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Abstract

In mathematics, the Kadison-Singer problem, posed in 1959, was a problem in C∗-

algebra about whether certain extensions of certain linear functionals on certain C∗-

algebras were unique. The uniqueness was proven in 2013.

The statement arose from work on the foundations of quantum mechanics done by

Paul Dirac in the 1940s and was formalized in 1959 by Richard Kadison and Isadore

Singer. The problem was subsequently shown to be equivalent to numerous open

problems in pure mathematics, applied mathematics, engineering and computer sci-

ence. Kadison, Singer, and most later authors believed the statement to be false, but,

in 2013, it was proven true by Adam Marcus, Daniel Spielman and Nikhil Srivastava,

who received the 2014 Polya Prize for the achievement.

We will discuss about the Kadison-Singer problem for a separable Hilbert space.

First of all we will characterize all functions that can possibly have the Kadison-Singer

property and then among these which class of functions fail to have the Kadison-Singer

property and also finally which class will have the Kadison-Singer property.
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Chapter 0

List of symbols

• V a normed vector space

• V ∗ the dual of the normed linear space V

• C the set of all complex numbers

• co(S) the convex hull of S

• ∂K is the set of all boundary points of K

• H a Hilbert space

• B(H1, H2) the set all bounded linear operators from H1 to H2

• B(H) the set of all bounded linear operators on H

• P(H) the set of all projections in B(H)

• Mn(C) the set of all n× n matrices over C

• Dn(C) the set of all n× n diagonal matrices over C

• A is a unital C∗-algebra

• σ(a) the spectrum of a

• Ω(A) the set of all characters on A

• S ′ the commutant of S
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CHAPTER 0. LIST OF SYMBOLS

• P(X) the power set of X

• `2(N) the set of all square summable sequences in C

• `∞(N) the set of all bounded sequences in C

• D(`2(N)) the set of all bounded diagonal operators on `2(N)

• S(A) the set of all states on A

• D(Mn(C)) the set of all density operators in Mn(C)

• ∂eC the extreme boundary of C

• Ext(f) the set of all extensions of f

• L2[0, 1] the space of square integrable functions

• L∞[0, 1] the space of all essentially bounded functions

• Ad(j) the discrete subalgebra of cardinality j

• Ac the continuous subalgebra

• Ad(j)⊕ Ac the mixed subalgebra

2



Chapter 1

Preliminaries

To understand the Kadison-Singer problem, we need results from a wide range of

areas in mathematics. In this chapter we briefly discuss the required results from

linear algebra, topology, order theory, complex analysis, functional analysis, operator

theory, C∗-algebra and operator algebra.

1.1 Linear Algebra

1.1.1 Positive operators and square Root

Definition 1.1.1 (Positive Operator). Let V be an inner product space. A linear

operator T ∈ L(V ) is called positive if

1. T is self-adjoint (T = T ∗) and

2. 〈Tv, v〉 > 0 for all v ∈ V .

Note: 1.1.1. If V is a complex inner product space, then the requirement that T is

self-adjoint can be dropped from the definition above. Because, in a complex inner

product space V , T ∈ L(V ) is self adjoint if and only if 〈Tv, v〉 ∈ R for every v ∈ V.

Example 1.1.1. If U is a subspace of V , then the orthogonal projection PU on U is

a positive operator.
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CHAPTER 1. PRELIMINARIES

Definition 1.1.2 (Square root). An operator R is called a square root of an oper-

ator T if R2 = T .

Example 1.1.2. If T ∈ L(F3) is defined by T (z1, z2, z3) = (z3, 0, 0), then the operator

R ∈ L(F3) defined by R(z1, z2, z3) = (z2, z3, 0) is a square root of T.

1.1.2 Characterization of positive operators

The following theorem characterizes positive operators.

Theorem 1.1.1. Let T ∈ L(V ), where V is a finite dimensional vector space over

the field F. Then the following are equivalent :

1. T is positive;

2. T is self-adjoint and all the eigen values are non-negative;

3. T has a positive square root;

4. T has a self-adjoint square root;

5. there exists an operator R ∈ L(V ) such that T = R∗R.

Proof. We will prove that

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1).

First suppose (1) holds, so that T is positive. Obviously T is self-adjoint (by definition

of a positive operator). To prove the other condition in (2), suppose λ is an eigen

value of T . Let v be an eigenvector of T corresponding to λ. Then

0 ≤ 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉.

Thus λ is a nonnegative number. Hence (2) holds.

Now suppose (2) holds, so that T is self-adjoint and all the eigenvalues of T are

nonnegative. By the Spectral theorem, there is an orthonormal basis e1, . . . , en of V

consisting of eigenvectors of T . Let λ1, . . . , λn be the eigenvalues of T corresponding

to e1, . . . , en; thus each λj is a nonnegative number. Let R be the linear map from V

to V such that

4



CHAPTER 1. PRELIMINARIES

Rej =
√
λjej

for j = 1, . . . , n.

Then R is a positive operator. Furthermore, R2ej = λjej = Tej for each j, which

implies that R2 = T . Thus R is a positive square root of T . Hence (3) holds.

Now suppose (3) holds. Then T has a positive square root, say R. Since R is

postive, it is self-adjoint by the definition of positiveness. Therefore T has a self-

adjoint positive root. Hence (4) holds.

Now suppose (4) holds, meaning that there exists a self-adjoint operator R on V

such that T = R2. Then T = R∗R (because R∗ = R). Hence (5) holds.

Finally, suppose (5) holds. Let R ∈ L(V ) be such that T = R∗R. Then

T ∗ = (R∗R)∗ = R∗(R∗)∗ = T.

Hence T is self-adjoint. To complete the proof that (1) holds, note that

〈Tv, v〉 = 〈R∗Rv, v〉 = 〈Rv,Rv〉 ≥ 0,

for every v ∈ V. Thus T is positive.

1.2 Functional Analysis

1.2.1 Weak∗-topology

For a normed vector space V , we can consider bounded linear functionals on V .

These are linear maps f : V → C such that

sup{ |f(v)| : ‖v‖ = 1} <∞.

We collect all such bounded linear functionals on V .This is itself a vector space,

denoted by V ∗, which we call the dual space of V ,This dual space then has a natural

norm itself, given by

‖f‖ = sup{|f(v)| : ‖v‖ = 1},

for all f ∈ V ∗. This gives the dual space a natural topology, but the dual space

5



CHAPTER 1. PRELIMINARIES

also has another topology. To describe this topology, we define for all f ∈ V ∗, v ∈ V
and ε > 0 the set

B(f, v, ε) = {g ∈ V ∗ : |f(v)− g(v)| < ε}

It is clear that these sets form a subbase for a topology on V ∗. We call this topology

the weak∗-topology.

Theorem 1.2.1. (Banach-Alaoglu) Suppose V is a normed vector space. Then the

closed unit ball of the dual space V ∗, i.e.

{f ∈ V ∗ : ‖f‖ ≤ 1|},

is compact with respect to the weak∗-topology.

Proof. For the detailed proof of this please refer [4].

Theorem 1.2.2 (Hahn-Banach extension theorem). Let X be a normed linear space

over C and Y be a linear subspace of X. If g : Y → C is a bounded linear functional,

then there f ∈ X∗ such that f |Y = g and ‖f‖ = ‖g‖.

Proof. For the detailed proof of this please refer [1].

The above Hahn-Banach theorem is the one we need in the main text.

Now there is one usual question that one can ask, when the abpve Hahn-Banach

extention will be unique. Here we will state a theorem about unique Hahn-Banach

extention. Before that we will a small note.

Note: 1.2.1. If Y is a dense subspace of a normed linear space X and g is a contin-

uous linear functional on Y , then the uniform continuty of g(since every continuous

linear map between two normed linear spaces is uniformly continuous) enables us to

conclude that g has a unique continuous linear extention f to X, and also ‖f‖ = ‖g‖.
Thus g has a unique Hahn-Banach extention to X.

Theorem 1.2.3 (Taylor-Foguel, 1958). Let X be a normed linear space. For every

nonzero subspace Y of X and every g ∈ Y ∗, there is a unique Hahn-Banach extention

of g to X if and only if X∗ is strictly convex, that is, for f1 6= f2 in X∗ with ‖f1‖ =

1 = ‖f2‖, we have ‖f1 + f2‖ < 2.

Proof. For the detailed proof of this theorem please refer [1].

6
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Definition 1.2.1. Suppose X is a vector space over C and S ⊆ X. We define the

convex hull of S to be:

co(S) = {
n∑
i=1

tisi : n ∈ N, ti ≥ 0,
n∑
i=1

ti = 1, si ∈ S}

i.e. the set of all finite convex combinbations of elements in K.

Using this definition, we have the following important result.

Theorem 1.2.4 (Krein-Milman). Suppose X is a normed linear space and K ⊆ X

is a convex compact subset. Then:

K = co(∂K).

Furthermore, if M ⊆ V is such that K = co(M), then ∂K ⊆M.

Proof. For the proof please refer [3].

For more information regarding weak∗-topology and topological vector spaces,

please refer [1], [2], [3], [4].

1.3 Hilbert Space

One of the main concepts in the KS problem is that of a Hilbert space.

Definition 1.3.1. A Hilbert space H is a complex vector space endowed with a com-

plex inner product 〈., .〉 which we take linear in the second coordinate, such that H is

complete with respect to the norm ‖.‖ induced by the inner product via ‖x‖2 = 〈x, x〉.

Hilbert spaces can be seen as generalizations of Euclidean vector spaces. There-

fore, we also want to consider bases for Hilbert spaces.

Definition 1.3.2. Suppose H is a Hilbert space. Then a subset E ⊆ H is called a

basis for H if E is an orthonormal set whose linear span is dense in H.

Note that if the cardinality of a basis of H is finite, then the Hilbert space is

isomorphic to a complex Euclidean vector space. We have a special name for Hilbert

spaces that have a countable basis.

7



CHAPTER 1. PRELIMINARIES

Definition 1.3.3. H is called separable if it has a countable basis.

We also need the notion of orthogonal families.

Definition 1.3.4. Let H be a Hilbert space. Two subsets C,D ⊆ H are said to be

orthogonal if for every c ∈ C and d ∈ D, 〈c, d〉 = 0. A family of subspaces {Ci}i∈I
of H is said to be an orthogonal family if all pairs of members are orthogonal.

1.3.1 Operators on Hilbert spaces

We now want to consider linear operators T : H → H ′ between two Hilbert spaces.

In fact, we are only interested in bounded operators.

Definition 1.3.5. Let H be a Hilbert space and T : H → H ′ be a linear operator. We

say that T is bounded if there is a k > 0 such that ‖T (x)‖ ≤ k‖x‖ for all x ∈ H.
The set of all bounded operators from H to H ′ is denoted by B(H,H ′).

Now note that B(H,H ′) is not just a set, but a normed vector space. Here scalar

multiplication and addition are defined pointwise. The norm is naturally given by

‖T‖ = sup
‖x‖=1

‖T (x)‖,

Furthermore, for every T ∈ B(H,H ′) there is a unique operator T ∗ ∈ B(H,H ′) such

that

〈x, T (y)〉 = 〈T ∗(x), y〉

for every x ∈ H ′ and y ∈ H. The operator T ∗ is called the adjoint of T.

When H = H ′, we write B(H) := B(H,H ′) and we observe that defining multi-

plication by composition, i.e. (TS)(x) = T (S(x)) for all T, S ∈ B(H) and x ∈ H,

gives B(H) the structure of an algebra.

1.3.2 Direct sums of Hilbert spaces

Given two Hilbert spaces H1 and H2, we can form a Hilbert space H = H1 ⊕ H2,

which has an inner product 〈, 〉 defined by

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉1 + 〈x2, y2〉2,

8
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where 〈 , 〉1 and 〈 , 〉2 are the inner products on H1 and H2, respectively. H is

called the direct sum of H1 and H2.

Conversely, given a Hilbert space H and a closed linear subspace K ⊆ H, one can

realize H as a direct sum H = K ⊕K⊥, where

K⊥ := {x ∈ H : 〈x, y〉 = 0 ∀ y ∈ K}

is called the orthogonal compliment of K.

Operators on direct sums

Note that for a given direct sum H1⊕H2, there are canonical inclusions and projection

maps :

i1 : H1 → H1 ⊕H2, i1(x) = (x, 0)

i2 : H2 → H1 ⊕H2, i2(y) = (0, y)

π1 : H1 ⊕H2 → H1, π1(x, y) = x

π2 : H1 ⊕H2 → H2, π2(x, y) = y

Using this, for given a1 ∈ B(H1) and a ∈ B(H2), one can define

(a1, a2) : H1 ⊕H2 → H1 ⊕H2,

by (a1, a2) = i1a1π1 + i2a2π2, i.e. (a1, a2)(x, y) = (a1(x), a2(y)). Clearly, we then have

(a1, a2) ∈ B(H1⊕H2). Extending this idea, for subsets A1 ⊆ B(H1) and A2 ⊆ B(H2),

A1 ⊕ A2 ⊆ B(H1 ⊕H2).

Conversely, one can ask the question whether for some a ∈ B(H1 ⊕H2) there are

a1 ∈ B(H1) and a2 ∈ B(H2) such that a = (a1, a2). The following proposition answers

this question.

Proposition 1.3.1. Suppose H1 and H2 are Hilbert spaces and a ∈ B(H1 ⊕ H2).

Then there are a1 ∈ B(H1) and a2 ∈ B(H2) such that a = (a1, a2) if and only if

a(i1(H1)) ⊆ i1(H1) and a(i2(H2)) ⊆ i2(H2).

Proof. First, suppose that a = (a1, a2) for some a1 ∈ B(H1) and a2 ∈ B(H2). Then

let x ∈ H1. Then

a(i1(x)) = (a1, a2)(x, 0) = (a1(x), 0),

9
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so a(i1(H1)) ⊆ i1(H1). Likewise, a(i2(H2)) ⊆ i2(H2).

For the converse, suppose a(i1(H1)) ⊆ i1(H1) and a(i2(H2)) ⊆ i2(H2). Define

a1 = π1ai1 and a2 = π2ai2. Then, for (x, y) ∈ H1 ⊕ H2, a(i1(x)) = (x′, 0) and

a(i2(y)) = (0, y′) for some x′ ∈ H1 and y′ ∈ H2. Then :

a(x, y) = a(i1(x) + i2(y)) = (x′, 0) + (y′, 0) = (x′, y′),

and

(a1, a2)(x, y) = (i1π1ai1π1 + i2π2ai2π2)(x, y)

= i1π1a(i1(x)) + i2π2a(i2(y))

= i1π1(x
′, 0) + i2π2(0, y

′)

= (x′, y′)

Therefore, a = (a1, a2).

In the case that an operator a ∈ B(H1⊕H2) can be written as a = (a1, a2) for some

a1 ∈ B(H1) and a2 ∈ B(H2), we say that a decomposes over the direct sum

H1 ⊕ H2. Likewise, if an algebra A ⊆ B(H1 ⊕ H2) satisfies A = A1 ⊕ A2 for some

A1 ⊆ B(H1) and A2 ⊆ B(H2), we say that A decomposes over the direct sum H1⊕H2.

1.3.3 Projection lattice

Definition 1.3.6. Suppose H is a Hilbert space and p ∈ B(H). Then p is a projection

if p2 = p∗ = p.

Note that a projection p ∈ B(H) is always positive, since for any x ∈ H we have

〈x, px〉 = 〈x, p2x〉 = 〈x, p∗px〉 = 〈px, px〉 = ‖px‖2 ≥ 0.

Now, if we write P(H) for the set of all projections in B(H) for a Hilbert space H,

it is clear that for any p ∈ P(H), we have 1− p ∈ P(H).

We can introduce a partial order ≤ on P(H) by saying that p ≤ q if and only if

q − p ≥ 0. By the above it follows that (with respect to ≤) 0 is the minimal element

of P(H) and 1 is the maximal element.

Furthermore, p ≤ q is equivalent to p(H) ⊆ q(H).

10
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Definition 1.3.7. Let H be a Hilbert space and p ∈ B(H) such that p 6= 0. Then p

is called a minimal projection if q ∈ P(H) and 0 ≤ q ≤ p implies q = 0 or q = p.

1.4 C∗-algebras

We know that for a given Hilbert space H the operator algebra B(H) not only has

the structure of an algebra, but also has an adjoint operation and a norm. Together,

these properties give B(H) a much more special algebraic structure, namely that of

a C∗-algebra. Before that we will define algebra and ∗-algebra.

Definition 1.4.1 (Algebra). An algebra over a field F is a vector space A over F
that also has a multiplication defined on it that makes A into a ring such that if α ∈ F
and a, b ∈ A

α(ab) = (αa)b = a(αb).

Example 1.4.1. Mn(C) over C is an algebra.

Definition 1.4.2 (∗-algebra). An algebra A is called a ∗-algebra if it is a complex

algebra with a conjugate linear involution ∗ which is an anti-isomorphism, i.e., for

any a, b ∈ A and α ∈ C,
(a+ b)∗ = a∗ + b∗,

(αa)∗ = αa∗,

a∗∗ = a

and

(ab)∗ = b∗a∗.

If a ∈ A, then a∗ is called the adjoint of a. Let A be a ∗-algebra which is also a

normed algebra. A norm on A that satisfies

‖a∗a‖ = ‖a‖2

for all a ∈ A is called a C∗-norm. If, with this norm, A is complete, then A is called

a C∗-algebra. Then Mn(C)

Example 1.4.2. Mn(C) over C is an algebra. For A = (aij) ∈ Mn(C), define

A∗ = (āji). Then Mn(C) is a C∗-algebra.

11
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Definition 1.4.3 (C∗-algebra). A C∗-algebra is a normed, associative algebra A en-

dowed with an operation ∗ : A → A, a 7→ a∗ (we call a∗ the adjoint of a), with the

following compatibility structure:

1. A is complete in the norm ‖.‖, i.e. (A, ‖.‖) is a Banach space.

2. The norm is submultiplicative, i.e. ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.

3. The adjoint operation is an involution, i.e. a∗∗ = a for all a ∈ A.

4. The adjoint operation is conjugate-linear, i.e. (λa+ b)∗ = λ̄a∗+ b∗ for all λ ∈ C
and a, b ∈ A.

5. The adjoint operation is anti-multiplicative, i.e. (ab)∗ = b∗a∗ for all a, b ∈ A.

6. The C∗-identity holds: ‖a∗a‖ = ‖a‖2 for all a ∈ A.

A C∗-algebra A is called unital if it contains an algebraic unit 1 (i.e. a1=1a=a for

all a ∈ A). Since the adjoint is an involution and is anti-multiplicative, automatically

1∗ = 1. By the C∗-identity it then also follows that ‖1‖ = 1.

Example 1.4.3. Mn(C) over C is a C∗-algebra.

The C∗-identity together with submultiplicity also guarantees a more immediate

compatibility between the adjoint operators and the norm.

Lemma 1.4.1. Suppose A is a C∗-algebra. Then the adjoint preserves the norm, i.e.

‖a∗‖ = ‖a‖ for all a ∈ A.

Proof. For any b ∈ A, ‖b‖2 = ‖b∗b‖ ≤ ‖b∗‖‖b‖. So ‖b‖ ≤ ‖b∗‖. Using this for b = a

and b = a∗, we get ‖a‖ ≤ ‖a∗‖ and ‖a∗‖ ≤ ‖a‖, i.e. ‖a∗‖ = ‖a‖ for any a ∈ A.

We can also consider C∗-subalgebras.

Definition 1.4.4. Let A be a C∗-algebra. A C∗-subalgebra S of A is a subalgebra

S ⊆ A that is topologically closed (with the topology coming from the norm ‖.‖ of A)

and closed under the adjoint operation, i.e. a∗ ∈ S for all a ∈ S.

Note that by the conditions on a C∗-subalgebra, every C∗-subalgebra is a C∗-

algebra in its own right, by restriction of the norm and adjoint operations to the

subalgebra.

In KS problem we will study states and pure states. For the definition of states,

we need the notion of positive elements of a C∗-algebra.

12
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Definition 1.4.5 (Positivity). Suppose A is a C∗-algebra, and let a ∈ A. Then we

say that a is positive if and only if there exists b ∈ A such that a = b∗b. In this case,

we write a ≥ 0.

In the case of unital C∗-algebra, we also have a characterization of positive ele-

ments in terms of the spectrum of an element. To define this, we write Inv(A) for

the set of all invertible elements in a C∗-algebra A.

Definition 1.4.6 (Spectrum). Suppose A is a unital C∗-algebra and let a ∈ A. Then

we define

σ(a) = {λ ∈ C : a− λ1 /∈ Inv(A)},

which we call the spectrum of a.

Then we have the following equivalence.

Proposition 1.4.1. Suppose A is a unital C∗-algebra and let a ∈ A. Then a is

positive if and only if a = a∗ and σ(a) ⊂ [0,∞).

Proof. For the proof please refer [5].

In the case of an operator algebra B(H) for some Hilbert space H, we have yet an-

other description of positive elements, which resembles that of positive (semi-definite)

matrices.

Proposition 1.4.2. Let H be a Hilbert space and let a ∈ B(H). Then a is positive

if and only if for every x ∈ H we have 〈x, ax〉 ≥ 0.

Proof. For the proof please refer [5].

The set of positive elements in a C∗-algebra A is often denoted by A+. This set

has some special properties. First of all, we can decompose any element into positive

elements.

Proposition 1.4.3. Suppose A is a C∗-algebra. Then, for any a ∈ A, there are

ak ≥ 0 such that a =
3∑

k=0

ikak and ‖ak‖ ≤ ‖a‖.

Proof. For the proof please refer [5].

We also have the following result.

