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Abstract

The whole discussion of the thesis is about Fredholm, Toeplitz, and Hankel

operator. Atkinson′s theorem gives an equivalent definition of Fredholm operator,

there we get a relation between Compact and Fredholm operator.

We will learn the Calkin algebra on a Hilbert space and what is the relation

between the Fredholm operator and this algebra, the index of a Fredholm operator.

The sum of Compact and Fredholm operator is Fredholm and the index is the same

as the index of the Fredholm operator. The characteristic of Fredholm operator of

index 0 and we will show that the index map is a locally constant map.

We will learn about the Hardy space and Toeplitz operator on Hardy space.

All the Toeplitz operator on the Hardy space is not Fredholm, there is a class of

Toeplitz operator which are Fredholm and the Toeplitz operator which is compact is

only the zero operators. Also, we will learn about some properties about the set of

all Toeplitz operator.

Finally, we will learn Hankel operator on Hardy space and some algebraic

properties of the Hankel operator. In general, all Hankel does not commute with a

Toeplitz operator, if a Hankel commute with a symmetric Toeplitz operator, then the

Toeplitz operator is a constant multiple of the identity operator.
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Chapter 0

List of symbols

• B(X, Y ) the set of all bounded operators from X to Y

• K(X, Y ) the set of all compact operators from X to Y

• F(H) the set of all finite rank operator on H

• cl{A} closure of A

• R(T ) range of T

• kerT kernel of T

• I the identity operator

• X∗ dual of X

• w−→ weakly converges

• S1 unit circle on complex plane

• C(S1) the set of all continuous function on S1

• N the set of all natural number

• Z the set of all integer

• C the set of all complex number

• R the set of all real number

• K = C or R
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Chapter 1

Compact operators

1.1 Introduction:

Definition 1.1.1 (Compact Operator). Let X and Y be normed linear spaces. A

linear operator K : X → Y is said to be a compact operator if the set cl{Kx :

||x|| ≤ 1} is compact in Y . In other words, closure of image of closed unit ball

U = {x ∈ X : ||x|| ≤ 1} under K is compact

1.2 Examples:

Example 1.2.1. Every bounded linear operator K : X → Y of finite rank is a

compact operator.

Proof. Since K is a finite rank operator, R(K) is a finite-dimensional normed linear

space, so it is a closed supspace of Y . Since K is continuous and {x ∈ X : ||x|| ≤ 1}
is a bounded set, cl{Kx : ||x|| ≤ 1} is a bounded subset of Y . Thus, cl{Kx :

||x|| ≤ 1} is closed and bounded subspace of the finite dimensional space R(K). By

“Heine Borel theorem”, cl{Kx : ||x|| ≤ 1} is compact. Hence K is a compact

operator.

Example 1.2.2. The identity operator on a normed linear space is a compact operator

iff the space is of finite dimension.

Proof. Let I : X → X be an identity operator. We know that closed unit ball

U = {x ∈ X : ||x|| ≤ 1} is compact iff X is finite dimensional space. Now cl{I(U)} =

U is compact iff X is finite dimensional. Therefore I is compact iff X is finite

dimensional.
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CHAPTER 1. COMPACT OPERATORS

Example 1.2.3. If X0 is a subspace of a normed linear space X, then the inclusion

operator I0 : X0 → X , that is, I0x = x for all x ∈ X0, is a compact operator iff X0

is finite dimensional.

Proof. Let I0 is a compact operator. Since the closure of image of the closed unit ball

under I0 that is, cl(I0({x ∈ X0 : ||x|| ≤ 1})) = {x ∈ X0 : ||x|| ≤ 1} is compact in X.

Hence it is also compact in X0. Therefore X0 is finite dimensional.

Conversely, let X0 is finite dimensional. Since X0 = R(I0), I0 is a finite rank

operator. Hence, by Example 1.2.1, the inclusion operator I0 : X0 → X is a compact

operator.

Example 1.2.4. If P : X → X is a projection operator, then it is a compact operator

iff R(P ) is finite dimensional.

Proof. Since P is projection operator, the restriction of P on R(P ) is a identity

operator on R(P ). Hence by Example 1.2.2 P : X → X is a compact operator iff

R(P ) is finite dimensional.

Example 1.2.5. Let N ∈ N. Consider the linear operator TN : `2 → `2 defined by

TNx = (x1, x2, x3, . . . , xN , 0, 0, . . . ), x ∈ `2.

Then TN is compact operator.

Proof. Image of TN is finite dimensional and dimR(TN) = N . So TN is finite rank

bounded linear operator, hence compact.

1.3 Properties:

Theorem 1.3.1. Let X and Y be normed linear spaces and A : X → Y be a linear

operator. Then the following are equivalent:

1. A is a compact operator.

2. cl{Ax : ||x|| < 1} is compact in Y .

3. For every bounded subset E of X , clA(E) is compact in Y .

4. For every bounded sequence (xn) in X , the sequence (Axn) has a convergent

sub-sequence in Y .

3



CHAPTER 1. COMPACT OPERATORS

Proof. Clearly 3 implies 1 and 2. Now assume that 1 holds. That is, cl{Ax : ||x|| ≤ 1}
is compact. Let E be a bounded subset of X. Then, we know that there exists r > 0

such that E ⊆ {x ∈ X : ||x|| < r}. First we want to show that if A : X → Y is a

linear operator between normed linear spaces X and Y , then for any r > 0,

cl{Ax : ||x|| ≤ r} is compact⇔ cl{Ax : ||x|| ≤ 1} is compact.

Let S = cl{Ax : ||x|| ≤ r} is compact and (yn) be a sequence in D = cl{Ax : ||x|| ≤ 1}
then ∃ a sequence (xn) in U = {x ∈ X : ||x|| ≤ 1} such that yn = Axn. Now,

(A(rxn)) is a sequence in S, since ||rxn|| ≤ r and S is compact, so it has a convergent

sub-sequence, say (Azn) where (zn) is a subsequence of (rxn). Consequently the

sequence (A(zn/r)) is a convergent subsequence of the sequence (yn) in D. Hence

D = cl{Ax : ||x|| ≤ 1} is a compact set. By similar, way we can show that if

D = cl{Ax : ||x|| ≤ 1} is a compact set then S = cl{Ax : ||x|| ≤ r} is compact set.

Now, from the relations cl{Ax : x ∈ X, ||x|| < r} ⊆ cl{Ax : x ∈ X, ||x|| ≤ r},
and the fact that a closed and bounded subset of a compact set is compact, it follows

that 1 implies 2 and 3, and 2 implies 3 by the above result.

Now to complete the proof we prove the equivalence of 3 and 4. Assume that 3

holds, and let (xn) be a bounded sequence in X. So there exists c > 0 such that

||xn|| ≤ c for every n ∈ N, and let

E = {x ∈ X : ||x|| ≤ c}.

Then (Axn) is a sequence in the compact set cl(A(E)), so that it has a convergent

sub-sequence by “Bolzano Weierstrass theorem”. Thus, 4 holds.

Conversely, assume that 4 holds, and let E be a bounded subset ofX. To show that

cl(A(E)) is compact, it is enough to show that every sequence in it has a convergent

sub-sequence. To show this, suppose that (yn) is a sequence in cl(A(E)). Then there

exists (xn) in E such that ||yn − Axn|| ≤ 1/n for all n ∈ N. Now by the hypothesis

in 4, (Axn) has a convergent sub-sequence, say (Axnj). Then it follows that (ynj) is

a convergent sub-sequence of (yn).

Theorem 1.3.2. Let X, Y and Z be normed linear spaces. Let B(X, Y ) and K(X, Y )

are the set of all bounded operators from X to Y and the set of all compact operators

from X to Y respectively. Then the following results hold.

1. K(X, Y ) is a subspace of B(X, Y )

4



CHAPTER 1. COMPACT OPERATORS

2. If P ∈ B(X, Y ) and Q ∈ B(Y, Z) and if one of them is compact, then QP ∈
K(X,Z)

Proof. (1) Clearly K(X, Y ) is a subset of B(X, Y ) and not an empty subset because

zero operator lies in both.

Now let P,Q ∈ K(X, Y ) and c ∈ K. We prove that the operator P + cQ is a

compact operator.

Let (xn) be a abounded sequence in X. Since P is a compact operator, there is a

sub-sequence (yn) of (xn) such that (Pyn) converges in Y .

Also since (yn) is a bounded sequence and Q is compact operator, there is a

sub-sequence (zn) of (yn) such that (Qzn) converges.

Hence the sub-sequence (Pzn + cQzn) of the sequence (Pxn + cQxn) converges.

(2) Let (xn) be a bounded sequence in X. If P ∈ K(X, Y ) then there is a sub-

sequence (yn) of (xn) such that (Pyn) converges in Y . Then by the continuity of Q,

(QPyn) converges in Z, which is sub-sequence of (QPxn). Hence QP is a compact

operator.

Let Q ∈ K(Y, Z). Since (P ∈ B(X, Y )), the sequence (Pxn) is bounded in Y , so

using compactness of Q, (QPxn) has a convergent sub-sequence in Z. So QP is a

compact operator.

Remark 1.3.1. Converse of second part of the previous theorem is not true. That

is, composition of two bounded operators may be compact operator.

Example 1.3.1. Let H be a Hilbert space and (en) be orthonormal basis of H. Let A

and B be projection operator onto the span {en : n is odd } and onto span {en: n is

even } respectively. Then A,B both are not compact operators. But their composition

is zero operator,which is a compact operator. That can be seen from the following

example.

Theorem 1.3.3. Let X be a normed linear space and Y be a Banach space and

A ∈ B(X, Y ). If (An) is a sequence in K(X, Y ) such that ‖An −A‖ → 0 as n→∞,

that is sequence (An) converge to A. Then A ∈ K(X, Y ).

Proof. Let (xn) be a bounded sequence in X. We will prove that (Axn) has a con-

vergent sub-sequence in Y .

Since A1 is compact, (xn) has a sub-sequence (x1
n) such that A1(x1

n) converges.

Also A2 is compact and (x1
n) is bounded sequence so (x1

n) has a sub-sequence (x2
n)

such that (A2x
2
n) converges.

5



CHAPTER 1. COMPACT OPERATORS

Continuing this process we get sub-sequence (xkn) of (xk−1
n ) such that (Axkn) con-

verges, which hold for all k ∈ N. Therefore by taking yn = xnn, n ∈ N, is a bounded

sequence, so there exists c > 0 such that ‖yn‖ ≤ c, for all n ∈ N. Also the sequence

(Akyn) converges for any k ∈ N.

Now, let us choose ε > 0. Since ‖An − A‖ → 0, there exists k ∈ N such that

‖A−Ak‖ < ε. Also since for any k, (Akyn) is Cauchy sequence so there exists N ∈ N
such that

‖Akyn − Akym‖ < ε,∀n,m ≥ N

.

Therefore, for all m,n ∈ N,

‖Ayn − Aym‖ ≤ ‖(A− Ak)yn‖+ ‖Akyn − Akym‖+ ‖(Ak − A)ym‖

≤ cε+ ε+ cε = (2c+ 1)ε

Thus, (Ayn) is a Cauchy sub-sequence of (Axn). Since Y is Banach space so this

sub-sequence converges in Y . Hence A is compact operator.

Remark 1.3.2. K(X, Y ) is closed subspace of B(X, Y ) if Y is Banach space.

Remark 1.3.3. If X is Banach space, and if (An) is a sequence of finite rank op-

erators in B(X) such that ‖A − An‖ → 0, as n → ∞ for some A ∈ B(X), then A

is a compact operator. The converse is true if X = Y = H, where H is a separable

Hilbert space.

Theorem 1.3.4. Let K be a compact operator on a separable Hilbert space H and

suppose that (Tn) ⊆ B(H) and T ∈ B(H) are such that for each x ∈ H, the sequence

(Tnx) converges to Tx. Then (TnK) converges to TK in the norm of B(H).

Proof. Suppose that the sequence (TnK) does not converges to TK. Then there exists

a δ > 0 and a sub-sequence (Tnj) of the sequence (Tn) such that

‖TnjK − TK‖ > δ.

Choose unit vectors (yn) of H such that

‖(TnjK − TK)(yn)‖ > δ

6



CHAPTER 1. COMPACT OPERATORS

Since K is compact, we get a sub-sequence (ynk) of (yn) such that (Kynk) is convergent.

Assume that (Kynk) converges to y. Then

δ < ‖(TnjK − TK)ynk‖ ≤ ‖(Tnj − T )(Kynk − y)‖+ ‖(Tnj − T )y‖ (1.1)

Since (Tn) ⊆ B(H) is bounded, then there exists C > 0, such that ‖Tn‖ ≤ C and

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤ C.

Hence ‖T − Tnj‖ ≤ 2C.

Since (Kynk) converges to y, so there exists N ∈ N such that for nj > N ,

‖Kynk − y‖ <
δ

8C

Also as (Tnjy) converges to Ty, for each y ∈ H, so there exists m ∈ N such that for

all nj > m

‖(T − Tnj)y‖ <
δ

4

Now from Equation 1.1

δ < ‖(Tnj − TK)xnj‖ <
δ

2
+
δ

2
= δ

a contradiction.

