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Abstract

Sheet Metal Forming is used in major manufacturing like Automotive and Aerospace

industries for producing various parts. Materials with low forming limit and high

springback cannot be formed using this process without inducing failure and geomet-

rical inaccuracies into the parts. Whereas materials with higher formability can be

deformed to a larger extent before failure as compared to lower formability materials.

The elastic recovery of the sheet metal after the forming process commonly known

as springback which causes geometrical inaccuracies. Materials like Ti-alloys, with

higher strength possess low formability and higher springback but also they provide

advantage of higher strength to weight ratio over ferrous alloys. Many researchers are

trying to develop new forming techniques to form these materials.

A new approach to improve formability and reduce springback of materials using

electrical current has been studied and is found to provide greater advantage over the

conventional sheet metal forming processes. Reduction in flow stress due to electric

current flow during deformation process is defined as Electroplastic Effect. This effect

is related to the interaction between flowing electrons and moving dislocations. It was

observed that decrease in force required for plastic deformation is directly proportional

to the difference between drift speed (electron flow speed in particular material) and

dislocation motion speed.

Sheet metal bending experiments are conducted and the effect of electric current

on springback is observed. To conduct bending experiments bend fixture is designed.

Proper electrical insulation is included in design to ensure safe operation and to pre-

vent electric flow in machine. Material selection is done on the basis of maximum

stress developed in deformable tool and die in Finite Element Analysis results. Mate-

rial is selected in such a way that the yield strength (including factor of safety ’3’) of

the material must always be greater than produced maximum stress in FE analysis.

After finalizing design and material for each part of the bend fixture, fabrication is

done.

FE analysis is carried out for sheet metal bending process and results are compared

with published results to validate FE model. After validation, FE model is used with

provided material (HSQ steel) properties to compare simulation and experimental

results. It is observed that FE model is predicting springback close to experimental

results.

Sheet metal bending experiments on HSQ (High Strength Quenched) steel (pro-

vided by TATA Steel) are performed. Electric current, pulse frequency, duty cycle,

tool radius, feed rate and dwell time are considered as factors for electroplasticity
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experiments. Full factorial design of experiments with 2-levels is carried out to see

complete effect. Total 64 experiments are carried out to analyse complete design of

experiments. Whole sheet bending process is recorded using a digital camera. From

recorded video, images are extracted at the end of deformation and after unloading.

For springback measurement, radius of curvature in bend region is calculated using

points traced from both the images and the difference between radius of curvature

before unloading and after unloading is defined as springback. This methodology is

used to eliminate the error induced due to initial curvature present in sheet speci-

mens. Because of initial curvature, it is observed that measuring bend angle after

springback is not accurate method.

It is observed from electroplastic bending experiments that springback and punch

force are decreased compared to conventional bending process. From DOE analysis it

is concluded that the parameters which are affecting springback are mainly current,

pulse frequency and tool radius. Temperature measurement is also carried out and

maximum temperature reached during each experiment are noted down. It is con-

cluded that increase in temperature (200o C) is not significant enough to cause any

change in grain structure levels.
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Chapter 1

Introduction and Literature

Review

1.1 Electricity Assisted Forming

Electricity assisted forming is a metal forming technique in which deformation takes

place at expense of mechanical as well as electrical energy. Electricity passes through

specimen while deformation process occurs. Main effects of electric current on defor-

mation process are increase in formability and decrease in springback phenomenon.

Formability is defined as ability of material to deform plastically before failure,

whereas springback is defined as the recovery of elastic strains after unloading. In

metal forming processes formability is a desirable property, whereas springback is not

desirable because springback induces geometrical inaccuracies in formed components.

Hence electricity assisted forming is a newly developed technology in which main

focus is on to deform high strength materials by increasing their formability as well

as reducing springback.

Three main benefits of electricity assisted forming includes:

• Reduction in flow stresses required for plastic deformation.

• Increase in deformation before failure.

• Reduction in springback after unloading.

Electric current is flow of charged particles through conductive material. These

charged particles are often moving electrons, which if pass during metal deformation

process, interact with already moving dislocations in metals. The interaction between

1



moving electrons and dislocations is known as ’Electroplastic Effect’. The electroplas-

tic effect is sometimes results in reduction of flow stresses as well as springback and

increase in deformation prior to failure. In this thesis work electroplastic effect on

sheet metal bending process is studied.

1.2 Sheet Metal Bending

Sheet metal bending is a forming process in which sheet metal is subjected to bending

stresses and hence is changed into a curved sheet from its flat straight shape. It can

be classified as V-shape, U-shape or in channel shape bending. V shape bending is

also known as air bending in which V shape punch is forced into V-die opening. Sheet

comes in contact with only punch tip and with outside edges of V-shape die hence

named as air bending Fig. 1.1.

Figure 1.1: Sheet metal air bending

U-shape die is used for U-die bending, here contact between sheet and die takes

place over complete surface of die cavity, at the end of punch stroke. In U-die bend-

ing process die radius plays an important role in shaping the final component as

demonstrated in Fig. 1.2

1.3 Electricity Assisted Bending

Electric assisted bending is the process in which bending of sheet takes place in pres-

ence of electrical energy also. It assists in deformation of sheets, hence mechanical

2



Figure 1.2: Sheet metal U-die bending

energy required for the bending reduces. Electric flow through metal helps in dislo-

cation motion, which reduces bending forces and hence the mechanical power.

In sheet metal bending major drawback is springback phenomenon, which induces

geometrical inaccuracies. Metals with higher strength (like titanium and tungsten

alloys) show more springback compared with low strength metals and they require

higher input of mechanical energy. Electricity assisted bending reduces the springback

and also results in less mechanical energy input.

The schematic setup for electricity assisted bending is shown in Fig. 1.3

Figure 1.3: Schematic diagram of Electric Assisted Bending

1.3.1 Background and Motivation

Automobile and aerospace industries are two major industries which use sheet metal

forming processes for making different components. Metals like tungsten, molybde-
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num and titanium alloys have good strength to weight ratio compared to aluminium

and steel alloys. Because of less formability, these metals are not easy to form using

conventional forming processes. The use of these metals in industries can provide

same strength with lesser weight of parts, which in turn increases overall efficiency.

Hence researchers are continuously trying to develop new forming techniques. Elec-

tricity assisted forming can be an alternate option to form these high strength metals.

1.3.2 Literature Review

Effect of flow of electrons on the deformation process of metals was first investigated

by Troitskii [1]. Troitskii investigated the effect of DC pulsed current on formability

of various metals. To reduce resistive heating effect due to current flow liquid nitro-

gen was used. It was reported that current pulses have no effect on elastic part of

deformation curves. Surface examination by microscope suggested that there was no

significant change in slip-band. The author also investigated that reduction in flow

stress was achieved because of electroplastic effect not due to resistive heating.

Troitskii [2] studied the effect of DC pulse current polarity as well as the effect

of pulse frequency on stress relaxation and creep. Stress relaxation for different crys-

tals (zinc and cadmium) was observed at different loads in presence of pulsed DC

current. Also to reduce resistive heating effect, tests were conducted at a very low

temperature(-196o) by using liquid nitrogen. It was observed that increase in pulse

frequency and the decrease in current density, results in the increase of stress relax-

ation refer Fig. 1.4.

Figure 1.4: Effect of frequency on stress relaxation for (1) 200 gf, (3) 300 gf, and 400
gf [2].
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The author concluded that current polarity creates difference in stress relaxation

around 15-25%. It was concluded that at high-frequency results in the splashing of

electron clouds in the lattice which results in the increase in the frequency of elastic

vibrations and hence increase in electroplastic effect. Polarity effect was attributed

to variation in interaction between free electrons and dislocations.

Okazaki et. al. [3] conducted tensile test experiments under the influence of high

current pulses on materials having different crystal structures(BCC for Fe, FCC for

Pb, HCP for Ti and tetragonal for Sn). It was observed that at the instant of current

pulse application, stress values drop suddenly and on termination of the pulse, stress

returns gradually to the original values Fig. 1.5

Figure 1.5: Effect of current pulses at different strain values [3].

It was concluded that there were no changes in dislocation structure with the

application of current pulses as after switching off the pulses, stress reached to its

original values. Hence only effect was the enhancement of mobility of dislocations.

Also it was observed that different crystal structures behave differently with the

application of current and was concluded that effect of pulsed current pulse on flow

stress decreases in the order of BCC(Fe), HCP(Ti), FCC(Pb) and tetragonal(Sn)

refer Fig. 1.6. Authors also estimated that with forced cooling(∆T = 20K) at 8000

A/mm2, decrease in flow stress due to resistive thermal heating account for only

about 10%.

Stashenko et. al. [4] observed creep phenomenon with the application of pulsed

current on zinc single crystals. They observed that electron dislocation interaction

is a primary effect compared to other secondary effects as skin effect, pinch effect

5



Figure 1.6: Effect of current pulses on different crystal structures [3].

and ampere force effect. Effect of current pulses at current density 25 ∗ 107 A/mm2,

frequency 100 Hz and duration of pulses varied from 3 to 25∗10−5 s, on strain behavior

during creep phenomenon Fig. 1.7. Also, the effect of pulse frequency was observed

by conducting same experiment at a different frequency (range 2 Hz - 600 Hz). It

was found that strain increases with the decrease in frequency. The strain values are

found the maximum in the frequency range of 2 Hz - 200 Hz.

