhra Pradesh after the split, the scheme was revamped in 2016 to Dr NTR Vaidya

Seva under the care of Dr NTR Vaidya Seva Trust. This healthcare insurance scheme provides

an annual financial cover of up to | 2 lakhs to families living below the poverty line (BPL) in the

state. By paying the entire premium on behalf of all BPL families, the scheme aims to improve

access to better medical facilities and treatment of ailments requiring hospitalization or surgery.

The beneficiaries of the scheme are provided with an insurance card under the scheme which can be

used for cashless transactions for all the procedures covered under this scheme. However, some of

the high-end diseases are excluded under this scheme.

5.2.3 Pradhan Mantri Jan Arogya Yojana (PMJAY)

The PMJAY [27], popularly known as the Ayushman Bharat Yojana, is the national health pro-

tection scheme launched by the central government of India in 2018. Targeting medical care at all

levels, the scheme carries forward the goal of India’s National Health Policy of 2017 of attaining

universal health coverage. The PMJAY is a two-step scheme through which it aims for an increase

in accessibility, availability and affordability of primary-, secondary- and tertiary-care health services

in India. Figure 5.2 depicts the organization of how the PMJAY scheme will be implemented across

India.

• Health and Wellness Centres - The first of the two initiatives of PMJAY is upgrading 1.5 lakh

out of existing 1.8 lakh sub healthcare centers (SHCs) and primary healthcare centers (PHCs)

to health and wellness centers by December, 2022. This would lead to an increase in the scope

and range of services and facilities as compared to what is currently offered. This would make

the healthcare services accessible within 30 minutes of walking distance by every community.

• Pradhan Mantri Rashtriya Swasthya Suraksha Mission (PM-RSSM) - The other component

of PMJAY which has been dubbed as “the worlds largest government-funded healthcare (in-

surance) program”. Under the PM-RSSM, the government will provide a medical cover of up

to | 5 lakh for secondary and tertiary level hospitalization expenses. The current estimate of

beneficiaries of this scheme is 535 million citizens, which is equivalent to 107.4 million fam-

ilies encompassing about 40% of the current population of India. This number goes beyond

the traditional approach of targeting people living below the poverty line. Instead, with an

all-inclusive vision, the government through census data has included the “vulnerable and de-

prived population”. Post the upgradation of SHCs and PHCs to HWCs; their benefits would

be available for everyone without any cost. Further, the schemes and its benefits are applicable

all over the country at all the registered private and public hospitals.
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Figure 5.2: Pradhan Mantri Jan Arogya Yojana (PMJAY)

5.3 Problem Statement

As seen from the schemes described above in section 5.2, there can be several structural and im-

plementation variations in the healthcare schemes. These variations can be attributed to various

factors such as existing medical infrastructure, resources and facilities, their accessibility and afford-

ability by the citizens, the funding mechanism for the schemes and the organizational structure of

the system as a whole among other things. The performance of a scheme is the direct outcome of its

design and implementation based on which it can be said to be successful or not. The objective of

our work is to design different healthcare schemes and analyze the impact of structural differences

on their performance. This is done by implementing two different models of healthcare schemes

using our tool described earlier in chapter 3 of this work.

5.4 Modeling Healthcare Schemes

Taking a cue from real world healthcare schemes, we have modeled and implemented two variations

of healthcare schemes. The models are then evaluated over different parameters and situations, and

their performance is analyzed.

5.4.1 Direct Access Scheme (Model 1)

The first model is a direct access scheme, much like Aarogyasri, in which whenever a patient feels he

is unwell, he can go directly to a hospital for treatment. After the patient is admitted to a hospital,

he will be diagnosed for ailments and treated accordingly. Once the patient is treated, he is said

to be recovered and sent home. However, similar to the real world, there is a probability that the

treatment might be unsuccessful. In that case, the person is removed from the simulation. Another

dimension to this model is the involvement of government agents which reimburse the treatment
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costs of the patients. Delay in reimbursement after some tolerant period would result in private

in hospitals withdrawing their participation from the scheme and hence putting more load on the

public healthcare system.

5.4.2 Referred Care Scheme (Model 2)

The other model is a referral based system where Health and Wellness Centers (HWCs) are estab-

lished to provide primary care to the citizens. The HWCs will act as the first contact point in order

to obtain the benefit of the scheme. Based on the initial diagnosis conducted by the HWC, the

person will either be treated at HWC in case of minor treatments or will be referred to a hospital

for secondary- or tertiary care. Similar to the previous model, the medical units here, i.e. the

HWCs and the hospitals, will be able to treat accurately diagnose and treat the patient with some

probability based on their efficiency.