Theorem 1.3.5. Let H be separable Hilbert space. Then cl{F(H)} = K(H)

Proof. Let {en : n ∈ N} be an orthonormal basis forH andHn := span{e1, e2, e3, . . . , en}.
Then the orthogonal projections, Pn : H → H defined by

Pnx =
n∑
j=1

〈x, ej〉ej.

Then Pnx converges to x for every x ∈ H, since {en : n ∈ N} be an orthonormal

basis for H. Now if K be a compact operator on H then by theorem 1.3.4 (PnK),

converges to K in the operator norm of B(H). We want to show PnK is finite rank

operator, for every n ∈ N. Here R(PnK) ⊆ R(Pn) = Hn is finite dimensional. Hence

the proof.

Example 1.3.2. Let T : `2 → `2 be an operator defined by

7



CHAPTER 1. COMPACT OPERATORS

Tn(xn)n∈N = (λnxn)n∈N , where (λn)n∈N is a sequence converges to 0. Then T is

a compact operator.

Proof. For k ∈ N , consider the operators, Tk : `2 → `2 defined by

Tk(x1, x2, x3, . . . ) = (λ1x1, λ2x2, . . . , λkxk, 0, 0, 0, 0, , . . . )

Then for each k ∈ N , Tk is a finite rank linear operator, so by Example 1.2.1 for each

k ∈ N , Tk is a compact operator.

Now for any x ∈ `2,

||(T − Tk)x|| = supn>k(|λnxn|) ≤ ||x||supn>k|λn|

=⇒ ||T − Tn|| ≤ supn>k(|λn|)
Since λn tends to 0 as, n→∞. So ||T − Tn|| tends to 0. as n→∞.

So by Theorem 1.3.3, T is compact operator.

Definition 1.3.1. Let X be a normed linear space, and let xn, x ∈ X . We say that

xn, “converges strongly”, or converges in norm to x, and write xn → x, if

‖xn − x‖ tends to 0, as n→∞.

Definition 1.3.2. Let X be a normed linear space, and let (xn) ∈ X be a sequence

in X, we say that xn “converges weakly” to x ∈ X, and write xn
w−→ x, if f(xn)

converge to f(x) as n→∞, for all f ∈ X∗, where X∗ is dual of X.

Theorem 1.3.6. Show that strong convergence implies weak convergence.

Proof. Let (xn) be a strongly convergent sequence in a normed linear space X con-

verges to x ∈ X.

For f ∈ X∗, ||f(xn)− f(x)|| ≤ ||f ||||xn − x|| tends to 0, as n→∞.

So xn
w−→ x.

Remark 1.3.4. Converges of above theorem is not true.

Proof. Let X be an infinite dimensional Hilbert space and (en) be an orthonormal

set of X. Then ||en|| = 1, for every n ∈ N and ||en − em|| =
√

2, for all n,m ∈
N, n 6= m . So it is not Cauchy sequence and consequently not convergent. By

“Riesz representation theorem”, for every f ∈ X∗, there is a unique y ∈ X such

that

f(x) = 〈x, y〉, x ∈ X.

8
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Again by “Bessel inequality”,

∞∑
i=1

|〈y, en〉|2 ≤ ||y||2,

Thus the series is convergent, so

|f(en)| = |〈en, y〉| = |〈y, en〉| → 0, as n→∞.

=⇒ f(en)→ 0, as n→∞.

Hence the sequence (en) is weakly converges to 0, but not converges to 0.

Theorem 1.3.7. weakly convergence sequence has unique limit.

Proof. Let (xn) be a sequence in X, weakly converges to different limits x and y.

Since x 6= y, so by a consequence of “Hahn Banach theorem” there exists f ∈ X∗

such that f(x−y) = ||x−y|| 6= 0. That is f(x) 6= f(y). But f(x) = f(y), since f(xn)

converges to f(x) and f(y), a contradiction. Hence limit is unique.

Theorem 1.3.8. (Resonance theorem) Let E be a subset of Banach space X. Then

E is bounded in X iff f(E) is bounded, for all f ∈ X∗.

Proof. Since E is bounded in X, so there exists c > 0 such that ||x|| ≤ c, for all

x ∈ E.

Now for f ∈ X∗, |f(x)| ≤ ||f ||||x|| ≤ c||f ||, for all x ∈ E. So f(E) is bounded for

all f ∈ X∗.
Conversely, Let f(E) is bounded for all f ∈ X∗.
For x ∈ E, let ϕx : X∗ → F defined by

ϕx(f) = f(x), f ∈ X?.

Clearly ϕx is a linear functional, since f is linear. Now

||ϕx|| = sup||f ||=1||ϕx(f)|| = sup||f ||=1||f(x)|| ≤ ||x||.

Again by “Hahn Banach theorem” for x ∈ X there exists f ∈ X∗, such that

f(x) = ||x|| and ||f || = 1, so ||ϕx|| = ||x||. Hence ϕx is a bounded linear functional.

Now by our assumption, {ϕx(f) : x ∈ E} is a bounded set, for all f ∈ X∗.

Since X∗ is Banach space, so by “Uniform bounded principle”, {ϕx : x ∈ E} is

9



CHAPTER 1. COMPACT OPERATORS

uniformly bounded.

That is, {||ϕx|| : x ∈ X} is bounded. Hence E bounded.

Theorem 1.3.9. Let xn
w−→ x. Then (xn) is a bounded sequence.

Proof. Let E = {xn : n ∈ N}. Since for all f ∈ X?, f(xn) converges to f(x) and

every convergent sequence in K is bounded, so f(E) is bounded for all f ∈ X∗.

Hence by Theorem 1.3.8 E is bounded set. That is the sequence (xn) is a bounded

sequence.

Theorem 1.3.10. Let A ∈ K(X, Y ) is compact operator. Then xn
w−→ x implies (Axn)

converges to Ax. In otherwords compact operator map weakly converges sequence to

strongly converges sequence.

Proof. Let us assume, xn
w−→ x and (Axn) does not converges to Ax. Since xn

w−→ x,

so by Theorem 1.3.9 (xn) is a bounded sequence.

Now since (Axn) does not converges to Ax, so there exists ε > 0 and a sub-sequence

(yn) of (xn) such that ||Ayn − Ax|| ≥ ε, for all n ∈ N.

Since A is compact operator and (yn) is bounded sequence, so the sequence (Ayn)

has a convergent sub-sequence. Let (Azn) be the such sub-sequence converging to

z ∈ Y , where (zn) is a sub-sequence of (yn).

Since ||Azn − Ax|| ≥ ε, so

Ax 6= y (1.2)

Now let f ∈ Y ∗, then fA ∈ X∗. Since (zn)
w−→ y ∈ Y , so

(fA)x = lim
x→∞

fA(zn)

= f( lim
x→∞

Azn)

= f(z),

since f is uniformly continuous.

Since f(Ax) = f(z) for all f ∈ Y ∗, so by “Hahn Banach theorem” Ax = y, which

is contradict to (1.2).

So our assumption is wrong, hence (Axn) converges to Ax.

Remark 1.3.5. The converge of the above theorem is not true.

10
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Example 1.3.3. Since in `1 every weakly convergent sequence is convergent by The-

orem 1.3.11, so for the identity operator I, I(xn) converges to I(x), for all xn
w−→ x.

But by Example 1.2.1 identity operator on `1 is not a compact operator.

Theorem 1.3.11. In `1 every weakly convergent sequence is converges.

Proof. Let us assume that sequence (xn) ∈ `1 weakly converges to x ∈ `1 that is,

xn
w−→ x but (xn) does not converges to x.

Without lose of generality x = 0. Since (xn) does not converges to 0, so ∃ ε > 0

such that,

||xn||1 =
∞∑
j=1

| xn(j) |≥ ε, ∀n ∈ N

For j ∈ N, let fj denote the jth co-ordinate functional. Then fj(x) = x(j), x ∈ `1.

Since f(xn) converges to 0, for all f ∈ `1∗ , so for each j ∈ N, xn(j) = fj(xn) converges

to 0.

Now since xn(1) converges to 0, so ∃ n1 ∈ N, such that |xn(1)| < ε ∀n ≥ n1.

Let m1 ∈ N, since for each fixed j ∈ N, xn(j) converges to 0, so ∃ kj ∈ N such

that for each j ∈ N,

| xn(j) |≤ ε

2m1

, ∀n ≥ kj

=⇒ | xn(j) |≤ ε

2m1

, ∀n ≥ max{k1, k2, . . . , km1}

=⇒
m1∑
j=1

|xn(j)| < ε, ∀n ≥ max{k1, k2, . . . , km1} (1.3)

Now if max{k1, k2, ......, km1} = k > n1, then put k = n2. Otherwise if k ≤ n1, then

choose n2 ∈ N, such that n2 > n1. So in both cases inequality (1.3) is holds.

Therefore ∃ n2 > n1 such that

m1∑
j=1

|xn(j)| < ε,∀n ≥ n2

=⇒
m1∑
j=1

|xn2(j)| < ε

Since xn2 ∈ `1, so ∃ m2 > m1,m2 ∈ N, such that

∞∑
j=m2+1

|xn2(j)| < ε

11
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Continuing this process we get strictly increasing sequences of natural numbers (nk)

and (mk) such that
mk−1∑
j=1

|xnk(j)| <
ε

5

and
∞∑

j=mk+1

|xnk(j)| <
ε

5

Put m0 = n0 = 1 define

y(j) =

1 if j = 1

sgnxnk if mk−1 + 1 ≤ j ≤ mk, k ∈ N

Then y ∈ `∞ and ||y|| ≤ 1.

Define fy : `1 → K by

fy(x) =
∞∑
j=1

x(j)y(j), x ∈ l1

Then fy ∈ `1∗ . Now for each fixed k ∈ N,

xnk(j)y(j) = |xnk(j)|, for mk−1 + 1 ≤ j ≤ mk.

Since

sgnx =

0 if x = 0

|x|
x

if m 6= 0

So ,

|fy(xnk)−
∞∑
j=1

|xnk(j)|| ≤ 2

mk−1∑
j=1

|xnk |+ 2
∞∑

j=mk+1

|xnk(j)|

<
4ε

5

=⇒ |fy(xnk)| ≥ ||xnk ||1 −
4ε

5
≥ ε− 4ε

5
=
ε

5
(1.4)

But since xn
w−→ 0, so xnk

w−→ 0. Since fy ∈ `1∗ , so fy(xnk) converges to 0, which is con-

tradictory to (1.4). Therefore our assumption is wrong. So every weakly convergent

sequence in `1 is convergent.

12
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Definition 1.3.3. (Adjoint of an Operator): Let X and Y are Hilbert spaces. An

adjoint operator T ∗ ∈ B(X, Y ) of T ∈ B(X, Y ) is an operator such that 〈Tx, y〉 =

〈x, T ∗y〉, ∀x ∈ X, y ∈ Y .

Theorem 1.3.12. Let X and Y be Hilbert spaces, and T ∈ B(X, Y ). Then T ∈
K(X, Y ) ⇐⇒ T ∗ ∈ K(Y,X)

Proof. Let (yn) be a bounded sequence in Y . Then there exists c > 0, such that

‖yn‖ ≤ c, ∀n ∈ N
We prove that (T ∗yn) has a convergent sub-sequence.

Since T ∈ K(X, Y ) and T ∗ ∈ B(Y,X), so TT ∗ ∈ K(Y ), so (TT ∗yn) has a conver-

gent sub-sequence, say (TT ∗ynk).

Then we have,

(||T ∗ynk − T ∗ynm ||)2 = 〈T ∗ynk − A∗ynm , T ∗ynk − T ∗ynm〉

= 〈TT ∗ynk − TT ∗ynm , ynk − ynm〉

≤ ||TT ∗ynk − TT ∗ynm||||ynk − ynm||

≤ 2c||TT ∗ynk − TT ∗ynm||

So (T ∗ynk) is a Cauchy sequence in X so it is converges to X. Hence T ? is compact

operator.

Conversely , let T ∗ ∈ (Y,X) is compact operator. Since T = (T ∗)∗, so replacing

T by T ∗ in the proof we get T ∈ B(X, Y ) is compact operator.

Theorem 1.3.13. Let X and Y be normed linear spaces and T : X → Y be an

injective compact linear operator. Then T−1 : R(T ) → X is continuous iff rankT <

∞.

Proof. Let T−1 : R(T ) → X is continuous. Since T is compact operator, so the

inclusion operator on R(T ), namely TT−1 : R(T )→ Y , is a compact operator. Hence

R(T ) is finite dimensional.

Conversely, let rankT < ∞, then T−1 : R(T ) → X is linear operator defined on

finte dimensional space, so continuous.

Theorem 1.3.14. Let X and Y be normed linear spaces, and T : X → Y be a linear

operator. Then T is bounded below, i.e., there exists c > 0 such that

||Tx|| ≥ c||x||,∀x ∈ X

13
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if and only if T is injective and T−1 : R(T )→ X is continuous, and in this case

||T−1y|| ≤ 1

c
||x||,∀y ∈ R(T ).