13
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Proposition 1.4.4. Suppose A is a C∗-algebra and let a ∈ A be positive. Then there

is a b ∈ A+ such that a = b2.

Proof. For the proof please refer [5].

Proposition 1.4.5. Suppose A is a C∗-algebra and let a ∈ A+ such that ‖a‖ ≤ 1.

Then 1− a2 is positive and a commutes with b where b2 = 1− a2.

Proof. For the proof please refer [5]

One crucial thing here is to noticed that the notion of positivity also induces a

natural partial order ≤ on the self-adjoint elements of a C∗-algebra A, by defining

b ≤ c if and only if c− b ≥ 0. This partial order has the following properties.

Proposition 1.4.6. If c, d are self-adjoint and −d ≤ c ≤ d, then ‖c‖ ≤ ‖d‖.

Proof. Refer [5].

Proposition 1.4.7. Suppose H is a Hilbert space and d ∈ B(H) such that d ≥ 0 and

‖d‖ = 1, then d ≤ 1.

Proof. Refer [5].

1.4.1 Characters

In KS problem we will consider abelian C∗-algebras, characters play a important role

there.

Definition 1.4.7 (Characters). Let A be a C∗-algebra. A character is a non-zero

algebra homomorphism c : A → C, i.e. c is multiplicative and linear. The set of all

characters on A is denoted by Ω(A).

First, we prove three lemmas that all give a certain property of characters.

Lemma 1.4.2. Suppose that A is a unital C∗-algebra and c ∈ Ω(A.) Then c(1) = 1.

Proof. First of all c(1) = c(12) = c(1)2, so c(1) ∈ {0, 1}. If c(1) = 0, then for all

a ∈ A, c(a) = c(1.a) = c(1).c(a) = 0, so c = 0. This is a contradiction with c being a

character, so c(1) = 1.

Lemma 1.4.3. Suppose A is a C∗-algebra, c ∈ Ω(A) and a = a∗ ∈ A. Then c(a) ∈ R.

14
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Proof. We claim that c(a) ∈ σ(a). To see this, suppose that a − c(a)1 is invertible.

Then there is a b ∈ A such that (a − c(a)1)b = 1 = b(a − c(a)1). Then 1 = c(1) =

c((a− c(a)1)b) = c(a− c(a)1)c(b) = (c(a)− c(a))c(b) = 0. This is a contradiction, so

a − c(a)1 is not invertible, i.e. c(a) ∈ σ(a). A standard result in functional analysis

is the fact that σ(a) ⊂ R, since a = a∗. Therefore, c(a) ∈ R.

Lemma 1.4.4. Suppose A is a C∗-algebra and c ∈ Ω(A). Then c(a∗) = c(a) for all

a ∈ A.

Proof. Suppose a ∈ A. Then a = b+ id for some b = b∗, d = d∗ ∈ A. Then c(a), c(d) ∈
R, by above lemma. Therefore,

c(a∗) = c(b− id) = c(b)− ic(d) = c(b) + ic(d) = c(b+ id) = c(a),

as desired.

Because of the the following result, characters are important for abelian C∗-

algebras.

Theorem 1.4.1 (Gelfand isomorphism). Suppose A is a non-zero abelian C∗-algebra.

Then the map

G : A→ C(Ω(A)),

defined by

G(a)(f) = f(a),

is an isomorphism of C∗-algebras.

Proof. For the detailed proof please refer [5]

The following lemma is an easy consequence of the Gelfand isomorphism.

Lemma 1.4.5. Suppose A is an abelian C∗-algebra. Then Ω(A) separates points.

Proof. Suppose a1, a2 ∈ A such that f(a1) = f(a2) for all f ∈ Ω(A). Then

G(a1)(f) = f(a1) = f(a2) = G(a2)(f)

for all f ∈ Ω(A), so G(a1) = G(a2), where G : A → C(Ω(A)) is the Gelfand iso-

morphism. However, since G is a isomorphism, a1 = a2. So, indeed, Ω(A) separates

points.
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We can use this lemma to prove the following result about projections and char-

acters.

Lemma 1.4.6. Suppose A is a C∗-algebra. Then, for every g ∈ Ω(A) and projection

p ∈ A, g(p) = 1. If p ∈ A is a non-zero projection, there is a f ∈ Ω(A) such that

f(p) = 1.

Proof. Suppose g ∈ Ω(A) and p ∈ A is a projection. Then g(p)2 = g(p2) = g(p),

whence g(p) ∈ {0, 1}. Now, g(p) = 0 for every g ∈ Ω(A) implies that p = 0, since

Ω(A) separates points and g(0) = 0 for all g ∈ Ω(A). Therefore, if p is non-zero, then

there is a f ∈ Ω(A) such that f(p) = 1.

1.5 von Neumann algebras

In order to define von Neumann algebras, we first introduce the strong topology. We

do this by means of a subbasis. For every a ∈ B(H), x ∈ H and ε > 0, define:

S(a, x, ε) := {b ∈ B(H) : ‖(a− b)x‖ < ε}.

Collecting these sets together in

S := {S(a, x, ε) : a ∈ B(H), x ∈ H, ε > 0},

we obtain a subbasis for a topology on B(H), since
⋃
S = B(H). We call this

topology the strong topology on B(H). A basis for this topology is then given by:

B := {
n⋂
i=0

S(ai, xi, εi) : ai ∈ B(H), xi ∈ H, εi > 0}.

An important property of the strong topology is given in terms of convergent nets.

Proposition 1.5.1. Let H be a Hilbert space and {ai}i∈I be a net in B(H). Further-

more, let a ∈ B(H). Then the following are equivalent:

1. {ai}i∈I converges to a with respect to the strong topology on B(H).

2. For each x ∈ H, {ai(x)} converges to a(x).

16
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Proof. First, suppose that {ai}i∈I converges to a with respect to the strong topology.

Let x ∈ H and ε > 0. Since {ai}i∈I converges to a, there is a i0 ∈ I such that for all

i ≥ i0, ai ∈ S(a, x, ε), i.e. ‖ai(x)− a(x)‖ < ε. Therefore {ai(x)}i∈I converges to a(x).

For the converse, suppose that for all x ∈ H, {ai(x)}i∈I converges to a(x). Now,

let U be a neighbourhood of a. Since B is a base for the strong topology, there is a

n ∈ N, {bi}ni=1 ⊆ B(H), {xi}ni=1 ⊆ H and {εi}ni=1 ⊆ R>0 such that

a ∈
n⋂
i=1

S(bi, xi, εi) ⊆ U.

Since a ∈ S(bi, xi, εi) for all i ∈ n, there are {δi}ni=1 such that S(a, xi, δi) ⊆ S(bi, xi, εi)

for all i ∈ n. Then we have :

a ∈
n⋂
i=1

S(a, xi, δi) ⊆ S(bi, xi, εi) ⊆ U.

By assumption, for every i ∈ n there is a ji ∈ I such that for all j ≥ ji we have

‖aj(xi)− a(xi)‖ < δi,

i.e. aj ∈ S(a, xi, δi). Now choose a j0 ∈ I such that j0 ≥ ji for all i ∈ n, which exists

because I is a directed set. Then, for every j ≥ j0,

aj ∈
n⋂
i=1

S(a, xi, δi) ⊆ U.

So, the net {ai}i∈I is eventually in U. Since U was an arbitrary neighbourhood of a,

{ai}i∈I converges to a.

Using the strong topology, we can directly define von Neumann algebras.

Definition 1.5.1. Let H be a separable Hilbert space. Then a ∗-subalgebra A ⊆ B(H)

is called a von Neumann algebra if it is closed with respect to the strong topology.

By now, we have two topologies on B(H); the norm topology and the strong topol-

ogy. C∗-subalgebras deal with the norm topology, whereas von Neumann algebras

17
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are defined using the strong topology. The following proposition gives a link between

these two different viewpoints.

Proposition 1.5.2. Let H be a Hilbert space and suppose that A ⊂ B(H) is a Von

Neumann algebra. Then A is a C∗-subalgebra of B(H).

Proof. Suppose {ai}i∈I is a norm convergent net in A, say with limit a ∈ B(H). Now

let x ∈ H such that x 6= 0 and ε > 0. Then there is a i0 ∈ I such that for every i ≥ i0,

‖a− ai‖ < ε
‖x‖ . Then for every i ≥ i0,

‖(a− ai)(x)‖ = ‖x‖‖(a− ai)(
x

‖ε‖
)‖

≤ ‖x‖‖a− ai‖

< ‖x‖ ε

‖x‖
= ε.

Hence a(x) is the limit of {ai(x)}i∈I for every x ∈ H such that x 6= 0. Since it

clearly also holds for x = 0, it holds for every x ∈ H.
Therefore, a is the strong limit of {ai}i∈I . Since A is a Von Neumann algebra,

a ∈ A.
Therefore, A is closed with respect to the norm topology and hence is a C∗-

subalgebra of B(H).

There is an important result about von Neumann algebras that involves the com-

mutant of an algebra.

So let us first define commutant of an algebra.

Definition 1.5.2 (Commutant). Suppose X is an algebra and S ⊂ X is a subset.

We define the commutant of S to be:

S ′ := {x ∈ X : sx = xs for all s ∈ S},

i.e. the set of all x ∈ X that commute with all of S.

We denote the double commutant of a subset S of an algebra X by S ′′ := (S ′)′

and likewise S ′′′ = (S ′′)′.

Lemma 1.5.1. Suppose X is an algebra and S, T ⊆ X are subsets. Then:

18
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1. S ⊆ S ′ iff S is abelian

2. If S ⊆ T, then T ′ ⊆ S ′.

3. S ⊆ S ′′.

4. S ′ = S ′′′.

Proof. The proofs of the first three properties are trivial. For the last property,

observe that S ′ ⊂ (S ′)′′ = S ′′′ by the third property, and by combining property 2

and 3 one has S ′′′ = (S ′′)′ ⊂ S ′.

Proposition 1.5.3. Let H be a Hilbert space and A ⊂ B(H) a ∗-subalgebra. Then

A′ is a von Neumann algebra.

Proof. We first prove that A′ is a ∗-subalgebra of B(H). To see this, let u, v ∈ A′,
λ ∈ C and a ∈ A. Then

(uv)a = u(va) = u(av) = (ua)v = (au)v = a(uv),

(λu)a = λ(ua) = λ(au) = a(λu),

(u+ v)a = ua+ va = au+ av = a(u+ v)

and

u∗a = (a∗u)∗ = (ua∗)∗ = au∗,

where the latter follows from the fact that a∗ ∈ A too. Hence A′ is indeed a ∗-
subalgebra. Now suppose {vi}i∈I is a net in A′ that converges to u ∈ B(H) in the

strong topology. Now let a ∈ A and x ∈ H be arbitrary. Then:

(ua)(x) = u(a(x)) = lim
i
vn(a(x)) = lim

i
a(vn(x)) = a(limi(vn(x))) = a(u(x)) = (au)(x),

whence ua = au and therefore u ∈ A′. Hence A′ is closed with respect to the strong

topology. Therefore, A′ is a von Neumann algebra.

In our main conjecture we will make use of generated von Neumann algebras.

So let us define generated von Neumann algebras.
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Definition 1.5.3. For any set S ⊂ B(H) the von Neumann algebra generated by S

is

〈S〉vN :=
⋂
{A ⊆ B(H) : A is a von Neumann algebra and S ⊆ A},

which is in fact a von Neumann algebra since an arbitrary intersection of von Neu-

mann algebras is clearly again a von Neumann algebra.

1.6 Topology

Throughout our main text we need various concepts of topology. Here we discuss

some of them.

1.6.1 Compactness

In a topological space, compactness is defined using open coverings. However, it can

also be defined using closed sets. To show this, we first need the following.

Definition 1.6.1. Let X be a topological space and F ⊆ P(X) a family of subsets.

Then F has the finite intersection property if for every {Ai : i = 1, .., n} ⊆ F we have

that
n⋂
i=0

Ai 6= ∅

Using this, we can give the equivalent definition of compactness.

Proposition 1.6.1. Let X be a topological space. Then the following are equivalent:

1. X is compact.

2. Every family F ⊆ P(X) consisting of closed subsets with the finite intersection

property satisfies
⋂
F 6= ∅.

Proof. For the proof please refer [13].

In the next subsection we will use this equivalent definition of compactness to

show that the space of ultrafilters is compact with respect to the ultra topology.

One of the most important theorems involving compactness is Tychonoff’s theo-

rem:

20



CHAPTER 1. PRELIMINARIES

Theorem 1.6.1 (Tychonoff). Suppose Xi is a non-empty topological space for every

i ∈ I, where I is the index set. Then
∏
i∈I

Xi is compact if and only if every Xi is

compact.

Proof. Please refer [13].

The combination of compactness and the Hausdorff property often give strong

results, for example in the following lemma.

Lemma 1.6.1. Suppose X is a compact space and Y is a Hausdorff space. Further-

more, let f : X → Y be a continuous bijection. Then f is a homeomorphism.

Proof. Refer [13].

Throughout the main text, we also need a few results from topology. The first

concerns the separation axiom T3.

Lemma 1.6.2. If X is T3, U ⊆ X is open and x ∈ U, then there is a V ⊆ X open

such that x ∈ V ⊆ V̄ ⊆ U.

Proof. Please refer [13].

Next, we have a well-known result about extensions of continuous functions.

Proposition 1.6.2. Suppose X and Y are topological spaces, where Y is Hausdorff.

Furthermore, suppose A ⊆ X is dense and f, g : X → Y are continuous functions

that coincide on A. Then f = g.

Proof. Refer [13].

Most topological properties are preserved under finite products of topological

spaces. However, with infinite products, this is not always the case. However, we

do have the following two results, of which the second is the most famous one.

Theorem 1.6.2. Countable products of metrizable topological spaces are metrizable.

Proof. For the detailed proof of this theorem please refer [13].
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1.6.2 Ultrafilters

In this subsection we develop the theory of ultrafilters and in the next subsection we

will construct the Stone-Cech compactification of discrete spaces using ultrafilters.

Here the central objects of study are ultrafilters. First, we need the notion of a

filter.

Definition 1.6.2 (Filter). Suppose X is a set. A family F ⊆ P(X) is called a filter

if it satisfies the following axioms:

1. F 6= ∅,

2. ∅ /∈ F,

3. if A,B ∈ F, then A ∩B ∈ F and

4. if A ∈ F and A ⊆ B, then B ∈ F.

An important non-trivial example of a filter is given by the set of neighbourhoods

of a point of topological spaces. Note that filters are naturally partially ordered by

inclusion. Hence we can consider maximal elements: these are the so-called ultrafil-

ters.

Definition 1.6.3 (Ultrafilter). Suppose X is a set and F ⊆ P(X) is a filter. Then

F is called an ultrafilter if the only filter G ⊆ P(X) that satisfies F ⊆ G is F itself.

The following lemma assures that for any set, ultrafilters are quite common.

Lemma 1.6.3. Suppose X is a set and F ⊆ P(X) is a filter. Then there is an

ultrafilter G ⊆ P(X) such that F ⊆ G.

Proof. Consider C := {H ⊆ P(X) : F ⊆ H,H is a filter}. Then C is partially

ordered by set inclusion.

It is easy to observe that every chain in C has an upper bound.

By Zorn’s lemma, C has a maximal element G.

Then F ⊆ G. We claim that G is an ultrafilter. To see this, suppose G ⊆ K, and

K is a filter. Then F ⊆ K, so K ∈ C, so by maximality of G as an element of C,

K = G.

Therefore, G is indeed an ultrafilter.
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One can describe ultrafilters with a few equivalent properties. To do this, we first

define the notion of prime filters.

Definition 1.6.4 (Prime filter). Suppose X is a set and F ⊆ P(X) is a filter. F is

called prime if for any A,B ⊆ X such that A ∩B ∈ F, we have A ∈ F or B ∈ F.

The following lemma is easily proven with an inductive argument.

Lemma 1.6.4. Suppose X is a set and F ⊆ (X) is a prime filter and {Ai}ni=1 ⊆ P(X)

is a finite collection such that
⋃n
i=1Ai ∈ F. Then there is a i ∈ {1, ..., n} such that

Ai ∈ F.

Using this, we can give three new descriptions of ultrafilters.

Lemma 1.6.5. Suppose X is a set and F ⊆ P(X) is a filter. Then the following are

equivalent:

1. F is an ultrafilter.

2. If A ⊆ X and A ⊆ B 6= ∅ for all B ∈ F, then A ∈ F.

3. For every A ⊆ X either A ∈ F or X \ A ∈ F.

4. F is a prime filter.

Proof. We first prove the equivalence between property 1 and 2.

For this, suppose that F ia an ultrafilter and A ⊆ X is such that A ∩ B 6= ∅ for

all B ∈ F.
Then define

F ′ = F ∪ {C ⊆ X | ∃ B ∈ F : A ∩B ⊆ C}.

We claim that F ′ is a filter. First suppose that Y1, Y2 ⊆ F ′. Then there are three

cases.

Firstly, suppose Y1, Y2 ∈ F. Then Y1 ∩ Y2 ∈ F ⊆ F ′.

Next, suppose Y1 ∈ F, Y2 /∈ F. Then there is a B ∈ F such that A∩B ⊆ Y2. Then

A ∩B ∩ Y1 ⊆ Y2 ∩ Y1 and B ∩ Y1 ⊆ F, so Y1 ∩ Y2 ∈ F ′.
Lastly, suppose Y1 /∈ F, Y2 /∈ F. Then there are B1, B2 ∈ F such that A∩B1 ⊆ Y1

and A ∩B2 ⊆ Y2. Then A ∩ (B1 ∩B2) ⊆ Y1 ∩ Y2 and B1 ∩B2 ∈ F, so Y1 ∩ Y2 ∈ F ′.
Hence Y1 ∩ Y2 ∈ F ′ for all Y1, Y2 ∈ F ′.
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Next, suppose that Y1 ⊆ Y2 and Y1 ∈ F ′. Then there are two cases. Firstly,

Y1 ∈ F. Then Y2 ∈ F, since F is a filter. Next, Y1 /∈ F. Then there is a B ∈ F such

that A ∩ B ⊆ Y1 ⊆ Y2, whence Y2 ∈ F ′. Since F 6= ∅, F ′ 6= ∅. Furthermore ∅ /∈ F
and combining this with our assumption on A, ∅ /∈ F ′. Hence F ′ is indeed a filter. By

construction, F ⊆ F ′ and F is an ultrafilter, so F ′ = F.

Now, take any B ∈ F. Then A ∩ B ⊆ A, so A ∈ F ′ = F. Therefore, property 1

implies property 2.

For the converse, suppose that A ⊆ X and A ∩ B 6= ∅ for all B ∈ F imply that

A ∈ F.
Then suppose G ⊆ P(X) is a filter such that F ⊆ G. Then let A ∈ G. Then for

any B ∈ F,A,B ∈ G, so A ∩ B 6= ∅. Therefore, A ∈ F, by our assumption. Hence

G ⊆ F, i.e. G = F. Therefore, F is an ultrafilter. Hence property 2 implies property

1.

Next suppose that F has property 2 and let A ⊆ X. Suppose A /∈ F. Then, there

is a B ∈ F such that A ∩B = ∅, i.e. B ⊆ X \A. Since B ∈ F, X \A ∈ F. So, for all

A ⊆ X, either A ∈ ForX \ A ∈ F. Hence the second property implies the third.

Now, suppose that F has property 3. Then suppose that A ⊆ X is such that

A∩ b 6= ∅ for all B ∈ F. Then X \A /∈ F, since A∩X \A = ∅. Therefore, A ∈ F, i.e.

F has the second property.

Now, suppose that F is a prime filter. Let A ⊆ X. Then A ∪ (X \ A) = X ∈ F,
so A ∈ F or X \ A ∈ F. Therefore, property 4 implies property 3.

Lastly, suppose F has property 3 and suppose that A,B ⊆ X such that A∪B ∈ F,
but A /∈ F and B /∈ F. Then, X \ A,X \B ∈ F. Then also

X \ (A ∪B) = (X \ A) ∩ (X \B) ∈ F,

so ∅ = (A ∪ B) ∩X \ (A ∪ B) ∈ F. This is a contradiction with F being a filter, so

whenever A ∪B ∈ F we must have A ∈ F or B ∈ F, i.e. F is prime.

Now that we have four different descriptions of ultrafilters, it is time to introduce

a very important class of examples of ultrafilters: those generated by a single element

of a set.

Lemma 1.6.6. Suppose X is a set and x ∈ X. Then Fx := {A ⊂ X : x ∈ A} is an

ultrafilter.

24



CHAPTER 1. PRELIMINARIES

Proof. First of all, for A,B ∈ Fx, x ∈ A ∩ B, so A ∩ B ∈ Fx. Next, if A ∈ Fx and

A ⊆ B, x ∈ A ⊆ B, so B ∈ Fx. Certainly x /∈ ∅, so ∅ /∈ Fx and x ∈ X, so X ∈ Fx,
i.e. Fx 6= ∅. Hence Fx is a filter.

To see that Fx is in fact an ultrafilter, note that for any A ⊆ X we either have

x ∈ A or x ∈ X \ A, i.e. A ∈ Fx or X \ A ∈ Fx. Hence by earl.ier proposition, Fx is

an ultrafilter.

Definition 1.6.5 (Principal and free ultrafilter). A principal ultrafilter on a set X

is an ultrafilter of the kind Fx for some x ∈ X. A free ultrafilter is an ultrafilter that

is not principal.

Filters and ultrafilters become especially interesting when they considered for

topological spaces. For example, one can define the notion of convergence of a filter.

For this, we use that notion Nx for the set of neighbourhoods of a point X in a

topological space.

Definition 1.6.6. Suppose X is a topological space, x ∈ X and F ∈ P(X) is a filter.