Troitskii [5] concluded that the force which helps accelerating dislocations is pro-

portional to the difference in drift speed of electrons (drift speed is defined as the

speed of some flowing particles like electrons, in material due to applied electric field)

and velocity of dislocations. They proposed that drift speed of electrons is directly

proportional to current density, hence current density determines the influence of

reduction of flow stress of metals.

Conrad [6] conducted experiments on zinc, titanium, aluminium and copper with

high density DC electric current pulses of 100µs and proposed that after exceeding a
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Figure 1.7: Deformation in creep at pulse duration of (1) 5 min, (2) 1 min and (3) 30
sec. Top inset figure showing (I) Creep without current, (II) Creep with equivalent
heating and (III) Creep with pulse current with different duration. Bottom inset
figure shows the logarithmic dependence of the delay time td of the appearance of ∆ε
on loading ∆τ [4].

critical current density, there occurs a five order of magnitude increase in the strain

rate at current densities approaching 106 A/cm2. This effect of the current, decreased

with strain for FCC metals but was relatively independent of strain for BCC metals

and α-Ti. The author also mentioned that high-density current, whether continuous

or pulse can significantly enhance the plastic deformation rate in metals in addition

to the side effect of Joule heating.

Tang et.al. [7] conducted electric pulse assisted wire drawing of steel and reduction

in stress by about 50% as well as the reduction in minimum extruded wire diameter

was observed refer Fig. 1.8. It was observed that surface quality of extruded wires

also improved when extrusion was performed under the assistance of electric current

pulses. It was concluded that drift velocity of electrons in the metals is more than

7



the dislocation velocity and hence electrons are assisting the dislocations to overcome

the obstacles and hence drawing stress was reduced.

Figure 1.8: Drawing stress at different extruded wire diameters [7].

Zhou et.al. [8] conducted grain refinement studies on brass material without solid-

phase transformation using electric pulse current as well as heat treatment at same

temperature and compared grain structure. It was observed that grain size for the

case of electric pulse current was 3 µm whereas for annealing heat treatment size was

15 to 20 µm Fig. 1.9.

Figure 1.9: Grain refinement for cold worked brass by various methods (a) annealing
at 500oC, (b) annealing at 650oC and (c) grain refinement by using high-density
electric current [8].
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Mechanical properties were also measured for the both experiments and it was

observed that yield strength of the electro-pulsed sample was 89% higher than the

annealed (at 650oC) sample. Hence it was concluded that mechanical properties of

the electro-pulsed sample were better than annealed samples which were correlated

with refinement in grain structure.

Reduced grain size in electro-pulsed experiments was correlated with the increase

in nucleation rate which retarded the subsequent rate of grain growth. High nucleation

rate was explained with respect to:

• High heating rate.

• Enhanced dislocation mobility.

• Enhanced migration of atoms.

Dislocation density was also studied and it was observed that the dislocation

density in electropulsed workpiece was lower than the annealed workpiece at 650oC

refer Fig. 1.10.

Figure 1.10: Dislocation density comparison for brass material when (a) annealed at
650oC and (b) treatment with high-density electric current [8].

Perkins et.al. [9] conducted electric current assisted open die forging for various

metals (6061 T6511 Al, 7057 T6 Al, 2024 T4 Al,2024 T351 Al, C11000 Cu, 360

yellow brass, 464 naval brass, 304 Stainless steel, A2 tool steel and Titanium). It was

observed that all metals except 360 yellow brass show electroplastic effect. There is

some threshold current density value for each metal, at which significant reduction in

flow stress occurs refer Fig. 1.11.

Authors also conducted some experiments to see the effect of current density and

current amplitude on the stress-strain relationship. They used different size specimens

and at the same time different current amplitude to maintain constant current density.

Current amplitude used in experiments were 2250 A and 560 A for 12.7 mm and 6.4
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Figure 1.11: Electric assisted open die forging for various metals [9].

mm diameter specimens respectively to maintain current density (18 A/mm2). It

was found that, it is current density which plays role in electroplasticity rather than

current amplitude as for both experiments stress strain curve came approximately

same refer Fig. 1.12

Figure 1.12: Effect of two different current amplitudes but same current density [9].

Fan et al. [10] performed electrically assisted incremental sheet metal forming

for magnesium AZ31 and titanium alloys by considering only Joule heating effect.

Increase in temperature due to Joule heating was correlated with the increase in duc-

tility of the material at contact zone of tool and sheet. They also considered various

parameters other than current density such as feed rate, tool diameter, and step size

and concluded that these parameters also affect formability. Authors concluded that

with the increase in electric pulsed current wall angle increases and it can reach up

to 64.3o at current 500 A.
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Figure 1.13: Incremental Sheet Metal Forming with the assistance of DC pulsed
current [10].

Ross et al. [11] performed compression and tension tests on Ti-6Al-4V alloy in

presence of direct current. Authors demonstrated that there is a significant difference

between isothermal forming at 260o and electrically-assisted forming refer Fig. 1.14

Figure 1.14: Effect of isothermal heating in compression test [11].

Stress weakening was observed in tensile tests, which increases with current den-

sity. Also, there was no necking initiation was observed at maximum stress but it got

shifted to greater strain values refer Fig. 1.15

It was observed that to get electroplasticity effect in compression test required

electric current was much higher than the tensile test. Reduction in yield strength

and the increase in ductility was observed in compression tests refer Fig. 1.15
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Figure 1.15: (a) Tensile test and (b) Compression tests results at different current
densities [11].

They proposed that effect of resistive heating is very less compared to the effect of

current on deformation, by conducting experiments using delayed current application.

They explained that electrical flow immediately lowered flow stresses of titanium, a

response which temperature would take a greater amount of time to achieve refer

Fig. 1.16. It was observed that the temperature increased in isothermal heating was

more compared with temperature increase in electric assisted current. But still, the

effect of current was more compared with isothermal heating. Strain weakening effect

was not observed in the case of isothermal heating experiments.

Figure 1.16: Instantaneous reduction of stress value when switching on current [11].

Effect of pulsed current was also observed by conducting the experiment with
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pulsed current and current on and off at different strain values refer Fig. 1.17. The

effect of pulsed current was so quick to observe hence concluded that effect is com-

pletely electroplastic rather than resistive heating. The current was kept on and off

for every 2 s during experiments.

Figure 1.17: Effect of pulsed DC current in compression and tension tests [11].

Jones et.al. [12] conducted electricity assisted stretch forming on 304 stainless steel

under different conditions. They used two different testing conditions, in which flow

of electric current was changed refer Fig. 1.18. They observed that formability was

decreased due to the use of electric current. It was concluded that accumulation of

heat in stretched area was too much which caused failure at very early stage. They

also observed that flow stress reduced when electricity was applied refer Fig. 1.19.

They also presented electric current polarity effect on stretch forming process and

concluded that there was no appreciable effect on formability and forming forces.

Figure 1.18: Flow of electric current (a) Across specimen (b) Through the tool to the
common ground [12].
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Figure 1.19: Effect of (a) Electric current and (b) Polarity of electric current on forces
for stretch forming process at current density 20 A/mm2, pulse duration 1 s and pulse
period 60s, [12].

Salandro et.al. [13] conducted electric assisted bending tests on stainless steel.

They also compared analytical and experimental results for without current. An

analytical expression for bending forces refer Fig. 1.20 under plane strain assumption

was derived.

Figure 1.20: A simplified model for bending force analysis in air bending [13].
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The bending force Fp was given as

Fp = K.
w.t2b . cos
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where n and K are strain hardening exponent and strength coefficient respectively.

Authors also mentioned the effect of die corner radius on electricity assisted bend-

ing. They mentioned that sheet specimen weld itself to the fixture when the electrical

pulse was applied, which increases bending force after each electric pulse, until small

weld brakes. As a solution to this, they used very small corner radius for die and

concluded that because of small die corner radius, the contact point between fixture

and specimen did not change during process and welding is prevented refer Fig. 1.21

Figure 1.21: Effect of die corner radius on electrically assisted bending [13].

Jones and Mears [14] conducted compression tests for 304 stainless steel and Ti-

6Al-4V materials under the assistance of electric current. Experiments were con-

ducted under constant current density (CCD) condition as well as non-constant cur-

rent density (NCCD) condition. For both materials reduction in flow stress was ob-

served with increase in current density refer Fig. 1.22. It was observed that constant

current density effect on flow-stress was more compared with non-constant current

density. Empirical model was developed for constant current density condition and

showed excellent mapping capability for both 304 Stainless Steel and Ti-6Al-4V ma-

terials.
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Figure 1.22: Effect of electric current density during compression test for (a) 304
Stainless steel and (b) Ti-6Al-4V [14].