Proof. Let T is bounded below, that is there exists c > 0, such that ||Tx|| ≥
c‖x‖,∀x ∈ X. Then kerT = {0}, so T is injective. To prove T−1 : R(T ) → X

is continuous, let y ∈ R(T ), then there exists x ∈ X such that y = Tx. Then we have

||y|| = ||Tx|| ≥ c||x|| = c||T−1y||.

So,

||T−1y|| ≤ 1

c
||y||,∀y ∈ R(T )

Thus, ||T−1|| < ∞, so T−1 : R(T ) → X is continuous and ||T−1y|| ≤ 1
c
||y||,∀y ∈

R(T ).

Conversely, let T is injective and T−1 : R(T ) → X is continuous. Then there

exists d > 0, such that

||T−1y|| ≤ d||y||, ∀y ∈ R(T ).

For x ∈ X, let y = Tx. Then by above relation, we have ||x|| ≤ c||Tx||. So

||x|| ≤ c||Tx‖,∀x ∈ X

Remark 1.3.6. Let X and Y be normed linear spaces and T : X → Y is an infinite

rank operator which is bounded below. Then T is not a compact operator.

Proof. Since T is bounded below, so by above theorem T is injective and T−1 :

R(T )→ X is continuous, so if T is compact operator then R(T ) is finite dimensional,

which is contradicts that, T is infinite rank operator.

Theorem 1.3.15. If T ∈ K(X, Y ) and if T is bounded below on a subspace M of X,

then M is finite-dimensional.

In particular, if N is a closed subspace of Y such that N is contained in the range

of T , then N is finite-dimensional.

Proof. Since T is bounded below on M , so T is also bounded below (by the same

constant) on cl{M}; we may therefore assume, without loss of generality, that M is

closed.

Let us assume that M is infinite dimensional. Then M contains an infinite or-

thonormal set, say {en : n ∈ N}.

14
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Now if T is bounded below by ε on M , then note that

‖Ten − Tem‖ ≥ ε
√

2, ∀n 6= m.

Hence en is a bounded sequence in H such that (Ten) has no Cauchy subsequence,

contradicting our assumption that the compactness of T; hence M must be finite-

dimensional.

As for the second assertion, let M = T−1(N) ∩ (kerT )⊥. Then T maps M 1-1

onto N so by the “Open mapping theorem”, T must be bounded below on M ; hence

by the first assertion, M is finite-dimensional, and so also is N .

Definition 1.3.4 (Quotient operator). We know if T : X → Y is a bounded linear

operator and X0 is closed subspace X, then the restriction of T to X0 is a bounded

linear operator. It is also clear that if T is compact operator, then for every subspace

X0 of X restriction of T on X0 is compact operator. Also if X0 is closed subspace of

X such that X0 ⊆ N(T ), then the quotient operator T̃ : X/X0 → Y defined by

T̃ (x+X0) = Tx, x ∈ X

is a bounded operator. Do such results hold if boundedness condition is removed by

compactness ?

Theorem 1.3.16. Let X and Y be normed linear spaces and X0 ⊆ N(T ) be a closed

subspace of X. If T : X → Y is compact operator, then T̃ : X/X0 → Y is also a

compact operator.

Proof. Suppose T : X → Y is compact operator. Let (xn+X0) be a bounded sequence

in X/X0, that is there exists c > 0, such that

||xn +X0|| := inf{||xn + u|| : u ∈ X0} ≤ c,∀n ∈ N.

Then there exists a sequence (un) in X0 such that

||xn + un|| ≤ 2c,∀n ∈ N.

Since T is compact, so (T (xn + un)) has a convergent sub-sequence. Also since

T (xn + un) = T̃ (xn + X0), ∀n ∈ N, so (T̃ (xn + X0)) has convergent sub-sequence.

Hence T̃ is a compact operator.

15
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Theorem 1.3.17. Let X and Y are Banach spaces, and T : X → Y is a compact

operator with R(T ) closed in Y . Then rankT is finite.

Proof. Since N(T ) is closed subspace of X, so T̃ : X/N(T ) → Y defined by T̃ (x +

N(T )) = Tx, is a compact operator. Since X is Banach space and N(T ) is closed

subspace of X, so the quotient space X/N(T ) is Banach space. Now kerT̃ = {x +

N(T ) : T̃ (x + N(T )) = Tx = 0} = {N(T )}, so T̃ is injective and R(T ) = R(T̃ ) is

Banach space, since R(T ) is closed subspace of Banach space Y .

Thus T̃ : X/N(T ) :→ R(T̃ ) is bijective bounded linear operator between two

Banach spaces, so by “Bounded inverse theorem” inverse of T̃ is continuous.

Since T̃ is compact operator, so by theorem 1.3.13 R(T̃ ) = R(T )) is finite dimensional.

Definition 1.3.5. (Transpose of an operator): Let T ∈ B(X, Y ) be a bounded linear

operator and X∗ and Y ∗ are Dual spaces of X and Y are respectively. For f ∈ Y ∗

and x ∈ X, we define

(T ′f)(x) = f(Tx).

Now

|(T ∗f)(x)| = |f(Tx)| ≤ ||f ||||Tx|| ≤ ||f ||||T ||||x||

for all x ∈ X and f ∈ Y ∗, so T ′f ∈ X∗ for all f ∈ Y ∗.
Clearly, T ′ : Y ∗ :→ X∗ is linear operator. Also from above ||T ′f || ≤ ||f ||||T ||

=⇒ ||T ′|| ≤ ||T ||, so T ′ ∈ B(Y ?, X?). Since by “Hahn Banach extension theorem”

there exists f ∈ Y ∗ such that, ||f || = 1 thus ||T ′|| = ||T ||.

Definition 1.3.6. (Equicontinuous) Let (Ω, d) be a metric space with metric d. Then

a subset S ⊆ F(Ω,K) = {f : Ω→ K : f is continuous} is said to be equi-continuous

if for every ε > 0, there exists δ > 0, such that

s, t ∈ Ω, d(s, t) < δ =⇒ | x(s)− x(t) |< ε,∀x ∈ S.

Theorem 1.3.18. For a norm linear space X,

||x|| = sup{|f(x)| : f ∈ X∗, ||f || ≤ 1}.

Proof. Let f ∈ X∗ such that ||f || = 1, then |f(x)| ≤ ||x||. Therefore,

sup{|f(x)| : f ∈ X∗, ||f || ≤ 1} ≤ ||x||.

16
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Again by “Hahn Banach theorem”, for every x ∈ X, there exists fx ∈ X∗ such

that ||fx|| = 1 and fx(x) = ||x||. Therefore

||x|| = |fx(x)| ≤ sup{|f(x)| : f ∈ X∗, ||f || ≤ 1}.

Hence for every x ∈ X,

||x|| = sup{|f(x)| : f ∈ X∗, ||f || ≤ 1}.

Definition 1.3.7. (Canonical linear isometry)

Let X be a normed linear space. For each x ∈ X, consider the evaluation func-

tional

ϕx(f) = f(x), f ∈ X∗.

Since f ∈ X∗ is linear, so ϕx is a linear functional on X∗. Also

|ϕx(f)| = |f(x)| ≤ ||x||||f ||,∀f ∈ X∗,

so ϕx ∈ (X∗)∗ and ||ϕx|| ≤ ||x||.
We denote the space (X∗)∗ is dual of dual space X∗, by X∗∗, and called second

dual of X. Similarly we can define third dual, the forth dual and so on.

Now let J : X → X∗∗ be defined by

J(x) = ϕx, x ∈ X

Then, since ϕ is linear so J is linear operator and ||J(x)|| ≤ ||x|| for all x ∈ X. Thus

J is bounded linear operator. Also J is linear isometry, the isometry J : X → X∗∗ is

called the “canonical linear isometry” from X into X∗∗.

Theorem 1.3.19. Let X be a normed linear space and J : X → X∗∗ be defined by

J(x) = ϕx, where

ϕx(f) = f(x), ∀f ∈ X∗, ∀x ∈ X.

Then J is a linear isometry.

Proof. From above J : X → X∗∗ be defined by J(x) = ϕx, where

ϕx(f) = f(x) ∀f ∈ X∗, ∀x ∈ X.

17
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is bounded linear operator and ||J(x)|| ≤ ||x|| for every x ∈ X. Now we will show that

||x|| ≤ ||J(x)|| for every x ∈ X. By “Hahn Banach theorem” for every x ∈ X,

there exists fx ∈ X∗ such that ||fx|| = 1 and fx(x) = ||x||. Hence ,

||x|| = |fx(x)| = |(Jx)(fx) ≤ ||Jx||, ∀x ∈ X.

Hence complete the proof.

Theorem 1.3.20. Let X and Y be normed linear spaces and T ∈ B(X, Y ). If T is

compact operator then the transpose T ′ of T is compact operator and converse, is hold

if Y is Banach space.

Proof. Let T ∈ B(X, Y ) be a compact operator and (fn) is a bounded sequence in

Y ∗, then there exists c > 0 such that ||fn|| ≤ c,∀n ∈ N. For y, z ∈ Y

|fn(y)− fn(z)| ≤ ||fn||||y − z||

Let Ω = cl{Tx : ||x|| ≤ 1}, then Ω is compact, since T is compact operator. Let

gn = fn|Ω, n ∈ N, then {gn : n ∈ N} is a set of uniformly bounded equicontinuous

function on the compact metric space Ω. Hence by “Arzera−Ascoli′s theorem”

gn = fn|Ω, n ∈ N, has convergence subsequence, say (hn)n∈N

Now, for all n,m ∈ N

||T ′hn − T ′hm|| = sup{|T ′(hn − hm)x| : ||x|| ≤ 1}

= sup{|(hn − hm)(Tx) : ||x|| ≤ 1}

≤ sup{|(hn − hm)y| : y ∈ Ω}

Since the sequence (hn) is uniformly Cauchy on Ω, so (T ′hn) is cauchy sequence

in X∗ and it is convergent as X∗ is Banach space. Thus (T ′fn) has convergent sub-

sequence (T ′hn) and so T ′ ∈ B(Y ∗, X∗) is a compact operator.

Conversely, let Y is Banach space and T ′ ∈ B(Y ∗, X∗) is a compact operator.

Then T ′′ : X∗∗ :→ Y ∗∗ is compact operator. Let (xn) be a bounded sequence in X.

Since Y is Banach space, we will show that (Txn) has a cauchy subsequence. Let

ϕxn = Jxn, n ∈ N, where J : X → X∗∗ is the linear isometry. Then ||ϕxn|| = ||xn||,
so (ϕxn) is a bounded sequence in X∗∗. Therefore by compactness of T ′′, the sequence

18
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(T ′′ϕxn) has a convergent subsequence, say (T ′′ϕxnk ). Now

||Txnk − Txnm|| = sup{|f(Txnk − Txnm)| : f ∈ Y ∗, ||f || ≤ 1}

= sup{|(T ′f)(xnk − xnm)| : ||f || ≤ 1}

= sup{|(ϕxnk − ϕxnm )(T ′f)| : ||f || ≤ 1}

= sup{||T ′′(ϕxnk − ϕxnm )(f)|| : ||f || ≤ 1}

= ||T ′′ϕxnk − T
′′ϕxnm ||

for all k,m ∈ N. Thus, (Txnk) is a Cauchy subsequence of (Txn), which is convergent.
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Chapter 2

Fredholm Operator

2.1 Introduction:

Definition 2.1.1. A Fredholm operator is a bounded linear operator S : X → Y

between two Banach spaces with finite dimensional kernel and co-kernel, where co-

kernel is the dimension of cokerT = Y/R(T ).

Definition 2.1.2. Let T ∈ B(X, Y ) be a Fredholm operator. Define the “Index of T”

by

indexT := dim(kerT )− dim(Y/R(T )).

2.2 Examples:

Example 2.2.1. If A : X → Y be a linear operator, where X and Y are both finite

dimensional Hilbert spaces, then A is Fredholm and ind A= dim X - dim Y.

Proof. A ∈ B(X, Y ) is Fredholm, since domain and range spaces both are finite

dimensional. From linear algebra we know that,

dimX = dimR(A) + dim(kerA) = dimY − dim(Y/R(A)) + dim(kerA).

Thus indA = dim(kerA)− dimR(A) = dimX − dimY .

Example 2.2.2. Let S−1 : `2 → `2 be the unilateral shift operator given by

S−1(a0, a1, a2, . . . ) = (0, a0, a1, . . . ).
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Then it is a Fredholm operator.

Proof. S−1 is injective, since kerS−1 = {0}, so dim kerS−1 = 0. Also, cokerS−1 =

`2/R(S−1) = Span{e1 +R(S−1)}, and so dim cokerS−1 = 1 <∞.

Hence, S−1 is a Fredholm operator, and

ind(S−1) = dim(kerS−1)− dim(cokerS−1) = 0− 1 = −1.