We say that F converges to X if Nx ⊂ F.

Like nets, filters in Hausdorff spaces behave nicely with respect to convergence.

Proposition 1.6.3. Suppose X is a Hausdorff space and F ⊂ P(X) is a filter. Then

F can converge to at most one point.

Proof. Suppose that F converges to both x, y ∈ X. Then Nx ⊆ F and Ny ⊆ F. If

x 6= y, then by the Hausdorff property, there are open U, V ⊆ X such that x ∈ U,
y ∈ V and U ∩ V = ∅. Then U ∈ Nx ⊆ F and V ∈ Ny ⊆ F. whence U, V ∈ F and

∅ = U ∩ V ∈ F.
This contradicts F being a filter, i.e. x = y.

For compact spaces, ultrafilters also have a useful property.

Proposition 1.6.4. Suppose X is a compact space and F ⊂ P(X) an ultrafilter.

Then F converges to at least one point.

Proof. Suppose F converges to no point. Then for all y ∈ X there is a Ny ∈ Ny such

that Ny /∈ F. So, especially, for all y ∈ X, there is a open Uy ⊆ X such that y ∈ Uy
and Uy /∈ F.
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Then clearly,
⋃
y∈Y Uy = X, so by compactness of X, there is a finite set {yi}ni=1

such that
⋃n
i=1 Uyi = X. However, X ∈ F and F is prime, so there is a i ∈ {1, . . . , n}

such that Uyi ∈ F. This is a contradiction, since all Uy ∈ F by construction.

Hence F converges to at least one point.

Combining these two propositions, we have an immediate corollary.

Corollary 1.6.1. Suppose X is a compact Hausdorff space and F ⊂ P(X) is an

ultrafilter. Then F converges to a unique point.

The structure of a filter can also be transferred from one set to another by means

of a function.

Definition 1.6.7. Suppose X and Y are sets, f : X → Y is a function and U is a

filter on X. Then the pushforward of U over f is defined as

f∗(U) := {Z ⊂ Y : f−1(Z) ∈ U}.

The following proposition assures that it is useful to consider pushforwards of

filters.

Proposition 1.6.5. Suppose X and Y are sets, f : X → Y is a function and U is a

filter on X. Then the pushforward f∗(U) of U over f is a filter on Y. In addition, if

U is an ultrafilter, then f∗(U) is an ultrafilter, too.

Proof. Suppose Z1, Z2 ∈ f∗(U). Then f−1(Z1), f
−1(Z2) ∈ U, so

f−1(Z1 ∩ Z2) = f−1(Z1) ∩ f−1(Z2) ∈ U,

since U is a filter. Hence Z1 ∩ Z2 ∈ f∗(U).

Now, suppose Z1 ∈ f∗(U) and Z1 ⊆ Z2. Then f−1(Z2) ⊇ f−1(Z1) ∈ U, so

f−1(Z2) ∈ U, since U is a filter. Hence Z2 ∈ f∗(U).

Next, observe that f−1(Y ) = X ∈ U, so Y ∈ f∗(U), i.e. f∗(U) 6= ∅.
Lastly, f−1(∅) = ∅ /∈ U, so ∅ /∈ f∗(U). Hence f∗(U) is a filter on Y.

Now, in addition, suppose that U is an ultrafilter. Then suppose Z ⊆ Y. Then

f 1(Z) ⊆ X, so by earlier proposition either f−1(Z) ∈ U or f−1(Y \Z) = X \f−1(Z) ∈
U, i.e. either Z ∈ f∗(U) or Y \ Z ∈ f∗(U). Hence f∗(U) is indeed an ultrafilter.
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1.6.3 Stone-Čech compactification of discrete spaces

In this section we construct the Stone-Čech compactification for discrete topological

spaces using ultrafilters. Let us first recall the definition of the Stone-Čech compact-

ification.

Definition 1.6.8 (Stone-Čech compactification). Suppose X is a topological space.

The Stone-Čech compactification of X is a compact Hausdorff space βX together

with a continuous map S : X → βX having the following universal property: for any

compact Hausdorff space K and continuous function f : X → K, there is a unique

continuous βf : βX → K such that the following diagram commutes:

We construct the Stone-Čech compactification for discrete spaces. To do this, first

write Ultra(X) for the collection of all ultrafilters on a set X. Our goal is to show

that for a discrete space X, we can endow Ultra(X) with a topology in such a way

that it becomes the Stone-Čech compactification of X. Namely, for some set X and

all subsets A ⊂ X, define

W (A) = {U ∈ Ultra(X) : A ∈ U}.

Note that X ∈ U for any U ∈ Ultra(X), so W (X) = Ultra(X). Therefore, the

collection {W (A) : A ∈ X} forms a subbase of a topology on Ultra(X). We call

this topology the ultra topology. In order to understand this topology better, we

investigate some properties of the subbase elements.

Lemma 1.6.7. Suppose X is a set and let A,B ⊂ X. Then:

1. W (A) = ∅ if and only if A = ∅,

2. W (A ∩B) = W (A) ∩W (B).

3. W (X \ A) = Ultra(X) \W (A).

Proof. First, note that if A = ∅, then A /∈ U for any U ∈Ultra(X), by definition of a

filter. Therefore, W (A) = ∅. If A 6= ∅, then there is an x ∈ A, whence A ∈ Fx and

Fx ∈ W (A), i.e. W (A) 6= ∅. So W (A) = ∅ if and only if A = ∅.
Next, suppose U ∈ W (A ∩ B). Then A ∩ B ∈ U, so A ∈ U and B ∈ U, since

A ∩ B ⊆ A and A ∩ B ⊆ A. Therefore, U ∈ W (A) and U ∈ W (B), i.e. U ∈
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W (A)∩W (B). Next, let V ∈ W (A)∩W (B). Then A ∈ V and B ∈ V, so A∩B ∈ V,
so V ∈ W (A ∩B).

Hence W (A ∩B) = W (A) ∩W (B).

Lastly, suppose that U ∈ W (X \ A). Then X \ A ∈ U, so by earlier proposition

A /∈ U, so U ∈ Ultra(X) \W (A). Conversely, if U ∈ Ultra(X) \W (A), then A /∈ U,
so X \ A ∈ U, by characterization of ultrafilter, so U ∈ W (X \ A). So indeed,

W (X \ A) = Ultra(X) \W (A).

Using this lemma, we can describe the ultra topology through a base.

Corollary 1.6.2. Suppose X is a set. Then {W (A) : A ⊆ X} forms a base for the

ultra topology on Ultra(X).

Proof. By definition of the ultra topology, {W (A) : A ⊆ X} forms a subbase for the

ultra topology on Ultra topology. Hence

{
n⋂
i=1

W (Ai) : n ∈ N, {Ai}n1=1 ⊆ P(X)}

is a base for the Ultra topology. However, by using above lemma n− 1 times, we see

that
n⋂
i=1

W (Ai) = W (
n⋂
i=1

),

which is a subbse element itself. Hence {W (A) : A ⊆ X} is indeed a base for the

ultra topology.

Using lemma 1.14, we see that the base {W (A) : A ⊆ X} of the ultra topology

consists of elements that are both open and closed. From now on, for a set X, we will

simply refer to the topological space Ultra(X), and imply that we are considering the

ultra topology. We now come to an important property of the space of ultrafilters.

Proposition 1.6.6. Suppose X is a set. Then Ultra(X) is Hausdorff.

Proof. Suppose U 6= V ∈Ultra(X). Then either U \V 6= ∅ or V \U 6= ∅. Without loss

of generality, assume that U \ V 6= ∅ and let A ⊆ X be such that A ∈ U and A /∈ V.
Then, by characterization of ultrafilters, X \ A /∈ U and X \ A ∈ V, so U ∈ W (A)

and V ∈ W (X \ A). Since W (A) and W (X \ A) are both open and

W (A) ∩W (X \ A) = W (A ∩X \ A) = W (∅) = ∅.
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Hence Ultra(X) is indeed Hausdorff.

Lemma 1.6.8. Suppose X is a set and suppose that {Ai}i∈I ⊆ P(X) is a subset such

that {W (Ai)}i∈I has the finite intersection property. Then

⋂
i∈I

W (Ai) 6= ∅.

Proof. Suppose that {ik}nk=1 ⊆ I. Then

W (
n⋂
k=1

Aik) =
n⋂
k=1

W (Aik) 6= ∅,

since {W (Ai)}i∈I has the finite intersection property. Then,
n⋂
k=1

Aik 6= ∅. Now, define

F := {B ⊆ X : ∃{ik}nk=1 ⊆ I s.t.
n⋂
k=1

Aik ⊆ B}.

Clearly, F is a filter. Hence, there is an ultrafilter U ⊆ P(X) such that F ⊆ U. Now,

for all i ∈ I, Ai ∈ F ⊆ U, so U ∈ W (Ai) for all i ∈ I. Therefore, U ∈
⋂
i∈I
W (Ai), so⋂

i∈I
W (Ai) 6= ∅.

Now we can use this to prove that Ultra(X) is compact for any set X.

Proposition 1.6.7. Suppose X is a set. Then Ultra(X) is compact.

Proof. Suppose that {Ci}i∈I ⊆ P(Ultra(X)) is a family of closed subsets that has

the finite intersection property. We will prove that
⋂
i∈I
Ci 6= ∅ and thereby conclude

that Ultra(X) is compact.

Since {W (A) : A ⊆ X} is a base for Ultra(X) consisting of elements that are

both open and closed, there is a set {Aj}j∈Ji ⊆ P(X) for every i ∈ I such that

Ci =
⋂
j∈Ji

W (Aj).

Now define J =
⋃
i∈I
Ji and suppose that {jk}nk=1 is a finite subset. Then for every
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k ∈ {1, . . . , n}, there is a ik ∈ I such that jk ∈ Jik . Hence

∅ 6=
n⋂
k=1

Cik =
n⋂
k=1

⋂
j∈Jik

W (Aj) ⊆
n⋂
k=1

W (Ajk),

where we used the fact that {Ci}i∈I has the finite intersection property.

Therefore, {W (Aj)}j∈J has the finite intersection property, whence
⋂
j∈J

W (Aj) 6= ∅.

Therefore, ⋂
i∈I

Ci =
⋂
i∈I

⋂
j∈Ji

W (Aj) =
⋂
j∈J

W (Aj) 6= ∅,

so Ultra(X) is compact.

So we sec that for any set X, Ultra(X) is a compact Hausdorff space. Furthermore,

there is a canonical map S : X → Ultra(X) defined by S(x) = Fx, where Fx is the

principal ultrafilter generated by x ∈ X.
We will prove that Ultra(X) together with the map S gives the Stone-Čech com-

pactification for discrete spaces, But we first need a few more things.

First of all, note that for any two sets X and Y and any function f : X → Y, the

pushforward operator gives a well-defined map f∗ : Ultra(X) → Ultra(Y ).

Lemma 1.6.9. Suppose X and Y are sets, and f : X → Y a function. Then the

function f∗ : Ultra(X) → Ultra(Y ) is continuous.

Proof. Suppose A ⊆ Y. Then :

f−1∗ (W (A)) = {U ∈ Ultra(X) : f∗(U) ∈ W (A)}

= {U ∈ Ultra(X) : A ∈ f∗(U)}

= {U ∈ Ultra(X) : f−1(A) ∈ U}

= W (f−1(A)).

Therefore, the pre-image under f∗ of any base element of the topology on Ultra(Y )

is open in Ultra(X), so f∗ is continuous.

Next, we know that for a compact Hausdorff space K, there is a unique well-

defined map φk; Ultra(K) → K such that for every U ∈ Ultra(K), U converges to

φk(U).
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Lemma 1.6.10. Suppose that K is a compact Hausdorff space and let φk : Ultra(K)

→ K be the map such that for every U ∈ Ultra(K), U converges to φk(U). Then φk

is continuous.

Proof. Suppose A ⊆ K is open and suppose that U ∈ φ−1k (A). Then U converges to

φk(U) ∈ A. Since A is open,there is an open B ⊆ K such that

φk(U) ∈ B ⊆ B ⊆ A.

Then B ∈ Nφk(U) ⊆ U, so U ∈ W (B). Now let V ∈ W (B). Then B ∈ V and

Nφk(V ) ⊆ V. We claim that φk(V )B.

If φk(V ) /∈ B, then φk(V ) ∈ K \ B, and K \ B is open, so K \ B ∈ Nφk(V ) ⊆ V.

Also, K \ B ⊆ K \ B, so K \ B ∈ V. Then both B ∈ V and K \ B ∈ V, which is a

contradiction, since V is an ultrafilter.

Therefore, φk(V ) ∈ B ⊆ A. Hence V ∈ φ−1K (A), so W (B) ⊆ φ−1K (A). Furthermore,

W (B) is open in Ultra(K), and U ∈ φ−1K (A) was arbitrary, so φ−1K (A) is open, i.e. φk

is continuous.

For the universal property of the Stone-Čech compactification we need a unique

continuous extension of a continuous map. The following proposition is helpful for

this.

Proposition 1.6.8. Suppose X is a set. Then the image of the map S : X →
Ultra(X) defined by S(x) = Fx, is dense in Ultra(X).

Proof. Suppose W (A) is any non-empty base element for the ultra topology Ultra(X).

Then A 6= ∅, so there is a x ∈ A. Then A ∈ Fx, so Fx ∈ W (A). Therefore, we have

W (A) ∩ S(X) 6= ∅, and W (A) was an arbitrary non-empty base element of Ulta(X),

so S(X) is dense in Ultra(X).

Now we come to the main point.

Theorem 1.6.3. Suppose X is a discrete topological space and S : X → Ultra(X)

is the function such that S(x) = Fx, the principal ultrafilter belonging to x ∈ X.

Furthermore, let K be a compact Hausdorff space and suppose f : X → K is a

function. Then the unique continuous function βf : Ultra(X)→ K such that βf ◦S =

f is given by βf = φk ◦ f∗.
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Proof. Let x ∈ X, and suppose that A ∈ Nf(x). Then f(x) ∈ A, so x ∈ f−1(A), so

f−1(A) ∈ Fx, so A ∈ f∗(Fx). Therefore, Nf(x) ⊆ f∗(Fx). By uniqueness of the map φk,

we conclude that f(x) = φK(f∗(Fx)) = (φK ◦ f∗ ◦ S)(x). Since x ∈ X was arbitrary,

f = φK ◦ f∗ ◦ S = βf ◦ S. Furthermore, βf = φK ◦ f∗ is continuous, since both φK

and f∗ are continuous.

Now suppose that g : Ultra(X) → K is another continuous map that satisfies

f = g ◦ S. Then g coincides with βf on S(X) and S(X) is dense in Ultra(X), so

g = βf, as desired.

The above theorem gives the universal property of the Stone-Čech compactifica-

tion, whence we have the following corollary.

Corollary 1.6.3. Suppose X is a discrete topological space. Then the space Ultra(X)

together with the map S : X → Ultra(X) defined by S(x) = Fx, is the Stone-Čech

compactification of X.

Proof. Since X is discrete, the map S is continuous. Since theorem 1.6.3 gives the

universal properrty, Ultra(X) together with the map S : X → Ultra(X) is the Stone-

Čech compactification of X.
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Chapter 2

KS Problem In Finite Dimension

2.1 Basic definitions

Let B(`2(N)) be the set of all bounded linear operators on `2(N) and D ⊆ B(`2(N))

be the algebra of diagonal operators.

Definition 2.1.1 (Positive Operator). Let V be an inner product space. A linear

operator T ∈ L(V ) is called positive if

1. T is self-adjoint (T = T ∗) and

2. 〈Tv, v〉 > 0 for all v ∈ V .

A positive operator T ∈ L(V ) is denoted by T ≥ 0.

Definition 2.1.2 (State). A linear function s : B(`2(N))→ C is a state if

1. s(I)=1, and

2. A ≥ 0 =⇒ s(A) ≥ 0.

Later, we will see that states are automatically continuous.

Definition 2.1.3 (Pure state). A state s : B(`2(N))→ C is pure if it is not a convex

combination of any other states.

Problem 2.1.1 (The Kadison-Singer (KS)). Does every pure state on the algebra of

bounded diagonal operators on `2(N) have a unique extension to a state (pure state)

on the algebra of all bounded operators on `2(N) ?
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2.2 Basic cases

2.2.1 KS problem in one dimension

Let |N | = 1. Here `2(N) ' C (the set of all complex numbers). In this case KS

problem has a positive answer trivially as B(`2(N)) = D(`2(N)).

2.2.2 KS problem in two dimension

To understand the definition of state and pure state, let us begin by considering a

two-dimensional analog of KS problem. That is when |N | = 2. In this case, the

algebra of “bounded diagonal operators on `2(N)” becomes the algebra of diagonal

2× 2 matrices over C. That is,

D(`2(N)) ' D2×2(C) :=

{(
a 0

0 d

)
: a, d ∈ C

}
.

Any linear functional on D(`2(N)) is a linear map f : D2×2(C)→ C in the form

f(M) = f

((
a 0

0 d

))
= αa+ βd, α, β ∈ C.

A state is a linear functional f such that

1. f(I) = 1. So we must have β = 1− α.

2. f(M) must be real and non-negative whenever M is positive semi definite(i.e.,

whenever a, d are both real and non-negative). So we must have α real and

α ∈ [0, 1]

With the above observations any state is of the form

f

((
a 0

0 d

))
= αa+ (1− α)d, α ∈ [0, 1].

Note that, in particular f is a state, when α = 0 or α = 1.

A pure state is a state f such that it cannot be written as a non-trivial convex

combination of two different states. So, for f to be a pure state, we must have either
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α = 0 or α = 1. Hence the only pure states on D2×2(C) are

f

(
a 0

0 d

)
= a and f

(
a 0

0 d

)
= d.

Also, in this two dimensional case, the algebra of “bounded operators on `2(N)”

simply becomes the algebra of 2× 2 matrices over C. That is

B(`2(N)) 'M2×2(C) :=

{(
a b

c d

)
: a, b, c, d ∈ C

}
.

A linear functional on M2×2(C) is a function

g(M) = g

((
a b

c d

))
= αa+ βb+ γc+ δd, α, β, γ, δ ∈ C.

Letting

G =

(
α β

γ δ

)
,

we can observe g(M) = tr(GM).

A state on M2×2(C) is a linear functional g satisfying :

1. g(I) = 1,

2. g(M) must be real and non-negative whenever M is Hermitian and positive

semi-definite.

The first condition is equivalent to

tr(G) = 1.

The second condition implies that

0 ≤ g(vv∗) = tr(Gvv∗) = v∗Gv,

for all v ∈ C2. This implies G is Hermitian and positive semi-definite.

Conversely, for any complex matrix G that is positive semi-definite with tr(G) = 1,

the function g(M) := tr(GM) is a state on M2×2(C).

35



CHAPTER 2. KS PROBLEM IN FINITE DIMENSION

A state g on M2×2(C) is an extension of a state f on D2×2(C) if

g(M) = f(M) for all M ∈ D2×2(C).

Since positive semi-definite diagonal matrices have non-negative diagonals, every state

on D2×2(C) has a canonical extension to M2×2(C) as a state g obtained by

g(M) = g

((
a b

c d

))
= f

((
a 0

0 d

))
.

It remains to explore an answer to the question: When is this extension unique?

Consider the state f(M) = a+d
2

on D2×2(C). This is not a pure state. Consider

the linear functional

h(M) =
a+ b+ c+ d

2
= tr(GM).

Note that here G = 1
2

(
1 1

1 1

)
. This is a state on M2×2(C), since G is a positive

semi-definite matrix with tr(G) = 1. Clearly h is an extension of f . So the canonical

extension g and h are distinct states on M2×2(C) that are extensions of f . This is

not a counter example to the two dimensional KS problem, as f is not a pure state.

So, let us consider the pure state f(M) = a on D2×2(C). Consider any linear

functional g(M) = tr(GM) that is a state on M2×2(C) and is an extension of f .

Then we must have

G =

(
1 β

β 0

)
.

for some β ∈ C and G positive semi-definite. As the diagonal entries of G are non-

negative, G is positive semi-definite iff detG ≥ 0. As detG = ββ, that is non-negative

only when β = 0. Thus g(M) = a is the unique state on M2×2(C) that is an extension

of f(M) = a.

Similarly, f(M) = d has a unique extension to a state on M2×2(C).

So we may conclude that the two-dimensional analog of the KS problem is true.

Theorem 2.2.1. Let A ∈ B(H), where H is the n-dimensional Hilbert space Cn. A

is positive iff A is Hermitian and all its eigen values are positive.

Proof. By theorem 1.1.1.
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Using this result, we replace positiveness of the matrix M by Hermitian and semi-

definiteness in the two dimensional case of KS problem.

2.2.3 KS problem in any finite dimension

The Kadison-Singer conjecture is about infinite-dimentional Hilbert spaces H, but

the underlying situation is already interesting in finite dimension.Hence we start with

the Hilbert space

H = Cn,

with standard inner product

〈w, z〉 =
n∑
i=1

wizi,

which we evidently take to be linear in the second entry. For the moment we

identify operators with matrices.

Let Mn(C) be the complex n × n matrices, regarded as an algebra (which we

always assume to be complex and associative) with involution, namely the operation

a 7→ a∗ of Hermitian conjugation. Abstractly, an involution on an algebra A is an

anti-linear anti-homomorphism ∗ : A → A, so if we write ∗(a) = a∗, then for all

a, b ∈ A and λ ∈ C we have

(λa+ b)∗ = λa∗ + b∗;

(ab)∗ = b∗a∗.

Here note that Mn(C) has a unit, and the unit is In. An algebra with involution (and

unit) is called a (unital) ∗-algebra. Beside Mn(C), another unital ∗-algebra of interest

to us is Dn(C), i.e., the subalgebra of Mn(C) consisting of all diagonal matrices, with

the involution ∗ inherited from Mn(C).