Javed Asghar and N.V. Reddy [15] performed electrically assisted double sided

incremental sheet metal forming on Ti alloy. It was realized that due to high spring

back of Ti alloy, normal tool configuration of tool path that ensures the minimum

distance between two tools, get disturbed refer Fig. 1.23. Disturbance in tool con-

figuration results in the increase in current carrying length. It was concluded that

increase in current carrying length results in higher resistive heating and decrease

in current density, which results in less electroplastic effect and hence crack in the

component was observed.

Figure 1.23: Effect of sheet springback on normal tool configuration [15].
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1.4 Scope and Objective of Present Work

Continuous efforts are made to study the effect of electron and dislocation interac-

tion for different materials. As it can be concluded from above presented literature

review that electroplastic effect in metal forming process can provide tremendous

opportunities. Which can help many industries to overcome the difficulties like:

• High mechanical energy input to perform particular forming operations, which

increases with increase in material strength.

• High the strength of material higher the springback hence less accuracy.

• Handling the material in furnaces for heat treatment like grain recrystallization.

This study focuses on the electroplastic effect on springback in sheet metal bending

process. Experiments has been carried out in such a way that resistive heating was

minimized to reduce any thermal effect.

The main objective of this work is to see the effect of electric current on sheet

metal bending process by keeping the electric current flow focused in deformation

zone only. Hence, the objective is to minimize the resistive heating effect at the same

time maximize the electroplastic effect.

1.5 Organization of Thesis

This thesis is presented in four chapters and content of each chapter is summarized

below:

Chapter 1 presents the brief introduction of sheet metal bending and electroplas-

ticity with literature survey.

Chapter 2 presents design and fabrication of bending setup.

Chapter 3 presents the results obtained from finite element analysis of the V-

bending process.

Chapter 4 presents the experimental investigation of electroplasticity on various

metals.
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Chapter 2

Design and Fabrication of Bend

Fixture

Bend fixture was designed to perform sheet metal bending operation with and with-

out electricity. The design of bend fixture was prepared by considering following

guidelines:

• To ensure minimum current carrying length a secondary tool was provided such

a way that current will flow through only deformation zone.

• The design was made flexible enough to change tool and die of different dimen-

sions according to requirement.

• As deformation process involves electric flow, die and tool were insulated from

other bend fixture parts to provide safe electric flow.

• To measure bending forces, load cell was also accommodated in bend fixture

design.

2.1 Material Selection

Material selection for die and tool is done by carrying finite element analysis refer

section 4.1. Three-point bending process is modeled in Abaqus software considering

both die and tool as deformable parts. Stresses and strains generated during bending

process were extracted from simulation and then the material was selected of higher

strength than the stress generated in FE analysis. Finite element analysis was done

for steel sheet of 5 mm thickness and to consider various inaccuracies in analysis the

factor of safety 3 was chosen while selecting die and tool material.
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Stresses generated in FE analysis for both die and tool are of order 460 MPa and

100 MPa respectively. Hence material for die and tool was selected in such a way

that its yield strength was three times higher than the maximum stress generated in

FE analysis after considering the factor of safety ’3’. The allowable stress is defined

as;

σallow. = FoS.σwork. (2.1)

Hence allowable stresses for die and tool is considered as 1380 MPa and 300 MPa

respectively.

Selection of material also depends on availability, machining cost, and surface

finish required for the parts. For die and tool, EN8 steel (belong to standard BS

970-1955) was selected because of strength and availability.

For other parts of the bend fixture mild steel is selected as it is easily available

and also strength is sufficient enough for assembly parts.

Die radius was selected by following ASTM E290 bending standard. Die radius is

given by;

D = 2.r + 3.t± t

2
(2.2)

where D is the die diameter, r is the tool radius and t is the thickness of the sheet.

Dimensions of other part are selected on the basis of available working space in CNC

machine to accommodate each part after assembly.

2.2 Drawings of Bend Fixture Parts

After finalizing material and dimensions, drawing of each parts was created using

Creo Parametric 3.0 software. Each part drawings with their dimensions are shown

in following figures.

2.2.1 Base Plate

The base plate was designed to be placed on machine table to serve as a stiff surface to

which other fixture parts are attached to be supported. Mild steel plate was selected

for the base plate material and dimensions were made according to the available space

on machine table refer Fig. 2.1.
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225.00

280.00

12.50

65.00

80.25
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82.50

8.50

40.00122.75
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R20.00

Figure 2.1: Base plate drawing (dimensions are in mm)

2.2.2 Die Holder

Die holder was designed in such a way that it provides flexibility to change different

shapes of die without disturbing any other parts. This part made bend fixture flexible

to adopt different sizes for the die. Mild steel was selected for this part and it was

machined in CNC milling machine using end milling and drill tools for different cutting

operations. For making square hole wire EDM was used. The die holder drawing is

shown in Fig. 2.2

2.2.3 Die

Die dimensions were selected according to ASTM E290 bending standard refer Fig. 2.3.

EN8 steel (BS 970-1955) was used for fabrication of the die. Curvature region and

square hole was cut by using wire EDM and drilling were done by CNC milling

machine. Die is one of the major parts in bend fixture design, hence dimensional

tolerances and accuracies were extensively taken care while fabricating it.
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Figure 2.2: Die holder drawing (dimensions are in mm)
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Figure 2.3: Die drawing (dimensions are in mm)
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2.2.4 Bottom Tool

To complete the electric circuit during electric assisted bending extra bottom tool was

designed. It was supported on spring load, which during deformation process ensures

close circuit. The bottom tool consists of two parts, one which supports on spring

load and other which makes contact with sheet specimen. Insulation was provided

between these two parts to ensure safe working condition refer Fig. 2.4.

12.00

8.00

38.50

50.00

8.00

6.50

74.00
5.00

R15.00

5.00 7.00

1.00

Figure 2.4: Bottom Tool with various parts(dimensions are in mm)

2.2.5 Top Fixing Plate

This plate was designed to use the bend fixture in AMINO Press machine. This plate

mount with the top moving plunger of the machine and then tool mount on this plate.

Dimensions were decided according to space available in the top plunger of the Press

refer Fig 2.5.
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260.00

12.50

220.62

220.62

15.00

15.00

8.50

65.00

65.00

Figure 2.5: Top plate for fixing bend fixture in AMINO Press (dimensions are in mm)

2.2.6 Top Tool Holder

Top tool holder was designed in such a way that it provides flexibility to change

the tool of a different dimension as well as proper insulation to stop electric current

flow into the machine refer Fig. 2.6. Bakelite sheet and rods were used to provide

insulation.

2.2.7 Top Tool

The top tool was designed in such a way that one tool itself was combination of four

tools having different tool radius. Tool radius of 2, 4, 6 and 12 mm were considered

for experiments refer Fig. 2.7.

To assemble top tool into tool holder another part was designed as shown in below

Fig. 2.8
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Figure 2.6: Top tool holder with bakelite insulation shown in brown color (dimensions
are in mm)

R6.00

R2.00

R4.00

R12.00

50.00

5.00

90.00°

Figure 2.7: Top Tool with four different tool radius (dimensions are in mm)
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Top Tool

Top Tool 
Holder

Bakelite 
insulation

Figure 2.8: Top Tool assembly with tool holder

2.2.8 Other Parts to Fix Bend Fixture on CNC Machine

As bend fixture was designed such a way that it can be fixed on small CNC Incre-

mental Sheet Metal Forming machine also. For this purpose, some other parts were

designed refer Fig 2.9

25.00

37.00

20.00

25.00

160.00

65.00

65.00

8.00

8.50

8.00

Figure 2.9: Parts to fix bend fixture on small ISMF CNC machine (dimensions are
in mm)
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2.3 Assembly of all Bend Fixture Parts

All above-designed parts are assembled in proper sequence. Bakelite sheets and rods

are used as insulation material to prevent electric current flow into the machine.

Bakelite has high melting temperature and good strength for compressive loads at

the same time a good electrical insulator. For bottom tool, insulation was provided

at two places one between die and die holder another one between bottom tool and

the plunger. Similarly for top tool also, insulation was provided at two places refer

Fig. 2.10.

Figure 2.10: Bend fixture assembly

2.4 Fabrication of Fixture Parts

Fabrication of bend fixture was done in Central Workshop of IIT Hyderabad. Most

operations were done on CNC vertical milling machine (BFW-Agni) and on wire EDM

(Electronica) refer Fig 2.11. While performing various cutting operations biaxial

tolerance of 50 µm was maintained. As insulation is a very important aspect, it is

taken into consideration in design as well as fabrication phase.
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Figure 2.11: Fabricated bend fixture parts
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Chapter 3

Finite Element Analysis of

V-bending Experiments

3.1 Validation of Finite Element Analysis

Finite element analysis for sheet metal bending process is carried out and results are

compared with experiments. Validation of finite element model is done by comparing

FEA results with published results in literature. For validation, all process parameters

and material properties are same as used in literature.

After validating FEA model with published literature, springback and bending

force analysis was carried out for bending process and then results are compared with

experiments.

3.1.1 NUMISHEET Benchmark 2002 problem

For validating FEA model, NUMISHEET 2002 Benchmark problem [16] was modeled

and results were compared with published results. U bending analysis was done in

Benchmark problem to see effect of various parameters on springback and force values.