Example 2.2.3. Let S1 : `2 → `2 be a left shift operator given by

S1(a0, a1, a2, . . . ) = (a1, a2, . . . ). Then S1 is Fredholm operator

Proof. We know S1 is adjoint of S−1. In this case, kerS1 = Span(e1) and cokerS1 =

{R(S1)}. Hence, S2 is also Fredholm operator and

ind(S2) = dim(kerS1)− dim(cokerS1) = 1− 0 = 1

.

Remark 2.2.1. It is clear that S−n := (S−1)n and Sn := (S1)n. are both Fredholm

with index −n and n, respectively. Hence, for any k ∈ Z, there are Fredholm operators

on `2 with index k.

2.3 Properties:

Lemma 2.3.1. Let H1 and H2 are Hilbert spaces and T ∈ B(H1, H2) such that Kernel

and Co-kernel of T both are finite dimensional, then R(T ) is closed.

Proof. Let T̃ be restriction of T to (KerT )⊥. Then T̃ is bounded linear operator.

Since T is Fredholm operator, so dimension of co-kernel of T is finite say, codimT = n.

Now if R is algebraic complement of R(T ), then H2 = R(T )⊕R and R is isomorphic

to H2/R(T ). So dimension of R is n. Let S : Cn → R be a linear bijective map, such

a map exists since dim Cn = dimR.

Define T1 : (kerT )⊥ ⊕ Cn → H2 by T1(x, y) = T̃ + Sy. Then T1 is one-one and

onto, since H2 = R(T )⊕R. So By “Bounded inverse theorem”, T−1 is bounded

and continuous. Hence R(T ) = T1((kerT )⊥⊕{0}) is closed, since (kerT )⊥ ⊕ {0}) is

closed.

Theorem 2.3.1. Let X is a Banach space and T is a normed linear space and

T : X → Y is a bounded linear operator. If T is bounded below i.e., there exists

c > 0, ||Tx|| ≥ c||x||, ∀x ∈ X. Then R(T ) is closed subspace of Y .
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Proof. Let (yn) be a sequence in R(T ) converges to y ∈ Y . Since yn ∈ R(T ), so there

exists xn ∈ X such that Txn = yn.

Now Since (yn) is Cauchy sequence in Y and T is bounded below, so (xn) is a

Cauchy sequence in X. Since X is Banach space, (xn) converges to x ∈ X, for some

x ∈ X.

So by continuity of T , (Txn) converges to Tx. Therefore y = Tx ∈ R(T ). Hence

R(T ) is closed subspace of Y .

Theorem 2.3.2. Let X and Y are Hilbert spaces and T ∈ B(X, Y ). Then R(T) is

closed iff R(T ∗) is closed.

Proof. Let Y0:=R(T) is closed and T0 : X → Y0 be defined by T0x = Tx, ∀x ∈ X.

Then T0 ∈ B(X, Y ). We want to proof R(T ∗0 ) is closed and R(T ∗0 ) = R(T ∗).

Since T0 : X → Y0 is surjective bounded linear operator between two Banach

spaces , By consequence of “Open mapping theorem”, there exists c > 0, such

that for all y ∈ Y0 , there exists x ∈ X satisfy T0x = y and ||x|| ≤ c||y||.

Now for every u ∈ Y0,

|〈y, u〉| = |〈Tx, u〉|

= |〈x, T ∗0 u〉|

≤ ||x||||T ∗0 u||

≤ c||y||||T ∗0 u||

which hold for all, y ∈ Y0.

Since for an element z ∈ X∗, in an inner product space X∗,

‖z‖ = sup{|〈z, u〉| : u ∈ X1, ||u|| ≤ 1}

So ||u|| ≤ c||T ∗0 u||, for all u ∈ Y0.

Therefore T ∗0 is bounded below and so by theorem 2.3.1 R(A∗0) is closed.

It remains to prove that R(T ∗) = R(A∗0).

Now

〈T0x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉,∀x ∈ X, y ∈ Y

=⇒ T ∗0 y = T ∗y,∀y ∈ Y0
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Since Y0 = R(T ) is closed in Y . So by “Projection Theorem”, we have Y =

R(T )⊕R(T )⊥ and R(T )⊥ = N(T ∗).

Therefore R(T ∗0 ) = {T ∗0 y : Y ∈ R(T )}={T ∗y : Y ∈ R(T )} = {T ∗y : y ∈ Y } =

R(T ∗).

Hence R(T ?) is closed.

Conversely, let R(T ∗) is closed. Since, T ∗∗ = T . So by above result R(T ) = R(T ∗∗)

is closed.

Proposition 2.3.1. Let X and Y be Hilbert spaces, and T ∈ B(X, Y ). Then follow-

ing are holds.

i) N(T ) = R(T ?)⊥

ii) N(T ∗) = R(T )⊥

iii) N(T )⊥ = cl{R(T ∗)}
iv) N(T ∗)⊥ = cl{R(T )}

Proof. Note that for x ∈ X,

x ∈ R(T ∗)⊥ ⇐⇒ 〈x, T ∗y〉 = 0, ∀y ∈ Y ⇐⇒ 〈Tx, y〉 = 0, ∀y ∈ Y ⇐⇒ Tx = 0

⇐⇒ x ∈ N(T ).

Hence i) is proved.

Since (T ∗)∗ = T , replacing T by T ∗ in proof i) we get prove ii).

Now we know that for any subset S of X (S⊥)⊥ = cl{spanS}.
Taking both side of i) perpendicular we get result iii) and taking both side of ii)

perpendicular we get result iv).

Theorem 2.3.3. Adjoint of a finite rank bounded linear operator is finite rank oper-

ator and dimension is same.

Proof. Let X and Y are Hilbert spaces and T : X → Y be a finite rank bounded

linear operator. Consider the restrict of T to ker(T )⊥,

T |(kerT )⊥ : (kerT )⊥ → ran(T )

is an bijective bounded linear operator between Hilbert spaces, since (kerT )⊥ is closed

subspace of Hilbert space. So by “Bounded inverse theorem”, the inverse of

the restriction is continuous, hence the restriction of T on (kerT )⊥ is an isomor-

phism. Therefore dim(kerT )⊥ = dimR(T ). Also we know (kerT )⊥ = cl{R(T ∗)}.
So dim cl{R(T ∗)} < ∞ and R(T ∗) is closed subspace of X. Since cl{R(T ∗)} is
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smallest closed set containing R(T ∗), so cl{R(T ∗)} = R(T ∗), thus dim R(T ∗) =

dim R(T ).

Theorem 2.3.4. Let H1, H2 are Hilbert spaces and T ∈ B(H1, H2) is Fredholm op-

erator. Then the adjoint T ∗ of T is Fredholm and indexT ∗ = −indexT .

Proof. We know H2 = cl{R(T )}⊕kerT ∗. Since R(T ) is closed, so H2 = R(T )⊕kerT ∗.
As quotient spaceH2/kerT is isomorphic to kerT ∗ and dimension ofH2/R(T ) is finite,

so dim kerT ∗ is finite.

Similarly H1 = R(T ∗) ⊕ kerT , since R(T ∗) is closed. As dim(kerT ) is finite, so

dimension of H1/R(T ∗), that is dimension of cokerT ∗ is finite.

Hence adjoint of T is Fredholm operator. Now

indexT ∗ = dim(kerT ∗)− codimT ∗ = codimT − dim(kerT ) = −indexT.

Remark 2.3.1. T ∈ B(H1, H2) is Fredholm iff T ∗ ∈ B(H2, H1) is Fredholm.

Theorem 2.3.5. Let T ∈ B(H1, H2) be bijective, and let K ∈ B(H1, H2) be compact.

Then T + K is a Fredholm operator.

Proof. ker(T + K) is a subspace of Hilbert space H1, and in particular it is a linear

space, so for x ∈ ker(T + K) we have Tx = −Kx. Let (xn)n∈N ⊆ ker(T + K) be

a bounded sequence. Since K ∈ B(H1, H2) is a compact operator, so the sequence

(Kxn)n∈N has a convergent sub-sequence, say (Kxnk)k∈N. But xnk ∈ ker(T + K) for

each k ∈ N, so (Kxnk)k∈N = (−Txnk)k∈N, which tells us that (xnk)k∈N is convergent,

since by Bounded inverse theorem T−1 is bounded linear operator.

Hence any bounded sequence in ker(T +K) has a convergent sub sequence, which

means that dim(ker(T + K)) < ∞, since an infinite dimensional Hilbert space has

an infinite orthonormal sequence (en)n∈N with no convergent sub sequences as it is

not Cauchy sequence.

We know that H2 = cl{R(T +K)}⊕ ker(T ∗+K∗), since H2 = (ker(T +K)∗)⊥⊕
ker(T +K)∗ and cl{R(T +K)} = (ker(T +K)∗)⊥ and since T ∗ is invertible and K∗

is compact, we get by the above that dim(ker(T ∗ +K∗)) <∞.

This means that we only have to check that R(T + K) is closed in order to see

that codim(T +K) <∞.

To see this we split H1 into the direct sum H1 = H̃1⊕ker(T+K), and we consider

the restriction of T +K to H̃1. We want to show that for all x ∈ H̃1, the inequality

24



CHAPTER 2. FREDHOLM OPERATOR

||x|| ≤ c||k(T +K)x||

holds for some c > 0. In order to show this inequality, we assume that for all

c > 0 there exists x ∈ H̃1 such that ||x|| ≥ c||(T +K)x||. Then there exist sequences

(cn)n∈N ⊆ (0,∞), (xn)n∈N ⊆ H̃1 such that ||xn|| = 1 for all n ∈ N, cn →∞ as n→∞,

and 1 = ‖xn‖ ≥ cn‖(T + k)xn‖, for all n ∈ N. Hence ‖(T + K)xn‖ ≤ 1 1
cn
→ 0 for

n → ∞. Since K is compact operator, and xn has norm 1 for each n ∈ N, so there

exists a sub sequence (Kxnk)k∈N of (Kxn)n∈N which is convergent.

Let us assume that (Kxnk) converges to v ∈ H2. This means (Txnk) converges to

−v ∈ H2. Thus

xnk = T−1Txnk → −T−1v = w

for k →∞, where w ∈ H̃1. Since

lim
k→∞

xnk = w =⇒ ||limk→∞xnk || = ||w||

=⇒ lim
k→∞
||xnk || = ||w|| =⇒ ||w|| = 1

since, ||xnk || = 1 for each k ∈ N.

Now since (xnk) converges to w and (Txnk +Kxnk) converges to 0, so

(T +K)w = lim
k→∞

(Txnk +Kxnk) = 0

Hence w ∈ ker(T +K), which is contradicting that H̃1 ⊥ ker(T +K). Therefore for

all x ∈ H̃1,

||x|| ≤ c||(T +K)x||

holds for some c > 0. So by theorem 2.3.1 range of the restriction of T+K on H̃1 is

closed. Since range of the restriction and range of T+K is equal, so R(T+K) is closed

set and H2 = im(T +K)⊕ker(T ∗+K∗). So coker(T +K) is finite dimensional, since

coker(T +K) is isomorphic to ker(T ∗+K∗). Hence T +K is Fredholm operator.

Definition 2.3.1. (Algebra) Let A be a non-empty set. Then (A,+, ., ◦) is called an

algebra

if

1. ( A, +, .) is a vector space over a field F .

2. (A, +, ◦) is a ring and
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3. (αa) ◦ b = α(a ◦ b) = a ◦ (αb) for every α ∈ F , for every a, b ∈ A.

An algebra A is called real or complex acoording as F = R or F = C and commutative

if (A, +, ◦) is a commutative ring.

An algebra A is said to be unital if (A,+, ◦) has a unit, usually denoted by 1. Let

A be unital and a ∈ A. If there exists an element b ∈ A such that ab = ba = 1, then

b is called an inverse of a.

Definition 2.3.2. (Banach algebra) Let A be an algebra over the field F and ||.|| is

a norm on A, then (A, ||.||) is called “Banach algebra” if

1. ||ab|| ≤ ||a||||b||, for all a, b ∈ A

2. A is complete with respect to the norm ||.||

(A, ||.||) is commutative Banach algebra if A is commutative.

Example 2.3.1. 1. The set of real (or complex) numbers is a commutative unital

Banach algebra with norm given by the absolute value.

2. Take the Banach space Rn(or Cn) with norm ||x|| = max{| xi |: 1 ≤ i ≤ n} and

define multiplication point wise: (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn), is

a commutative Banach algebra.

3. Let H∞(D) := {f : D → C : f is bounded and analytic}, where D = {z ∈
C : ||z|| < 1} is a commutative unital Banach algebra with respect to the point

wise addition, multiplication of functions and usual scalar multiplication of func-

tions and the supremum norm.

4. Let X be a complex Banach space and B(X) is the Banach space of bounded

linear operators on X with respect to the operator norm. With composition of

operators as multiplication, B(X) is a non commutative, unital Banach algebra.

5. Let (X,µ) be a finite measure space and L∞(µ) := {f : X → C : ess sup|f | <
∞}. With the point wise multiplication of functions and ||f ||∞ = ess sup|f |,
L∞(µ) is a commutative, unital Banach algebra.