In connection with the Kadison-Singer conjecture, the following concept is crucial.

A state on a unital ∗-algebra A (with unit IA) is a linear map ω : A → C that

satisfies

1. ω(IA) = 1;

2. ω(a∗a) ≥ 0, for all a ∈ A.
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Note: 2.2.1. This definition of state is equivalent to the earlier definition of state

by the characterization of positive operators (theorem 1.1.1).

Inspired by quantum mechanics, this concept was introduced by John von Neumann,

albeit in the special case where A is the unital ∗-algebra B(H) of all bounded operators

on some Hilbert space H. The general notion of a state in the above sense is due to

Gelfand and Naimark and Segal.

The states onA form a convex set S(A), whose extremal points are called pure states.

That is, ω is pure iff any decomposition

ω = tω1 + (1− t)ω2

for ω1, ω2 ∈ S(A) and t ∈ (0, 1) is necessarily trivial, in that ω1 = ω2 = ω. States that

are not pure are mixed.

Before going further let us introduce some notations: We will denote Mn(C) by

M. We often denote an element a ∈M by

a =
∑
i,j

aij|ei〉〈ej|,

where {ei} is the standard basis of Cn and we use the shorthand notation |x〉〈y| for

the operator which satisfies |x〉〈y|(z) = 〈y, z〉x. This means that aij is the element in

the i-th row and j-th column of the matrix a. Furthermore, we consider the diagonal

matrices

D := {a ∈M : aij = 0, if i 6= j},

which form a unital subalgebra of M. The algebra M also has a ∗-operation that is

an involution, defined by:

a∗ =
∑
i,j

aji|ei〉〈ej|,

We call a∗ the adjoint of a. Note that D is also closed under this operation.

von Neumann also defined a density matrix as an Hermitian matrix ρ ∈ Mn(C)

whose eigenvalues λi (i = 1, . . . , n) are non-negative and sum to unity, or equivalently,

as a positive (semi-definite) matrix (in that 〈ψ, ρψ〉 ≥ 0 for each ψ ∈ Cn) with unit

trace.

Definition 2.2.1 (Density Operator). A density operator ρ ∈Mn(C) is a positive op-
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erator that satisfies Tr(ρ) = 1. We write D(Mn(C)) for the set of all density operators

in Mn(C).

Theorem 2.2.2. There is a bijective correspondence between states f on Mn(C) and

density operators ρ ∈Mn(C). Given by

f(a) = Tr(ρa),

for all a ∈Mn(C).

Proof. For sake of simplicity here we are denoting Mn(C) by M.

We prove that S(M) ∼= D(M) as sets.

We construct φ : S(M)→ D(M) via

φ(f) =
∑
i,j

ρij|ei〉〈ej|,

where ρij = f(|ei〉〈ej|).
To see that φ is well defined, note that

Tr(φ(f)) =
∑
i

f(|ei〉〈ei|)

= f(
∑
i,j

|ei〉〈ei|)

= f(I)

= 1

and for x ∈ Cn, say x =
∑
i

ciei,

〈x, φ(f)x〉 =
∑
i,j

c̄icj〈ei, φ(f)ej〉

=
∑
i,j

c̄icjf(|ej〉〈ei|)

= f(|x〉〈x|)

≥ 0,
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which means φ(f) indeed a density operator.

Next, define ψ : D(M)→ S(M) by

ψ(ρ)(a) = Tr(ρa)

for all a ∈M.

To see that ψ is well defined, first note that ψ(ρ)(I) = Tr(ρ) = 1. Next, let

ρ ∈ D(M) and a ∈M positive. Then ρ has a spectral decomposition

ρ =
∑
i

pi|vi〉〈vi|,

for some orthonormal basis (vi), where all pi ≥ 0. Since a is positive

a =
∑
i,j

λij|vi〉〈vi|

with all λii ≥ 0. Then

ρa =
∑
i,j

piλij|vi〉〈vi|,

so

ψ(ρ)(a) = Tr(ρa) =
∑
i

piλij ≥ 0,

so ψ(ρ) is positive, and hence a state. Now, note that

ψ(φ(f)(a) = Tr(φ(f)a)

= Tr((
∑
i,j

ρij|ej〉〈ej|)(
∑
l,k

alk|el〉〈ek|)

=
∑
i,j

ρijaji

=
∑
i,j

ajif(|eJ〉〈ei|)

= f(
∑
i,j

aji|eJ〉〈ei|)

= f(a).
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Therefore, ψ ◦ φ = Id.

φ(ψ(ρ))ij = ψ(ρ)(|ej〉〈ei|)

= Tr(ρ|ej〉〈ei|)

= 〈ei, ρej〉

= ρij

Therefore φ ◦ ψ = Id.

Hence D(M) ∼= S(M)

Note that S(Mn(C)) and D(Mn(C)) have more structure than that of a set, since

they are also convex.

Definition 2.2.2 (Affine ). A function f : A→ B between two convex sets is called

affine if it preserves the convex structure, i.e., if

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for all t ∈ [0, 1] and x, y ∈ A.

Here the bijection in the above theorem is an affine function.

For a convex set C, a point a ∈ C is called extreme point if for any a1, a2 ∈ C and

t ∈ (0, 1) such that a = ta1 + (1 − t)a2 we have a1 = a2 = a. The set of all extreme

points of C is called the extreme boundary of C, often denoted by ∂eC.

Lemma 2.2.1. Suppose C and D are convex sets and that there is a affine isomor-

phism between them.Then ∂eC is isomorphic to ∂eD.

Proof. Suppose that the map φ : C → D is an affine isomorphism. First of all, we

claim that φ(∂eC) ⊂ ∂eD.

To see this, first note that φ−1 is an affine isomorphism as well. Now suppose

x ∈ ∂eC and t ∈ [0, 1]. a, b ∈ D such that φ(x) = ta+ (1− t)b. Then

x = φ−1(ta+ (1− t)b)

= tφ−1(a) + (1− t)φ−1(b)

Then, since x ∈ ∂eC, x = φ−1(a) = φ−1(b), but then also φ(x) = a = b, so

φ(x) ∈ ∂eD.
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Hence φ(∂eC) ⊂ ∂eD, so by the same token φ−1(∂eD) ⊂ ∂eC, whence φ maps ∂eC

bijectively to ∂eD. Therefore ∂eC and ∂eD are isomorphic.

We can now give an explicit description of the pure states on M

Corollary 2.2.1. There is a bijective correspondence between pure states f on M and

one-dimensional projections |ψ〉〈ψ|, such that f(a) = |ψ〉〈aψ|, for all a ∈ M, where

ψ is a unit vector.

Proof. By theorem 2.2.2, we know that S(M) corresponds bijectively to D(M) via

the formula f(a) = Tr(ρa). Since this map is affine and the pure states on M are

exactly ∂S(M), we only need to determine ∂D(M), by lemma 2.2.1.

Suppose that ρ ∈ ∂D(M) and determine its spectral decomposition ρ =
∑
i

pi|vi〉〈vi|,

where {vi} are orthonormal. Then since ρ is positive and has unit trace, we have

pi ≥ 0 and
∑
i

pi = 1. So, clearly all pi ∈ [0, 1].

Now suppose that there is a j ∈ {1, . . . , n} such that pj ∈ (0, 1). Then there

must be a k 6= j such that pk ∈ (0, 1) as well. Then there is a ε > 0 such that

[pj − ε, pk + ε] ⊂ [0, 1] and [pk − ε, pk + ε] ⊂ [0, 1]. Now define

ri = pi − ε, if i = j

= pi + ε, if i = k

= pi, if i /∈ {j, k}

and

qi = pi + ε, if i = j

= pi − ε, if i = k

= pi, if i /∈ {j, k}

By construction,

ρ1 :=
∑
i

ri|vi〉〈vi|

and

ρ2 :=
∑
i

qi|vi〉〈vi|
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are density operators too, and ρ = 1
2
ρ1 + 1

2
ρ2. However, ρ1 6= ρ 6= ρ2, so ρ is not an

extreme point of ∂D(M).

This is a contradiction, since ρ ∈ ∂D(M) by assumption. Therefore, all pi ∈ {0, 1}.
Combined with

∑
i

pi = 1, this gives a unique j such that pj = 1 and pk = 0 for all

k 6= j. But then, ρ = |vj〉〈vj|, so we see that every extreme point of D(M) is indeed

a one-dimensional projection.

It is clear that every one-dimensional projection is positive and has unit trace,

so every one-dimensional projections clearly a density operator. Now take a one-

dimensional projection ρ = |ψ〉〈ψ|, i.e. a unit vector ψ. Suppose that there are

ρ1, ρ2 ∈ D(M) and a t ∈ (0, 1) such that ρ = tρ1 + (1− t)ρ2.
Clearly, we have 〈ψ, ρψ〉 = 1. If we write ρ1 in its spectral decomposition ρ1 =∑

i

pi|vi〉〈vi|, where {vi} are orthonormal, pi ≥ 0 and
i∑
pi = 1, we see that

〈ψ, ρ1ψ〉 =
∑
i

pi|〈ψ, vi〉|2

≤
∑
i

pi

= 1,

by the Cauchy-Schwarz inequality.

By the same argument 〈ψ, ρ2ψ〉 ≤ 1. Therefore,

1 = 〈ψ, ρψ〉

= t〈ψ, ρ1ψ〉+ (1− t)〈ψ, ρ2ψ〉

≤ t+ (1− t)

= 1.

Therefore, we must have 〈ψ, ρ1ψ〉 = 1, so for all j such that pj 6= 0, we have

|〈ψ, vj〉|2 = 1. Since ψ is a unit vector and {vi} is an orthonormal set, this means that

there is a unique j such that pj 6= 0 and ψ = zvj with z ∈ C with |z| = 1.

But then necessarily pj = 1 and ρ1 = |vj〉〈vj| = |ψ〉〈ψ| = ρ. Similarly, ρ2 = ρ, so

indeed, ρ is an extreme point.

So ∂(M) consists exactly of the one-dimensional projections. Now, under the
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correspondence of states and density operators, we have

f(a) = Tr(|ψ〉〈ψ|a) = 〈ψ, aψ〉,

by evaluating the trace using an orthonormal basis with ψ as one of the basis vectors.

In the same fashion we can also define (pure) states on D and derive their specific

forms.Note that for a ∈ D the notion of positivity when considering it as an element

of M, i.e. 〈x, ax〉 ≥ 0 for all x ∈ Cn, is equivalent to saying that all aii ≥ 0.

Definition 2.2.3. A state on D is a linear function f : D → C that is positive and

unital, meaning that f(a) ≥ 0 for all a ≥ 0 and f(I) = 1. The set of all states on D

is denoted by S(D) and is called the state space of D.

In our discussion about the specific form of states on D, we need the notion of a

probability distribution on finite sets.

Definition 2.2.4. A probability distribution on a finite set X is a map p : X →
[0,∞) such that

∑
x p(x = 1.) The set of all probability distributions on X is denoted

by Pr(X).

Theorem 2.2.3. There is a bijective correspondence between states f on D and

probability distributions p on {1, . . . , n} such that f(a) =
∑

i p(i)aii for all a ∈ D.

Proof. We want to show that S(D) ∼= Pr({1, . . . , n}) as sets. Define φ : S(D) →
Pr({1, . . . , n}) by

φ(f)(k) = f(|ek〉〈ek|),

for all k. Then since f is a state, each φ(f)(k) is positive. Furthermore,∑
i

φ(f)(i) =
∑
i

f(|ei〉〈ei|)

= f(
∑
i

|ei〉〈ei|)

= f(I)

= 1,

so φ(f) is indeed a probability distribution.
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Next, define ψ : Pr({1, . . . , n})→ S(D) by

φ(p)(a) =
∑
i

p(i)aii.

Since all p(i) are positive, it is clear that ψ(p) is positive too. Furthermore,

ψ(p)(I) =
∑
i

p(i) = 1,

so ψ(p) is indeed a state. Now note that

ψ(φ(f))(a) =
∑
i

ψ(f)(i)aii

=
∑
i

aiif(|ei〉〈ei|)

= f(
∑
i

aii|ei〉〈ei|)

= f(a),

showing that ψ ◦ φ = Id.

Furthermore,

φ(ψ(p))(k) = ψ(p)(|ek〉〈ek|)

=
∑
i

p(i)|ek〉〈ek|ii

= p(k),

whence φ ◦ ψ = Id.

So, indeed, S(D) ∼= Pr(1, . . . , n) as sets and writing p = φ(f), the given formula

f(a) =
∑
i

p(i)aii holds for every a ∈ D.

Next, we note that just like in the case of M, the state space S(D) is in fact a

convex set, just like Pr({1, . . . , n}). Hence we can again determine the boundary of

S(D) and call it the pure state space of D. Once again, these pure states have specific

form.

Corollary 2.2.2. For every pure state f on D there is an i ∈ {1, . . . , n} such that
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f(a) = aii for all a ∈ D.

Proof. By theorem 2.2.3, we know that the states on D corresponds to Pr({1, . . . , n}),
and by lemma 2.2.1 we then know that we only need to determine the boundary of

Pr({1, . . . , n}). If we show that these are exactly those probability distributions that

have unique j such that p(j) = 1 and p(k) = 0 for all k 6= j, we are done.

So, suppose that p ∈ ∂Pr({1, . . . , n}). By definition of a probability distribution,

we have p(j) ∈ [0, 1] for all j. Suppose that p(j) ∈ (0, 1) for some j. Then there must

be a k 6= j such that p(k) ∈ (0, 1) as well. Then there is a ε ≥ 0 such that

[p(j)− ε, p(j) + ε] ⊂ [0, 1]

and

[p(k)− ε, p(k) + ε] ⊂ [0, 1].

By the same reasoning, p is not an extreme point.

This is a contradiction. Hence there is no j such that p(j) ∈ (0, 1), so all p(j) ∈
{0, 1}. Therefore, there is a unique j such that p(j) = 1 and p(k) = 0 for all k 6= j.

Now suppose that p is a probability distribution such that there is a unique j such

that p(j) = 1 and p(k) = 0 for all k 6= j. Then suppose there is a t ∈ (0, 1) and p1, p2 ∈
Pr({1, . . . , n}) such that p = tp1 + (1− t)p2. Suppose that p1(j) 6= 1. Then p1(j) < 1,

since all p1(k) ≥ 0 and
∑

k p1(k) = 1. Then p2(j) ≥ 1, which is a contradiction. Hence

p1(j) = 1. Likewise, p2(j) = 1. Then, Since p1, p2 ∈ Pr({1, . . . , n}), p1(k) = 0 = p2(k)

for all k 6= j. Therefore p = p1 = p2 and p is an extreme point.

From the definition of pure states we can say that the extreme points of S(Mn(C))

are the pure states on Mn(C).

The point, then is that states on Mn(C) bijectively corresponds to density matrices

through

ω(a) = Tr(ρa). (2.1)

Upon the identification 2.2.2, pure states corresponds to one-dimensional projec-

tions, i.e., ω is pure iff

ω(a) = 〈ψ, aψ〉 (2.2)

for some unit vector ψ ∈ Cn.

46



CHAPTER 2. KS PROBLEM IN FINITE DIMENSION

2.3 The Kadison-Singer property

Having introduced the basic definitions, let us now streamline the world of the

Kadison-Singer conjecture by introducing the Kadison-Singer property.

Let H be a Hilbert space and denote the ∗-algebra of all bounded operators on H

by B(H), equipped with the adjoint as an involution, as above. In quantum mechanics

one is particularly interested in abelian unital ∗-algebras A ⊆ B(H).

Now both A and B(H) have states, and states on B(H) obviously restrict to states

on A. In reverse direction, we can ask whether states on A extend to states on B(H).

It turns out that they always do due to Hahn-Banach extension theorem.

But what is at stake is the question whether this extension is unique. This question

is particularly interesting for pure states, and hence we say that A has the Kadison-

Singer property iff each pure state on A extends uniquely to a state on B(H). Simple

arguments in convexity theory shoe that if the extension is unique, then it is neces-

sarily pure, so that one might as well say that:

A has the Kadison-Singer property iff each pure state on A extends uniquely to a

pure state on B(H).

Theorem 2.3.1. For each n ∈ N, the algebra Dn(C) ⊆ Mn(C) has the Kadison-

Singer property.

Proof. Consider the pure state ωi on Dn(C), where i = 1, . . . , n is arbitrary.Then

ωi(a) = aii, for all a ∈ Dn(C).

Let ei be the i’th basis vector of Cn.Then it is easy to observe that the functional

µ : Mn(C)→ C defined by

µ(a) = 〈ei, aei〉 = aii,

is a pure state extension of ω.The only thing that is left to prove that µ is the unique

pure state extension of ωi.

Suppose that µ1 : Mn(C) → C is also a pure state extension of ω. Then µ1(a) =

〈ψ, aψ〉 for some unit vector ψ ∈ Cn.

We can write ψ =
n∑
i=1

ciei.
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Now since |ei〉〈ei| ∈ Dn(C) for all i,

|ci|2 = µ1(|ei〉〈ei|)

= ωi(|ei〉〈ei|)

= δki.

Therefore except ci all are zero and |ci| = 1.

Then ψ = ciei.

Now

µ1(a) = 〈ψ, aψ〉

= 〈ciei, aciei〉

= |ci|2〈ei, aei〉

= µ(a)

for all a ∈Mn(C).

Therefore µ1 = µ and µ is the unique pure state extension of ωi.

So, the algebra Dn(C) ⊆Mn(C) has the Kadison-Singer property.

Definition 2.3.1. (Maximal unital abelian ∗-algebra)

We say that a unital abelian ∗-algebras A ⊆ B(H) is maximal if there is no abelian

unital ∗-algebra A1 ⊆ B(H) that properly contains A.

If H is finite-dimensional, then the unital ∗-algebra generated by a = a∗.

Before going to next lemma let us introduced the concept of simultaneous diago-

nalization.

Definition 2.3.2. ( simultaneously diagonalizable)

A set of matrices is said to be simultaneously diagonalizable if there exists a single

invertible matrix P such that P−1AP is a diagonal matrix for every A in the set.

The following theorem characterizes simultaneously diagonalizable matrices:

Theorem 2.3.2. ( characterization of simultaneously diagonalizable matrices) A set

of diagonalizable matrices commutes if and only if the set is simultaneously diagonal-

izable.
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By Spectral theorem and the above theorem, we can conclude that:

A set consists of commuting normal matrices if and only if it is simultaneously

diagonalizable by a unitary matrix; that is, there exists a unitary matrix U such that

U∗AU is diagonal for every A in the set.

Lemma 2.3.1. Suppose H is finite dimensional Hilbert space and suppose that A ⊆
B(H) is a maximal abelian unital ∗-algebra. Then A has the Kadison-Singer property.

Proof. Since H is finite dimensional H is isomorphic to Cn.And consequently, B(H)

is isomorphic to Mn(C).

Therefore, there exists an isomorphism φ : B(H)→Mn(C).

Now let A ⊆ B(H) be a maximal abelian unital ∗-algebra. Then φ(A) is a maximal

abelian unital ∗-algebra in Mn(C).

We will prove that Dn(C) is the unique maximal unital ∗-algebra in Mn(C). Then

φ(A) = Dn(C) and we know that Dn(C) has the Kadison-Singer property and via

isomorphism we can say that A also has the Kadison-Singer property.

So, the only thing remains to prove that Dn(C) is the unique maximal unital
∗-algebra in Mn(C).

First we will prove that Dn(C) is a maximal abelian unital ∗-algebra.

Clearly, Dn(C) is abelian unital ∗-algebra.

Let us assume that Dn(C) is not maximal in Mn(C). Then there exists an abelian

unital ∗-algebra D such that Dn(C) ⊆ D.

Since D is abelian, every matrix in D is normal and so diagonalizable.

Let A,B,C ∈ D such that A is not in Dn(C) (this is possible, since Dn(C) ⊆ D )

Now since AB = BA and A,B are normal, A and B are simultaneously diagonal-

izable.

Therefore A and B have same set of eigen vectors.

By the same argument B and C also have the same set of eigen vectors.

Therefore A,B and C have same set of eigen vectors.

This implies every matrix of D has the same set of eigen vectors.

The set of all eigen vectors of every matrix of Dn(C) is the basis vectors of Cn.

But A is an non-diagonal matrix and so it can have the basis vectors of Cn as its

eigen vectors.

This is a contradiction.

Therefore Dn(C) is maximal abelian unital ∗-algebra in Mn(C).
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And Dn(C) has the Kadison-Singer property and therefore A has the Kadison-

Singer property.

So we are done with the finite dimensional case of the Kadison-Singer problem.

In the next chapter we will discuss the problem in much broader sense. There we

will define states and pure states on general unital C∗-algebra and will discuss its

properties.
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State space

In last chapter we discussed the extension of pure states from the algebra of diagonal

matrices Dn(C) to the algebra of matrices Mn(C). In this chapter, we formulate the

question whether this is possible in a much broader setting. Instead of Mn(C) we

consider B(H) for some Hilbert space H, and instead of Dn(C) we consider abelian

C∗-subalgebras A of B(H). Having again defined (pure) states, we will likewise ask

the question whether a unique extension property holds. This property is the so-called

Kadison-Singer property.

3.1 States on C∗-algebra

Now we will define state in a general unital C∗-algebra.

Definition 3.1.1 (State). Let A be a unital C∗-algebra. A state on A is a linear

map f : A→ C that is positive (i.e. f(a) ≥ 0 for all a ≥ 0) and unital (i.e. f(1)=1).

The set of all states on A is denoted by S(A) and is called the state space of A.