Tool and die were modeled as analytical rigid because deformation due to reaction

forces can be neglected and study was focused on deformation sheet specimen refer

Fig 3.1. The sheet was modeled as 3D deformable shell with thickness 1mm refer

Fig. 3.2.

Aluminum was selected as material for bending simulation. Material properties

are:

• Young’s modulus - 70500 MPa
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Figure 3.1: Tool and die (Analytical rigid)

Figure 3.2: Sheet specimen (Deformable shell)

• Poisson’s ratio - 0.346

• Initial yield stress - 197.01 MPa

• Hardening law - σ = (550.4) ∗ (0.00812 + εp)
0.223

The tool was positioned in such a way that contact between sheet top surface and

tool was maintained and at the same time bottom surface of sheet was in touch with

the die surface. The entire process was modeled in two static general steps named

as Deformation and Springback. In deformation step, the tool was specified to move

by given punch stroke towards die and hence deformation was taking place. In next

step, unloading of sheet specimen was modeled to see the springback effect.

Two steps were created to simulate complete sheet bending with springback:

• Deform - Tool moves in negative Y direction by specified punch stroke value.

• Springback - Tool retracts back (away) from deformed sheet and elastic recov-

eries take place in this step.

Boundary conditions to simulate Bending process:
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Figure 3.3: Tool, die, and sheet assembly at start of simulation (a) Front view, (b)
Isometric view

• Die Constrain - At die reference point Encastre (Fix) was used to restrain its

rigid body motion. This boundary condition remains active through both steps

i.e. deform and springback.

U1 = U2 = U3 = UR1 = UR2 = UR3 = 0

• Tool Constrain - Translation degrees of freedom in directions other than punch

stroke direction ( Y axis) are constrained also rotational degrees of freedom in

all directions are constrained. This boundary condition was active in deform

step only.

U1 = U3 = UR1 = UR2 = UR3 = 0

• Sheet Constrain - Sheet was constrained to move in X and Z direction to perform

bending operation. These constraints are applied on the line created at middle

of bottom surface of sheet. This boundary condition remains active only in

deform steps.

U1 = U3 = UR1 = UR2 = UR3 = 0

• DeformY - In this boundary condition tool move in negative Y axis by given

punch stroke value. This boundary condition was active only in deform step.

U2 = - (Punch stroke)
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• Retract - Tool was specified to move away from deformed sheet for springback

after completion of deformation. This boundary condition was active only in

springback step.

The interaction between tool and sheet and between sheet and die was defined as

Surface-to-surface contact (Standard). Friction between these surfaces was defined

as frictionless also with coefficient of friction 0.1348. For defining interaction, rigid

bodies (tool and die) are considered as master and deformable sheet is defined as

slave body. The interaction was active in deform step for both tool-sheet and die-

sheet contacts whereas it was deactivated in springback step for die and sheet.

Mesh was generated for sheet using shell elements - S4R (4 nodded reduced in-

tegration shell element). This element uses reduced integration rule hence only one

integration point for the element to reduce computational time. S4R elements are

suitable for thin sheets. Hourglass technique was selected to compensate for any in-

duced error because of reduced integration rule. Mesh size was chosen as 1mm, hence

total 3600 elements were generated. As analytical rigid bodies can not be meshed

hence tool and die did not mesh.

Figure 3.4: Mesh generated on sheet

3.1.2 Results and Comparison

Bend Angle

Bend angle before and after springback was calculated by using extracted data of

nodal coordinates before and after springback from simulation results. These re-
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sults were compared with published bend angle results in NUMISHEET benchmark

problem 2002 [16].

Figure 3.5: Bend angle (a) Before springback, (b) After springback for aluminum [16]

Comparison between published results and results obtained in Abaqus simulations

shows very good agreement with error less than 2.5% refer Fig. 3.6.

Figure 3.6: Bend angle comparison (a) Before springback, (b) After springback for
aluminum

Bending Force

Punch force was compared for both frictionless and with coefficient of friction 0.1348.

Results from simulation and results from published data are plotted on the same

graph to see the difference and it was observed that simulation results with friction-

less process are matching approximately same refer Fig. 3.7. Also for results with
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coefficient of friction 0.1348, the error of 7.5% was observed due to error in tracing

published results refer Fig. 3.8.

Figure 3.7: Bending force comparison (a) Published results [16] (b) Results obtained
in Abaqus simulation for aluminum without friction

Figure 3.8: Punch force comparison (a) Published results [16] (b) results obtained in
Abaqus simulation for aluminum with coefficient of friction 0.1348

Effect of Sheet Thickness

Effect of sheet was simulated and compared with published results. It was observed

simulation results are matching with published results with error of less than 5.5%

refer Table 3.1.

Mesh Convergence

Mesh convergence was performed for shell elements. Size for shell elements was var-

ied from 0.25 mm to 2 mm and was observed that there is no significant effect of

element size on bend angles before and after springback. Results were compared
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Figure 3.9: Effect of uniform sheet thickness on bend angles for shell model with
coefficient of friction 0.1348 [16]

Table 3.1: Abaqus simulation results for different sheet thickness.

Sheet thickness
(in mm)

Forming angle
(in degree) (%
error)

Springback an-
gle (in degree)
(% error)

0.9 22.56 (1.96%) 63.70 (4.65%)
1 21.32 (2.87%) 58.69 (3.87%)
1.1 20.08 (1.43%) 55.13 (5.42%)

with published benchmark problem and concluded that error between published and

performed simulation results varies from 8-10% refer Table 3.2. Force data were also

compared with published results. It was observed that with increase in element size

fluctuation in force increases. Results show less fluctuation in case of very fine mesh

i.e at mesh size 0.25 mm refer Fig. 3.11

Figure 3.10: Effect of element size on bend angles with coefficient of friction 0.1348 [16]

Table 3.2: Abaqus simulation results for different shell element size.

Element Size (in
mm)

Forming angle
(in degree) (%
error)

Springback an-
gle (in degree)
(% error)

0.25 20.99 (3.83%) 58.48 (8.52%)
0.5 21.22 (2.84%) 58.76 (9.01%)
1 21.28 (2.25%) 59.08 (10.51%)
2 22.59 (0.70%) not conv.
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Figure 3.11: Effect of element size on bending force for frictionless process (a) Pub-
lished results [16] (b) Results obtained in simulation

2D vs. 3D Modeling

Comparison between 2D model and 3D model was carried out to see the effects. As

for 2D modeling, the plane-strain condition is assumed, which neglects any lateral

bending effects. Where as in 3D modeling lateral bending can be captured and hence

the effect on results can be seen. It was observed that simulation results are matching

with published results. Results are compared for both frictionless and with coefficient

of friction 0.1348. Springback angles were also compared for, both models and it

was concluded that for frictionless bending process these models give 5% Table 3.3

variation between 2D and 3D models. Whereas, models with coefficient of friction

0.1348 variation reduces to 3.5% refer Table 3.4.

Figure 3.12: Effect of plane strain model and shell model on bend angles (a) friction-
less [16] (b) with coefficient of friction 0.1348 [16]

Figure 3.13 shows effect of shell and plane strain models on force for frictionless

as well as with coefficient coefficient of 0.1348.
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Table 3.3: Abaqus simulation results for different model approach for frictionless
condition.

Abaqus model Forming angle
(in degree) (%
error)

Springback an-
gle (in degree)
(% error)

Plane Strain 21.02 (0.4%) 51.28 (7.52%)
Shell 21.27 (1.84%) 48.22 (11.36%)

Table 3.4: Abaqus simulation results for different model approach for coefficient of
friction 0.1348.

Abaqus model Forming angle
(in degree) (%
error)

Springback an-
gle (in degree)
(% error)

Plane Strain 21.16 (1.26%) 61.42 (14.69%)
Shell 21.27 (1.68%) 59.13 (10.99%)

Figure 3.13: Effect of 2D and 3D models on bending force (a) published results [16]
(b) results obtained in Abaqus, without friction (c) published results [16] (d) results
obtained in Abaqus, with coefficient of friction 0.1348
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3.1.3 Shell model analysis

Different journals were followed to validate the FEA model. For each model, bound-

ary conditions (constraints) were kept same and other materials and geometrical

parameters were changed according to published journal.

Micari et.al. [17] published shell model analysis of V-bending process for aluminum

alloy material. They published effect of punch stroke on springback for which graphs

between K (bend angle ratio after and before unloading) and punch stroke refer

Fig. 3.14.

Figure 3.14: Effect of punch stroke on bend angle ratios [17]

Shell model was created in Abaqus software by keeping each parameter same

as published [17] and by applying boundary conditions similar to the FEA analysis

performed in section (3.0.1). Material for bending simulation was selected same as

given in journal [17]. Material selected and its properties are as folllows:

• Material - Aluminum

• Sheet thickness - 6 mm

• Young’s modulus - 71700 MPa

• Poisson’s ratio - 0.33

• Initial yield stress - 157 MPa

• Hardening law - σ = 563ε0.257p
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Full model was symmetric about YZ-plane, hence only half model was considered

for simulating bending process. The tool was positioned in such a way that contact

between sheet top surface and tool was maintained at the starting of deformation

process and at the same time bottom surface of sheet was in touch with the die

surface. Two static general steps deformation and springback were created to see

complete physical phenomenon.