6. K(X) = {T ∈ B(X) : T is compact} is a subalgebra of B(X). Hence it is a

Banach algebra. It can be verified that K(X) is unital if and only if dim(X) <

∞.
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Definition 2.3.3. (Clakin algebra) Let H be a Hilbert space.We know K(H) is a

ideal of B(H).

Now the quotient B(H)/K(H) is a Banach algebra called “Calkin algebra”,

denoted by C(H).

Let π : B(H)→ C(H) be the natural projection map defined by

π(T ) := T +K(H).

I +K(H) is the identity element in The Calkin algebra. An element T +K(H) is

invertible in C(H) if there exists an element S +K(H) in C(H) such that

(T +K(H))(S +K(H)) = (S +K(H))(T +K(H)) = I +K(H)

equivalently, ST = I +K1 and TS = I +K2, for some K1, K2 ∈ K(H).

Theorem 2.3.6. An operator T ∈ B(H) is Fredholm if and only if π(T ) is invertible

in the Calkin algebra. In particular, an operator T is Fredholm if and only if there

exists an S ∈ B(H) such that

ST = I +K1 and TS = I +K2, for some K1, K2 ∈ K(H).

Proof. Let T ∈ B(H) is Fredholm operator.That is kerT and cokerT are finite dimen-

sional. Let P ∈ B(H) be the or-thogonal projection onto kerT , and let Q ∈ B(H)

be the orthogonal projection onto R(T ).

The restriction of T at (kerT )⊥ onto R(T ) is invertible:

T : (kerT )⊥ → R(T )

Let the inverse of the above restriction is

S : R(T )→ (kerT )⊥

Now we can extend the domain of S to all of H by defining S((imT )⊥) = 0.

With this extension, it follows that ST+P and TS+Q are the identity operators on

H. Since kerT and (R(T ))⊥ are finite dimensional, P and Q are compact operators.

Hence, ST = I − P and TS = I − Q, and so S is the inverse of T modulo compact

operators. Thus, π(T ) is invertible in C(H).

Conversely, let there exists an S ∈ B(H) such that ST = I+K1 and TS = I+K2,

for some K1, K2 ∈ K(H). Then I − ST is compact.
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Now we have kerT ⊆ kerST = ker(I + K1). Since I + K1 is Fredholm, so

dim(ker(I +K1)) is finite. Therefore dimension of kerT is finite.

Again R(T ) ⊆ R(TS) = R(I + K2), and I + K2 is Fredholm so codimT ≤
codim(I +K2) <∞. Hence T is Fredholm a operator.

Proposition 2.3.2. Let H be a Hilbert space, then the set of all Fedholm operators

F(H) is an open set of B(H).

Proof. We know F(H) = π−1(C×(H)), where C×(H) is the invertible element in the

Calkin algebra which is an open set, so F(H) is a open set of B(H).

Theorem 2.3.7. Let T ∈ B(X, Y ) is Fredholm iff there exists R, S ∈ B(X, Y ) and

operators K1 and K2 which are compact operators on X and Y respectively such that

RT = I +K1 and TS = I +K2

Proof. Let T ∈ B(X, Y ) is a Fredholm operator. Define T̃ : X̃ :→ Ỹ , where X̃ =

(kerT )⊥ and Ỹ = R(T ) = (kerT ∗)⊥ a restriction of T on (kerT )⊥ is a bijective

operator.

Define S2 ∈ B(Y,X), by

S2 = IX̃ ◦ (T̃ )⊥ ◦ PR(T ),

where IX̃ : X̃ → X is an inclusion operator. and PR(T ) : Y → Y is projection operator

on R(T ).

Then T ◦ S2 = T ◦ (T̃ )−1 ◦ PR(T ) = PR(T ) = I − PkerT ∗ , since if P : X → X is

projection operator on Y ⊂ X, where X = Y ⊕Y ⊥, then I−P is projection operator

on Y ⊥, I is identity operator on X.

Put K2 = −PkerT ∗ , since dimKerT ∗ is finite so K2 is finite rank bounded linear

operator. Therefore K2 is compact operator.

Also, T ∗ is Fredholm operator, so using same way as above we get that there exists

operators S3 ∈ B(Y,X) and K3 ∈ K(X) such that T ∗ ◦ S3 = I +K3.

=⇒ (T ∗ ◦ S3)∗ = (I +K3)∗

=⇒ S∗3 ◦ T = I +K∗3

=⇒ S1◦T = I+K1, where S1 = S∗3 ∈ B(Y,X) and K1 = K∗3 ∈ B(X) is compact

operator, since adjoint of a compact operator is compact operator.

Conversely, let the condition is true. Now we have kerT ⊆ kerS1◦T = ker(I+K1).

Since I +K2 is Fredholm, so dimker(I +K2) is finite. Therefore dimension of kerT

is finite.
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Again R(T ) ⊆ R(T ◦ S2) = R(I + K2),so codimT ≤ codim(I + K2) < ∞, since

(I +K2) is Fredholm.

Hence T is Fredholm operator.

Remark 2.3.2. Let T ∈ B(X, Y ) is Fredholm iff there exists R, S ∈ B(X, Y ) and

operators K1 and K2 which are finite rank operators on X and Y respectively such

that RT = I +K1 and TS = I +K2

Proof. Let T ∈ B(X, Y ) is a Fredholm operator. Define T̃ : X̃ :→ Ỹ , where X̃ =

(kerT )⊥ and Ỹ = R(T ) = (kerT ∗)⊥ a restriction of T on (kerT )⊥ is a bijective

operator.

Define S2 ∈ B(Y,X), by S2 = IX̃ ◦ (T̃ )⊥ ◦ PR(T ),

where IX̃ : X̃ → X is an inclusion operator. and PR(T ) : Y → Y is projection

operator on R(T ).

Then T ◦ S2 = T ◦ (T̃ )−1 ◦ PR(T ) = PR(T ) = I − PkerT ∗ , since if P : X → X is

projection operator on Y ⊂ X where X = Y ⊕Y ⊥, then I −P is projection operator

on Y ⊥, I is identity operator on X.

Put K2 = −PkerT ∗ , since dimKerT ∗ is finite so K2 is finite rank bounded linear

operator.

Also, T ∗ is Fredholm operator, so using same way as above we get that there

exists operators S3 ∈ B(Y,X) and K3 ∈ B(X) a finite rank operator such that

T ∗ ◦ S3 = I +K3.

=⇒ (T ∗ ◦ S3)∗ = (I +K3)∗

=⇒ S∗3 ◦ T = I +K∗3

=⇒ S1 ◦ T = I + K1, where S1 = S∗3 ∈ B(Y,X) and K1 = K∗3 ∈ B(X) is finite

rank operator, since adjoint of a finite rank operator is finite rank operator.

Conversely, let the condition is true. Now we have kerT ⊆ kerS1◦T = ker(I+K1).

Since I +K2 is Fredholm, so dimker(I +K2) is finite. Therefore dimension of kerT

is finite.

Again R(T ) ⊆ R(T ◦ S2) = R(I + K2), so codimT ≤ codim(I + K2) < ∞, since

(I +K2) is Fredholm.

Hence T is Fredholm operator.

Theorem 2.3.8 (Atkinson’s Theorem). Let H1 and H2 are Hilbert spaces. If T ∈
B(H1, H2), then the following conditions are equivalent:

1. T ∈ B(H1, H2) is Fredholm.
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2. There exists operators S1, S2 ∈ B(H2, H1) and compact operators Ki ∈ K(Hi), i =

1, 2, such that

S1T = IH1 +K1 and TS2 = IH2 +K2.

3. There exists S ∈ B(H2, H1), and finite dimensional sub-spaces Ni ⊂ Hi, i =

1, 2, such that

ST = IH1 − PN1 and TS = IH2 − PN2

where PNi, i=1,2, is the projection on Ni.

Proof. The proof of all equivalents condition are clear from the above theorems.

Definition 2.3.4. Let V0, V1, V2, . . . , Vn be vector spaces, and let Tj : Vj → Vj+1.

0 ≤ j ≤ n− 1, be linear mappings. Then the sequence

V0
T0−→ V1

T1−→ V2
T2−→ . . .

Tn−2−−−→ Vn−1
Tn−1−−−→ Vn

is called “exact” if R(Tj) = kerTj+1 ,j = {0, 1, 2, . . . , n− 2}.

Lemma 2.3.2 (). Let V0 = 0
T0−→ V1

T1−→ V2
T2−→ . . .

Tn−2−−−→ Vn−1
Tn−1−−−→ Vn = 0

be an exact sequence with dimVj <∞, for all j = {0, 1, 2, . . . , n}.
Then

n−1∑
j=1

(−1)jdimVj = 0

.

Proof. Let decompose of Vj is Vj = Nj ⊕ Yj, where Yj is a algebraic complement of

Nj = kerTj for each j. Then Tj : Yj → nj+1 is a isomorphism for each j. Hence

dimYj = dimNj+1

Again by “Rank− nullity theorem”, for j ∈ 0, 1, 2, . . . , n− 1

dimVj = dimNj + dimYj = dimNj + dimNj+1. Now dimN0 = 0, and dimVn−1 =

dimNn−1. So by calculation,

n−1∑
j=1

(−1)jdimVj = 0

Proposition 2.3.3. If V
f−→ E

g−→ W is an exact sequence and V and W are finite

dimensional, then E is finite dimensional.
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Proof. Since V is finite dimensional, so by “Rank nullity theorem”, R(f) is finite

dimensional. So by exactness of sequences kerg is finite dimensional. Also R(g) is

subspace of W , so finite dimensional. We want to prove E is finite dimensional.

Let us assume that E is infinite dimensional. Since W is finite, so there is finitely

many elements in E whose images are linearly independent in R(g), otherwise R(g)

is infinite dimensional, so kerg contains infinitely many element of E. Therefore kerg

is infinite dimensional, which is a contradiction.

Theorem 2.3.9. (Multiplicative property of the index). Let T1 ∈ B(H1, H2) and

T2 ∈ B(H2, H3) are given two Fredholm operators, then T2 ◦ T1 ∈ B(H1, H3) is also a

Fredholm operator, and indexT2T1 = indexT1 + indexT2.

Proof. Consider the following sequence:

0→ kerT1
i−→ kerT2T1

T1−→ kerT2
q−→ H2/imT1

T2−→ H3/imT2T1
E−→ H3/imT2 → 0.

Where i : kerT1 → kerT2T1 denotes the inclusion, q : H2 ⊇ kerT2 → H2/imT1 is

the map defined by, q(x) = x+ imT1, and E maps equivalence classes modulo imT2T1

into equivalence classes modulo imT2.

Then the above sequence is exact sequence. Since kerT1, kerT2, cokerT1, and

cokerT2 are all finite dimensional, by above Proposition , kerT2T1 and cokerT2T1 are

finite dimensional. Thus, T2T1 ∈ B(H1, H3) is Fredholm operator. By Lemma 2.4.2,

we have:

0 = −dimkerT1 + dimkerT2T1 − dimkerT2 + dimcokerT1 − dimcokerT2T1 +

dimcokerT2 = ind(T2T1)− ind(T1)− ind(T2).

Thus, ind(T2T1) = ind(T2) + ind(T1).

Theorem 2.3.10. Let T1 ∈ B(H1, H2) and T2 ∈ B(H2, H3) such that T2T1 ∈
B(H1, H3) is Fredholm operator, then T1 Fredholm iff T2 Fredholm.

Proof. We know the sequence:

0→ kerT1
i−→ kerT2T1

T1−→ kerT2
q−→ H2/R(T1)

T2−→ H3/R(T2T1)
E−→ H3/R(T2)→ 0

is exact, where where i : kerT1 → kerT2T1 denotes the inclusion, q : H2 ⊇ kerT2 →
H2/imT1 is the map defined by, q(x) = x + imT1, and E maps equivalence classes

modulo imT2T1 into equivalence classes modulo imT2.

31



CHAPTER 2. FREDHOLM OPERATOR

Since T2T1 is Fredholm so, dimH3/R(T2T1) < ∞. Also R(T2T1) ⊆ R(T2) so,

H3/R(T2) ⊆ H3/R(T2T1) and dimH3/R(T ) is finite.

Now if T1 is Fredholm then kerT1 and cokerT1 are finite dimensional, since

KerT2T1 and CokerT1 are finite so by proposition (2.4.2), kerT2 is finite dimensional.

Hence T2 is fredholm operator.

Conversely, let T2 is Fredholm. Since kerT2 and CokerT2T1 are finite dimensional,

so by proposition (2.4.2) dimcokerT1 is finite. Also dimkerT2 is finite, since KerT2 ⊆
KerT2T1.

Hence T1 is Fredholm operator.

Proposition 2.3.4. Let F ∈ B(H) is a finite rank operator on Hilbert space H, then

index(I + F ) = 0

Proof. Define L := R(F ) + (kerF )⊥, then dimL < ∞, since restriction of F on

(kerF )⊥ onto R(F ) is bijective operator. Then H = L+L⊥, and (I+F )L = L, since

we see that (I +F )L ⊆ L+FL ⊆ L, also for u ∈ L, u = Fx+ y for some x ∈ H and

for some y ∈ (kerF )⊥ implies u ∈ (I + F )L by definition of L.

