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Abstract

Can we improve detection in the thermal domain by bor-
rowing features from rich domains like visual RGB? In this
paper, we propose a ‘pseudo-multimodal’ object detector
trained on natural image domain data to help improve the
performance of object detection in thermal images. We as-
sume access to a large-scale dataset in the visual RGB do-
main and relatively smaller dataset (in terms of instances)
in the thermal domain, as is common today. We propose the
use of well-known image-to-image translation frameworks
to generate pseudo-RGB equivalents of a given thermal im-
age and then use a multi-modal architecture for object de-
tection in the thermal image. We show that our framework
outperforms existing benchmarks without the explicit need
for paired training examples from the two domains. We also
show that our framework has the ability to learn with less
data from thermal domain when using our approach.

1. Introduction

As indicated by the recent fatalities [29], the current sen-
sors in self-driving vehicles with level 2 and level 3 auton-
omy (lacking thermal imaging) do not adequately detect ve-
hicles and pedestrians. Pedestrians are especially at risk af-
ter dark, when 75% of the 5,987 U.S. pedestrian fatalities
occurred in 2016 [33]. Thermal sensors perform well in
such conditions where autonomy level 2 and level 3 sensor-
suite technologies are challenged. As is well-known, ther-
mal IR cameras are relatively more robust to illumination
changes, and can thus be useful for deployment both dur-
ing the day and night. In addition, they are low-cost, non-
intrusive and small in size. Consequently, thermal IR cam-
eras have become increasingly popular in applications such
as autonomous driving recently, as well as in other main-
stream applications such as security and military surveil-
lance operations. Detection and classification of objects

Figure 1. Left: Detection with single mode Faster-RCNN; Middle:
Detection using the proposed method; Right: Annotated Ground
Truth as provided in FLIR dataset [13].

in thermal imagery is thus an important problem to be ad-
dressed and invested in, to achieve successes that can be
translated to deployment of such models in real-world envi-
ronments.

Although object detection has always remained an im-
portant problem in computer vision, most of the efforts
have focused on detecting humans and objects in standard
RGB imagery. With the advent of Deep Convolutional Neu-
ral Networks (CNNs) [18], object detection performance
in the RGB domain has been significantly improved using
region-based methods, such as the R-CNN [12] and Fast
R-CNN [11] that use selective search, as well as Faster R-
CNN [32] that uses region-proposal networks to identify re-
gions of interest. Object detection methods such as YOLO
[31] rephrase the object detection problem into a regression
problem, where the coordinates of the bounding boxes and
the class probability for each of those boxes are generated
simultaneously. This makes YOLO [31] extremely fast, al-
though its performance is lower than R-CNN based coun-
terparts [39]. The aforementioned object detection meth-
ods rely, however, on architectures and models that have
been trained on large-scale RGB datasets such as ImageNet,
PASCAL-VOC, and MS-COCO. A relative dearth of such
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publicly available large-scale datasets in the thermal domain
restricts the achievement of an equivalent level of success of
such frameworks on thermal images. In this work, we pro-
pose a ‘pseudo multi-modal’ framework for object detec-
tion in the thermal domain, consisting of two branches. One
branch is pre-trained on large-scale RGB datasets (such as
PASCAL-VOC or MS-COCO) and finetuned using a visual
RGB input that is obtained using an image-to-image (I2I)
translation framework from a given thermal image (and
hence the name ‘pseudo multi-modal’). The second branch
follows the standard training process on a relatively smaller
thermal dataset. Our multi-modal architecture helps borrow
complex high-level features from the RGB domain to im-
prove object detection in the thermal domain. In particular,
our multi-modal approach does not need paired examples
from two modalities; our framework can borrow from any
large-scale RGB dataset available for object detection and
does not need the collection of a synchronized multi-modal
dataset. This setting makes this problem challenging too.
Our experimental results demonstrate that using our multi-
modal framework significantly improves the performance
of fully supervised detectors in the thermal domain. The
proposed framework also overcomes the problem of inade-
quacy of training examples in the thermal domain. Further-
more, we also study the relevance of this methodology when
there is very limited data in the thermal domain. Our ex-
perimental results on the recently released FLIR ADAS[13]
thermal imagery dataset show that, using only a quarter of
the thermal dataset, the proposed multi-modal framework
achieves a higher mAP than a single-mode fully-supervised
detector trained on the entire dataset.