The condition of being positive has a very important consequence for states.

Proposition 3.1.1. Suppose A is a unital C∗-algebra and f ∈ S(A). Then

sup{|f(a)| : a ∈ A, ‖a‖ = 1}

is finite, i.e. S(A) ⊆ A∗.

Proof. First suppose that sup{|f(a)| : ‖a‖ = 1, a ≥ 0} is infinite. Then there is a

sequence {an}n∈N such that |f(an)| ≥ 2n, an ≥ 0 and ‖an‖ = 1 for all n ∈ N. Then
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a =
∑∞

n=1 2−nan exists and is positive too. Then, by linearity, 1 ≤ f(2−nan) for all

n ∈ N. Hence we have

N ≤
N∑
n=1

f(2−nan) = f(
N∑
n=1

2−nan) ≤ f(a).

i.e. N ≤ f(a) for all N ∈ N. This is a contradiction, so

M := sup{|f(a)| : ‖a‖ = 1, a ≥ 0}

is finite.

Now let a ∈ A be an arbitary element such that ‖a‖ = 1. Then a can be written

as a =
∑3

k=0 i
kak where all ak ≥ 0 and ‖ak‖ ≤ 1. Therefore

|f(a)| = |f(
3∑

k=0

ikak)|

= |
3∑

k=0

ikf(ak)|

≤
3∑

k=0

‖ak‖f(
ak
‖ak‖

)

≤ 4M,

i.e. sup{|f(a)| : a ∈ A, ‖a‖ = 1} is finite too.

When considering states, the following result is often useful.

Lemma 3.1.1. Suppose A is a C∗-algebra and f ∈ S(A). Then the map

φ : A2 → C, (a, b) 7→ f(a∗b)

is a pre-inner product and hence for every a, b ∈ A we have

|f(a∗b)| ≤ f(a∗a)1/2f(b∗b)1/2.

Proof. Since f is positive, clearly it is a pre-inner product and second part follows

from the Cauchy-Schwarz inequality for pre-inner products.
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Corollary 3.1.1. Suppose A is a unital C∗-algebra and f ∈ S(A). Furthermore, let

ainA. Then f(a∗) = f(a).

Proof. We use the above lemma to see that

f(a∗) = f(a∗1) = f(1∗a) = f(a).

Since every state is bounded, we can consider its norm. Using this, we can give a

different characterization of states.

Proposition 3.1.2. Suppose that H is a Hilbert space and A is a unital C∗-algebra of

B(H). Furthermore, let f : A→ C be a bounded linear functional such that f(1) = 1.

Then f is positive (and hence a state) iff ‖f‖ = 1.

Proof. First suppose that f is positive. Since ‖1‖ = 1, ‖f‖ ≥ f(1) = 1.

Now let a ∈ A such that ‖a‖ = 1. Then

|f(a)|2 = |f(1a)|2

≤ f(1∗1)f(a∗a)

≤ f(1)‖f‖‖a∗a‖

= ‖f‖.

Therefore,

‖f‖2 = sup{|f(a)|2 : ‖a‖ = 1} ≤ ‖f‖,

whence ‖f‖ ≤ 1. So ‖f‖ = 1.

For the converse, suppose that ‖f‖ = 1. Let a ∈ A be self-adjoint and n ∈ Z.
Since f(a) ∈ C, we can write f(a) = α + iβ, with α, β ∈ R. Furthermore, denote

c := ‖a2‖.
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Then :

|f(a+ in1)|2 ≤ ‖f‖2‖a+ in1‖2

= ‖(a+ in1)∗(a+ in1)‖

= ‖(a− in1)(a+ in1)‖

= ‖a2 + n21‖

≤ ‖a2‖+ n2‖1‖

= c+ n2

Moreover,

|f(a+ in1)|2 = |f(a) + inf(1)|2

= |α + iβ + in|2

= α2 + (β + n)2

= α2 + β2 + 2βn+ n2.

Collecting this, we obtain the inequality :

α2 + β2 + 2βn+ n2 ≤ c+ n2.

Rewriting this, we obtain :

2βn ≤ c− α2 − β2.

If β 6= 0, then we obtain for every n ∈ Z :

n ≤ c− α2 − β2

2β
,

which is a contradiction since the right hand side is independent of n. Hence β = 0.

So f(a) = α, i.e. f(a) is real.

Now, let a ≥ 0, a 6= 0 and write b =
a

‖a‖
. Since a is self-adjoint and ‖b‖ = 1. We

claim that 1− b is positive. To see this, let x ∈ H and compute :
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〈x, (1− b)x〉 = 〈x, x〉 − 〈x, bx〉

≥ ‖x‖2 − ‖x‖‖bx‖

≥ ‖x‖2 − ‖b‖‖x‖2

≥ 0.

So, indeed 1 − b is positive and hence also self-adjoint. Since 0 ≤ 1 − b ≤ 1, we

also have ‖1− b‖ ≤ 1. Then :

1− f(b) = f(1)− f(b) = f(1− b)

≤ ‖f(1− b)‖

≤ ‖f‖‖(1− b)‖

≤ 1,

whence f(b) ≥ 0. Then also f(a) = ‖a‖f(b) ≥ 0. Since we obviously also have that

f(0) ≥ 0, f is positive.

Since all states on a unital C∗ -algebra A are bounded, S(A) inherits the weak*-

topology from A∗. With respect to this topology, S(A) has an important property.

Proposition 3.1.3. Let A be a unital C∗- algebra. Then S(A) ⊆ A∗ is a compact

Hausdorff space.

Proof. We first claim that S(A) ⊆ A∗ is closed with respect to the weak*-topology.

To see this, suppose that {fi} is a net of states converging to a certain f ∈ A∗. By

the definition of the weak∗-topology, this means that f(a) = limfi(a) for all a ∈ A.
So, certainly, when taking a = 1, it follows that f(1) = limfi(1) = lim1 = 1, since

every fi is a state.

Furthermore, if a ≥ 0, then fi(a) ≥ 0 for every i, so f(a) = limfi(a) ≥ 0 as well.

So, indeed, f ∈ S(A), i.e. S(A) is closed with respect to the weak∗-topology on A∗.

Now, by the Banach-Alaoglu theorem, the closed unit ball A∗1 of A∗ is compact

with respect to the weak*-topology and we know that S(A) ⊆ A∗1. Hence S(A) is

closed with respect to the relative topology on A∗1, which is a compact space. Hence
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S(A) is compact with respect to the relative topology and therefore with respect to

the weak*-topology.

Next to see that S(A) is Hausdorff, suppose f, g ∈ S(A) such that f 6= g. Then

there is an a ∈ A such that f(a) 6= g(a).

Therefore, δ := |f(a)− g(a)| > 0.

Now consider U = B(f, a,
δ

2
) ∩ S(A) and V = B(g, a,

δ

2
) ∩ S(A). Then both

U, V ∈ S(A) are open and f ∈ U, g ∈ V. Furthermore, h ∈ U ∩ V implies

|f(a)− g(a)| ≤ |f(a)− h(a)|+ |h(a)− g(a)|

<
δ

2
+
δ

2

= δ,

which is a contradiction. Hence U ∩ V = φ. Therefore, S(A) is Hausdorff.

3.2 Pure states and characters

We note that S(A) is convex for every unital C∗-algebra A. Therefore, we can con-

sider its boundary ∂eS(A) and call this the pure state space of A. It turns out that in

the case that A is abelian, the pure states are exactly the characters. To prove this

we first need an equivalent definition of pure states in terms of positive functionals.

Lemma 3.2.1. Suppose H is a Hilbert space and A ⊂ B(H). Furthermore, suppose

f ∈ S(A). Then f ∈ ∂eS(A) if and only if for all g : A→ C such that 0 ≤ g ≤ f we

have g = tf for some t ∈ [0, 1].

Proof. Suppose f ∈ ∂eS(A) and g : A → C such that 0 ≤ g ≤ f. Since 1 ≥ 0, then

0 ≤ g(1) ≤ f(1) = 1.

Now, there are a few cases. First of all, suppose g(1) = 0. Then let a ∈ A be
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positive. Then 0 ≤ a

‖a‖
≤ 1, whence 0 ≤ a ≤ ‖a‖1. Therefore,

0 ≤ g(a)

≤ g(‖a‖1)

= ‖a‖g(1)

= 0.

Since every b ∈ A can be written as b =
∑3

k=0 i
kbk for some bk ≥ 0, g(b) = 0 for every

b ∈ A, i.e. g = 0.

As a second case, suppose g(1) = 1. Then f − g ≥ 0 and (f − g)(1) = 0, so by

the same reasoning as in the firsty case, f − g = 0, i.e. g=f. Lastly, there is the case

0 < g(1) < 1. In this case, define the functionals g1 =
1

1− g(1)
(f−g) and g2 =

1

g(1)
g.

Then clearly, g1 and g2 are both positive and g1(1) = g2(1) = 1, so g1, g2 ∈ S(A).

Furthermore,

(1− g(1))g1 + g(1)g2 = f − g + g

= f

and f ∈ ∂eS(A), so g1 = g2 = f. Therefore, g = g(1)g2 = g(1)f. In all cases, we see

that g = g(1)f, and g(1) ∈ [0, 1].

For the converse, suppose that for all g : A → C such that 0 ≤ g ≤ f there is a

t ∈ [0, 1] such that g = tf. Then suppose that h1, h2 ∈ S(A) and s ∈ (0, 1) such that

f = sh1 + (1 − s)h2. Then f − sh1 = (1 − s)h2 ≥ 0, so 0 ≤ sh1 ≤ f. Hence there is

a t ∈ [0, 1] such that sh1 = tf. However, s = sh1 = tf(1) = t, so h1 = f. Then also

h2 = f, so f ∈ ∂eS(A).

Now we are all set to prove our main theorem in this section, that pure states

are exactly the characters. We already proved that every pure state on Dn(C) was

of the form f(a) = aii, which is clearly multiplicative on the diagonal matrices, i.e.

∂eS(A) ⊂ Ω(A). So, the following theorem can be seen as a generalization.

Theorem 3.2.1. Suppose H is a Hilbert space and A ⊆ B(H) be an abelian unital

C∗-algebra. Then ∂eS(A) = Ω(A).
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Proof. First we will prove that ∂eS(A) ⊆ Ω(A).

Let f ∈ ∂eS(A). We will prove that f is multiplicative. Let a, c ∈ A and first

suppose that 0 ≤ c ≤ 1. Now let b ∈ A such that b ≥ 0.

Then c = d∗d, 1− c = u∗u and b = v∗v for some c, u, v ∈ A. Therefore,

bc = v∗vd∗d

= d∗v∗vd

= (vd)∗vd

≥ 0

and

b− bc = b(1− c)

= v∗vu∗u

= u∗v∗vu

= (vu)∗vu

≥ 0,

so 0 ≤ bc ≤ b.

Now define g : A → C by g(z) = f(zc) for all z ∈ A. Combining the fact that

f ≥ 0 and the above observation that bc ≥ 0 for all b ≥ 0, we see that g ≥ 0.

Furthermore, for b ≥ 0, b ≥ bc and hence

(f − g)(b) = f(b)− f(bc) = f(b− bc) ≥ 0,

so g ≤ f. Now using the earlier lemma, we know that g = tf for some t ∈ [0, 1]. Now

f(ac) = g(a) = tf(a) = tf(1)f(a) = g(1)f(a) = f(c)f(a) = f(a)f(c).

If we now drop the requirement that 0 ≤ c ≤ 1, we observe that we still have

c =
∑3

k=0 i
kck for some ck ≥ 0.

Then c =
∑3

k=0 i
k‖ck‖

ck
‖ck‖

and 0 ≤ ck
‖ck‖

≤ 1, whence
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f(ac) = f(a
3∑

k=0

ik‖ck‖
ck
‖ck‖

)

=
3∑

k=0

ik‖ck‖f(a
ck
‖ck‖

)

=
3∑

k=0

ik‖ck‖f(a)f(
ck
‖ck‖

)

= f(a)f(
3∑

k=0

ik‖ck‖
ck
‖ck‖

)

= f(a)f(c).

Since f(1) = 1 and hence f 6= 0, so f ∈ Ω(A). Therefore ∂eS(A) ⊆ Ω(A)

For the converse, suppose c ∈ Ω(A). Then c(1) = 1. Furthermore, for a ∈ A,

c(a∗a) = c(a∗)c(a) = c(a)c(a) = |c(a)|2 ≥ 0,

so c ≥ 0. Since c is also linear, c ∈ S(A).

Now we claim that in fact c ∈ ∂eS(A). To see this, suppose that t ∈ (0, 1) and

c1, c2 ∈ S(A) such that c = tc1 + (1 − t)c2. Furthermore, suppose that a = a∗ ∈ A.
Then c1(a) ∈ R, since c1 ≥ 0 and c1(a)2 = |c1(1∗a)|2 ≤ c1(1

∗1)c!(a
∗a) = c1(a

2).

Likewise, c2(a)2 ≤ c2(a
2).

Since c is a character, we can compute :

0 = c(a2)− c(a)2

= tc1(a
2) + (1− t)c2(a2)− (tc1(a) + (1− t)c2(a))2

= tc1(a
2) + (1− t)c2(a2)− t2c1(a)2 − (1− t)2c2(a)2 − 2t(1− t)c1(a)c2(a)

≥ tc1(a)2 + (1− t)c2(a)2 − t2c1(a)2 − (1− t)2c2(a)2 − 2t(1− t)c1(a)c2(a)

= (t− t2)c1(a)2 + ((1− t)− (1− t)2)c2(a)2 − 2t(1− t)c1(a)c2(a)

= t(1− t)(c1(a)2 + c2(a)2 − 2c1(a)c2(a))

= t(1− t)(c1(a)− c2(a))2 ≥ 0,

i.e. c1(a) = c2(a) for all a = a∗ ∈ A. Therefore, for any b ∈ A, b = a1 + ia2 with
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a1 = a∗1, a2 = a∗2 ∈ A, whence c1(b) = c2(b) by linearity. Therefore c1 = c2 = c and

c ∈ ∂eS(A).

The above theorem is really beautiful, because the algebra B(H) for a Hilbert

space H of dimension at least 2 does not even admit any characters:

Proposition 3.2.1. Let H be a Hilbert spacve of at least dimension 2. Then

Ω(B(H)) = ∅.

Proof. Suppose Ω(B(H)) 6= ∅. Let c ∈ Ω(B(H)) and let {ei}i∈I be an orthonormal

basis of H. Let i ∈ I. By the hypothesis there is a j ∈ I such that j 6= i.

Let a = |ei〉〈ej| and B = |ej〉〈ei|. Then a2 = 0, so c(a)2 = c(a2) = c(0) = 0,

whence c(a) = 0. Likewise, c(b) = 0.

Now, |ei〉〈ei| = ab, so

c(|ei〉〈ei|) = c(ab) = c(a)c(b) = 0.

Since i ∈ I was arbitary,

c(1) = c(
∑
i∈I

|ei〉〈ej|)

=
∑
i∈I

c(|ei〉〈ej|)

= 0.

Then for any x ∈ B(H), c(x) = c(x1) = c(x)c(1) = 0, so c = 0, i.e. c is not a

character. This a contradiction.

Therefore Ω(B(H)) = ∅.

Corollary 3.2.1. Suppose A is an abelian unital C∗-algebra. Then ∂eS(A) is compact

Hausdorff with respect to the weak∗-topology.

Proof. Since ∂eS(A) ⊆ S(A) and S(A) is Hausdorff, we know that ∂eS(A) is Hausdorff

too. In fact, we only need to show that Ω(A) = ∂eS(A) is closed in S(A), since S(A)
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is compact. To prove this, we show that U := S(A) \ Ω(A) is open in S(A). For

this, suppose f ∈ U. Then there are a, b ∈ A such that f(a)f(b) 6= f(ab). Since every

element of A can be written as a sum of positive elements, we can then assume that

a and b are positive.

Now, since A is abelian we then also know that ab is positive. Hence f(a), f(b)

and f(ab) are positive numbers. Suppose that f(a)f(b) > f(ab) and define δ =

f(a)f(b) − f(ab) > 0. Next, define ε1 =
δ

f(a) + f(b) + 1
. Using this, define ε =

min{ε1, f(a), f(b)} > 0.

Then, take g ∈ B(f, a, ε) ∩B(f, b, ε) ∩B(f, ab, ε) ∩ S(A). Then we have

g(a)g(b)− g(ab) ≥ g(ab) > (f(a)− ε)(f(b)− ε)− (f(ab) + ε)

= f(a)f(b)− f(ab)− ε(f(a) + f(b) + 1) + ε2

> δ − ε(f(a) + f(b) + 1)

≥ δ − δ

= 0,

i.e. g(a)g(b) 6= g(ab). Hence g ∈ U. A similar argument works if f(a)f(b) < f(ab).

Hence U is open. Therefore ∂eS(A) = Ω(A) ⊆ S(A) is closed and hence a compact

Hausdorff space.

3.3 Extensions of pure states

In our discussion we want to generalize the concept of pure states from the algebra

of diagonal matrices Dn(C) to the algebra of all matrices, Mn(C). We have already

generalized Dn(C) ⊆Mn(C) to A ⊆ B(H) for a Hilbert space H and an abelian unital

C∗-subalgebra A. Now interesting thing is that we already characterize the pure states

on A and they are in fact characters. These cannot be extended to characters on all

of B(H), since the latter do not exist. However, they might be extended to states (in

fact pure states) on all of B(H). The natural question is to ask that wheather this

extension is unique or not ?

Definition 3.3.1. Let H be a Hilbert space and A be an abelian unital C∗-subalgebra
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of B(H). Furthermore, let f ∈ S(A). We define the set of extensions of f to be :

Ext(f) = {g ∈ S(B(H)) : g|A = f}.

We already proved that for the case H = Cn and A = Dn(C), for each f ∈ ∂eS(A)

the set Ext(f) ∩ ∂eS(Mn(C)) consists of exactly one element, i.e. every pure state

on Dn(C) extends to a unique pure state on Mn(C). This motivates the following

definition.

Definition 3.3.2. Let H be a Hilbert space and A be an abelian unital C∗-subalgebra

of B(H). We say that A has the first Kadison-Singer property if for every f ∈ ∂eS(A),

Ext(f) ∩ ∂eS(B(H)) consists of exactly one element.

We may also drop the requirement that the unique extension must be pure. Then

we obtain another property.

Definition 3.3.3. Let H be a Hilbert space and A be an abelian unital C∗-subalgebra

of B(H). We say that A has the second Kadison-Singer property if for every f ∈
∂eS(A), Ext(f) consists of exactly one element.

Now looking at these two definitions, it is unclear that whether the first Kadison-

Singer property implies the second, since Ext(f) might contain more elements than

Ext(f) ∩ ∂eS(B(H)). Likewise, the one elment in Ext(f) might not be in ∂eS(B(H)),

whence the second Kadison-Singer property might not imply the first.

However, it turns out that the first and second Kadison-Singer property are in fact

equivalent. To prove this, we first need a lemma and note that for every f ∈ S(A),

Ext(f) is a convex set, hence we can consider its boundary.

Lemma 3.3.1. Let H be a separable Hilbert space and A an abelian unital C∗-

subalgebra of B(H). For every f ∈ ∂eS(A) we have the following identity:

∂eExt(f) = Ext(f) ∩ ∂eS(B(H)).

Proof. First we will show that ∂eExt(f) ⊆ Ext(f) ∩ ∂eS(B(H)). It is clear that

∂eExt(f) ⊆ Ext(f). To see that ∂eExt(f) ⊆ ∂eS(B(H)), suppose that g ∈ ∂eExt(f)

and h1, h2 ∈ S(B(H)), t ∈ (0, 1) such that

g = th1 + (1− t)h2.
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Let k1 and k2 be the restrictions of h1 and h2 to A, respectively. Then, clearly, k1

and k2 are both states on A and we have f = tk1 + (1− t)k2. Since f is a pure state

on A, this means that k1 = k2 = f.

Therefore, h1, h2 ∈ Ext(f) and since g ∈ ∂eExt(f), this means that g = h1 = h2.

Therefore g ∈ ∂eS(B(H)). Hence ∂eExt(f) = Ext(f) ∩ ∂eS(B(H)).

Now we will prove the other way set inclusion. Suppose that g ∈ Ext(f) ∩
∂eS(B(H)) and t ∈ (0, 1) and h1, h2 ∈ Ext(f) such that g = th1 + (1 − t)h2. Then

also h1, h2 ∈ S(B(H)) and since g ∈ ∂eS(B(H)) we then have h1 = h2 = g. Therefore

g ∈ ∂eExt(f).

Now we are all set to prove the main theorem of this section : the equivalence of

the first and second Kadison-Singer property.

Theorem 3.3.1. Let H be a Hilbert space and A an abelian unital C∗-subalgebra of

B(H). Then A has the first Kadison-Singer property if and only if it has the second

Kadison-Singer property.

Proof. Suppose A has the first Kadison-Singer property and let f ∈ ∂eS(A). Then,

by assumption Ext(f) ∩ ∂eS(A) consists of exactly one element, so by above lemma

∂eExt(f) consists of exactly one element.

Now, clearly Ext(f) is convex and is a closed subset of the compact set S(B(H)).

Therefore, Ext(f) is convex and compact and the Krein-Milman theorem can be

applied to it, i.e. Ext(f)=co(∂eExt(f)). However, ∂eExt(f) consists of exactly one

element, whence co(∂eExt(f)) consists of exactly one element. Therefore, Ext(f)

contains exactly one element, and A has the second Kadison-Singer property.

For the converse, suppose that A has the second Kadison-Singer property and let

f ∈ ∂eS(A). Then Ext(f) contains exactly one element, so ∂eExt(f) = Ext(f) and

hence ∂eExt(f) consists of one element as well. By above lemma, then Ext(f) ∩
∂eS(B(H)) consists of one element, i.e. A has the first Kadison-Singer property.