Since L ⊇ (kerF )⊥, so L⊥ ⊆ kerT thus (I+F )|L = I|L. So L and L⊥ are invarient

under I + F , and we have

index(I + F ) = index((I + F )|L) + index((I + F )|L⊥)

Here clearly index((I + F )|L) = 0 and since dimL < ∞, so by “Rank Nullity

theorem” dimker((I + F )|L) = 0, codim((I + F )|L) = 0, so index((I + F )|L) = 0.

Hence index(I + F ) = 0.

Theorem 2.3.11. (Invariance of Fredholm property and index under small pertu-

bations). Let T ∈ B(H1, H2) be a Fredholm operator. Then there exists a constant

c > 0 such that for all operators S ∈ B(H1, H2) with norm < c, T + S is a Fredholm

operator, which satisfies index(T + S) = indexT .

Proof. Let T ∈ B(H1, H2) is Fredholm operator. The restriction of T on (kerT )⊥

T̃ : (kerT )⊥ → R(T ) is a bijectve operator.

Define R ∈ B(H2, H1) by R = prR(T )∗ ◦ (T̃ )−1 ◦ iR(T ), where prR(T )∗ is projection

operator on R(T )∗ and iR(T ) is inclution operator on R(T ). Then R ∈ B(H2, H1) and

R ◦ T = prR(T )∗ ◦ (T̃ )−1 ◦ iR(T ) ◦ T = prR(T )∗ = I − prkerT

Now R(T + S) = RT + RS + I − prkerT + RS. Let S ∈ B(H1, H2) such that

||S|| < (||R||)−1, so ||RS|| < 1. Since for any T ∈ B(X, Y ) such that ||T || < 1, where
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X is non zero norm linear space and Y is Banach space I +T is invertible, so I +RS

is invertible.

Since, RT = I − prkerT , so

indR + indT = ind(I − prkerT )

⇐⇒ indT = −indR + ind(I − prkerT )︸ ︷︷ ︸
=0

= −ind((I +RS)−1R) + ind(I − (I +RS)−1prkerT )︸ ︷︷ ︸
=0

= −ind((I +RS)−1R) + ind(I − (I +RS)−1prkerT )︸ ︷︷ ︸
=0

+ind(I +RS)

= −indR + ind(I +RSprkerT )

= ind(T + S)

Where we use that−prkerT and−(I−RS)−1prkerT are finite rank operators, I+RS

is invertible operator, so its index is zero, I − prkerT +RS is Fredholm operator.

Hence T + S is Fredholm operator and indexT = index(T + S).

Theorem 2.3.12. (Invariance of Fredholm property and index under compact pertu-

bations). Let T ∈ B(H1, H2) be a Fredholm operator. Then for any compact operator

K ∈ B(H1, H2), T +K is a Fredholm operator, and index(T +K) = indexT holds.

Proof. Let T ∈ B(H1, H2) be a Fredholm operator, and let K ∈ B(H1, H2) be a

compact operator. Then there exist S1, S2 ∈ B(H2, H1) and operators K1 and K2

which are finite rank operators on H1 and H2 respectively such that S1T = I + K1

and TS2 = I +K2. We see that

S1(T +K) = S1T + S1K = I +K1 + S1K = I + K̃1

(T +K)S2 = TS2 +KS2 = I +K2 +KS2 = I + K̃2

where K̃1 and K̃2 are finite rank operators.

Hence by by previous theorem T + K is a Fredholm operator and by theorem

(2.3.16) index same with index of T .

Theorem 2.3.13. Let X be Banach space and T ∈ B(X), if ||T || < 1, then I − T is

invertible and

(I − T )−1 =
∞∑
n=0

T n.
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Proof. We have ||T n|| = ||T ◦ T · · · ◦ T ||︸ ︷︷ ︸
n times

≤ ||T ||n, for all T ∈ B(X). So

∞∑
n=0

||T n|| ≤
∞∑
n=0

||T ||n

Since ||T || < 1, the series
∞∑
n=0

||T ||n

is geometric series with common ratio less that 1 , so it is convergent series. Thus

∞∑
n=0

T n

is absolutely convergence series in the Banach space B(X), so the series

∞∑
n=0

T n

is convergent. So

∞∑
n=0

T n ∈ B(X) and (I − T )
∞∑
n=0

T n =
∞∑
n=0

T n −
∞∑
n=1

T n = I.

Hence

(I − T ) is invertible and (I − T )−1 =
∞∑
n=0

T n.

Theorem 2.3.14. Let X be a Banach space and S, T ∈ B(X). If T is invertible and

||T − S|| < 1
||T−1|| , then S is invertible and ||S−1 − T−1|| ≤ ||T−1||2||S − T ||.

Proof. We have ||T−1(T − S)|| ≤ ||T − S||||T−1|| < 1, so I − T−1(T − S) = T−1S is

invertible and hence T (T−1S) = S is invertible, since composition of two invertible

maps is invertible.

Theorem 2.3.15. Let X be a Banach space. Then the set of all invertible element

say G(X) in B(X) is open set.

Proof. Let T ∈ G(X) and D = {S ∈ B(X) : ||T − S|| < 1
||T−1||} Then by above

theorem every element of D is invertible and so D ⊆ G(X). Therefore T is an

interior point of G(A). Hence G(X) is an open set.
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Theorem 2.3.16. The map, ind : F(H) → Z is locally constant i.e., if T0 ∈ F(H)

and for T ∈ F(H), there exists δ > 0, such that, ‖T − T0‖ < δ, then indT = indT0

Hence the map ind : B(H)→ Z is continous.

Proof. Let T ∈ B(H) is Fredholm operator. Let J : (kerT )⊥ → H be the inclusion

of (kerT )⊥ into H and let Q : H → R(T ) be the orthogonal projection of H onto

R(T ). Since kerJ = 0 and cokerJ = H/(kerT )⊥ = kerT , J is Fredholm operator

with index

ind(J) = dimkerJ − dimcokerJ = −dimkerT

Similarly, since kerQ = (R(T ))⊥ = cokerT and cokerQ = R(T )/R(T ) = 0, so Q is

Fredholm operator. with index

ind(Q) = dimkerQ− dimcokerQ = dimcokerT

Hence,

ind(T ) + ind(J) + ind(Q) = 0 (2.1)

Now QTJ : (kerT )⊥ → imT is invertible, since it is bijective. Fix ε = 1
(‖QTJ‖)−1 > 0,

Let T1 ∈ B(H) is a Fredholm operator, such that ||T − T1|| < ε
||Q||||J || . Then

||QTJ −QT1J || = ||Q(T − T1)J || ≤ ||Q||||T − T1||||J || < ε

Since B(H) is Banach algebra, so by above theorem QT1J is invertible element in

B(H).

Hence ind(QT1J) = 0, so

indQ+ indT1 + indJ = 0 (2.2)

Since all Q, T1 and J are Fredholm operators so, from (2.1) and (2.2) we get

indT = indT1.

Hence index map is locally constant, so index map is continuous.

Proposition 2.3.5. Let H be a Hilbert space and T ∈ B(H) is a Fredholm operator

then, ∀K ∈ K(H) and ∀c ∈ C, T + cK is a Fredholm operator and

indT = ind(T + cK), ∀K ∈ K(H),∀c ∈ C.

Proof. Clearly T + cK is a Fredholm operator, since ∀K ∈ K(H),∀c ∈ C, T + cK

is invertiable element in the calkin algebra. Let Tt = T + tK, t ∈ C. Define a map
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ϕ : C→ Z by

ϕ(t) = ind(Tt)

We need to prove that ϕ is locally constant map.

Let us choose t0 ∈ C, such that |t− t0| < δ
||K|| , then

||Tt − Tt0|| ≤ |t− t0|||K||

< δ

Since the map ind : B(H) → Z is locally constant, so indTt = indTt0 , whenever

|t− t0| < δ
||K|| .

Therefore, ϕ is locally constant map on connected set, so constant map.

Hence indT = ind(T + cK), ∀K ∈ K(H),∀c ∈ C.

Now we will discus about “characteristic of Fredholm operator of index 0”.

Proposition 2.3.6. Let T ∈ B(H) is a Fredholm operator on a Hilbert space H, then

indT = 0 ⇐⇒ T = K + S,

for some, K ∈ K(H) and invertible operator S ∈ B(H).

Proof. Let us assume that T ∈ B(H) is a Fredholm operator with indT = 0. We

khow that kerT is isomorphic to R(T )⊥, so there exists a map say, S : kerT → R(T )⊥

which is one one and onto.

Consider an operator, K : H → H, defined by K(x) = S(x1), where x = x1 + x2

x1 ∈ kerT, x2 ∈ (kerT )⊥. Since S is finite rank operator, so K is compact operator.

Now the map (T −K) : H → H is one one, since

(T −K)x = 0 =⇒ T (x2) = S(x1) =⇒ x1 = x2 = 0.

Also from proposition 2.4.5, we have ,

indT = ind(T−K) = 0 =⇒ dim(ker(T−K))−coker(T−K) = 0 =⇒ dim(R(T )⊥) = 0

Therefore T −K is onto. Hence T −K = S1, for some invertible operator S1 ∈
B(H).

Conversely, if T = K +S, for some K ∈ K(H) and invertible operator S ∈ B(H),

then T is Fredholm and indT = indS = 0
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Toeplitz Operator

3.1 Introduction:

Definition 3.1.1. Let H be a separable Hilbert space and (en)∞n=0 be orthonormal

basis for H. A linear operator T on H is said to be a Toeplitz operator if

〈Ten, em〉 = am−n

for some complex sequence (an)∞n=−∞. This means that the matrix, with respect to the

orthonormal basis (en)∞n=0, is constant along each diagonal parallel to the main one.

That is, the matrix of the Toeplitz operator is
a0 a−1 a−2 a−3 · · ·
a1 a0 a−1 a−2 · · ·
a2 a1 a0 a−1 · · ·
...

...
...

...
. . .


is called “Toeplitz matrix”.

Proposition 3.1.1. T ∈ B(H) is a Toeplitz operator on a separable Hilbert space H

if and only if it satisfies the operator equation S∗TS = T , where S is the right shift

operator.

Proof. Let (an−m)∞n,m=0 be the matrix of T with respect to its orthonormal basis, then

clearly matrix of S∗TS and T are same. Hence S∗TS = T .

Conversely let S∗TS = T . Then

〈S∗TSen, em〉 = 〈Ten, em〉
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=⇒ 〈Ten+1, Sem〉 = 〈Ten, em〉

=⇒ 〈Ten+1, em+1〉 = 〈Ten, em〉

So the matrix of T with respect to the orthonormal basis (en)∞n=0, is constant along

each diagonal parallel to the main one. Hence T is a Toeplitz operator.

3.2 Examples:

1. Let (an) be any sequence of complex number, then the Diagonal operator D :

`2 → `2 defined by,

D(x1, x2, x3 . . . ) = (a1x1, a2x2, a3x3, . . . )

is a Toeplitz operator.

2. The right shift operator R : `2 → `2 defined by

R(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . )

is a Toeplitz operator.

3. The Left shift operator R : `2 → `2 defined by

R(x1, x2, x3, . . . ) = (x2, x3, . . . )

is a Toeplitz operator.

3.3 Hardy sapce:

Let S1 be the unit circle in C and S1 be the circle group and endow S1 with the

normalised arc length measure(= Haar measure), denoted by dλ. We write Lp(S1)

for Lp(S1; dλ). Since dλ(S1) ≤ 1, Lq(S1) ⊂ Lp(S1) if 1 ≤ p < q. If f ∈ L1(S1), then∫
f(λ)dλ =

∫ 2π

0

f(eiθ)dθ

For each n ∈ Z, we define the continuous function en to be

en : T → T, λ→ λn
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We denote by Γ and Γ+ linear spans of the sets {en : n ∈ Z} and {en : n ∈ N}
respectively. We call the elements in Γ and Γ+ trigonometric polynomials and analytic

trigonometric polynomials, respectively.

Lemma 3.3.1. (1) Γ is a ∗-subalgebra of C(S1).

(2) For 1 ≤ p ≤ +∞, is Lp-norm dense in Lp(S1).

(3) (e)n∈Z is an orthonormal basis of the Hilbert space L2(S1).

Proof. Since e∗n = e−n, clearly Γ is a ∗-subalgebra of C(S1).

By the Stone-Weierstrass theorem, Γ is norm-dense in C(S1), and since C(S1) is

Lp-norm dense in Lp(S1), one gets the statement (2). (3) follows immediately from

(2).

Definition 3.3.1. If f ∈ L1(S1) and n ∈ Z, the n-th Fourier coefficient of f is defined

to be

f̂(n) =

∫ 2π

0

f(eiθ)e−inθdθ

and the function

f̂ : Z→ C, n→ f̂(n)

is called the Fourier transform of f .