The remainder of this paper is organized as follows.
Section 2 provides the context for study including a brief
overview of the early and recent work on applying deep
learning for thermal imagery. Section 3 describes our ap-
proach and methodology. Section 4 describes the experi-
ments carried out and their results. Section 5 investigates
the impact of size of training set, image resolution and ends
with a discussion on some of the cases where our model
fails to perform as well.

2. Related Work
Detection and classification of objects in the thermal

imagery has been an active area of research in computer
vision [41][35][27][14], especially in the context of mil-
itary and surveillance[26]. There has been a significant
amount of work on classifying and detecting people and
objects in thermal imagery using standard computer vision
and machine learning models, even before deep learning be-
came popular. Bertozzi et al. [5] proposed a probabilis-
tic template-based approach for pedestrian detection in far
infrared (IR) images. They divided their algorithm into
three parts: candidate generation, candidate filtering and

validation of candidates. One main weakness of this ap-
proach is that it assumes the human is hotter than the back-
ground which may not be the case in many real-world sce-
narios. Davis et al. [9] proposed a two-stage template-
based method to detect people in widely varying thermal
imagery. To locate the potential person locations, a fast
screening procedure is used with a generalized template and
then an AdaBoost ensemble classifier is used to test the hy-
pothesized person locations. Kai et al. [17] proposed a lo-
cal feature-based pedestrian detector on thermal data. They
used a combination of multiple cues to find interest points
in the images and used SURF [2] as features to describe
these points. A codebook is then constructed to locate the
object center. The challenge of this detector is whether a
high performance can be achieved when local features are
not obvious.

While these efforts have shown good performance for IR
image classification and detection tasks over a small number
of objects, they have been outperformed in recent years by
deep learning models that enable more descriptive features
to be learned. With the increase in popularity of deep neural
networks, several methods have been proposed for applying
deep learning methods to thermal images. Peng et al. [30]
proposed a Convolutional Neural Network (CNN) for face
identification in near IR images. Their CNN is a modifica-
tion of GoogLeNet but has a more compact structure. Lee et
al. [20] designed a lightweight CNN consisting of two con-
volutional layers and two subsampling layers for recogniz-
ing unsafe behaviors of pedestrians using thermal images
captured from moving vehicles at night. They combined
their lightweight CNN with a boosted random forest classi-
fier. Chevalier et al. [6] proposed LR-CNN for automatic
target recognition which is a deep architecture designed for
classification of low-resolution images with strong seman-
tic content. Rodger et al. [15] developed a CNN trained
on short-to-midrange high resolution IR images containing
six object classes (person, land vehicle, helicopter, aero-
plane, unmanned aerial vehicle and false alarm) using an
LWIR sensor. This network was successful at classifying
other short to mid-range objects in unseen images, although
it struggled to generalize to long range targets. Abbott et
al. [1] used a transfer learning approach with the YOLO
[31] framework to train a network on high-resolution ther-
mal imagery for classification of pedestrians and vehicles
in low-resolution thermal images. Berg et al. [4][3] pro-
posed an anomaly-based obstacle detection method using a
train-mounted thermal camera. Leykin et al. [22] proposed
a fusion tracker and pedestrian classifier for multispectral
pedestrian detection. Proposals for performing detection
are generated using background subtraction and evaluated
using periodic gait analysis.