• Deform - Tool moves in negative Y direction by specified punch stroke value.

• Springback - Tool retracts back (away) from deformed sheet and elastic recovery

takes place in this step.

Figure 3.15: Tool, die, and sheet assembly at start of deformation (a) Front view, (b)
Isometric view

All boundary conditions were kept same except punch stroke values, which kept

changing according to published result [17].

The interaction between tool - sheet and die - sheet was defined as the surface-to-

surface contact (Standard). Friction between these surfaces was defined by friction

coefficient 0.05. All other things were kept same as for NUMISHEET model.

Mesh was generated for sheet using shell elements - S4R (4 nodded reduced inte-

gration shell element). Mesh size was chosen as 1mm, hence total 910 elements were

generated.

38



Results Comparison

Results were compared between simulated model and published in paper. It was con-

cluded that results are matching within 2% error. Fig. 3.16 shows variation between

bend angle ratio with different punch stroke. It was observed that as punch stroke

increases springback increases.

Figure 3.16: Comparison between results obtained in Abaqus simulation and pub-
lished result

3.1.4 Solid Model Analysis

Vorkov et.al. [18] published simulation results for springback prediction of high-

strength steels in air bending. Authors compared springback for two different materi-

als also they obtained springback experimentally and compared it with FEA results.

They observed that there is 4.7% and 1.5% error is for shell model analysis for Weldox

1100 and Weldox 1300 steels respectively. Whereas for solid analysis error for both

materials got reduced to 2.1% and 1.1% respectively. Hence it was concluded that

solid element analysis is more accurate as compared to shell element analysis refer

Fig. 3.18.

The same model was created in Abaqus software to compare the results with

published results.
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Material properties and geometrical parameters were kept same as provided in

paper [18]. Solid model with mesh size 1 mm in length direction and 5 number of

elements in thickness direction was created, hence the total number of elements 3920

were generated. Elements of type C3D8R (8-noded linear brick, reduced integration,

hourglass control solid element) were chosen for this analysis. All boundary conditions

were kept same as discussed in section 3.0.1. Material for bending simulation was high

strength steel Weldox 1100 and Weldox 1300. Material properties are:

• Sheet thickness - 4.15mm for Weldox 1100 and 4.10mm for Weldox 1300

• Young’s modulus - 175 MPa

• Poisson’s ratio - 0.33

• Initial yield stress - 1078.7 MPa for Weldox 1100 and 1046.3 MPa for Weldox

1300

• For plastic stress and strain values, tensile stress strain curve was given in

Fig. 3.17

Two steps, Deform and Springback were created to see complete bending process

and results were compared with published results.

Figure 3.17: Stress-strain curve for both materials, Weldox 1100 and Weldox 1300 [18]
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Figure 3.18: Comparison of Finite Element Analysis and Experimental Results

Table 3.5: Abaqus simulation results for different model approaches for two different
materials

Material Model Springback
angle (in degree)

(% error )

Weldox 1100
Shell 25.24 (7.38%)
Solid 24.98 (6.29%)

Weldox 1300
Shell 27.54 (5.10%)
Solid 26.72 (1.97%)

3.2 Shell and Solid Analysis Comparison for FEA

Models

After validating FEA model with published results, solid vs. shell analysis was con-

ducted to compare accuracy between these two models. For results comparison, NU-

MISHEET [16] results for shell analysis were used. To compare final results first

mesh convergence for elements in thickness direction was performed. It was observed

that results converge when the number of elements through the thickness is greater

than 5.

Mesh convergence was done for the number of elements in the thickness direction,

only to see the effect on springback. The number of elements were varied from 2

elements to 8 elements in thickness and was observed that after 6 results get stabilize

at one value refer Table 3.6. Error with reference to shell model results was also

presented in table.

Fig. 3.19 shows that when the number of elements increases above 5 results become

constant, which suggests that springback prediction is accurate enough only when the

number of elements through the thickness is equal to or more than 5 elements.
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Table 3.6: Mesh convergence results for solid model in Abaqus for coefficient of friction
0.1348.

Number of
elements through

thickness

Forming angle (in
degree) (% error)

Springback angle
(in degree) (%

error)
2 20.99 (3.89%) 67.68 (19.54%)
4 21.11 (3.33%) 59.72 (8.82%)
6 21.159 (3.12%) 58.77 (7.35%)
8 21.157 (3.11%) 58.398 (6.76%)

Figure 3.19: Mesh convergence study in solid analysis

3.3 FEA Analysis for Material Selection of Bend

Fixture

Finite element analysis for steel material (thickness 5 mm) was carried out for de-

formable tool and support considering only elastic deformation for both parts. Stress

results were extracted and used for setting up the material selection criterion for

bend fixture. Elastic properties were given for tool and support whereas for sheet

both elastic and plastic properties were given.

Material properties and dimensions were taken from S.Jiang [19].

Half model for stress analysis was developed refer Fig. 3.20 and tool, sheet, and

supports are considered as solid deformable bodies. Generated stresses in tool and

support provided criteria to select material for these parts. The material was selected

such that the yield strength for that material must be higher than stress generated, to

avoid any plastic deformation in tool and die. Two static, general steps were created
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as deform and springback. Deform step was to simulate deformation process whereas

in springback elastic recoveries were simulated.

Figure 3.20: Deformable tool and support analysis for material selection of bend
fixture

Boundary conditions for the bending process:

• Support Constrain - As support is a deformable part hence to constraint all

rigid body motion XZ plane (at bottom) in support was selected refer Fig. 3.20.

This boundary condition was active in both deform and springback step.

U1 = U2 = U3 = UR1 = UR2 = UR3 = 0

• Tool Constrain - Translation motion in all direction except Y axis and rotation

in along all axis was constraint at the selected XZ plane (at top) in tool refer

Fig. 3.20. This boundary condition was active in all steps.

U1 = U3 = UR1 = UR2 = UR3 = 0

• Sheet Constrain - At left face of sheet YZ plane was selected to constrain trans-

lation in X axis and rotation in X and Z axis. This boundary condition was

active in only deform step.

U1 = U3 = UR1 = UR2 = UR3 = 0

• DeformY - At tool plane XZ was selected (at top) to give specified punch stroke

in negative Y direction refer Fig. 3.20. This boundary condition was active only

in deform step.

U2 = -(punch stroke = 12.7)
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• Retract - At the same XZ plane on tool translation motion in positive Y direc-

tion was given retraction of tool. This boundary condition was active only in

springback step.

U2 = 5

For meshing tool and support solid elements - C3D8R( 8-node linear brick, reduced

integration solid elements) were used. Mesh size of 0.5 mm for both tool and support

is used, hence total 9000 elements for each part were generated.

3.3.1 Stresses Generated During Bending Process

At both tool and support generated stress values were extracted. Results show that

at tool stress of magnitude 460 MPa and on support 100 MPa refer Fig. 3.21.

Figure 3.21: Maximum stresses generated in (a) Deformable tool and (b) Support

3.4 Finite Element Analysis for IFHS 350 and HSQ

440 Steel U-die Bending Process

The U-die bending process was modeled in Abaqus software to see springback and

force variation by varying fixture dimensions and friction conditions. Material selected

for this analysis was IFHS 350 and HSQ 440 steel. The material properties were

provided by TATA Steel.

Punch and die of U-shape was modeled as analytical rigid refer Fig. 3.22, because

deformation in these parts was neglected during experiment. Sheet specimen was
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modeled as shell part to see the springback and forces variation with parameters. As

the material properties were provided for three different thickness hence simulation

for all provided thickness were performed. The material properties in rolling direction

are:

• Sheet thickness - IFHS 350 steel 0.7 and 0.8 mm, and HSQ 440 steel 1.43 mm

• Young’modulus - 220000 MPa

• Poisson’s ration - 0.33

• Yield strength - 205.5 Mpa and 185.15 Mpa for IFHS 350 steel of thickness 0.7

mm and 0.8 mm respectively. 333.4 MPa for HSQ 440 steel

• Hardening law -

σ = 600 ∗ ε0.227p (3.1)

σ = 600 ∗ ε0.0.23p (3.2)

σ = 750 ∗ ε0.198p (3.3)

for IFHS 350 0.7 mm thichness, 0.8 mm thickness and C Mn 440 steel respec-

tively

• Anisotropic r-values - ro = 1.213, r45 = 1.875 and r90 = 1.367

for IFHS 350 0.7 mm thickness

ro = 1.389, r45 = 1.473 and r90 = 1.77

for IFHS 350 0.8 mm thickness

ro = 0.769, r45 = 1.03 and r90 = 0.956

for HSQ 440 1.43 mm thickness

For defining planar anisotropy in Abaqus R11 R22 R33 R12 R13 R23, need to be

evaluated. R values are defined as stress ratio between stress generated at that

particular plane and some reference stress constant value refer Abaqus 6.13 user

manual section 23.26. Let yield stress σy is to be defined as equal to σ11 in metal
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Figure 3.22: Punch and Die parts modeled in Abaqus software

plasticity model, then these R-values are formulated as:

R11 = 1 (3.4)

R22 =

√
r90(ro + 1)

ro(r90 + 1)
(3.5)

R33 =

√
r90(ro + 1)

ro + r90
(3.6)

R12 =

√
3(ro + 1)r90

(2r45 + 1)(ro + r90
(3.7)

R23 = 1 (3.8)

R31 = 1 (3.9)

Steps and boundary conditions and interaction properties were kept same as dis-

cussed in section 3.1.