Definition 3.3.2. Suppose 1 ≤ p ≤ +∞. We define the Hardy space Hp by setting,

Hp = {f ∈ Lp(S1) : f̂(n) = 0(n < 0)}.

Hp is a Lp − norm closed vector subspace of Lp(S1).

Definition 3.3.3. We define Hardy space on unit disk D by

H2(D) = {f(z) =
∞∑
n=0

anzn : ||f ||2 =
∞∑
n=0

|an|2 <∞}.

It is clear that the vector f = (ao, a1, a2, . . . ) ∈ `2 is identified with the analytic

fundion f(z) =
∑∞

n=0 anz
n ∈ H2(D) and vice versa.

Also the Hardy space on unit disk D by

H2(D) = {f : D→ C is holomorphic :
∞∑
n=0

|f̂(n)|2 <∞}.

Definition 3.3.4. (Hardy space on H2(S1))
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Recall that L2(S1) is the complex Hilbert space of square-integrable functions on

the unit circle. There is a natural identification of L2(S1) with L2([0, 2π]). For f, g ∈
L2(S1) the inner product is

〈f, g〉 =
1

2π

∫
S1

f(z)g(z)dz =
1

2π

∫ 2π

0

f(eiθ)g(eiθ)dθ.

For n ∈ Z, let

en : S1 → C, en(eiθ) := einθ,

then {zn = einθ} form a orthonormal basis for it.

The Hardy space is defined as

H2(S1) = {f ∈ L2(S1) : 〈f, zn〉 = 0, for n < 0}.

Any function f ∈ H2(S1) is in the form,

f(z) =
∞∑
n=0

anz
n with

∞∑
n=0

|an|2 <∞

.

Definition 3.3.5. (Multiplication operator) Let φ ∈ L∞(S1), then the multiplication

operator Mφ : L2(S1)→ L2(S1) defined by

Mφf(z) = φ(z)f(z)

is a bounded operator on L2(S1).

Proposition 3.3.1. 1. M∗
φ = Mφ.

2. Mφ+ψ = Mφ +Mψ.

3. MφMψ = Mφψ.

4. Mφ is invertible iff φ is invertible.
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3.4 Toeplitz operator on Hardy space:

Definition 3.4.1. (Toeplitz operator on Hardy space) we let P : L2(S1) → H2(S1)

be the orthogonal projection onto H2(S1). Then

P (
∑
n∈Z

cne
inθ) =

∞∑
n=0

cne
inθ.

For each, φ ∈ L∞(S1), define the Toeplitz operator Tφ : H2(S1) → H2(S) by the

formula

Tφ = PMφ.

Let (ai,j) be the matrix of Tφ, then

am,n = 〈Tφeinθ, eimθ〉

= 〈PMφe
inθ, eimθ〉

= 〈Mφe
inθ, P eimθ〉

= 〈Mφe
inθ, eimθ〉

=
1

2π

∫ 2π

0

φ(eiθ)einθe−imθdθ

=
1

2π

∫ 2π

0

φ(eiθ)e−i(m−n)θdθ

= φ̂(m− n)

where φ̂(n) is the n’th fouries coefficient of φ. Thus the matrix of Tφ is
a0 a−1 a−2 a−3 · · ·
a1 a0 a−1 a−2 · · ·
a2 a1 a0 a−1 · · ·
...

...
...

...
. . .


where an = φ̂(n) is the n’th fouries coefficient of φ.

The function φ is called the symbol of Tφ.

Proposition 3.4.1. 1. T ∗φ = Tφ

2. Tφ+ψ = Tφ + Tψ
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3. TφTψ 6= Tφψ

4. Tφ invertible implies that φ invertible.

Remark 3.4.1. Converse of proposition (4) is not true.

Proof. Let Tz = Teiθ . Then Tz(z
n) = zn+1 for n ≥ 0. So, 1 = z0 /∈ range(Tz), so Tz

is not invertible. The operator Tz is the unilateral shift operator.

Lemma 3.4.1. Let φ ∈ C(S1), then PMφ −MφP is a compact operator on L2(S1).

Proof. We consider the case when φ(z) = z, and apply the operator to each element

of the standard basis for L2(S1).

If n ≥ 0, we have

(PMz −MzP )zn = PMzz
n −MzPz

n = Pzn+1 − zn+1 = 0.

If n < −1,

(PMz −MzP )zn = Pzn+1 −Mz0 = 0− 0 = 0.

If n = −1,

(PMz −MzP )zn = PMzz
−1 −MzPz

−1 = Pz0 = z0.

Hence, the image of the set of polynomials under the operator PMz − MzP has

dimension 1. By the Stone-Weierstrauss theorem, the image of L2(S1) has dimension

1. Thus, PMz −MzP is finite rank, hence compact.

Now consider the collection

E = {φ ∈ C(S1) : PMφ −MφP is compact}

is a C∗ subalgebra of C(S1). To see this, consider

(PMφ −MφP )∗ = M∗
φP
∗ − P ∗M∗

φ

= MφP − PMφ = −(PMφ −MφP ).

So compactness of PMφ −MφP implies compactness of (PMφ −MφP ). Hence, E is

closed under conjugation. That E is closed under addition and scalar multiplication

is clear. Since PMφ − MφP depends linearly on φ, the map φ → PMφ − MφP

is continuous and so E is norm-closed. It remains to verify tha E is closed under

multiplication. Let ψ ∈ E. Then
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PMφψ −MφψP = PMφψ −MφPMψ +MφPMψ −MφψP

= (PMφ −MφP )Mψ +Mφ(PMψ −MψP )

Since PMφ −MφP and PMψ −MψP are compact and K(L2(S1)) is an ideal of

B(L2(S1)) , E is closed under multiplication. Hence, E is a C∗ -subalgebra of C(S1)

containing z. By the Stone-Weierstrauss theorem, z generates C(S1), so E = C(S1).

Therefore, PMφ −MφP is compact for all ψ ∈ C(S1).

Proposition 3.4.2. Let φ ∈ C(S1) is nowhere-zero, then Tφ is Fredholm.

Proof. Suppose that φ ∈ C(S1) is nowhere-zero. We show that Tφ is invertible up to

a compact operator. Since φ is nonzero on S1, the function 1/φ is well-defined. Then

TφT1/φ = PMφPM1/φ

= PMφM1/φ + PMφPM1/φ − PMφM1/φ

= P + P (MφP − PMφ)M1/φ.

Since P = I on H2(S1), and since MφP−PMφ is compact by above Lemma, TφT1/φ =

I + K1 where K1 is compact. A similar calculation gives T1/φTφ = I + K2, for some

compact operator K2. Hence, Tφ is invertible modulo compact operators, and is

therefore Fredholm.

Remark 3.4.2. On L2(S1), the map φ :→Mφ is multiplicative in that MφMψ = Mφψ.

This is not the case for Toeplitz operators. However, generalizing the calculation in

the proof above gives us the following fact.

Proposition 3.4.3. Suppose that φ, ψ ∈ C(S1). Then Tφψ = TφTψ + K, for some

compact operator K.

Proof. Suppose that φ, ψ ∈ C(S1). Then

TφTψ = PMφPMψ

= PMφMψ + PMφPMψ − PMφMψ

= PMφψ + P (MφP − PMφ)Mψ

= Tφψ + P (MφP − PMφ)Mψ
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Since MφP−PMφ is compact by Lemma, Tφψ = TφTψ+K, for some compact operator

K.

Theorem 3.4.1. Let φ, ψ ∈ L∞(S1). If ψ ∈ H∞, then Tφψ = TφTψ and Tψφ = TψTφ.

Conversely, if TφTψ is a Toeplitz operator, then φ ∈ H∞ or ψ ∈ H∞, and TφTψ = Tφψ

Proof. If ψ ∈ H∞, then clearly ψH2(S1) ⊆ H2(S1). Let f ∈ H2(S1), then

TφTψ(f) = P (φP (ψf)) = P (φψf) = Tφψ(f),

so TφTψ = Tφψ.

Therefore, TφTψ = Tφψ. so by taking adjoints,

TψTφ = T ∗ψT
∗
φ

= T ∗
φψ

= (TφTψ)∗ = Tψφ

We now suppose conversely that TφTψ is a Toeplitz operator and (an), (bn), (cn)

are matrix of Tφ, Tψ, TφTψ respectively. Then its matrix is a Toeplitz matrix, so by the

product matrix formula, ai+1b−j−1 = 0, for all i, j. It follows that ai+1 = 0 for each

i ≥ 0 or b−j−1 = 0 for each j ≥ 0, which is equivalent to the desired conclusion

The following example shows the picture of above Theorem. Let a, b, c, d and h ∈
C, and set ψ = ae0+beiθ and φ = ce−iθ+de0+heiθ. Then, ψ ∈⊆ H∞ and ψ ∈ L∞(S1).

So, the matrix Ψ of Tψ looks like this:

a 0 0 0 · · ·
b a 0 0 · · ·
0 b a 0 · · ·
0 0 b a · · ·
...

...
...

...
. . .


Similarly, the matrix of Tφ looks like this

d c 0 0 · · ·
h d c 0 · · ·
0 h d c · · ·
0 0 h d · · ·
...

...
...

...
. . .


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Clearly, these are Toeplitz matrices. Then, the product

ad+ bc ac 0 0 · · ·
ah+ bd ad+ bc ac 0 · · ·
bh ah+ bd ad+ bc ac · · ·
0 bh ah+ bd ad+ bc · · ·
...

...
...

...
. . .


is a Toeplitz matrix. Since φψ = ace−iθ + (ad+ bc)e0 + (ae+ bd)Eiθ + bhe2iθ, this is

the matrix of the Toeplitz operator Tφψ.

Proposition 3.4.4. (Brown-Halmos) There are no zero divisiors in the set of all

Toeplitz operators. Specifically, if φ, ψ ∈ L∞(S1), then TφTψ = 0 ⇐⇒ Tφ =

0 or Tψ = 0

Proof. The implication ⇐= is trivial, so we prove the converse. Since 0 operator is

a Toeplitz operator, it follows that φ or ψ ∈ H∞(⊂ H2(S1)) and φψ = 0 a.e. by the

F. and M. Riesz theorem. Now if φ = 0 a.e. and if ψ ∈ H2 , then ψ = 0 a.e., and if

ψ ∈ H2 , then φ = 0 a.e. Thus, Tφ = 0 or Tψ = 0.

Remark 3.4.3. Suppose, φi ∈ L∞(S1) (i = 1, 2, . . . n) and

Tφ1Tφ2Tφ3 . . . Tφn = 0

is it necessary that there exists an index i such that Tφi = 0? This problem, which is a

natural generalization of above proposition, has been solved completely by Alexandru

Aleman and Dragan V ukoti′c [4] in 2009, by showing that the question above has an

affirmative answer for all n.

3.5 Elementary Spectral Theory of Toeplitz Oper-

ators:

Now, we study the elementary spectral theory of Toeplitz operators. First, we apply

the F. and M. Riesz theorem to Toeplitz operators.

Proposition 3.5.1. If φ ∈ H∞ and φ is not a scalar a.e., then Tφ has no eigenvalues.
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Proof. Suppose that f ∈ H2(S1) and λ ∈ C and

(Tφ − λ)(f) = 0.

Then, (φ − λ)f = 0 a.e. Since (φ − λ) ∈ H2(S1) and is not the zero element, the

set {γ ∈ C : (φ− λ)(γ) = 0} is of measure 0 by the F. and M. Riesz theorem. Thus

f = 0 a.e.

Theorem 3.5.1. (Hartman-Wintner) Let φ ∈ L∞(S1) and let σ(φ) denote the spec-

trum of φ in L∞(S1). Then σ(φ) ⊆ σ(Tφ) and r(Tφ) = ||Tφ|| = ||φ||∞.

Proof. To show that σ(φ) ⊆ σ(Tφ), it suffices to show that if Tφ is invertible in

B(H2), then φ is invertible in ∞(S1). Indeed, this reduction follows from the equality

Tφ − λ = Tφ−λ if λ ∈ C. So, we now suppose Tφ is invertible and set m := ||T−1
φ ||.

For all f ∈ H2(S1),

||f || = ||T−1
φ Tφ(f) ≤ m||Tφ||

One then infers that for any n ∈ Z

||Mφ(enf)|| = ||φenf || = ||φ|| ≥ ||Tφ(f)|| ≥ ||f ||
m

=
||enf ||
m

However, the functions enf are L2 -norm dense in L2(S1), since {en}n∈Z is L2

-norm dense in L2(S1). Hence, for all g ∈ L2(S1) we have

||Mφ(g)|| ≥ ||g||
m

, and so M∗
φMφ ≥ m−2 > 0. It follows that M∗

φMφ is invertible, and by the normality

of Mφ, Mφ is invertible. Since the map M∗ : L∞(S1) → B(L2(S1)) is an isometric ∗
-homomorphism (and then injective), φ is invertible in L∞S1) Now, suppose that φ

is an arbitrary element of L∞(S1). Then, since σ(φ) ⊆ σ(Tφ), we get

||Tφ|| ≤ ||φ|| = r(φ) ≤ r(Tφ) ≤ ||Tφ||,

so we have ||Tφ|| = r(Tφ) = ||φ||∞.