Among efforts that use a multimodal approach, Wagner
et al. [36] applied Aggregated Channel Features (ACF) and
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Figure 2. Adaptation of proposed Mutli-modal framework for Faster-RCNN

Boosted Decision trees (BDT) for proposal generation and
classified these proposals with a CNN, which fuses Visual
and IR information. Choi et al. [8] uses two separate re-
gion proposal networks for both Visual and IR images and
evaluates the proposals generated by both the networks with
Support Vector Regression on fused deep features. The ef-
forts closest to our work are that of Konig et al. [19] and Liu
et al. [24], both of which propose a multi-modal framework
that combines RGB and thermal information in a Faster-
RCNN architecture by posing it as a convolutional network
fusion problem. However, all of these multimodal efforts
assume the availability of a dataset with paired training ex-
amples from the visual and thermal domain. On the other
hand, our work assumes only the presence of thermal im-
agery and seeks to leverage the use of publicly available
RGB datasets (which may not be paired with the thermal
dataset) to obtain significant improvement in thermal object
detection performance.

3. Methodology

Our overall proposed methodology for ‘pseudo multi-
modal’ object detection for thermal images is summarized
in Figure 2. The key idea of our methodology is to borrow
knowledge from data-rich domains such as visual (RGB)
without the explicit need for a paired multimodal dataset.
We achieve this objective by leveraging the success of re-
cent image-to-image translation methods [40, 25] to auto-
matically generate a pseudo-RGB image from a given ther-
mal image, and then propose a multimodal Faster R-CNN
architecture to achieve our objective. Image-to-Image trans-
lation models aim to learn the visual mapping between a

source domain and target domain. Learning this mapping
becomes challenging when there are no paired images in
source and target domains. Recently, there have been note-
worthy efforts on addressing this problem using unpaired
images [40][38][7][25][34][28][21]. While one could use
any unsupervised image-to-image translation framework
in our overall methodology, we use CycleGAN[40] and
UNIT[25] as I2I frameworks of choice in our work, owing
to their wide use and popularity. We begin our discussion
with the I2I translation frameworks used in this work.

Unpaired Image-to-Image Translation: CycleGAN
[40] is a popular unpaired image-to-image translation
framework that aims to learn the mapping functions
F : X → Y and G : Y → X where X and Y are source
and target domains respectively. It maps the images onto
two separate latent spaces and employs two generators
GX→Y ,GY→X and two discriminators DX ,DY . The
generator GX→Y attempts to generate images ŷi that
look similar to images from domain Y , while Dy aims
to distinguish between the translated samples ŷi and real
samples yi. This condition is enforced using an adversarial
loss. To reduce the space of possible mapping functions,
a cycle-consistency constraint is also enforced, such that
a source-domain image xi when transformed into target
domain (ŷi) and re-transformed back to source domain (x̂i)
will ensure in x̂i and xi will belong to the same distribution.
For more details, please see [40].

Unlike CycleGAN [40], UNIT [25] tackles the unpaired
image-to-image translation problem assuming a shared la-
tent space between both the domains. It learns the joint dis-
tribution of images in different domains using the marginal
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distribution in individual domains. The framework is based
on variational autoencoders VAE1,VAE2 and generative ad-
versarial networks GAN1,GAN2 with a total of six sub-
networks including two image encoders E1, E2, two im-
age generators G1,G2 and two adversarial discriminators
D1,D2. Since they assume a shared latent space between
the two domains, a weight sharing constraint is enforced to
relate the two VAEs. Specifically, weight sharing is done
between the last few layers of encoders E1, E2 that are re-
sponsible for higher level representations of the input im-
ages in the two domains and the first few layers of the image
generators G1,G2 responsible for decoding the high-level
representations for reconstructing the input images. The
learning problems of VAE1,VAE2,GAN1,GAN2 for image
reconstruction, image translation and cyclic reconstruction
are jointly solved. For more information, please see [25].

In case of both CycleGAN and UNIT, the trained model
provides two generators which perform the translation be-
tween source and target domains. In our case, we use the
generator which performs the Thermal-to-RGB translation,
which is given by G : X → Y in case of a CycleGAN and
G1 in case of UNIT (we used Thermal as the source do-
main, and RGB as the target domain while training these
models). We refer to the parameters of these generators as
WT2R in our methodology.

Algorithm 1: MMTOD: Multi-modal Thermal Object
Detection Methodology

Input: Thermal image training data: {(ci, yi)}mi=1;
Generator of I2I framework: WT2R; Pre-trained
RGB base network: WRGB ; Pre-trained thermal base
network: WTIR, Pre-trained thermal top network
Wtop; Randomly initialised 1x1 conv weights:
Wconv; Number of epochs: num epochs; Loss
function: L(.)