5.4.3 Model design and implementation

The model is designed over the in-house developed tool, DyNeMoC. Using the same base structure,

modules for healthcare schemes have been implemented to model the variations in their design.

Both the models follow the same network of cities along with the intracity BA topology for social

contact network. The transmission of infection, though, is done through a similar model, has a

reduced infection rate since we want to analyze the performance during regular days and not during

an epidemic. Since, we are concerned with the secondary - and tertiary level of care; the recovery

model has been disabled by keeping the self-recovery probability as 0. The HCU model, which was

used earlier, has now been replaced by a combination of public and private hospitals. However, the

difference between the two models lies in the fact that the Referred Care Model has an additional

HWC component. All the patients who require advanced care will be referred by the HWC. There is

also a chance that due to an incorrect diagnosis, the HWC may wrongly refer a patient for advanced

care or send him back. If the patient is incorrectly sent back, he remains in the infected stage and

will have to come back to HWC again. Some of the assumptions taken are:

• Infection in Referred Care Model has two infected stages, i.e. early stage & advanced stage.

HWCs can test all the patients but can treat only early stage patients.

• Private hospitals are more efficient, & more expensive.

• People choose or are referred to a hospital uniformly at random.

• Both the above schematic implementations have a cost associated with it. However, we are

only concerned with running costs and not establishment costs.

5.4.4 Evaluation Parameters

The objective of these experiments is evaluating the effect that HWCs have on the efficiency of

a scheme. Further, we also want to perform a cost vs efficiency analysis for the different models
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implemented. The efficiency of a medical unit is given by:

Efficiency =
No. of patients cured

No. of potential patients visiting
(5.1)

The running cost of scheme is given as:

Cost =

Ni∑
0

cost of individual treatment; (5.2)

where Ni is no. of infected people.

5.5 Experiments & Results

5.5.1 Experimental Setup

The experiments were performed for a population of 5 lakh people residing in 50 cities connected

through a BA social contact network. The number of hospitals in a city is dependent on the

population living in that city. For experiments, this value is set to 1 hospital for every 1000 people.

Out of the total hospitals in a city, 35% are classified as public hospitals and remaining 65% as

private hospitals. The capacity of public hospitals is in the range of 60 to 80 patients, whereas the

capacity is 40 to 60 patients for private hospitals. The number and capacity of public and private

hospitals are based on a combination of heuristics with publically available data [28]. The efficiency

of public hospitals is assumed to be between 60% to 70%, whereas the same for private hospitals

is assumed between 80%-90%. In the case of model 2, HWCs are set up in cities with a capacity

of diagnosing 100 to 120 people daily with an efficiency of 65% to 75%. The number of HWCs per

city is varied from 1 to 5 for every 1000 people to observe its impact on the performance of the

scheme. The cost of treatment is assumed to be 1 unit in a public hospital and ten units in a private

hospital. Treatment in an HWC is free of cost. All the above parameters being input parameters

can be tweaked and set by the user. The model is simulated and averaged over a total of 100 runs.

5.5.2 Results for Direct Access Scheme (Model 1)

In this section, we will discuss the performance of the Direct Access Scheme (Model 1), which has

no HWCs through a series of experiments. We will also observe the effect of delay in reimbursement

on the scheme over three parameters - efficiency, cost and time.

• Experiment 1: In this experiment, we analyze the cost required to run the scheme with

variation in the delay of reimbursement time.

Observation: On increasing the delay in reimbursement, from Figure 5.3, we observe a

reduction in the amount. This indicates that with an increase in delay, private hospitals are

more likely to quit the scheme resulting in a larger population going to public hospitals for

treatment. Since the cost of treatment at public hospitals is less, the overall cost required to

finance the scheme reduces.
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Figure 5.3: Treatment cost to cure all infected patients

• Experiment 2: In this experiment, we analyze the effect of delay in reimbursement over the

time required to treat the population sample.

Observation: The previous experiment displayed a reduction in cost as a more significant

number of people visit public hospitals for treatment. However, with medical resources being

constant, this would put a strain on them. From Figure 5.4, we can see that with an increase in

delay and consequently, the number of patients, there is an increase in time taken to treat the

patients. This longer recovery time is also because more people are expected to get infected

within an increased period.