Mesh was generated for sheet using shell elements - S4R ( 4-node doubly curved

thin or thick shell, reduced integration, hourglass control shell element). Reduced

integration with hourglass method was used to save computational time and at the

same time without any lose in accuracy.
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3.4.1 Results and Discussion

Springback Calculation

In sheet metal bending, springback is defined as the deviation in bend angle form

actual value after the unloading process. Hence springback is the difference between

the angle of flat portion of bend sheet at end of loading and angle of flat region of

bend sheet after the complete removal of loading. So in FE analysis springback is the

reduction in bend angle between deform and Springback step. If the bend angle after

deformation is αi and bend angle after retract step is αf , then springback is defined

as (αi – αf ) refer Fig.3.23.

Figure 3.23: Measurement of springback angle in bending process

Friction Effect on Springback

Effect of friction between contacting surfaces was observed by simulating complete

bend process by changing coefficient of friction from 0, 0.1, 0.15, and 0.2 in design for

all three materials. The effects were compared for three different fillet radius of 2, 4,

6 mm.

For IFHS steel with thickness 0.7 mm, it was observed that with increase in

friction coefficient springback increases. There was slight increase in springback with

decrease in fillet radius also. Magnitude of springback angle got reduced for same

friction coefficient when die fillet radius got increased refer Fig. 3.24.

Results shows that there was approximately 1.5 deg. increase in springback angle

with increase in friction. Slope of these plots indicates that with fillet radius effect
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remains same but only magnitude got decreased.

Exactly same effect was observed for IFHS 350 steel of thickness 0.8 mm. With

increase in friction springback got increase by magnitude of approximately 1.5 deg.

for all cases of fillet radius except 6 mm. It was observed that for 6 mm fillet radius

effect got decreased slightly and for this fillet radius there was only 0.5 degrees change

in springback with increase in friction coefficient refer Fig. 3.25.

For HSQ 440 steel results show that there is no significant effect of die fillet radius

on springback for both isotropic and anisotropic models refer Fig. 3.26.

Figure 3.26 shows slight variation in springback angle when coefficient of friction

changes from 0 to 0.1, but as friction increases springback becomes almost constant.

3.5 Finite Element Analysis for HSQ steel V-bending

Process

The V-bending process was modeled in Abaqus software to see springback and force

during deformation. Simulations were carried out for HSQ steel material and material

properties were provided by TATA Steel.

All experimental parameters were kept same as designed for bend fixture. Punch

and die were created as analytical rigid parts refer Fig. 3.27 whereas sheet is selected

as deformable 3D part refer Fig. 3.28. The sheet was partitioned in such a way that

fine mesh was generated in deformation zone and at other places, coarse mesh was

generated.

Figure 3.24: Friction coefficient effect on springback for IFHS 350 steel for thickness
0.7 mm(a) Isotropic model and (b) Anisotropic model
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Figure 3.25: Friction coefficient effect on springback for IFHS 350 steel for thickness
0.7 mm(a) Isotropic model and (b) Anisotropic model

As sheet metal bending was carried out along the rolling direction, hence material

properties in rolling direction were considered for FE analysis. Planar anisotropic

constants were used to input anisotropic behavior in the analysis. Material properties

were given for both elastic as well as plastic deformation. Young’s modulus and

Poisson’s ratio are given for elastic behavior and for plastic behavior stress strain

curve data is provided to Abaqus. Material properties in rolling direction are:

• Young’s modulus - 200000 MPa

• Poisson’s ratio - 0.33

• Initial yield stress - 326 MPa

• Hardening law - σ = 746.349(0.005189 + εp)
0.19071

• Anisotropic r-values - ro = 0.8751, r45 = 1.1986 and r90 = 1.1326

Anisotropic properties are given by providing potential options in Abaqus same

as mentioned in section 4.2.

To see complete effect of sheet metal bending two static general steps were created:

• Deform - To simulate only deformation process. In this step punch moves in

the negative Y direction by specified punch stroke.

• Springback - To simulate elastic recovery which occurs during unloading. In

this step, punch retracts back (away) from the sheet and hence elastic recovery

takes place.
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Figure 3.26: Die fillet radius effect on springback for HSQ 440 steel (a) Isotropic
model and (b) Anisotropic model

Boundary conditions for V-bending process:

• Die Constrain - At die reference point Encastre(Fix) was used to restrain all

degrees of freedom hence for die, rigid body motion was not allowed. This

boundary condition remained active through both steps i.e. deform and spring-

Figure 3.27: Modelled Punch and Die part in Abaqus software
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back.

U1 = U2 = U3 = UR1 = UR2 = UR3 = 0

• Punch Constrain - Translation degrees of freedom (other than punch stroke

direction Y axis) and all rotational degrees of freedom were constrained. Punch

was allowed to move only in punch stroke direction. This boundary condition

remained active in all steps.

U1 = U3 = UR1 = UR2 = UR3 = 0

• Sheet Constrain - Sheet was constrained to move in X and Z directions to

perform bending operation. These constraints are applied on the line created

in the middle of the bottom surface of the sheet. This boundary condition

remained active only in deform step.

U1 = U3 = UR1 = UR2 = UR3 = 0

• DeformY - In this boundary condition Punch was allowed to move by given

punch stroke value. This boundary condition remained active only in deform

step.

U2 = -(specified Punch Stroke)

• Retract - Punch was specified to move away from the sheet for springback after

completion of deformation. This boundary condition remained active only in

springback step

U2 = 5

Figure 3.28: Modelled sheet specimen in Abaqus software

51



The interaction between die-sheet and punch-sheet was defined by using Surface-

to-surface (standard) contact methodology. Simulation with coefficient of friction

0.01 and without friction was carried out to see the effect on springback and punch

reaction force. Rigid body surfaces are considered as master surfaces and sheet is

considered as slave surface. The interaction between punch and sheet was kept active

for both steps. To simulate springback process also at the same time for avoiding

rigid body motion of sheet in springback step interaction between die and sheet was

deactivated in springback step.

Mesh was generated for sheet using solid elements - C3D8R( 8-node linear brick,

reduced integration solid elements). Reduced integration methodology was used to

reduce the computational time. To eliminate the errors induced due to reduced inte-

gration hourglass control method was selected. Mesh size of 0.25 mm in deformation

zone whereas 2 mm in the place where no deformation takes was chosen. In thickness

direction 6 elements were considered, hence total 30240 elements were generated refer

Fig. 3.29. As analytical rigid bodies can not be meshed hence tool and die were not

meshed.

Figure 3.29: Mesh generated on sheet

3.5.1 Results and Discussion

Effect of Width on Springback

As it is well known fact that current density is the main factor for electroplastic effect,

which suggest that with change in cross-sectional area of specimen effect also changes.
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For the case of sheet metal bending cross-sectional area depends of sheet width and

tool radius. With decrease in sheet width current density can be increased which in

turns increases electroplastic effect.

Before selecting proper width to ensure maximum electroplastic effect, FEM sim-

ulation for width effect on bending, without current carried out and the results were

compared with experiments. This analysis was to prove that with change in width,

springback is changing solely due to current density and there is no mechanical factor

involved in springback change.

Four different width samples were selected for this analysis (10 mm, 20 mm,

and 40 mm) and punch stroke of 10 mm was kept same for all experiments. For

FEM springback angles were measured and compared for different width simulations.

Springback results are shown in following Table 3.7.

Table 3.7: Effect of witdh on springback keeping all other same conditions.

Sheet width
(in mm)

Bend angle before un-
loading (in degree)

Bend angle after un-
loading (in degree)

Springback

10 61.99 53.79 8.19
20 61.97 53.76 8.21
40 61.77 53.57 8.21

Results shows that there is no effect of width on springback for without eletric

assisted bending process.

Tool Radius Effect on Springback

As tool radius also one of the deciding parameter in current density, hence before

conducting electric assisted bending experiments, tool radius effect was simulated

and compared with experiment results.

Bending simulations for tool radius 2 mm, 4 mm and 6 mm were performed. Punch

stroke of 15 mm was kept same for all simulations and results were compared with

experiments. For comparison bend sheet profiles were on same plots refer Fig. 3.30

to see any variation also bend results were also calculated refer Table 3.8.

Results shows due to difference in tool radius there is slight change in springback

angles for bending processes. During electroplastic bending experiments interaction

effect between tool radius and current density can be a good factor to create difference

in springback.
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Figure 3.30: FE and experimental springback results comparison for different tool
radius

Table 3.8: Effect of tool radius on springback keeping all other same conditions.