Output: Trained MMTOD model, F(.)
for num epochs do

for ci, i = 1, · · · ,m do
Generate a pseudo-RGB image ĉi using
WT2R.

Generate feature maps by passing ci and ĉi to
base networks WTIR and WRGB

respectively
Stack the feature maps and use Wconv to get
1× 1 conv output

Pass the 1x1 conv output to Wtop

Update weights:
WRGB ,WTIR,Wtop,Wconv,WT2R by
minimizing L of the object detection
framework.

end
end

Pseudo Multi-modal Object Detection: As shown in
Figure 2, our object detection framework is a multi-modal
architecture consisting of two branches, one for the thermal
image input and the other for the RGB input.

Each branch is initialized with a model pre-trained on
images from that domain (specific details of implementa-
tion are discussed in Section 4). To avoid the need for paired
training examples from two modalities but yet use a multi-
modal approach, we use an image-to-image (I2I) translation
network in our framework. During the course of training,
for every thermal image input, we generate a pseudo-RGB
using WT2R and pass the pseudo-RGB and Thermal to the
input branches (parametrized by WRGB and WTIR respec-
tively). Outputs from these branches are stacked and passed
through a 1 × 1 convolution (Wconv) to learn to combine
these features appropriately for the given task. The out-
put of this 1× 1 convolution is directly passed into the rest
of the Faster-RCNN network (denoted by Wtop). We use
the same Region Proposal Network (RPN) loss as used in
Faster-RCNN, given as follows:

L({pi}, {ti}) =
1

N

∑
i

L(pi, p
∗
i ) + λ

1

N

∑
i

p∗iR(ti, t
∗
i )

where i is the index of an anchor, pi is the predicted prob-
ability of anchor i being an object, p∗i is the ground truth,
ti represents the coordinates of the predicted bounding box,
t∗i represents the ground truth bounding box coordinates, L
is log loss, R is the robust loss function (smooth L1) as de-
fined in [11], and λ is a hyperparameter. We use the same
multi-task classification and regression loss as used in Fast-
RCNN [11] at the end of the network.

While the use of existing I2I models allow easy adop-
tion of the proposed methodology, the images generated
from such I2I frameworks for thermal-to-RGB translation
are perceptually far from natural RGB domain images (like
MS-COCO[23] and PASCAL-VOC [10]), as shown in Fig-
ure 6. Therefore, during the training phase of our multi-
modal framework, in order to learn to combine the RGB
and thermal features in a way that helps improve detection,
we also update the weights of the I2I generator WT2R. This
helps learn a better representation of the pseudo-RGB im-
age for borrowing relevant features from the RGB-domain,
which we found to be key in improving detection in the ther-
mal domain. The proposed methodology provides a fairly
simple strategy to improve object detection in the thermal
domain. We refer to the proposed methodology as MMTOD
(Multimodal Thermal Object Detection) hereafter. Our al-
gorithm for training is summarized in Algorithm 1. More
details on the implementation of our methodology are pro-
vided in Section 4.
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4. Experiments
4.1. Datasets and Experimental Setup

Datasets: We use the recently released FLIR ADAS [13]
dataset and the KAIST Multispectral Pedestrian dataset [14]
for our experimental studies. FLIR ADAS [13] consists of a
total of 9,214 images with bounding box annotations, where
each image is of 640×512 resolution and is captured using a
FLIR Tau2 camera. 60% of the images are collected during
daytime and the remaining 40% are collected during night.
While the dataset provides both RGB and thermal domain
images (not paired though), we use only the thermal im-
ages from the dataset in our experiments (as required by our
method). For all the experiments, we use the training and
test splits as provided in the dataset benchmark, which con-
tains the person (22,372 instances), car (41,260 instances),
and bicycle (3,986 instances) categories. Some example im-
ages from the dataset are shown in Figure 3.