Figure 5.4: Treatment time to cure all infected patients

• Experiment 3: In this experiment, we analyze the performance in terms of efficiency of the

scheme concerning a delay in reimbursement to the private hospitals.
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Figure 5.5: Treatment efficiency of the model

Observation: Since the efficiency of public hospitals is assumed to be lesser than that of

private hospitals coupled with the fact that a reimbursement delay would result in more people

approach public hospitals, the overall efficiency of the model will reduce. From Figure 5.5,

we can observe a drop in the efficiency of the model, which becomes more apparent with the

increase in the delay. This is also indicative of the fact that excessive pressure on a medical

establishment will lead to lower efficiency.

5.5.3 Results for Referred Care Scheme (Model 2)

In this section, we will discuss the performance of the Referred Care Scheme (Model 2) having HWCs

acting as primary healthcare centers. We will also observe the effect of variation of number of HWCs

on the scheme over three parameters - efficiency, cost and time.

• Experiment 1: In this experiment, we analyze the cost required to run the scheme with an

increase in the number of HWCs.

Observation: From Figure 5.6, we can see that the scheme without using any HWCs (equiv-

alent to Direct Access Scheme) is comparatively expensive. This difference in the cost can be

attributed to the fact that advanced diagnosis is conducted unnecessarily for a lot of patients,

especially in private hospitals. This leads to a spike in the cost of the scheme. However, with

the introduction of HWCs, a lot of early-stage diseases are treated at primary centers saving

the costs of advanced diagnosis and treatment. Also, this cost shows a decreasing trend as

we can treat more number of people at HWCs at the initial stage itself, resulting in a lesser

spread of infection and hence a lower cost.

• Experiment 2: In this experiment, we analyze the effect of the increase in the number of

HWCs over the time required to treat the population sample.

Observation: Figure 5.7 gives us an interesting insight into the time required to treat the

population sample. The scheme without HWCs seems to perform better in terms of time taken
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Figure 5.6: Treatment cost to cure all infected patients

as compared to 1 HWC. This is due to the bottleneck created by using an HWC. Since being

the only referral point, people have to visit the HWCs necessarily. However, having a limited

capacity, the HWCs cannot diagnose and treat more patients than its capacity resulting in

people having to wait longer to get their turn. This will also result in more spreading of the

infection and more patients. However, as the number of HWCs are increased, enough to treat

the number of patients every day, the time taken improves and even betters the Direct Access

Scheme.

Figure 5.7: Treatment time to cure all infected patients

• Experiment 3: In this experiment, we analyze the performance in terms of efficiency of the

scheme with respect to an increase in the number of HWCs.

Observation: From Figure 5.8, we can observe that there is a decrease in efficiency when we
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Figure 5.8: Treatment efficiency of the model

introduce HWCs in the model. The model is designed such that HWCs form a bottleneck for

referral, and patients have to visit them necessarily. However, being only the primary health-

care centers, the efficiency of the HWCs is assumed to be low. Therefore, due to less efficient

HWCs, there is a decrease in efficiency as it is dependent on all the successful treatments which

are performed by HWCs, public- and private hospitals on all the potential patients visiting

any medical unit at any time instant and for any number of times. Also, this decrease is not

dependent on the number of HWCs since all of them have almost similar efficiency, and thus

we see very little change with an increase in the number of HWCs.
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Chapter 6

Conclusion

In this work, we have developed application modules for two critical healthcare applications over an

in-house developed tool DyNeMoC. The first application was we studied was resource management

and strategic intervention during epidemics. In our work, we designed the application module for the

spread of infection and recovery from it. We then developed algorithms for resource allocation in the

form of HCUs and tested various intervention strategies. The second application was designing the

application module to simulate the various healthcare schemes. Taking the structure from schemes

implemented or under planning in India, we designed two models with structural variations. We

then tested the performance of both the schemes based on various parameters, which helped us

understand their advantages and drawbacks under different scenarios.

6.1 Future Work

We believe that a significant direction to this work can be given with the inclusion of learning.

The agents in both the multi-agent models can be given memory to remember and learn rules by

interacting with its environment. By providing the agents with a learning capacity using a technique

like Reinforcement Learning, it will be possible to simulate the spread of not only infection but human

behaviour such as fear as well. This will help in making the model even closer to the real world.

Using learning techniques, it will be interesting to see if the model can give better resource allocation

strategies on the fly than what we have tested. Similarly, decision making in healthcare schemes

can also be learning based rather than rule-based. A general learning system can be employed to

evaluate the performance of schemes as well.
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