By the above theorem, we can drop the adjectives ’first’ and ’second’ and just

speak of one property.

Definition 3.3.4. Let H be a Hilbert space and A an abelian unital C∗-subalgebra

of B(H). Then we say that A has the Kadison-Singer property if it has either (and

hence both) the first and second Kadison-Singer property.
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From now on, the main goal of this text is to classify the examples of a Hilbert

space H and an abelian unital C∗-subalgebra A ⊆ B(H) that have the Kadison-Singer

property.

3.4 Properties of extensions and restrictions

The Kadison-Singer property concerns two parts : existence and uniqueness. The

following theorem shows that the first is never an issue.

Theorem 3.4.1. Let H be a Hilbert space and A be an unital abelian C∗-subalgebra

of B(H). Furthermore, let f ∈ S(A). Then Ext(f) 6= ∅.

Proof. f ∈ S(A), implies ‖f‖ = 1. Since A ⊆ B(H) is a linear subspace, there is

a functional g : B(H) → C that is an extension of f and ‖g‖ = ‖f‖ = 1, by the

Hahn-Banach theorem.

Since 1 ∈ A ⊆ B(H), g(1) = f(1) = 1. Using the characterization for states, it

follows that g ∈ S(B(H)). Therefore, g ∈ Ext(f), i.e. Ext(f)6= ∅.

Now that we know that an extension always exists, we only have to focus on

uniqueness when we want to answer the question whether a given algebra has the

Kadison-Singer property.

Lemma 3.4.1. Suppose A is a C∗-algebra and C ⊆ A is a C∗-subalgebra. Then the

restriction map

φ : S(A)→ S(C), f 7→ f |C ,

is continuous.

Proof. Note that the state spaces S(A) and S(C) are endowed with the weak∗-

topology. Therefore, let f ∈ S(C), c ∈ C and ε > 0, i.e. let B(f, c, ε) ⊆ S(C)

be an arbitrary subbase element. We prove that φ−1(B(f, c, ε)) ⊆ S(A) is open.

To do this, let g ∈ φ−1(B(f, c, ε)). Then |φ(g)(c) − f(c)| < ε, so there is a δ > 0
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such that |φ(g)(c)− f(c)| < ε− δ. Then let h ∈ B(g, c, δ). Then

|φ(h)(c)− f(c)| ≤ |φ(h)(c)− φ(g)(c)|+ |φ(g)(c)− f(c)|

< |h(c)− g(c)|+ ε− δ

< δ + ε− δ

= ε,

whence h ∈ φ−1(B(f, c, ε)). Therefore,

B(g, c, δ) ⊆ φ−1(B(f, c, ε)),

i.e. φ−1(B(f, c, ε)) is open.

Hence φ is continuous.

So in this chapter we characterize some of the properties of state and pure state :

1. Every state is automatically continuous.

2. A bounded unital (i.e. f(1)=1) linear functional f is a state iff ‖f‖ = 1.

3. The set of all states on a unital C∗-algebra is a compact Hausdorff space with

respect to weak∗-topology.

4. If A is abelian unital C∗-algebra.Then the pure states on A are exactly the

characters on A.

5. The set of all pure states is a compact Hausdorff space with respect to the

weak∗-topology.

6. Let H be a Hilbert space of at least dimension 2. Then characters does not exist

on B(H).

7. The first Kadison-Singer property and the second Kadison-Singer property are

equivalent.
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Maximal abelian C∗-subalgebras

In last chapter we introduced the Kadison-Singer property and declared our main

goal to be classifying Hilbert spaces H and abelian unital C∗-subalgebras A ⊆ B(H)

that have this property.

We already proved that Dn(C) ⊆ Mn(C) has the Kadison-Singer property in

Mn(C) and Dn(C) is maximal abelian in Mn(C). So from that we can guess that may

be maximal abelian subalgebras are of special interest to characterize subalgebras

that have the Kadison-Singer property.

In this chapter we are going to show that only maximal abelian subalgebras can

possibly have the Kadison-Singer property and later we are going to characterize all

maximal abelian subalgebras inside B(H) for a separable Hilbert space H.

4.1 Maximal abelian C∗-subalgebras

For a fixed Hilbert space H, we can consider all unital abelian C∗-subalgebras of

B(H) and collect them in C(B(H)). For every element of A ∈ C(B(H)), we can ask

ourselves whether A has the Kadison-Singer property with respect to B(H). It turns

out that only maximal elements of C(B(H)) can possibly have the Kadison-Singer

property with respect to the canonical partial order ≤ on C(B(H)) given by inclusion,

i.e. for A1, A2 ∈ C(B(H)) we have A1 ≤ A2 iff A1 ⊆ A2. Since it would be tedious to

use the symbol ≤, we just use the inclusion symbol ⊆ to denote the partial order.

Since C(B(H),⊆) is now a partially ordered set, we can consider its maximal

elements.
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Definition 4.1.1. Suppose H is a Hilbert space and A1 ∈ C(B(H)). Then A1 is called

maximal abelian if it is maximal with respect to the partial order ′ ⊆′ on C(B(H)),

i.e. if A1 ⊆ A2 for some A2 ∈ C(B(H)), then necessarily A1 = A2.

Maximal abelian elemwnts of C(B(H) have a very nice description in terms of the

commutant.

Definition 4.1.2 (Commutant). Suppose X is an algebra and S ⊆ X is a subset.

We define the commutant of S to be

S ′ := {x ∈ X| sx = xs ∀s ∈ S},

i.e. the set of all x ∈ X that commute with all of S.

We denote the double commutant of a subset S of an algebra X by S ′′ := (S ′)′

and likewise S ′′′ = (S ′′)′.

Lemma 4.1.1. Suppose X is an algebra and S, T ⊆ X are subsets. Then :

1. S ⊆ S ′ iff S is abelian.

2. If S ⊆ T, then T ′ ⊆ S ′.

3. S ⊆ S ′′.

4. S ′ = S ′′′.

Proof. The proofs of the first three properties follows directly from the definition of

commutant. For the last property, observe that S ′ ⊆ (S ′)′ = S ′′′ by the third property,

and by combining property 2 and 3 we have S ′′′ = (S ′′)′ ⊆ S ′.

We can now give a nice description of maximal abelian subalgebra in terms of the

commutant. This result is really useful to prove a subalgebra is maximal or not. We

will use this result several times in the later part of this chapter to conclude various

subalgerbras to be maximal.

Proposition 4.1.1. Suppose A is a subalgebra of B(H), for some Hilbert space H.

Then the following are equivalent :

1. A ∈ C(B(H)) and A is maximal abelian;
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2. A = A′.

Proof. Suppose A ∈ C(B(H)) is maximal abelian. Since A is abelian, A ⊆ A′.

Now let b ∈ A′ and let C be the smallest C∗-subalgebra of B(H) that contains A

and b. Then since b commutes with all of A, C is abelian and unital, since 1 ∈ A ⊂ C.

Therefore, C ∈ C(B(H)) and A ⊆ C. However, A was assumed to be maximal,

whence C = A.

Hence b ∈ C = A and A′ ⊆ A, so A′ = A.

For the converse, suppose that A = A′. First note that 1 ∈ A′ = A and A ⊆ A′, so

A ∈ C(B(H)). Now suppose that C ∈ C(B(H)) such that A ⊆ C. Then C is abelian,

so C ⊆ C ′ ⊆ A′ = A, whence A = C and A is maximal.

The above result justifies dropping the adjevtive ’unital’ when we defined maximal

abelian subalgebras.

We now come to the main result in this chapter : only maximal abelian subalgebras

can possibly have the Kadison-Singer property.

Theorem 4.1.1. Suppose that H is a Hilbert space and that A ∈ C(B(H)) has the

Kadison-Singer property. Then A is maximal abelian.

Proof. Suppose C ∈ C(B(H)) such that A ⊆ C. To show A is maximal abelian it is

sufficient to prove that A = C.

First we will show that the pure state spaces ∂eS(C) and ∂eS(A) are isomorphic.

To do this, first construct the map :

φ : ∂eS(C)→ ∂eS(A), f 7→ f |A

Since the pure states are exactly characters on an abelian C∗-subalgebra and f |A is

therefore a non-zero restriction of a character, f |A ∈ Ω(A) = ∂eS(A) for all f ∈
∂eS(C). Therefore φ is well defined.

For any g ∈ ∂eS(A), we know that Ext(g) contains exactly one element. Denote

this element by g̃. Using this, we can construct the following map :

ψ : ∂eS(A)→ ∂eS(C), g 7→ g̃|C

To show that this map is well defined, let g ∈ ∂eS(A). Note that g̃ is a state on

B(H), and g̃|C is therefore a state on C, since positivity and unitality are clearly
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preserved under restriction. Now write h = g̃|C and suppose h = th1 + (1 − t)h2 for

some t ∈ (0, 1) and h1, h2 ∈ S(C). By Hahn-Banach extention theorem we can find

k1 ∈Ext(h1) and k2 ∈Ext(h2). Then k1|A = h1|A and k2|A = h2|A, so

g = g̃|A
= h|A = th1|A + (1− t)h2|A
= tk1|A + (1− t)k2|A

However, g ∈ ∂eS(A), so k1|A = k2|A = g, i.e. k1, k2 ∈Ext(g). So k1 = k2 = g̃.

Then h1 = k1|C = g̃|C = h and likewise h2 = h, i.e. h ∈ ∂eS(C), as desired.

The only thing left to show is that φ and psi are each other’s inverse. First, let

g ∈ ∂eS(A).

Then (φ ◦ ψ)(g) = g̃|A = g, since g̃ ∈Ext(g). Hence φ ◦ ψ = Id.

Next, let f ∈ ∂eS(C). Choose h ∈Ext(f), which exists by Hahn-Banach theorem.

Then certainly h ∈Ext(f |A). However, by assumption Ext(f |A) contains exactly one

element, so h = f̃ |A. Hence

(ψ ◦ φ)(f) = f̃ |A|C = h|C = f,

since h ∈Ext(f). Therefore, ψ ◦ φ = Id.

Hence φ : ∂eS(C) → ∂eS(A) is a bijection. Also we proved earlier that it is also

continuous. We know that ∂eS(A) and ∂eS(C) are both compact Hausdorff, so φ is

in fact a homeomorphism. Therefore, φ induces an isomorphism

φ∗ : C(∂eS(A))→ C(∂eS(C))

given by φ∗(F )(f) = F (φ(f)).

Using the Gelfand representation twice, i.e. using the isomorphisms

GA : A→ C(Ω(A)) = C(∂eS(A)), (GA(a))(f) = f(a)

and

GC : C → C(Ω(C)) = C(∂eS(C)), (GC(c))(f) = f(c),

We can construct an isomorphism F = G−1C ◦φ∗ ◦GA such that the following diagram
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commutes :

A C(∂eS(A))

C C(∂eS(C))

GA

F φ∗

GC

We now claim that F is in fact given by the inclusion map i : A→ C. To see this,

let a ∈ A and f ∈ ∂eS(C). Then :

((φ∗ ◦GA)(a))(f) = φ∗(GA(a))(f)

= GA(a)(φ(f))

= φ(f)(a)

= f |A(a)

= (f ◦ i)(a)

= f(i(a))

= GC(i(a))(f)

= ((GC ◦ i)(a))(f).

Hence φ∗ ◦ GA = GC ◦ i, so indeed i = G−1C ◦ φ∗ ◦ GA = F. So the inclusion map

i : A→ C is an isomorphism, i.e. A = C.

Therefore, A is maximal abelian.

Thus, in our search for a classification of subalgebra with the Kadison-Singer

property, we now merely have to focus on maximal abelian subalgebras.

4.2 Examples of maximal abelian C∗-subalgebras

It is time to give some key examples of maximal abelian C∗-subalgebras, since these

are the only ones that can possess the Kadison-Singer property. Earlier we proved that

Dn(C) ⊆ Mn(C) has the Kadison-Singer property and Dn(C) ⊆ Mn(C) is maximal

abelian.

Proposition 4.2.1. Dn(C) ⊆Mn(C) is maximal abelian.

Proof. Already done.
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4.2.1 The discrete subalgebra

One of the most inportant examples of a Hilbert space is the space `2(N), defined as

`2(N) = {f : N→ C |
∑
n∈N

|f(n)|2 <∞}.

This space has a natural inner product

〈f, g〉 =
∑
n∈N

f(n)g(n),

which makes `2(N) a Hilbert space. `2(N) is separable because the functions {δn}n∈N
defined by δn(m) = δnm form a countable basis.

We can also consider the bounded functions on N, given by

`∞(N) = {f : N→ C | supn∈N|f(n)| <∞}.

It is clear that `∞(N) is an abelian algebra under pointwise operations. Defining

the adjoint operation pointwise as f ∗(n) = f(n), `∞(N) becomes a C∗-algebra in the

norm

‖f‖∞ = sup
n∈N
|f(n)|.

Now we will state a very important theorem, by virtue of which we can identify

`∞(N) inside B(`2(N)) via multiplication operator.

Proposition 4.2.2. The map M : `∞(N)→ B(`2(N)), f 7→Mf , defined by

(Mf (φ))(n) = f(n)φ(n),

is a well-defined norm-preserving injective ∗-homomorphism.

Proof. First we check that the map is well defined, i.e. that Mf ∈ B(`2(N)) for each
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f ∈ `∞(N). Let f ∈ `∞(N) and φ ∈ `2(N). Now observe that

‖Mf (φ)‖2 =
∑
n∈N

|(Mf (φ))(n)|2

=
∑
∈N

|f(n)|2|φ(n)|2

≤ ‖f‖2∞
∑
n∈N

|φ(n)|2

= ‖f‖2∞‖φ‖2,

i.e.

‖Mf (φ)‖ ≤ ‖f‖∞‖φ‖.

Hence Mf ∈ B(`2(N)) and ‖Mf‖ ≤ ‖f‖∞. Furthermore, for every n ∈ N, ‖δn‖ = 1,

and (Mf (δn))(m) = f(m)δnm, so ‖Mf (δn)‖ = |f(n)|. So for every n ∈ N, |f(n)| ≤
‖Mf‖.

Therefore, we also have ‖f‖∞ ≤ ‖Mf‖ and hence ‖f‖∞ = ‖Mf‖. So, M is a

well-defined norm-preserving map.

For injectivity, suppose that f, g ∈ `∞(N) such that Mf = Mg. Then for any

n ∈ N,

f(n) = Mf (δn)(n)

= Mg(δn)(n)

= g(n).

Hence f = g, since n ∈ N was arbitrary.

By the following computations it follows that M is a homomorphism.

Mλf+g(φ)(n) = (λf + g)(n)φ(n)

= λf(n)φ(n) + g(n)φ(n)

= λMf (φ)(n) +Mg(φ)(n)

= (λMf +Mg)(φ)(n);
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Mfg(φ)(n) = (fg)(n)φ(n)

= f(n)g(n)φ(n)

= f(n)Mg(φ)(n)

= Mf (Mg(φ))(n)

= (Mf ◦Mg)(φ)(n).

To see that M preserves the ∗-operation, compute :

〈φ,Mf∗(ψ)〉 =
∑
n∈N

φ(n)Mf∗(ψ)(n)

=
∑
n∈N

φ(n)f(n)ψ(n‘)

=
∑
n∈N

Mf (φ)(n)ψ(n)

= 〈Mf (φ), ψ〉.

So, indeed, Mf∗ = (Mf )
∗. Hence M is a well-defined norm-preserving injective

∗-homomorphism.

By the above proposition we can identify `∞(N) with the subalgebra M(`∞(N))

of B(`2(N)). We will use this identification according to our need.

Proposition 4.2.3. The subalgebra `∞(N) ⊆ B(`2(N)) is maximal abelian.

Proof. `∞(N) is abelian, so `∞(N) ⊆ `∞(N)′.

Now to prove the other way, let T ∈ `∞(N)′.

Define f : N→ C by

f(n) := (T (δn))(n).
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For every n ∈ N, ‖δn‖ = 1, so

|f(n)|2 = |(T (δn))(n)|2

≤
∑
m∈N

|(T (δn))(m)|2

= ‖T (δn)‖2

≤ ‖T‖2.

Therefore, sup
n∈N
|f(n)| ≤ ‖T‖, i.e., f ∈ `∞(N).

Now take φ ∈ `2(N). Then for any n,m ∈ N we have :

(Mδn(φ))(m) = δnmφ(m)

= φ(n)δnm

= φ(n)δn(m),

i.e. Mδn(φ) = φ(n)δn for all n ∈ N.
Therefore, for all n ∈ N :

(T (φ))(n) = ((MδnT )(φ))(n)

= ((TMδn)(φ))(n)

= φ(n)(T (δn))(n)

= φ(n)f(n)

= (Mf (φ))(n),

where we used the fact that T ∈ `∞(N)′ and hence commutes with Mδn .

So, T (φ) = Mf (φ), but φ ∈ `2(N) was arbitary, so T = Mf ∈ `∞(N). So `∞(N)′ ⊆
`∞(N).

Therefore `∞(N) = `∞(N)′, so `∞(N) ⊆ B(`2(N)) is maximal abelian.

There is a considerable similarity between the case Dn(C) ⊆Mn(C) and `∞(N) ⊆
B(`2(N)); the latter can be viewed as the infinite-dimensional version of the first. We

can make this observation more precise by rewriting the case Dn(C) ⊆ Mn(C) in a

suitable fashion.
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To do this, for every n ∈ N write n = {1, . . . , n} and define

`(n) = {f | f : n→ C}.

Note that in comparison with the infinite case, in this case it does not matter wheather

we take all functions (like we did now ), or the square-summable functions (which

would give `2(n)) or the bounded functions (`∞(n)), since these are all the same.

Furthermore, we can endow `(n) with a canonical inner product

〈f, g〉 =
∑
k∈n

f(k)g(k)

which makes `(n) a Hilbert space. As a Hilbert space, `(n) is clearly isomorphic to

Cn under the canonical isomorphism

`(n)→ Cn, f 7→ (f(1), . . . , f(n)).

This isomorphism induces an isomorphism between operators on `(n) and operators

on Cn, explicitly given by

φ : B(`(n))→Mn(C), φ(T )ij = (T (δj))(i).

Just as in the infinite-dimensional case, we can define a multiplication operator

M : `(n)→ B(`(n)), f 7→Mf , Mf (φ)(m) = f(m)φ(m).

Since we are now dealing with the finite case, there is no question whether this map

is well defined, since all linear operators are automatically bounded. We can virtually

copy the proof of earlier proposition and hence identify `(n) with M(`(n)) ⊆ B(`(n)).

We can now come to the main point : the diagonal matrices, as discussed urlier,

exactly corresponds to the multiplication operators.

Proposition 4.2.4. Suppose n ∈ N. The restriction of the isomorphism φ : B(`(n))→
Mn(C) to `(n) gives an isomorphism between `(n) and Dn(C).

Proof. Suppose f ∈ `(n), then note that φ was given by

φ(T )ij = T (δj)(i).
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Hence

φ(Mf )ij = (Mf (δj))(i)

= δj(i)f(i)

= δjif(i),

so φ(Mf )ij = 0 if i 6= j, so φ(Mf ) ∈ Dn(C). Next, let N ∈ Dn(C) and note that

there is an explicit inverse ψ of φ, given by

ψ(M)(f)(m) =
∑
k

Mmkf(k).

So, since N ∈ Dn(C), ψ(N)(f)(m) = Nnmf(m) = Mg(f)(m), with g ∈ `(n) given

by g(m) = Nmm. Therefore ψ(N) = Mg ∈ `(n). So, indeed, the restriction of φ gives

an isomorphism between `(n) and Dn(C).

Summarizing, we see that the finite-dimensional case and the infinite-dimensional

case are not that different. Therefore, we introduce one general description.

Let ℵ0 denote the cardinality of N and write ℵ0 = N. The expression ′1 ≤ j ≤ ℵ′0
means either ′j ∈ N or j = ℵ0.′ This can be made more precise by adding a maximal

element ℵ0 to the totally ordered set N.

Definition 4.2.1. Let 1 ≤ j ≤ ℵ0. Then Ad(j) is the subalgebra `∞(j) ⊆ B(`2(j))

that acts on the Hilbert space `2(j) via multiplication operator. We call Ad(j) the

discrete subalgebra of cardinality j.

Note that we have used the identification `(j = `2(j) = `∞(j) for j ∈ N. Discrete

subalgebras provide key examples of maximal abelian subalgebras and will play a

major role in our further discussion.

4.2.2 The continuous subalgebra

Another important example of a maximal abelian subalgebra is non-discrete. As an

introduction to this example, we consider all measurable functions from [0, 1] to C :

F [0, 1] := {f : [0, 1]→ C | f is measurable},
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where we use the standard Lebesgue measure µ on [0, 1]. We define a relation ∼ on

F [0, 1] by

f ∼ g ⇐⇒ µ({x ∈ [0, 1] : f(x) 6= g(x)}) = 0

We sometimes denote the latter condition µ(f 6= g) = 0. It is clear that ∼ is an

equivalence relation on F [0, 1], so we can define :

F [0, 1] := F [0, 1]/ ∼ .

We denote equivalence classes in F [0, 1] by [f ], where f ∈ F [0, 1] is a representative.

F [0, 1] is an algebra under the canonical operations

λf + [g] = [λf + g]

and

[f ][g] = [fg].

Lemma 4.2.1. The function

I2 : F [0, 1]→ [0,∞], [f ] 7→
∫
[0,1]

|f(x)|2dx

is well defined.