The KAIST Multispectral pedestrian benchmark dataset
[14] contains around 95,000 8-bit day and night images
(consisting of only the Person class). These images are
collected using a FLIR A35 microbolometer LWIR cam-
era with a resolution of 320 × 256 pixels. The images are
then upsampled to 640 × 512 in the dataset. Sample im-
ages from the dataset are shown in Figure 3. Though the
KAIST dataset comes with fully aligned RGB and Ther-
mal, we choose not to use the RGB images as our goal to
improve the detection in the absence of paired training data.

Figure 3. Row 1 & Row 2: Example images from FLIR [13] ADAS
dataset, Row 3: Example Images from KAIST [14] dataset

Our methodology relies on using publicly available
large-scale RGB datasets to improve thermal object detec-
tion performance. For this purpose, we use RGB datasets
with the same classes as in the aforementioned thermal im-
age datasets. In particular, we perform experiments using
two popular RGB datasets namely, PASCAL VOC [10] and
MS-COCO [23]. In each experiment, we pre-train an object
detector on either of these datasets and use these parameters
to initialise the RGB branch of our multimodal framework.
We also compare the performance of these two initializa-
tions in our experiments. In case of thermal image datasets,
an end-to-end object detector is first trained on the dataset
and used to initialize the thermal branch of our framework.

We use mean Average Precision (mAP) as the performance
metric, as is common for the object detection task.

Baseline: A Faster-RCNN trained in a fully supervised
manner on the thermal images from the training set is used
as the baseline method for the respective experiments in
our studies. We followed the original paper [32] for all
the hyperparameters, unless specified otherwise. The FLIR
ADAS dataset [13] also provides a benchmark test mAP (at
IoU of 0.5) of 0.58 using the more recent RefineDetect-512
[39] model. We show that we beat this benchmark using our
improved multi-modal Faster-RCNN model.

Image-to-Image Translation (IR-to-RGB): For our ex-
periments, we train two CycleGAN models: one for FLIR
↔ RGB which uses thermal images from FLIR [13] and
RGB images from PASCAL VOC [10], and another for
KAIST ↔ RGB which uses thermal images from KAIST
[14] and RGB images from PASCAL VOC [10]. We use
an initial learning rate of 1e-5 for the first 20 epochs, which
is decayed to zero over the next 20 epochs. The identity
mapping is set to zero, i.e., the identity loss and the recon-
struction loss are given equal weightage. The other hyper-
parameters of training are as described in [40]. For training
of the UNIT framework, all the hyperparameters are used as
stated in the original paper, without any alterations. Since
UNIT takes a long time to train (7 to 8 days on an NVIDIA
P-100 GPU), we trained it only for FLIR↔ RGB, so the ex-
periments on KAIST are performed using CycleGAN only.
Our variants are hence referred to as MMTOD-CG (when
I2I is CycleGAN) and MMTOD-UNIT (when I2I is UNIT)
in the remainder of the text.

We use the same metrics as mentioned in CycleGAN
[40] and UNIT [25] papers for evaluating the quality of
translation. In an attempt to improve the quality of gen-
erated images in CycleGAN [40], we tried adding feature
losses in addition to cycle consistency loss and adversarial
loss. However, this did not improve the thermal to visual
RGB translation performance. We hence chose to finally
use the same loss as mentioned in [40].

Training our Multi-modal Faster-RCNN: Our overall
architecture (as in Figure 2) is initialized with pre-trained
RGB and Thermal detectors as described in Section 3.
Since our objective is to improve detection in thermal do-
main, the region proposal network (RPN) is initialized with
weights pre-trained on thermal images. The model is then
trained on the same set of images on which the thermal
detector was previously pre-trained. The I2I framework
generates a pseudo-RGB image corresponding to the in-
put thermal image. The thermal image and the correspond-
ing pseudo-RGB image are passed through the branches of
the multi-modal framework to obtain two feature maps of
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1024 dimension each, as shown in figure 2. These two fea-
ture maps are stacked back-to-back and passed through a
1 × 1 convolution, which is then passed as input to the Re-
gion Proposal Network (RPN). RPN produces the promis-
ing Regions of Interest (RoIs) that are likely to contain
a foreground object. These regions are then cropped out
of the feature map and passed into a classification layer
which learns to classify the objects in each ROI. Note that
as mentioned in Section 3, during the training of the MM-
TOD framework, the weights of the I2I framework are also
updated which allows it to learn a better representation
of the translated image for improved object detection in
thermal domain. We adapted the Faster-RCNN code pro-
vided at [37] for our purpose. The code for the Cycle-
GAN and UNIT was taken from their respective official
code releases[40][16][25]. Our code will be made publicly
available for further clarifications.