Tool Radius
(in mm)

Bend angle before un-
loading (in degree)

Bend angle after un-
loading (in degree)

Springback

2 87.14 77.52 9.62
4 87.22 77.58 9.64
6 88.30 78.52 9.78
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Chapter 4

Experimental Investigation of

Electroplasticity on HSQ steel

4.1 Experimental Planning

Experiments without the assistance of electric current were performed to see the effect

of specimen width and tool radius effect on springback. As with change in sheet width

and tool radius in electric assisted bending will cause change in current density which

can results in springback. Hence effect of width and tool radius without electric

current in necessary to examine, to differentiate between mechanical and electrical

effect.

4.1.1 Width effect

Bend angle springback was compared for different width specimen was compared and

it was observed and it was found that springback is varrying randomaly with specimen

width refer Fig. 4.1. To check repeatability each experiments were carried out three

times.

Results were compared with FE analysis and was concluded that changes in spring-

back in not due to some mechanical effect as FE results had shown no effect of width

on springback.

To measure bend angle after springback, graph sheet of grid size 1 mm was used.

It was observed that sheet specimens are having some initial curvature present. Be-

cause of initial curvature present in specimens, bend angle measurement was not

accurate. Hence discrepancies in results of FEA and experiments were observed. On

measurement of initial curvature present in each specimen was not uniform and was
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Figure 4.1: Width effect on springback

varying from 0 to 500 µm Fig. 4.2.

Figure 4.2: Initial curvature present in sheet specimens

Hence in presence of initial curvature in sheet specimens, bend angle measurement

was not accurate for springback comparison, for comparison of springback radius of

curvature was measured in deformation zone only Fig. 4.3.Difference between radius

of curvature before and after springback was measured and reported as springback in

sheet metal bending process.
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Figure 4.3: Deformation zone in bending region was selected to compare radius of
curvature as springback

For measurement of radius of curvature before and after unloading, complete

process was recorded by using Digital camera and images were taken out from that

video at exactly after finishing of deformation process and after unloading process to

trace bend profile before and after unloading. These traced points were used to fit

a 2nd order polynomial and minimum radius of curvature was calculated from these

fitted plots. The image tracing was done by using Matlab script for better accuracy.

4.2 Electric Assisted Bending Experiments for HSQ

Steel

Bending experiments were carried out for HSQ steel under the effect of DC pulsed

current. Springback was measured for this materials and then the effect of pulsed

current was studied. Main focus of the study was to see, with the application of

pulsed electric current whether any reduction in springback is happening or not. To

see the effect of current on springback, final bend profile (i.e. sheet shape after

springback) was compared for with and without current.
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4.2.1 Experimental Setup and Procedure

Assembly of each bend fixture on CNC machine is a very crucial step, as fixture

contains a large number of parts hence while assembling every aspect like insulation,

proper alignment needs to be verified before starting the experiments.

Load Cell is being used to record force data by using NI (National Instruments)

DAQ (Data Acquisition) system with LabView.

Electric connections are also very important factor for experiments. For electric

connections, high-temperature insulation wire was used to prevent burning of wire.

After connecting wires to punch and support tool electric parameters like current,

frequency and duty cycle were need to be set. For setting these parameters circuit

was closed by touching both top and bottom tool to each other. This process has to

be repeated every time when there is any change in electric parameter settings.

Figure 4.4: Experimental setup

4.3 Process Parameters

• Current - Electric Current is major process parameter according to literature as

the flow of electrons assist in dislocation motion during deformation. Electricity

was passed between two tools provided at top and bottom surface of the sheet

refer Fig. 4.5. Bottom tool was designed in such a way that it touches sheet
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bottom surface when sheet is placed on die, hence whenever deformation starts

punch travels towards sheets and makes contact with sheet. At that instant

electric circuit completes and flow of electricity starts. The bottom tool was

mounted on spring force to ensure contact for each instant of time.

Figure 4.5: Close-up view of electric circuit completion between both tools and sheet

• Frequency - Pulsed current frequency is considered as an important factor in

electroplastic effect. As frequency effect was observed in literature [2] that

with increase in current frequency reduction in flow stresses increases as well as

thermal effect due to resistive heating decreases.

• Duty Cycle - Duty cycle is defined as the percentage on-time of one pulse in

one complete cycle, in other words, it shows that how much percentage of time

electric pulse was on. Its effect can be related to resistive heating as with

increase in duty cycle thermal heating increases.

• Tool radius - Tool radius is also an important factor as it makes difference

in contact area, which in turn changes current density values. As tool radius

decrease contact area in bend region decreases hence current density, for this

particular process is defined as the ratio of current to contact area, increases.

Hence electroplasticity effect increases and vice-versa.

• Feed rate - Feed rate given to punch decides time of deformation process, hence

as feed rate increases deformation time decreases which results in less interaction

between flowing electrons and moving dislocations. Hence slower the feed rate
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more the electroplastic effect, but at the same time, it increases resistive heating

effect also.

• Dwell time - After completing the deformation process punch was held station-

ary at that point for some period of time. As no deformation happens during

this period of time and unloading starts after some delay, which creates internal

stress relaxations which result in springback reduction.

For electroplastic bending experiments, all process parameters (current, frequency,

duty cycle, tool radius, feed and dwell time)are considered to see their effect on

springback. All factors with two levels are selected and experiments are conducted.

For springback calculation change in radius of curvature in deformation zone was

considered as a response parameter.

Sheet specimen of size 100 mm in length 20 mm in width and 1.02 mm thickness

were selected to perform the experiments. Temperature measurement was done using

Pyrometer and the maximum temperature reached during experiments was noted

down. It was observed that maximum temperature reached approximately 2800o,

hence thermal effect was neglected. The current density of 6.75 and 9.75 A/mm2 are

calculated for selected current values.

Table 4.1: Process parameters used for HSQ steel experiments

Factors Levels
Current (A) 135 195

Frequency (Hz) 100 170
Duty Cycle (%) 5 10

Tool radius (mm) 2 6
Feed (mm/min) 20 60
Dwell time (s) 0 60

By using a full factorial design of experiments total 64 number of experiments

are conducted. To see the effect of these parameters on the radius of curvature, each

experiment are recorded using high definition camera. Also at the same time, edge

of the sheet specimens were colored by white and all other parts in experiment setup

were marked as black see refer Fig. 4.6. From each recorded video snapshots at end of

deformation and after springback are captured. To calculate the radius of curvature

data for each experiment Matlab script was used.
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Figure 4.6: Image was taken from recorded video (a) after deformation and (b) after
springback

4.4 Results and Discussion

4.4.1 Process parameters effect on springback

Effect of current density is crearly visible from main effect plots. As electric current

is increasing difference in radius of curvature is also decreasing, which shows that

springback is decreasing. Similar effect was observed with frequency also which shows

decrease in radius of curvature difference hence springback. Duty cycle effect is not

visible in present study of springback, which is expected as the temperature increase

due to duty cycle was not significant (maximum temperature reached 280oC only).

Also it was observed that with increase in frequency temperature rise decreases.

As discussed in section 3.5.1 there was very less effect of tool radius on springback,

but for electroplastic bending this effect got increased because of change in current

density due to change in contact area. It was observed that with increase in tool

radius springback increases (contact area increases hence current density decreases).

It was observed that with increase in feed springback increases slightly. The slight

increase in springback due to increase in feed suggests that with increase in feed rate

the time during which current is on reduced hence increase in springback. As with

feed rate 20 mm/min time for deformation is 45 s, whereas with feed rate 60 mm/min

it takes 15 s to complete deformation.

Dwell time shows no effect on springback. As dwell time increases springback

remains same, hence it can be concluded that during dwell time stress relaxation is not

significant enough to create any changes in springback. As during dwell time current
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flow is off, hence this parameter is showing no influence of current on springback.

Analysis of variance was performed and results are given in following Fig. 4.7 and

Fig. 4.8.

Figure 4.7: Results of analysis of variance

Figure 4.8: Model summary of Anova analysis

Interaction effects also provide useful information related to each parameter refer

below figures.
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Figure 4.9: Main effect plots of various process parameters on springback

Interaction between current and other parameters show that the effect of elec-

tric current always increases with increase in current. It is observed that current

and parameters like duty cycle and dwell time are not having any interaction effect.

Whereas for interaction between current, tool radius it is observed that with increase

in current effect got increased and springback was less at minimum tool radius and

maximum current. Also interaction between current and feed it is observed that the

effect is maximum when current is maximum and feed is minimum refer Fig. 4.10.

Interaction effects between frequency and other parameters are also observed and

it was concluded that frequency not showing any interaction effect with other pa-

rameters except current. It was observed that at maximum frequency and maximum

current springback was lower refer Fig. 4.11.

Interaction between duty cycle and tool radius and feed and dwell time is plotted

and it was concluded that there is no effect on springback of duty cycle and other

parameters refer Fig. 4.12.