Proof. All we need to do is show that if [f ] = [g], then I2([f ]) = I2([g]), i.e. the

definition of I2 is independent of the choice of representative. However, if [f ] = [g],

then µ(f 6= g) = 0, so there is an A ⊂ [0, 1] such that f(x) = g(x) for all x ∈ X \ A
and µ(A) = 0, so : ∫

[0,1]

|f(x)|2dx =

∫
X\A
|f(x)|2dx

=

∫
X\A
|g(x)|2dx

=

∫
[0,1]

|g(x)|2dx.

So, indeed, I2([f ]) = I2([g]), i.e. I2 is well defined.
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Using this lemmma, we can define a new space, which we call the space of square-

integrable functions :

L2[0, 1] := {ψ ∈ F [0, 1] | I2(ψ) <∞}.

One of the most important results of basic functional analysis is that L2[0, 1] is a

Hilbert space with respect to the inner product 〈, 〉, given by :

〈[f ], [g]〉 =

∫
[0,1]

f(x)g(x)dx.

The equivalence relation ∼ is necessary in the construction of L2[0, 1] in order for

the inner product on L2[0, 1] to be positive definite. Note that the norm induced by

this inner product satisfies ‖ψ‖2 = I2(ψ).

There is a certain kind of analogy between L2[0, 1] and `2(N), by replacing sums

by integrals. Just as in the case of `2(N) one could again want to define the space of

bounded functions. Because we are dealing with equivalence classes of functions, we

need to define this property : we put

L∞[0, 1] := {ψ ∈ F [0, 1] | ∃f ∈ ψ : sup
x∈[0,1]

|f(x)| <∞}.

This is called the space of essentially bounded functions, coming with a natural

norm:

‖ψ‖(ess)∞ = inf
f∈ψ
{k ∈ [0,∞) : |f(x)| ≤ k∀x ∈ [0, 1]}.

If we include the operation [f ]∗ = [f ], then L∞[0, 1] becomes a C∗-algebra.

Now we have made our set-up : similar to the previous example, we want to regard

L∞[0, 1] as a subalgebra of B(L2[0, 1]). Again, we do this by means of a multiplication

operator :

M : L∞[0, 1]→ B(L2[0, 1]), ψ 7→Mψ,

where M[f ]([g]) = [fg].

Proposition 4.2.5. M is a well-defined injective, norm-preserving, ∗-homomorphism.

Proof. First of all, we check that the definition is independent of choice of represen-
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tatives. So suppose [f1] = [f2] ∈ L∞[0, 1] and [g1] = [g2] ∈ L2[0, 1]. Then

M[f1]([g1]) = [f1g1]

= [f1][g1]

= [f2][g2]

= [f2g2]

= M[f2]([g2]),

so indeed, the definition is independent of choice of representatives.

Next, we need to check that Mψ ∈ B(L2[0, 1]) for all ψ ∈ L∞[0, 1]. So let ψ ∈
Linfty[0, 1] and let f ∈ ψ be such that sup

x∈[0,1]
|f(x)| < ∞, say sup

x∈[0,1]
|f(x)| = k. Then

for any [g] ∈ L2[0, 1], we have :

I2([fg]) =

∫
[0,1]

|f(x)g(x)|2dx

=

∫
[0,1]

|f(x)|2|g(x)|2

≤ k2
∫
[0,1]

|g(x)|2

= k2I2([g]).

Since [g] ∈ L2[0, 1], we therefore have I2([fg]) <∞, i.e. [fg] ∈ L2[0, 1], so indeed

Mψ : L2[0, 1]→ L2[0, 1].

Furthermore, for the same f and g.

‖[fg]‖2 = I2([fg])

≤ k2I2([g])

= k2‖[g]‖2,

whence ‖Mψ([g])‖ = ‖[fg]‖ ≤ k‖[g]‖, so in fact Mψ ∈ B(L2[0, 1]). Also, by the

above inequality, ‖Mψ‖ ≤ ‖ψ‖(ess)∞ for all ψ ∈ L∞[0, 1]. Now let ψ ∈ L∞[0, 1] and let

ε > 0. Furthermore, let f ∈ ψ and define :

Af = {x ∈ [0, 1] : |f(x)| ≥ ‖ψ‖(ess)∞ − ε}.
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We claim that µ(Af ) 6= 0. We argue by contraposition, so suppose µ(Af ) = 0. Then

define h = f1Af . Since µ(Af ) = 0, [h] = [f ] = ψ. However, for all x ∈ [0, 1], we then

have |h(x)| < ‖ψ‖(ess)∞ − ε, so

sup
x∈[0,1]

|h(x)| ≤ ‖ψ‖(ess)∞ − ε.

Since [h] = ψ, then : ‖ψ‖(ess)∞ ≤ ‖ψ‖(ess)∞ − ε. This is a contradiction, so indeed

µ(Af ) 6= 0.

Therefore, 1Af 6= [0]. Furthermore, [1Af ] ∈ L2[0, 1], so we can compute :

‖M[f ]([1Af ])‖2 = ‖[f1Af ]‖2

=

∫
Af

|f(x)|2dx

≥ (‖ψ‖(ess)∞ − ε)2µ(Af )

= (‖ψ‖(ess)∞ − ε)2‖1Af‖2

Since [1Af ] 6= 0, then ‖Mψ‖ = ‖M[f ]‖ ≥ ‖ψ‖(ess)∞ − ε. Since ε > 0 was arbitrary, we

have ‖Mψ‖ ≥ ‖ψ‖(ess)∞ .

Therefore ‖Mψ‖ = ‖ψ‖(ess)∞ for all ψ ∈ L∞[0, 1], so M is indeed norm-preserving.

M is clearly a homomorphism, by definition of the algebraic operations on F [0, 1]

(i.e. λ[f ] + [g] = [λf + g] and [f ][g] = [fg]). To see that M also preserves the adjoint

operation, compute :

〈M[f ]∗([g]), [h]〉 = 〈M[f ]([g]), [h]〉 = 〈[fg], [h]〉

=

∫
[0,1]

f(x)g(x)h(x)dx

=

∫
[0,1]

g(x)f(x)h(x)dx

= 〈[g], [fh]〉

= 〈[g],M[f ]([h])〉.

So, indeed, Mψ∗ = (Mψ)∗ for all ψ ∈ L∞[0, 1]. Therefore M is indeed a ∗-

homomorphism.

Lastly, for injectivity, suppose that φ, ψ ∈ L∞[0, 1] such that Mφ = Mψ. Then
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Mφ−ψ = 0, so ‖φ − ψ‖(ess)∞ = ‖Mφ−ψ‖ = 0. Hence φ − ψ = 0, i.e. φ = ψ and M is

injective.

So, we can regard L∞[0, 1] as a C∗-subalgebra of B(L2[0, 1]), where we tacitly

identify L∞[0, 1] with its image under M. Of course, L∞[0, 1] is an abelian subalgebra.

We introduced this example since it is maximal abelian.

Theorem 4.2.1. L∞[0, 1] ⊆ B(L2[0, 1]) is maximal abelian.

Proof. L∞[0, 1] is abelian, so L∞[0, 1] ⊆ L∞[0, 1]′.

For the other inclusion, suppose that T ∈ L∞[0, 1]′. Note that I2([1]) = 1, so [1] ∈
L2[0, 1]. Therefore, we can define ψ = T ([1]) ∈ L2[0, 1]. We claim that ψ ∈ L∞[0, 1].

To see this, we argue by contraposition, so we suppose that ψ ∈ L∞[0, 1]. Now let

f ∈ ψ and for every N ∈ N, define :

AN := {x ∈ [0, 1] : |f(x)| ≥ N}.

Since ψ /∈ L∞[0, 1], for every N ∈ N, µ(AN) 6= 0. Since 1AN ∈ L∞[0, 1], we can

compute :

T ([1AN ]) = T (M[1AN ]([1])) = M[1AN ](T ([1])) = M[1AN ]([f ]) = [f1AN ].

Therefore, we also have :

N2µ(AN) ≤
∫
AN

|f(x)|2dx

= ‖[f1AN ]‖2

= ‖T ([1AN ])‖2

≤ ‖T‖2‖[1AN ]‖2

= ‖T‖2µ(AN).

Since µ(AN) 6= 0, N ≤ ‖T‖ for all N ∈ N. However, T ∈ B(L2[0, 1]), so this is a

contradiction. Hence ψ ∈ L∞[0, 1].
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We now claim that T + Mψ. To see this, let φ ∈ L2[0, 1] and let g ∈ φ. For each

n ∈ N define

Un := {x ∈ [0, 1] : |g(x)| ≤ n},

and gn := g1Un . Note that the sequence of functions fi : [0, 1] → [0,∞) defined by

fi(x) = |gi(x)|2 is pointwise non-decreasing and has f : [0, 1]→ [0,∞), f(x) = |g(x)|2,
as its pointwise limit. Hence, by Lebesgue’s monotone convergence theorem,

lim
n→∞
‖[gn]‖2 = lim

n→∞

∫
[0,1]

|gn(x)|2dx

=

∫
[0,1]

|g(x)|2dx

= ‖[g]‖2.

Furthermore,

‖[g]− [gn]‖2 =

∫
[0,1]\Un

|g(x)|2dx

=

∫
[0,1]

|g(x)|2dx−
∫
Un

|g(x)|2dx

= ‖[g]‖2 − ‖[gn]‖2,

whence lim
n→∞
‖[g]− [gn]‖ = 0, i,e, lim

n→∞
[gn] = [g].

Choose h ∈ ψ. Since [gn] ∈ L∞[0, 1], we can compute :

T ([gn]) = T (M[gn]([1]))

= M[gn](T ([1]))

= M[gn]([h])

= [gnh]

= M[h]([gn])

= Mψ([gn]).
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Then also, by continuity of both T and Mψ,

T ([g]) = T ( lim
n→∞

[gn])

= lim
n→∞

T ([gn])

= lim
n→∞

Mψ([gn])

= Mψ( lim
n→∞

[gn])

= Mψ([g]).

Therefore, T (φ) = Mψ(φ). Since φ ∈ L2[0, 1] was arbitrary, T = Mψ. So, T ∈
L∞[0, 1].

Hence L∞[0, 1]′ ⊆ L∞[0, 1].

Therefore, L∞[0, 1]′ = L∞[0, 1], i.e. L∞[0, 1] is maximal abelian.

Along the lines of the definition of the discrete subalgebra of cardinality j (i.e.

Ad(j)), we introduce a special short notation for the subalgebra L∞[0, 1] ⊆ B(L2[0, 1].

Definition 4.2.2. We denote the maximal abelian subalgebra L∞[0, 1] of B(L2[0, 1])

by Ac, realized via multiplication operator. We call Ac the continuous subalgebra.

4.2.3 The mixed subalgebra

Combining two different examples of maximal abelian subalgebras, one can construct

another example of a maximal abelian subalgebra.

Proposition 4.2.6. Suppose A1 ⊆ B(H1) and A2 ⊆ B(H2) are both maximal abelian

C∗-subalgebras. Then A1 ⊕ A2 ⊆ B(H1 ⊕H2) is maximal abelian.

Proof. Since A1 ⊕ A2(j) is a pointwise defined subalgebra of B(H1 ⊕ H2) and both

A1 and A2 are abelian, A1 ⊕ A2 is abelian.

Therefore A1 ⊕ A2 ⊆ (A1 ⊕ A2)
′.

For the other way, suppose that T ∈ (A1 ⊕ A2)
′. Define T1 = π1 ◦ T ◦ i1 and

T2 = π2 ◦ T ◦ i2. Since T is bounded, T1 ∈ B(H1) and T2 ∈ B(H2).
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Now note that for any x ∈ H1 and y ∈ H2,

T (x, y) = T (i1(x) + i2(y))

= T (i1(x)) + T (i2(y))

= (T ◦ (1, 0) ◦ i1)(x) + (T ◦ (0, 1) ◦ i2)(y)

= ((1, 0) ◦ T ◦ i1)(x) + ((0, 1) ◦ T ◦ i2)(y)

= ((π1 ◦ T ◦ i1)(x), 0) + (0, (π2 ◦ T ◦ i2)(y))

= (T1(x), 0) + (0, T2(y))

= (T1(x), T2(y)),

where we used the fact that T commutes with (1,0) and (0,1), since T ∈ (A1 ⊕ A2)
′.

Therefore, T = (T1, T2). Now, for all a ∈ A1,

(T1 ◦ a, 0) = T ◦ (a, 0) = (a, 0) ◦ T = (a ◦ T1, 0)

Therefore, T1 ∈ A′1 = A1. Likewise, T2 ∈ A2. Hence T = (T1, T2) ∈ A1 ⊕ A2, i.e.

(A1 ⊕ A2)
′ ⊆ A1 ⊕ A2. Therefore

(A1 ⊕ A2)
′ = A1 ⊕ A2,

i.e. A1 ⊕ A2 ⊆ B(H1 ⊕H2) is maximal abelian.

Since we are interested in the question whether a maximal abelian subalgebra

possesses the Kadison-Singer property, we would like to make a connection between

the Kadison-Singer property for a direct sum A1⊕A2 and the Kadison-Singer property

of A1 and A2 separately. It turns out that we can do this. First of all, we need to

describe the characters (and hence the pure states) of a direct sum. For this, note

that for a state f ∈ S(Ai), the pullback over the projection πi : A1 ⊕ A2 → Ai, i.e.

π∗i (f) = f ◦ πi, gives a map πi : A1 ⊕ A2 → C.

Proposition 4.2.7. Suppose A1 and A2 are both C∗-algebras. Then

Ω(A1 ⊕ A2) = π∗1(Ω(A1)) ∪ π∗2(Ω(A2)).
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Proof. Suppose f ∈ Ω(A1 ⊕ A2). Then

f((0, 1))2 = f((0, 1)2) = f((0, 1)),

so f((0, 1)) ∈ {0, 1}. Likewise f((1, 0)) ∈ {0, 1}. However, we also have

f((0, 1)) + f((1, 0)) = f((1, 1)) = f(1) = 1,

so there are two cases. Either f((1, 0)) = 1 and f((0, 1)) = 0, or f((1, 0)) = 0 and

f((0, 1)) = 1.

Suppose the first case is true. Then define g1 : A1 → C by g(a) = f(a, 0). Then

g(1) = 1, so g is non-zero and for any a1, A2 ∈ A1 we have

g(a1a2) = f((a1a2, 0)) = f((a1, 0))f((a2, 0) = g(a1)g(a2)),

so g ∈ Ω(A1). Furthermore, for any (a1, a2) ∈ A1 ⊕ A2 we have

f((a1, a2)) = f((a1, 0)) + f((0, a2))

= f((a1, 0))f((1, 0)) + f((0, a2))

= f(a1, 0)

= g(a1)

= (g ◦ π1)((a1, a2)),

i.e. f = π∗1(g), so f ∈ π∗1(Ω(A1)).

If the second case is true, it follows likewise that f ∈ π∗2(S(A2)). Hence

Ω(A1 ⊕ A2) ⊆ π∗1(Ω(A1)) ∪ π∗2(Ω(A2)).

Now suppose that h ∈ π∗1(Ω(A1)). Then h = k ◦ π1 for some k ∈ Ω(A1), so

h(1) = h((1, 1)) = k(1) = 1,

i.e. h is non-zero. Furthermore, h is clearly linear and for any (a1, a2), (b1, b2) ∈
A1 ⊕ A2, we have

h((a1, a2)(b1, b2)) = h((a1b1, a2b2)) = k(a1b1) = k(a1)k(b1) = h((a1, a2))h((b1, b2)),
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i.e. h ∈ Ω(A1 ⊕ A2). Therefore, π∗1(A1) ⊆ Ω(A1 ⊕ A2).

Likewise, π∗2(A2) ⊆ Ω(A1 ⊕ A2).

So indeed,

Ω(A1 ⊕ A2) = π∗1(Ω(A1)) ∪ π∗2(Ω(A2)).

The above proposition gives us information about the pure states on a direct sum

of abelian subalgebras, since the pure states are exactly the characters. Next, we need

to make a connection between the concepts of positivity and direct sums of operator

algebras.

Lemma 4.2.2. Suppose H1 and H2 are Hilbert spaces and b ∈ B(H1⊕H2) is positive.

Then for j ∈ {1, 2}, πjbij ∈ B(Hj) is positive.

Proof. Let (x, y) ∈ H1 ⊕H2. Then compute :

〈(π1bi1)(x), x〉 = 〈(π1b)(x, 0), x〉

= 〈(π1b)(x, 0), x〉+ 〈(π2b)(x, 0), 0〉

= 〈b(x, 0), (x, 0)〉 ≥ 0,

since b is positive. Therefore, π1bi1 is positive. Likewise, π2bi2 is positive.

We use these results to prove the following theorem about the connection between

direct sums and the Kadison-Singer property.

Theorem 4.2.2. Suppose H1 and H2 are Hilbert spaces. Furthermore, let A1 ⊆
B(H1) and A2 ⊆ B(H2) be abelian C∗-subalgebras such that A1 ⊕ A2 ⊆ B(H1 ⊕H2)

has the Kadison-Singer property. Then A1 ⊆ B(H1) and A2 ⊆ B(H2) have the

Kadison-Singer property.

Proof. Suppose f ∈ ∂eS(A1) and g1, g2 ∈Ext(f)⊆ B(H1). Then f ∈ Ω1, so by lemma

π∗1(f) ∈ Ω(A1 ⊕ A2) = ∂eS(A1 ⊕ A2).

Now define the linear functional k1, k2 : B(H1⊕H2)→ C by kj(b) = gj(π1bi1) for

all b ∈ B(H1 ⊕H2) and j ∈ {1, 2}, kj(1) = gj(π1i1) = gj(1) = 1, since gj is a state.

Furthermore for a positive b ∈ B(H1 ⊕ H2), π1bi1 ∈ B(H1 is positive by previous

lemma.

Therefore, kj(b) = gj(π1bi1) ≥ 0, since gj is positive.
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Hence k1, k2 ∈ S(B(H1 ⊕H2)).

Now, for an element (a1, a2) ∈ A1 ⊕ A2, π1(a1, a2)i1 = a1, so

kj((a1, a2)) = gj(π1(a1, a2)i1)

= gj(a1)

= f(a1)

= (f ◦ π1)(a1, a2)

= π∗1(f)((a1, a2)),

i.e. k1, k2 ∈Ext(π∗1(f)). However, by assumption, A1 ⊕ A2 ⊆ B(H1 ⊕ H2) has the

Kadison-Singer property, so Ext(π∗1(f)) has at most one element, i.e. k1 = k2.

For any b ∈ B(H1), b = π1(b, 0)i1, so we have

g1(b) = g1(π1(b, 0)i1) = k1((b, 0)) = k2((b, 0)) = g2((π1(b, 0)i1)) = g2(b),

i.e. g1 = g2. Therefore, Ext(f) has at most one element. Hence, Ext(f) has exactly

one element.

Therefore, A1 ⊆ B(H1) has the Kadison-Singer property.

Likewise, A2 ⊆ B(H2) has the Kadison-Singer property.

As a special example of a direct sum, we can combine the discrete subalgebra

Ad(j) for some 1 ≤ j ≤ ℵ0 with the continuous example Ac. To do this, define

Hj := L2[0, 1]⊕ `2(j).

We will call the maximal abelian subalgebra Ac⊕Ad(j) ⊆ B(Hj) the mixed subalge-

bra.

As it will turn out later, this is in some way the only direct sum that we need to

consider.

By now, we have constructed three different examples : the discrete, continuous

and mixed subalgebra. These are all examples with a separable Hilbert space. In our

search for examples of maximal abelian subalgebras that satisfy the Kadison-Singer

property, we will restrict ourselves to this kind of Hilbert spaces, since it turns out that

we can make a complete classification of abelian subalgebras with the Kadison-Singer
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property when we only consider separable Hilbert spaces.

So far we prove some important results in this chapter. These are :

1. A subalgebra is maximal abelian iff it is self commutant.

2. Only maximal abelian unital C∗-subalgebras possibly can have the Kadison-

Singer property.

So it reduces our job. Now we only need to classify all possible maximal abelian

unital C∗-subalgebras and check among these which has the Kadison-Singer

property.

3. The subalgebra `∞(N) ⊆ B(`2(N)) is maximal abelian.

4. The subalgebra L∞[0, 1] ⊆ B(L2[0, 1]) is maximal abelian.

5. SupposeA1 ⊆ B(H1) andA2 ⊆ B(H2) are both maximal abelian C∗-subalgebras.

Then A1 ⊕ A2 ⊆ B(H1 ⊕H2) is maximal abelian.

6. Suppose H1 and H2 are Hilbert spaces. Furthermore, let A1 ⊆ B(H1) and

A2 ⊆ B(H2) be abelian C∗-subalgebras such that A1 ⊕ A2 ⊆ B(H1 ⊕ H2) has

the Kadison-Singer property. Then A1 ⊆ B(H1) and A2 ⊆ B(H2) have the

Kadison-Singer property.

In the next chapter we are going classify the maximal abelian unital C∗-subalgebras

upto unitary equivalence.
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Chapter 5

Classification of MASA

Recall that we are considering maximal abelian C∗-subalgebras of B(H), for some

Hilbert space H. Note that a maximal abelian C∗-subalgebra A ⊆ B(H) satisfies

A′ = A and A′ is a von Neumann algebra. Therefore, every maximal abelian C∗-

subalgebra is a von Neumann algebra. Furthermore, every von Neumann algebra is

a C∗-algebra, so certainly every maximal abelian von Neumann algebra (i.e. a von

Neumann algebra A that satisfies A′ = A) is a maximal abelian C∗-algebra. Hence we

see that the maximal abelian von Neumann algebras are exactly the maximal abelian

C∗-algebras.