Experimental Setup: To evaluate the performance of the
proposed multi-modal framework, the following experi-
ments are carried out:
• MMTOD-CG with RGB branch initialized by

PASCAL-VOC pre-trained detector, thermal branch
initialized by FLIR ADAS pre-trained detector
• MMTOD-UNIT with RGB branch initialized by

PASCAL-VOC pre-trained detector, thermal branch
initialized by FLIR ADAS pre-trained detector
• MMTOD-CG with RGB branch initialized by MS-

COCO pre-trained detector, thermal branch initialized
by FLIR ADAS pre-trained detector
• MMTOD-UNIT with RGB branch initialized by MS-

COCO pre-trained detector, thermal branch initialized
by FLIR ADAS pre-trained detector
• MMTOD-CG with RGB branch initialized by

PASCAL-VOC pre-trained detector, thermal branch
initialized by KAIST pre-trained detector
• MMTOD-CG with RGB branch initialized by COCO

pre-trained detector, thermal branch initialized by
KAIST pre-trained detector

4.2. Results

IR-to-RGB Translation Results: Figure 6 shows the re-
sults of CycleGAN and UNIT trained for Thermal↔ RGB
translation. As mentioned in Section 3, the generated
pseudo-RGB images are perceptually far from natural do-
main images. This can be attributed to the fact that the do-
main shift between RGB and Thermal domains is relatively
high compared to other domains. In addition, RGB images
have both chrominance and luminance information, while
thermal images just have the luminance part which makes
estimating the chrominance for RGB images a difficult task.
However, we show that using our method, these generated
images add value to the detection methodology.

Figure 6. Row 1: Thermal images from FLIR ADAS[13] dataset;
Row 2: Translations generated using UNIT[25]; Row 3: Transla-
tions generated using CycleGAN[40].

Thermal Object Detection Results: Tables 1 and 2 show
the comparison of AP for each class and the mAP of our
framework against the baseline detector when trained on
FLIR ADAS and KAIST datasets respectively. (Note that
the KAIST dataset has only one class, the Person.) We
observe that in all the experiments, our framework outper-
forms the baseline network across all the classes.

AP across each class
Method Bicycle Person Car mAP
Baseline 39.66 54.69 67.57 53.97

Framework RGB Branch

MMTOD-UNIT MSCOCO 49.43 64.47 70.72 61.54
Pascal VOC 45.81 59.45 70.42 58.56

MMTOD-CG MSCOCO 50.26 63.31 70.63 61.40
Pascal VOC 43.96 57.51 69.85 57.11

Table 1. Performance comparison of proposed methodology
against baseline on FLIR [13]

Method mAP
Baseline 49.39
Framework RGB Branch

MMTOD-CG MS-COCO 53.56
Pascal VOC 52.26

Table 2. Performance comparison of proposed methodology
against baseline on KAIST [14]

In case of FLIR, we observe that initializing the RGB
branch with MS-COCO obtains better results than those
with PASCAL-VOC. This can be attributed to the fact that
MS-COCO has more instances of car, bicycle, and person
as compared to PASCAL VOC. Also, experimental results
show that employing UNIT as the I2I framework achieves
better performance than CycleGAN. Our framework with
MS-COCO initialization and UNIT for I2I translation re-
sults in an increase in mAP by at least 7 points. In particu-
lar, as mentioned earlier, the FLIR ADAS dataset provides a
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Figure 4. Qualitative results of detections on the FLIR ADAS dataset. Row 1: Baseline Row 2: MMTOD

Figure 5. Qualitative results of detections on the KAIST. Row 1: Baseline. Row 2: MMTOD

benchmark test mAP (at IoU of 0.5) of 0.58 using the more
recent RefineDetect-512 [39] model. Our method outper-
forms the benchmark despite using a relatively older object
detection model such as the Faster-RCNN.