Proposition 3.5.2. If φ ∈ C(S1), then Tφ is compact if and only if φ = 0.

Proof. The part ⇐= is clearly hold.

For converse let φ ∈ C(S1) and let σ(φ) denote the spectrum of φ in L∞(S1). Then

we know that σ(φ) ⊆ σ(Tφ) and r(Tφ) = ||Tφ|| = ||φ||∞. Since spectrum of a compact
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operator is a discrete set and φ ∈ C(S1), so image of φ is connected set, hence φ is a

constant function. Now if φ is non zero constant function then Tφ is constant multiple

of identity operator which is non constant in H2(S1). Hence φ = 0.
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Hankel Operator

4.1 Introduction:

Definition 4.1.1. A Hankel operator H : H → H is a linear operator on Hilbert

space H such that,

〈Hem, en〉 = an+m

for some complex sequence {an}∞n=0. This means that the matrix, with respect to the

orthonormal basis {en}∞n=0, is constant along each diagonal perpendicular to the main

one.

The matrix of the Hankel operator is
a0 a1 a2 a3 · · ·
a1 a2 a3 a4 · · ·
a2 a3 a4 a5 · · ·
...

...
...

...
. . .


Proposition 4.1.1. An operator H : H → H is Hankel operator on H if and only if

H satisfies the operator equation S∗H = HS.

Proof. Clearly matrix of S∗H and HS are same, so S∗H = HS.

Conversely, let S∗H = TH and {en} is a orthonormal basis for H. Then

〈S∗Hen, em〉 = 〈HSen, em〉

=⇒ 〈Hen, Sem〉 = 〈Hen+1, em〉

=⇒ 〈Hen, em+1〉 = 〈Hen+1, em〉
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So entries of matrix of T is same perpendicular to main one. Hence H is Hankel

operator.

4.2 Hankel operator on Hardy space:

The basic theorem in the theory of Hankel operators is the classical theorem of Nehari.

In the following, P the orthogonal projection fiom L2(S1) to H2(S1). Now consider

an another operator J : L2(S1)→ L2(S1) is the (self-adjoint) flip operator,

Jf = f̃ .

where f̃(z) = f(z̄)

Theorem 4.2.1. (Nehari’s Theorem) A Hankel operator H on H2(S1) is bounded if

and only if there exists a function φ ∈ L∞ such that

H = PJMφ

In this case, it Is possible to clioose p in such a way that ||H|| = ||φ||∞.

In other words, what Nehari’s theorem says is that the Hankel operator H with

matrix (am+n)∞n,m=0 is bounded if and only if there exists a function φ ∈ L∞ such that

an is the (-n)-th Fourier coefficient of φ, for n ≥ 0. That is, the matrix
a0 a−1 a−2 a−3 · · ·
a−1 a−2 a−3 a−4 · · ·
a−2 a−3 a−4 a−5 · · ·

...
...

...
...

. . .


is a matrix of a bounded Hankel operator if and only if there exists a function φ ∈ L∞

such that an is the (n)-th Fourier coefficient of φ, for n ≥ 0.

We will use the following fact (a straightforward caldation) fiequently If φ ∈ L∞

and H = PJMφ, then, for g, h ∈ H2(S1)

〈Hg, h〉 = 〈PJMφ, h〉 = 〈φg, h〉 =
1

2π

∫ ∞
0

φ(eiθ)g(eiθ)h∗(eiθ)dθ.

We refer to the function φ ∈ L∞, given by Nehari’s theorem as a symbol of H and

we write

H = Hφ.
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Proposition 4.2.1. Linear with respect to its symbol, i.e., for any φ, ψ ∈ L∞ and

complex number a, b ∈ C,

Haφ+bψ = aHφ + bHψ

Proof. It is clear from the definition of Bounded Hankel operator on the Hardy space

H2(S1).

Proposition 4.2.2. The symbol of the Hankel operator is not unique, i.e.,

Hφ = Hψ iff φ− ψ ∈ zH2.

Proof. Let ψ ∈ zH2, then ψ(z) =
∑∞

n=1 cnz
n, for some sequence complex sequence

(cn) ⊆ C, so Hψ = PJMψ = 0 on H2(S1). hence by the linearity of Hankel with

respect to its symbol we have,

Hφ = Hψ iff φ− ψ ∈ zH2.

Definition 4.2.1. Given a set A of Hankel operators A we define the set of symbols

of A as

SpA = {φ ∈ L∞ : Hφ ∈ A}.

It is clear that if A is a vector space of Hankel operators, the symbol of A is a subspace

of L∞. In this case, it will always contain zH∞.

The is also a complete characterization of compact Hankel operators. Here C(S1)

is the subalgebra of continuous functiom on S1 and H∞ + C, is the sum of function

in H∞ and in C(S1).

Theorem 4.2.2 (Hartman’s Theorem). A Hankel operator H on H2 is compact if

and only if there exists a function ψ ∈ H∞ + C such that,

H = Hψ.

A characterization of those Hankel operators of finite-rank is given by Kronecker’s

theorem.

Theorem 4.2.3. Let the Hankel operator H have matrix, (an+m)∞n,m=0. Then H is a

finte-rank matrix if and only if the function, a0
z

+ a1
z2

+ a3
z3

+ . . . rational. Furthermore,

H is bounded if the poles of a0
z

+ a1
z2

+ a3
z3

+ . . . are contained in the open unit disk D.
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4.3 Algebraic properties of Hankel operators:

In this section we invesẗıgate the question of when a HankeI operator and a Toeplitz

operator cornmute- That is, we will completely answer the question of when the

commutant of a Hankel operator contains a Toeplitz operator.

Lemma 4.3.1. Let H and Tg be a non-zero Hankel operator and a non-zero Toeplitz

operator respectively. Then T ∗gH = HTg∗, if and only if g is analytic.

Notice that when g(z) = z, the condition T ∗gH = HTg∗ is equivalent to the alterna-

tive definition of a Hankel operator: namely, H is Hankel if and only if S∗H = HS.

Proof. Let g have Fourier series coefficients ak = 1
2π

∫ 2π

0
g(eiθ)e−ikθdθ for k ∈ Z. This

means that Tg has matrix

(an−m)∞n,m=0.

Let H = Hf , where f has Fourier coefficiets, b−k = 1
2π

∫ 2π

0
g(eiθ)e−ikθdθ, for k ∈ Z,

that is, H has matrix

(bn+m)∞n,m=0.

A straightforward calculation (just remember that, for an operator C,Cem is the m-th

column of the matrix of C with respect to the basis (en)∞n=0) shows that

〈T ∗g en, em〉 = 〈Hfen, Tgem〉 =
∞∑
k=0

bk+nak−m (4.1)

and that

〈HfTg∗en, em〉 = 〈Tg∗en, H∗fem〉 =
∞∑
k=0

ak−nbk+m (4.2)

for m ≥ 0 and m ≥ 0.

Let us suppose that g is analytic. Then, since ak = 0 if k < 0, equation (3.1)

becomes

〈T ∗gHfen, em〉 =
∞∑
k=m

ak−mbk+n =
∞∑
s=0

asbm+n+s

and equation (3.2) becomes

〈HfTg∗en, em〉 =
∞∑
k=n

ak−nbk+m =
∞∑
s=0

asbm+n+s.

Since, the right hand side of the both equation are equal, T ∗gH = HTg∗ .
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Conversely, assume that T ∗gH = HTg∗ and rewrite the equation (3.1) as

〈T ∗g en, em〉 = 〈Hfen, Tgem〉 =
m−1∑
k=0

bk+nak−m =
∞∑
k=m

bk+nak−m (4.3)

and equation (3.2) as

〈HfTg∗en, em〉 = 〈Tg∗en, H∗fem〉 =
n−1∑
k=0

ak−nbk+m =
∞∑
k=n

ak−nbk+m (4.4)

where the first term of the right hand side of the equations is just through of as zero

if m=0 or n=0.

A change of variables as before shows that both second summands in the right

hand side of equation (3.3) and (2.4) are equal. and thus

m−1∑
k=0

an−mbk+n =
n−1∑
k=0

ak−nbk+m, when both m, n > 0. (4.5)

If n=0 and m > 0 we obtain,

m−1∑
k=0

ak−mbk = 0. (4.6)

We will assume for the rest of this proof that m > n. The left hand side of the

equation (3.5) can then be written as

m−1∑
k=0

ak−mbk+n =
m−n−1∑
k=0

ak−mbk+n

=
m−1∑

k=m−n

ak−mbk+n

=
m−n−1∑
k=0

ak−mbk+n

=
n−1∑
s=0

as−nbs+m

but the last summand is equal to teh right hand side of the equation (3.5). It
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follows that
m−n−1∑
k=0

ak−mbk+n = 0, for m > n > 0.

This last equation is also valid for n=0, since it then reduce to equation (3.6). Thus

we have
m−n−1∑
s=0

ak−mbk+n = 0, for m > n ≥ 0. (4.7)

Now, clearly there must exists a non negative integer n0 such that bn0 6= 0(otherwise

H would be a zero operator). We use equation (3.7) with n = n0, i.e.,

m−n0−1∑
k=0

ak−mbk+n0 = 0, for m > n0. (4.8)

We use strong induction to prove that a−(n0+s) = 0, for all s > 0. If m = n0 +1 in the

equation (3.8), we obtain a−(n0+1)bn0 = 0, which in turn implies a−(n0+1) = 0 (recall

again that bn0 6= 0).

Now assume that a−(n0+1) = a−(n0+2) = a−(n0+3) . . . a−(n0+s) = 0. Then equation

(3.8), with m = n0 + s + 1 becomes a−(n0+s+1)bn0 = 0, which implies a−(n0+s+1) = 0.

Thus a−(n0+s) = 0, for s > 0.

Now go back to equation (3.7). If we set m = n0 + 1, we get

n0−n∑
k=0

ak−n0−1bk+n =

n0−n∑
k=1

ak−(n0−1)bk+n, for n0 + 1 > n > 0 (4.9)

since a(n0+1) = 0(as proven in the previous paragraph). If we set n = no − 1 in

equation (3.9), we get a−n0bn0 = 0 and thus a−n0 = 0. Proceeding in this fashion (set

n = n0 − 2, n = n0 − 3, . . . n = n = n0 − (n0 − 1), n = n0 − n0 in equation (3.9), we

get a−n0=a−(n0−1) = a−(n0−2) · · · = a−2 = a−1 = 0

Therefore a−s = 0, for all s > 0 i.e., g is analytic.

Now we can prove a result concerning commutativity. What this theorem says

is that if a non-zero Hankel operator commutes with a “symmetric” (equal to its

transpose) Toepiitz operator, then the Toeplitz operator is just a multiple of the

identity operator.

Theorem 4.3.1. Let ψ ∈ L∞. Suppose that ψ̃ = ψ and that HTψ = TψH for a non-

zero Hankel operator H. Then ψ is constant function (ie., Tψ is a constant multiple

of the identity).
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Proof. Since ψ = ψ̃, it follows that (ψ)∗ = ψ̃ = ψ. Also, we known that, Tψ = T ∗
ψ
.

Putting these two facts together, we see that TψH = HTψ, is equivalent to T ∗
ψ
H =

HT(ψ̃)∗ . By Lemma 4.3.1 that ψ ∈ H∞, and, since ψ = ψ̃, it follows that ψ is

constant.

We now prove the following theorem. What it says is that if a Hankel operator

commutes with a Toeplitz operator, it must also commute with the“transpose” of the

Toeplitz operator, since Hankel operators are ’symmetric’ (equal to their transpose).

Theorem 4.3.2. If ψ ∈ L∞, then TψH = HTψ if and only if Tψ̃H = HTψ̃

Proof. Define the anti-unitary involution V on H2(S1) by

V f = f ∗, where f ∗(z) = f(z).

Then we have, V TfV = Tf∗ , for f ∈ L∞, and V HV = H∗, for any Hankel operator

H. ClearIly, H2 = I.

Thus TfH = HTf implies that V TfV V HV = V HV V TfV , which in turn implies

that Tf∗H
∗ = H∗Tf∗ . Taking adjoints we get, HTf̃ = Tf̃H, where ˜f(z) = f(z).

Applying the previous caldation to f̃ , it follows that Tf̃H = HTf̃ , implies TfH =

HTf ,

The last two theorems allow us to get the following corollary. This is the first

necessary condition for a Hankel and a Toeplitz operator to commute.

Proposition 4.3.1. If ψ ∈ L∞, then TψH = HTψ, for some ψ ∈ L∞ and a non zero

Hankel operator H, then ψ + ψ̃ is constant function.

Proof. If TψH = HTψ, then by above theorem Tψ̃H = HTψ̃. Using both equation we

get, Tψ+ψ̃H = HTψ+ψ̃ (we know that a Toeplitz operator is linear with respect to its

symbol). Since ˜ψ + ψ̃ = ψ + ψ̃, so ψ + ψ̃ is constant.
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