We will first show that it is only necessary to classify all maximal abelian sub-

algebras up to unitary equivalence, in order to determine whether they satisfy the

Kadison-Singer property. Next, we restrict ourselves to separable Hilbert spaces and

by considering maximal abelian subalgebras to be von Neumann algebras, we can

classify these subalgebras up to unitary equivalence, by using the existence and prop-

erties of minimal projections. Together, this greatly simplifies the classification of

subalgebras with the Kadison-Singer property in the case of separable Hilbert spaces.

5.1 Unitary equivalence

The classification of maximal abelian von Neumann algebras is up to so-called unitary

equivalence. For this, we need unitary elements.

Definition 5.1.1. Suppose H and H ′ are Hilbert spaces. Then u ∈ B(H,H ′ is called

unitary if for all x, y ∈ H, 〈ux, uy〉 = 〈x, y〉 and u(H) = H ′.
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The above conditions for being unitary are not always the easiest to check. How-

ever, there is an equivalent definition.

Proposition 5.1.1. Suppose H,H ′ are Hilbert spaces and u ∈ B(H,H ′). Then u is

unitary if and only if u∗u = 1 and uu∗ = 1.

Proof. Suppose u is unitary. Then 〈u∗ux, x〉 = 〈ux, ux〉 = 〈x, x〉 for every x ∈ H, so

we have u∗u = 1.

Next, let x′ ∈ H ′. Then x′ = u(y) for some y ∈ H, so

〈uu∗x′, x′〉 = 〈uu∗uy, uy

= 〈uy, uy〉

= 〈x′, x′〉.

Since x′ ∈ H ′ was arbitrary, uu∗ = 1.

For the converse, suppose that uu∗ = 1 and u∗u = 1. Then for any x, y ∈ H,

〈ux, uy〉 = 〈u∗ux, y〉

= 〈x, y〉.

Furthermore, for x′ ∈ H ′, x′ = u(u∗x′), so x′ ∈ u(H), i.e. H ′ = u(H). So u is indeed

unitary.

Using unitary elements, we can define the notion of unitary equivalence of subal-

gebras of B(H).

Definition 5.1.2. Suppose H1 and H2 are Hilbert spaces and A1 ⊆ B(H1), A2 ⊆
B(H2) are subalgebras. Then A1 is called unitarily equivalent to A2 if there is a

unitary u ∈ B(H1, H2) such that uA1u
∗ = A2. We denote this by A1

∼= A2.

The following lemma is easily proven, but it is essential for our classification.

Lemma 5.1.1. Unitary equivalence is an equivalence relation.

Proof. Suppose A1 ⊆ B(H1), A2 ⊆ B(H2) and A3 ⊆ B(H3) such that A1
∼= A2 and

A2
∼= A3.

Then 1 ∈ B(H1) is unitary and 1A11
∗ = A1.
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Therefore unitary equivalence is reflexive.

Since A1
∼= A2, there is a unitary u ∈ B(H1, H2) such that uA1u

∗ = A2. Now

u∗ ∈ B(H1, H2) is unitary too, and

u∗A2u = u∗uA1u
∗u = A1.

Hence unitary equivalence is symmetric.

Since A2
∼= A3, there is a unitary v ∈ B(H2, H3) such that vA2v

∗ = A3. Then

vu ∈ B(H1, H3) is a unitary too, and

vuA1(vu)∗ = vuA1u
∗v∗ = vA2v

∗ = A3.

So, unitary equivalence is transitive.

Hence A1
∼= A1, A2

∼= A1 and A1
∼= A3.

Therefore, unitary equivalence is an equivalence relation.

One of the crucial steps in this chapter is the following theorem: it shows that

we only have to consider subalgebras up to unitary equivalence when determining

whether the subalgebra satisfies the Kadison-Singer property.

Theorem 5.1.1. Suppose that H1 and H2 are Hilbert spaces and A1 ⊆ B(H1) and

A2 ⊆ B(H2) are unital abelian subalgebras that are unitarily equivalent. Then A1 has

the Kadison-Singer property if and only if A2 has the Kadison-Singer property.

Proof. Suppose that A1 has the Kadison-Singer property. By assumption, there is a

unitary u ∈ B(H1, H2) such that uA1u
∗ = A2.

Now let f ∈ ∂eS(A2). Then define g : A1 → C by g(a) = f(uau∗). We first claim

that g ∈ S(A1). To see this, first let a ∈ A1 and observe that

g(a∗a) = f(ua∗au∗) = f((au∗)∗(au)) ≥ 0,

since f is positive. Hence g is positive. Furthermore, g(1) = f(uu∗) = f(1) = 1, so g

is unital too. Hence, indeed g ∈ S(A1).

Next, we prove that in fact g ∈ ∂eS(A1). To see this, suppose that h1, h2 ∈ S(A1)

and t ∈ (0, 1) such that g = th1 + (1− t)h2.
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Now define k1 : A2 → C by k1(a) = h1(u
∗au) for all a ∈ A2 and likewise define

k2 : A2 → C by k2(a) = h2(u
∗au) for all a ∈ A2. Then by the same reasoning as

above, k1, k2 ∈ S(A2). Furthermore, for a ∈ A2,

f(a) = f(uu∗auu∗)

= g(u∗au)

= th1(u
∗au) + (1− t)h2(u∗au)

= tk1(a) + (1− t)k2(a),

i.e. f = tk1 + (1− t)k2. However, f ∈ ∂eS(A2) by assumption, so f = k1 = k2. Then

for a ∈ A1 :

h1(a) = h1(u
∗uau∗u)

= k1(uau
∗)

= f(uau∗)

= g(a),

i.e. h1 = g. Likewise, h2 = g, so indeed g ∈ ∂eS(A1).

We want to prove that Ext(f) contains exactly one element. By Hahn-Banach

theorem, we know that Ext(f)6= ∅.
Therefore, suppose that c, d ∈Ext(f) ⊆ S(B(H2)). Then define c̃ : B(H1) → C

by c̃(b) = c(ubu∗) and likewise d̃ : B(H1) → C by d̃(b) = d(ubu∗). Then by the same

reasoning as above, c̃, d̃ ∈ S(B(H1)).

Now for a ∈ A1, uau
∗ ∈ A2, so c̃(a) = c(uau∗) = f(uau∗) = g(a), since c ∈

Ext(f). Hence c̃ ∈ Ext(g). Likewise, d̃ ∈ Ext(g). However, A1 has the Kadison-

Singer property, so Ext(g) has exactly one element, i.e. c̃ = d̃,

Let b ∈ B(H2). Then

c(b) = c(uu∗buu∗)

= c̃(u∗bu)

= d̃(u∗bu)

= d(uu∗buu∗)

= d(b),
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i.e. c = d. Hence Ext(f) contains exactly one element, so A2 has the Kadison-Singer

property.

Likewise, if A2 has the Kadison-Singer property, then A1 has the Kadison-Singer

property.

One of the crucial steps in this chapter is the following theorem: it shows that

we only have to consider subalgebras up to unitary equivalence when determining

whether the subalgebra satisfies the Kadison-Singer property.

5.2 Classification of MASA

In this section we are going to give the classification of maximal abelian unital C∗-

subalgebra upto unitary equivalence. Here we are going to use two key concepts here

:

1. the number of minimal projections of the algebra.

2. the question whether the whole algebra is generated by these minimal projec-

tions.

Beforeing proving the main theorem, we are going give some results, that will useful

in our discussion :

To be more precise, write P (A) = P(H) ∩ A for the set of projections in some

maximal abelian von Neumann algebras A ⊆ B(H). Now write, Pm(A) for the set of

minimal projections in P (A). The important results are given below :

1. Let 1 ≤ j ≤ ℵ0. Then the minimal projections of the discrete subalgebra is

given by

Pm(Ad(j)) = {δn : j → C | n ∈ j},

where δn(m) = δnm.

2. Ac has no minimal projections.

3. Let 1 ≤ j ≤ ℵ0. Then combining the above results the minimal projections in

the mixed subalgebra is given by

Pm(Ac ⊕ Ad(j)) = {(0, δn) : n ∈ j}.
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4. Suppose H is a separable Hilbert space and A ⊆ B(H) a maximal abelian von

Neumann algebra. Then Pm(A) is countable.

5. Let 1 ≤ j ≤ ℵ0. Then the discrete subalgebra is generated by its minimal

projections, i.e.

〈Pm(Ad(j))〉vN = Ad(j),

where 〈X〉vN denotes the von Neumann algebra generated by the set X.

6. Suppose H is a separable Hilbert space and A ⊆ B(HJ) is a maximal abelian

von Neumann algebra that has no minimal projection. Then A is unitarily

equivalent to Ac.

7. Suppose H is a separable Hilbert space and A ⊆ B(H) is a maximal abelian von

Neumann algebra that is generated by its minimal projections. Furthermore,

let j be the cardinality of Pm(A). Then A is unitarily equivalent to Ad(j).

8. Let H be a separable Hilbert space and A ⊆ B(H) a maximal abelian von

Neumann algebra. Furthermore, let 1 ≤ j ≤ ℵ0 and suppose that the cardinality

of Pm(A) = j and 〈Pm(A)〉vN 6= A. Then A is unitarily equivalent to Ad(j)⊕Ac.

For detailed proof of these results please refer [6].

So, we can distinguish our three examples (the discrete, continuous and mixed sub-

algebras) by considering minimal projections and the question whether they generate

the whole algebra. Note that these two properties together divide up the collection

of maximal abelian subalgebras in three classes:

• There is no minimal projection (like Ac).

• There are minimal projections that do not generate the whole algebra (like

Ac ⊕ Ad(j))

• There are minimal projections that do generate the whole algebra (like Ad(j)).

Theorem 5.2.1. Suppose H is a separable Hilbert space and A ⊆ B(H) is a maximal

abelian C∗-subalgebra. Then A is unitarily equivalent to exactly one of the following

:

1. Ac ⊆ B(L2[0, 1])
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2. Ad(j) ⊆ B(`2(j)) for some 1 ≤ j ≤ ℵ0

3. Ad(j)⊕ Ac ⊆ B(`2(j)⊕ L2[0, 1]) for some 1 ≤ j ≤ ℵ0.

Proof. We are not going to proved this theorem in minor detains. We will give the

key ideas of the proof and will use certain results of to prove this theorem.

The proof of this theorem relies on the notion of minimal projections.

A projection p on a Hilbert space H is a linear operator satisfying p2 = p∗ = p

It is well known that such operators bijectively corresponds to the closed linear

subspaces p(H) of H that form their images.

More generally, a projection in a C∗-algebra A ia an element p ∈ A that satisfies

the same equalities (i.e. p2 = p∗ = p). On the set P (A) consisting of the projections

in A, we can define a natural order, which coincides with the notion of positivity for

A.

For example, in the algebra `∞(N), the projections are exactly the indicator func-

tions 1W of subsets W ⊆ N and 1W ≤ 1Y if and only if W ⊆ Y.

The zero element of A is the minimal element of P (A) with respect to this order,

but we say aprojection is a minimal projection if it is a minimal element of the ordered

set P (A) \ {0}.
One can easily check that in the case of `∞(N), the minimal projections are then

exactly the indicator functions of single points. Furthermore, the whole algebra is

generated by these indicator functions of single points. For the finite dimensional

case, i.e. Dn(C) where n ∈ N, that is exactly the same.

However, for the continuous subalgebra L∞[0, 1] the situation is different. Again,

the projections are indicator functions, but since for any (measurable) set A ⊆ [0, 1]

such that µ(A) > 0, there is a B ⊆ A such that 0 < µ(B) < µ(A), this algebra has

no minimal projections and is therefore certainly not generated by them.

The mixed subalgebra keeps the middle ground between the discrete and the

continuous case : it does have minimal projections (coming from the discrete part),

but is not generated by them.

Hence we see that the discrete, continuous and mixed cases can be distinguished

by considering the number of minimal projections and the question wheather the

whole algebra is generated by these minimal projections. As it turns out these two

pieces of information classify all maximal abelin unital C∗-subalgebras on separable

Hilbert spaces.
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After giving an overview of the theorem, it’s time to prove it.

Consider Pm(A). Define j := the cardinality of Pm(A). By result (4), 0 ≤ j ≤ ℵ0.
If j = 0, then by (6), A is unitarily equivalent to Ac.

If 1 ≤ j ≤ ℵ0, there is a distinction between the cases 〈Pm(A)〉vN = A and

〈Pm(A)〉vN 6= A. In the first case, by (7), A is unitarily equivalent to Ad(j). In the

second case, A is unitarily equivalent to Ad(j)⊕ Ac by (8).

So A is indeed unitary equivalent to one of the three mentioned cases. Since

the three cases have different properties concerning its minimal projections, they are

mutually unitarily inequivalent, so A is unitary equivalent to exactly one of them.

This classification has the following very important corollary for our main goal of

classifying all subalgebras with the Kadison-Singer property.

Corollary 5.2.1. Suppose H is a separable Hilbert space and A ⊆ B(H) a unital

abelian subalgebra that has the Kadison-Singer property. Then A is unitarily equiva-

lent to either Ad(j) for some 1 ≤ j ≤ ℵ0, Ac or Ad(j)⊕ Ac for some 1 ≤ j ≤ ℵ0.

Proof. We know that A is a maximal abelian C∗-algebra, since A has the Kadison-

Singer property. Hence it is also a maximal abelian von Neumann algebra. Therefore,

by above theorem A is unitarily equivalent to either Ad(j) for some 1 ≤ j ≤ ℵ0, Ac
or Ad(j)⊕ Ac for some 1 ≤ j ≤ ℵ0.

In rest of this text, we will determine whether the discrete, continuous and mixed

subalgebra have the Kadison-Singer property. So far, we only proved that Ad(j) has

the Kadison-Singer property if j ∈ N.
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Chapter 6

The Kadison-Singer problem: An

overview

In the last chapter we classify the possible subalgebras that can have the Kadison-

Singer property. In this chapter we will discuss whether the discrete, continuous and

the mixed subalgebrs has the Kadison-Singer property. Here we are not going prove

the results in detail. We will give a whole overview of the things.

Before going to other things we will define normal state and singular state.

Actually in the finite dimensional case we can easily characterize the states and pure

states. All the states in finite dimension are normal states. But certainly this is not

the case for infinite dimension. There are states on B(H), which are not of the form

as in finite dimension.

6.1 Normal states

In chapter 2, we described all states on the matrix algebra Mn(C) using density

operators. In fact, using the spectral decomposition of density operators, we saw that

every state on Mn(C) was given by

ω(a) =
n∑
i=1

pi〈vi, avi〉,

where {vi}ni=1 is some orthonormal basis of Cn and {pi}ni=1 ⊆ [0, 1] is such that∑n
i=1 pi = 1. We can generalize these states to the infinite dimensional case.
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Definition 6.1.1. For any orthonormal base {vi}∞i=1 of `2(N) and sequence {pi}∞i=1 ⊆
[0, 1] such that

∑∞
i=1 pi = 1, the functional f : B(`2(N))→ C defined by

f(a) =
∞∑
i=1

pi〈vi, avi〉,

is a state on B(`2(N)). Such states are called normal states.

In contrary to the finite dimensional case, the set of normal states do not exhaust

the set of all states on B(`2(N)).

It is clear that for any orthogonal set of projections {ei}i∈I , we have

f(
∑
i∈I

ei) =
∑
i∈I

f(ei)

for any normal state f.

Theorem 6.1.1 (von Neumann). A sate ω on B(H) is normal if and only if

ω(
∑
i∈I

ei) =
∑
i∈I

ω(ei)

for any countable family eii∈I of mutually orthogonal projections (this is similar to

the countable additivity condition in the definition of a measure)

In contrast to normal states, there are singular states.

Definition 6.1.2. Singular states are states that annihilate (i.e. vanishes) all one-

dimensional projections and thereby all compact operators.

So we can check that, singular states are not normal. In fact, any state is either

normal, or singular, or it can be written as a convex combination of a normal and a

singular state.

Corollary 6.1.1. Every pure state is either normal or singular

Proof. This corollary follows from the above argument.

It is however a non-trivial matter to write down states on B(H) that are not

normal.
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Proposition 6.1.1. Let A ⊆ B(H) be a MASA (and hence a von Neumann algebra).

Then any normal pure state on A has a unique extension to B(H).

Proof. Using density operators, this can be proved as in the finite-dimensional case.

6.2 Kadison-Singer conjecture

From last section, it follows that in looking for possible pure states on A without

unique extensions to B(H), one necessarily enters the realm of singular states. As

we noted, these are hard to grasp, and having already encountered the Hahn-Banach

theorem in this context, it may not be surprising that the world of ultrafilters and

the like plays a role in the analysis of the Kadison-Singer property. Furthermore, we

are not able to treat the singular states on two different MASA’s in the same way;

each MASA needs a diffirent approach.

Let us start with the continuous case, Kadison-Singer proved in their original

article from 1959 that the continuous subalgebra does not have the Kadison-Singer

property. Twenty years latter, in 1979, Joel Anderson gave a more straightforward

proof of the same fact, and also improved upon it. He proved that there is no pure

state on the continuous subalgebra at all that extends in a unique way to a pure state

on B(L[0, 1]), which is definitely stronger than the negation of having the Kadison-

Singer property. Anderson used the Stone-Cech compactification of N (realized via

ultrafilters) in order to able to describe all pure states on Ac. A careful and tricky

argument then gave the desired result.

Theorem 6.2.1. Ac does not have the Kadison-Singer property.

Proof. For the detailed proof of this theorem please refer chapter 6 [6]

So, in light of the above theorem, we have now eliminated the continuous subal-

gebra from the list of algebras that could possibly have the Kadison-Singer property,

However, we can also eliminate the mixed subalgebra by this following corollary.

Corollary 6.2.1. Suppose 1 ≤ j ≤ ℵ0. Then Ad(j)⊕ Ac ⊆ B(Hj) does not have the

Kadison-Singer property.
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Proof. We know that if a direct sum of algebras has the Kadison-Singer property,

then all summands must have the Kadison-Singer property too. Hence the fact that

the continuous subalgebra does not have the Kadison-Singer property implies that

the mixed subalgebra does not have the Kadison-Singer property.

Now that we have eliminated the continuous and mixed subalgebra of our list,

we can make a new step towards our classification of abelian C∗-subalgebras with

the Kadison-Singer property: only the discrete subalgebra can possibly have this

property. The proof of the following corollary mainly serves as a summary of our

results so far.

Corollary 6.2.2. Suppose H is a separable Hilbert space and A ⊆ B(H) is a uni-

tal abelian C∗-subalgebra that has the Kadison-Singer property. Then A is unitarily

equivalent to Ad(j) ⊆ B(`2(j)) for some 1 ≤ j ≤ ℵ0.

Proof. The proof this immediately follows by combining the earlier results.

The natural question that now arises is whether we can reduce our list of abelian

C∗-algebras that possibly have the Kadison-Singer property even further. Note that

we have already proven in lemma 2.3.1 that Ad(j) has the Kadison-Singer property

for j ∈ N. Hence the only open question is whether Ad(ℵ0) = `∞(N) ⊆ B(`2(N)) has

the Kadison-Singer property. Richard Kadison and Isadore Singer ([8]) formulated

this question in 1959 and believed that the answer was negative.

This open question became known as the Kadison-Singer conjecture and was an-

swered in 2013, by Adam Marcus, Daniel Spielman and Nikhil Srivastava. Despite

the belief of Kadison and Singer, it was proven that `∞(N) ⊆ B(L2[0, 1]) in fact does

have the Kadison-Singer property.

Theorem 6.2.2. Any pure state on the abelian von Neumann algebra `∞(N), realized

as multiplication operators on the Hilbert space `2(N), has a unique extension to a

(necessarily pure) state on B(`2(N)).

In other words, `∞(N) ⊆ B(`2(N)) has the Kadison-Singer property.

Proof. For the detailed proof please refer [6], and [7]

We will end this chapter by giving the history of the Kadison-Singer problem. In

the years that followed, many people worked on this problem. Before the turn of the

century, the most notable progress was made by the aforementioned Anderson. He
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straightened out some of the details in the article by Kadison and Singer and refor-

mulated what later became known as the paving conjecture. This is a statement

that is equivalent to the Kadison–Singer conjecture and says the following:

For every ε > 0 there is an lε ∈ N such that for all a ∈ B(`3(N)) that satisfy

diag(a) = 0, there exists a set of projections {pi}lεi=1 ⊆ `∞(N) such that

lε∑
i=1

pi = 1

and

‖piapi‖ ≤ ε‖a‖

for every i ∈ {1, . . . , lε}.
Here, we used the function

diag(a) : N→ C

which is defined by

diag(a)(n) = 〈en, aen〉.

The strength and difficulty in proving this conjecture is contained in the uniformity

of lε: there is one fixed lε that should work for all a.

In turn, using Tychonoff’s theorem, it can be shown that this paving theorem

for operators on `2(N) is equivalent to a paving theorem for matrices. To be more

precise, the Kadison–Singer conjecture is equivalent to:

For every ε > 0 there is an lε ∈ N such that for all a ∈Mn(C) such that diag(a) =

0, there is a set of diagonal projections

{pi}lεi=1 ⊆ Dn(C)

such that
lε∑
i=1

pi = 1

and

‖piapi‖ ≤ ε‖a‖.

This equivalence is quite remarkable, since we can now use tools of linear algebra
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to draw conclusions about the infinite dimensional discrete algebra.

In 2004, Nik Weaver formulated a new conjecture, which he showed was equivalent

to the paving conjecture. Weaver’s conjecture was reformulated by Terence Tao

and finally, this problem was proven by Adam Marcus, Daniel Spielman and Nikhil

Srivastava in 2013, by using the theory of random matrices, real stable polynomials

and some new tools from linear algebra.
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