As shown in Table 2, our improved performance on the
KAIST dataset shows that although this dataset has more
examples of the ’Person’ category than the RGB dataset
used such as PASCAL-VOC, our framework still improves
upon the performance of the baseline method. This allows
us to infer that the proposed framework can be used in tan-
dem with any region-CNN based object detection method to
improve the performance of object detection in thermal im-
ages. On average our framework takes 0.11s to make detec-
tions on a single image, while the baseline framework takes
0.08s. Our future directions of work include improving the
efficiency of our framework while extending the methodol-
ogy to other object detection pipelines such as YOLO and
SSD.

5. Discussion and Ablation Studies

Learning with limited examples: We also conducted
studies to understand the capability of our methodology

when there are limited samples in the thermal domain. Our
experiments on the FLIR ADAS dataset showed that our
framework outperforms the current state-of-the-art detec-
tion performance using only half the training examples.
Moreover, our experiments show that using only a quarter
of the training examples, our framework outperforms the
baseline on the full training set. Table 3 presents the statis-
tics of the dataset used for this experiment. Note that the test
set used in these experiments is still the same as originally
provided in the dataset.

Number of Instances

Dataset Car Person Bicycle

FLIR 41,260 22,372 3,986
FLIR (1/2) 20,708 11,365 2,709
FLIR (1/4) 10,448 5,863 974

Table 3. Statistics of the datasets we used for our experiments.

We perform the same set of experiments (as discussed in
Section 4) on FLIR(1/2) and FLIR(1/4) datasets. Tables 4
and 5 present the results.
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AP across each class
Method Bicycle Person Car mAP
Baseline (FLIR) 39.66 54.69 67.57 53.97
Baseline (FLIR-1/2) 34.41 51.88 65.04 50.44

Framework RGB Branch

MMTOD-UNIT MSCOCO 49.84 59.76 70.14 59.91
Pascal VOC 45.53 57.77 69.86 57.72

MMTOD-CG MSCOCO 50.19 58.08 69.77 59.35
Pascal VOC 40.17 54.67 67.62 54.15

Table 4. Performance comparison of proposed methodology
against baseline on FLIR (1/2)

AP across each class
Method Bicycle Person Car mAP
Baseline(FLIR) 39.66 54.69 67.57 53.97
Baseline(FLIR-1/4) 33.35 49.18 60.84 47.79

Framework RGB Branch

MMTOD-UNIT MSCOCO 44.24 57.76 69.77 57.26
Pascal VOC 35.23 54.71 67.83 52.59

MMTOD-CG MSCOCO 41.29 57.08 69.10 55.82
Pascal VOC 35.02 51.62 66.09 50.91

Table 5. Performance comparison of proposed methodology
against baseline on FLIR (1/4)

Table 4 shows the baselines for training the Faster-
RCNN on the complete FLIR training dataset as well as
FLIR (1/2). We observe that both MMTOD-UNIT and
MMTOD-CG trained on FLIR(1/2) outperform both the
baselines, even when Faster-RCNN is trained on the entire
training set.

Similarly, Table 5 shows the baselines for training the
Faster-RCNN on the complete FLIR training dataset as well
as FLIR (1/4). Once again, we observe that both MMTOD-
UNIT and MMTOD-CG trained on FLIR(1/4) outperform
both the baselines, even when Faster-RCNN is trained on
the entire training set. In other words, the MMTOD frame-
work requires only a quarter of the thermal training set to
surpass the baseline accuracy achieved using the full train-
ing set. The results clearly demonstrate the proposed frame-
work’s ability to learn from fewer examples. This shows
that our framework effectively borrows features from the
RGB domain that help improve detection in the thermal do-
main. This is especially useful in the context of thermal
and IR images, where there is a dearth of publicly available
large-scale datasets.

Effect of Image Resolution: To understand the effect of
image resolution on object detection performance, we re-
peated the above experiments were conducted using sub-
sampled images of the FLIR ADAS dataset. Table 6
presents these results for 400 × 400 input images. We ob-
serve that our multi-modal framework improves the object
detection performance significantly even in this case. Our
future work will involve extending our work to images of
even lower resolutions.

AP across each class
Dataset Method Bicycle Person Car mAP

FLIR Baseline 29.25 43.13 58.83 43.74
P-VOC + CycleGAN 39.42 52.75 62.05 51.41

FLIR (1/2) Baseline 23.31 40.82 56.25 40.13
P-VOC + CycleGAN 33.32 48.32 60.87 47.50

FLIR (1/4) Baseline 18.81 35.42 52.82 35.68
P-VOC + CycleGAN 30.63 45.45 60.32 45.47

Table 6. Performance comparison of proposed methodology
against baseline on FLIR 400× 400 images

Missed Detections: We tried to analyze the failure cases
of the proposed methodology, by studying the missed detec-
tions. Some examples of these missed detections are shown
in figure 7. We infer that MMTOD finds object detection
challenging when: (i) the objects are very small and located
far from the camera; (ii) two objects are close to each other,
and are detected as a single object; and (iii) there is heavy
occlusion and crowd. Our future efforts will focus on ad-
dressing these challenges.

Figure 7. Some examples of missed detections, Red: Predictions
using MMTOD, Green: Ground Truth

6. Conclusion
We propose a novel multi-modal framework to extend

and improve upon any Region-CNN-based object detector
in the thermal domain by borrowing features from the RGB
domain, without the need of paired training examples. We
evaluate the performance of our framework applied to a
Faster-RCNN architecture in various settings including the
FLIR ADAS and KAIST datasets. We demonstrate that our
framework achieves better performance than the baseline,
even when trained only on quarter of the thermal dataset.
The results suggest that our framework provides a simple
and straightforward strategy to improve the performance of
object detection in thermal images.
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[4] A. Berg, K. Öfjäll, J. Ahlberg, and M. Felsberg. Detecting
rails and obstacles using a train-mounted thermal camera. In
R. R. Paulsen and K. S. Pedersen, editors, Image Analysis,
Cham, 2015. Springer International Publishing. 2

[5] M. Bertozzi, A. Broggi, C. Hilario, R. Fedriga, G. Vezzoni,
and M. Del Rose. Pedestrian detection in far infrared images
based on the use of probabilistic templates. pages 327 – 332,
07 2007. 2

[6] M. CHEVALIER, N. Thome, M. Cord, J. Fournier,
G. Henaff, and E. Dusch. LOW RESOLUTION CON-
VOLUTIONAL NEURAL NETWORK FOR AUTOMATIC
TARGET RECOGNITION. In 7th International Symposium
on Optronics in Defence and Security, Paris, France, Feb.
2016. 2

[7] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo.
Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. CoRR, abs/1711.09020,
2017. 3

[8] H. Choiand S. Kim, , and K. Sohn. Multi-spectral pedestrian
detection based on accumulated object proposal with fully
convolutional networks. In 2016 23rd International Confer-
ence on Pattern Recognition (ICPR), pages 621–626, Dec
2016. 3

[9] J. W. Davis and M. A. Keck. A two-stage template ap-
proach to person detection in thermal imagery. In 2005 Sev-
enth IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05) - Volume 1, volume 1, pages 364–369,
Jan 2005. 2

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.
4, 5

[11] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.
1, 4

[12] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013. 1

[13] F. A. Group. Flir thermal dataset for algorithm training.
https://www.flir.in/oem/adas/adas-dataset-form/, 2018. 1, 2,
5, 6

[14] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon. Mul-
tispectral pedestrian detection: Benchmark dataset and base-
line. In 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1037–1045, June 2015. 2,
5, 6

[15] B. C. I. Rodger and N. Robertson. Classifying objects in
lwir imagery via cnns. In In Proc. SPIE: Electro-Optical and
Infrared Systems: Technology and Applications XII, 2016. 2

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, 2017. 6
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