Interaction between tool radius and feed rate and dwell time are also observed

and concluded that these parameters are effective if current is not one of the active

paramater refer Fig. 4.13.
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Figure 4.10: Interaction plots for current and other parameters
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Figure 4.11: Interaction plots for Frequency and other parameters
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Figure 4.12: Interaction plots for duty cycle and other parameters

4.4.2 Effect of parameters on bend profile

Bend profiles were also compared to see the effect of process parameters. As it was

observed that electrical parameters are not having any effect on bend angles but

at region where tool and sheet make contact, were showing different behavior with

different electrical parameters.

Current effect

Effect of current on bend profiles are observed by comparing bend profiles for exper-

iments with and without current refer Fig. 4.14. It is observed that with increase in

tool radius springback is decreasing. Also bend profiles are not same even after defor-

mation due to application of electric current. The difference in bend profiles before

unloading indicates that application of electric current, reduces flow stress which in

turn changes the material flow.
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Figure 4.13: Interaction plots for remaining parameters

Frequency Effect

Effect of frequency on bend profile indicates that with increase in frequency springback

decreases. This effect is only visible for tool radius 2 mm, not for 6 mm tool radius.
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Figure 4.14: Variation in bend profiles in Deformation zone with and without electric
current and other parameters same (Freq. = 100 Hz, Duty cycle = 5%, Feed = 20
mm/min and Dwell = 0 s), (a) Tool radius 2 mm and (b) Tool radius 6 mm.
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Figure 4.15: Effect of frequency on springback at (duty cycle 5%, Feed 20mm/min,
and dwell 0 s) (a) Tool radius 2 and Current 135 A, (b) Tool radius 2 and Current
195 A, (c) Tool radius 6 and Current 135 A and (d) Tool radius 6 and Current 195 A

Duty cycle effect

There is no duty cycle effect is observed on bend profiles as both before and after

springback profiles are exactly matching refer Fig 4.16.

Feed effect

Bend profiles for different feed values are plotted and is observed that profiles are not

showing any significant effect on springback refer Fig. 4.17.

Dwell time effect

Bend profiles for dwell time effect indicates that the dwell time is not having any

significant effect on springback refer Fig. 4.18.

67



0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 a

xi
s

X axis

DC 5%, C = 135 A before springback

DC 5%, C = 135 A after springback

DC 10%, C = 135 A before
springback

DC 10%, C = 135 A after springback

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 a

xi
s

X axis

DC 5%, C = 195 A before springback

DC 5%, C = 195 A after springback

DC 10%, C = 195 A before
springback

DC 10%, C = 195 A after springback

(a) Frequency = 100 Hz. (b) Frequency = 170 Hz.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 a

xi
s

X axis

DC 5%, C = 135 A before
springback

DC 5%, C = 135 A after
springback

DC 10%, C = 135 A before
springback

DC 10%, C = 135 A after
springback

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

Y
 a

xi
s

X axis

DC 5%, C = 195 A before
springback

DC 5%, C = 195 A after
springback

DC 10%, C = 195 A before
springback

DC 10%, C = 195 A after
springback

(c) Frequency = 100 Hz. (d) Frequency = 170 Hz.

Figure 4.16: Effect of duty cycle on springback at (Feed 20mm/min, and dwell 0 s)
(a) Tool radius 2 and Current 135 A, (b) Tool radius 2 and Current 195 A, (c) Tool
radius 6 and Current 135 A and (d) Tool radius 6 and Current 195 A.
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Figure 4.17: Effect of feed on springback at (duty cycle 5%, and dwell 0 s) (a) Tool
radius 2 and Current 135 A, (b) Tool radius 2 and Current 195 A, (c) Tool radius 6
and Current 135 A and (d) Tool radius 6 and Current 195 A.
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Figure 4.18: Effect of dwell on springback at (duty cycle 5% and Feed 20mm/min)
(a) Tool radius 2 and Current 135 A, (b) Tool radius 2 and Current 195 A, (c) Tool
radius 6 and Current 135 A and (d) Tool radius 6 and Current 195 A.
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Chapter 5

Conclusions and Scope for Future

Work

With the application of electric current pulses to the sheet metal bending process

of HSQ steel, the bending forces and springback reduces. The parameters, having

significant effect on springback are current, frequency and tool radius. Whereas duty

cycle, feed and dwell time are not showing any significant effect on springback. The

temperature increase (less than 200oC) during electrical assisted bending process

indicates that thermal resistive heating effect is not high enough to make any changes

in crystal structure.

5.1 Scope for Future Work

• Determination of springback effect at a higher rating of current density values.

• Simulate the process of electroplasticity using FEA packages.

• Study the effect of current flow through the material at microstructure level.

• Development of a model to predict springback at different process parameters.
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Appendix A

Investigation of Electroplastic

Effect in Bending for Various

Materials

Different materials like stainless steel, spring-steel, and titanium were selected to see

the effect of electric current. In following sections effect of electroplasticity on these

materials are studied.

Commercially Available Stainless Steel Scale

Initial trials were carried out to see the effects of electric current on stainless steel.

Experiments were conducted with tool radius 2 mm and feed rate 60 mm/min. These

experiments were carried out with dwell time 60 s. During this dwell time, current

flow was kept on, to increase the pulsed current effect on springback. It was observed

also that with dwell time springback decreases by 4.45o refer Fig. A.1.

Experiments were conducted with and without current for both dwell period of

60 s. Electric current was set at 195 A and frequency at 170 Hz. To see the effect

of resistive heating temperature was measured by using pyrometer. The maximum

temperature reached during deformation was only 170o C, which is too low for recrys-

tallization to happen in steels. Hence it can be considered during these experiments

any heat treatment is not happening.
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Figure A.1: Electroplasticity effect on commercially available stainless steel scale

High Strength Spring Steel

As with increase in yield strength springback also increases. Hence higher strength

than stainless steel was selected to see the electroplastic effect in V bending process.

For spring steel thickness of 1.2 mm and width of 10 mm selected for experiments to

increase the current density by decreasing contact area.

Four factors such as electric current, tool radius, feed and dwell time were con-

sidered to see the electroplastic effect for this material. To see the repetition each

experiment was repeated twice and if both results were not matching the third ex-

periment was also conducted.

Table A.1: Process parameters used for spring steel experiments

Factors Levels
Current (A) 100 300

Tool radius (mm) 2 6
Feed (mm/min) 20 60
Dwell time (s) 20 60

Results

Springback was measured for each specimen and the results were analyzed using

Minitab (statistical software). DOE helped to see the individual effect of each pa-
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rameter on springback. Also, the interaction of parameters was observed to have

significant effect on springback.

Significant terms

Normal plot obtained after analyzing results in Minitab shows which factor is signif-

icant and which one is not refer Fig. A.2.

Figure A.2: Normal plot

It was observed that all parameters except feed rate have significant effect on

springback. The interaction between tool radius and dwell time is also significant.

Results show that effect of current on springback is more than all other parameters.

Main effect against mean of Springback

The main effect plots are important to study the effect of process parameters on

springback. The main effect for each parameter are shown in Fig. A.3.

• Current effect - Effect of current is clearly observed in main effect plots. It can

be concluded that springback decreases with increase in current as main plot is

showing negative slope for current graph.

• Tool radius effect - With increase in tool radius, the contact area between

tool and sheet specimen increase. Because of increase in contact area current

density decrease hence effect of current on springback decreases. Increase in
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tool radius shows exactly same behavior as expected. Springback got increased

with increase in tool radius.

• Feed effect - There was slight variation in springback with increase in feed,

which suggest that feed effect was not present on springback.

• Dwell time - Springback decreases with increase in dwell time. Decrease in

springback suggest stress relaxation during this period of time.

Interaction effects between the parameters

Interaction effects between the parameters are shown in Fig. A.4.

It was observed that with the increase in current and dwell time, springback

decreases. But for tool radius, the effect is opposite as with the increase in tool

radius springback increases. It was observed that feed is not affecting significantly to

springback. The interaction between all parameters except feed and dwell time are
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Figure A.3: Main effects of process parameters on springback
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Figure A.4: Interaction effects on springback between parameters

showing a significant effect on springback. For feed and dwell time interaction plots

are showing approximately horizontal lines which suggest that interaction between

these parameters are not significant.

EDD (Extra Deep Drawing) and IF (Interstitial Free)

Steel

Experiments were conducted on EDD (Extra Deep Drawing) and IF (Interstitial free)

steel to see the effect of electric current. It was observed that these steels do not show

any effect of electric current on springback, but there was reduction in flow stress was

observed.

Experiments shows that with application of electric current force decrease approx-

imately by 10% for each material refer Fig. A.5.

Figure A.6 shows there is no significant effect of electric current on springback.

As current density used for these experiments was only 10.75 A/mm2 which shows

no effect on springback, hence it can be concluded that the current density level is

not reaching the threshold value to show any interaction effect between electrons and

moving dislocations for these materials.
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Figure A.5: Effect of electric current on bending force for (a) EDD Steel and (b) IF
Steel

Ti-6Al-4V alloy

Materials with higher strength shows greater springback and also they requires high

mechanical energy input for deformation. Titanium alloys belong to same high

strength material category also their strength to weight ratio is greater than other

ferrous alloys.

Experiments with and without electric current were conducted for Ti-6Al-4V alloy

and was observed that this material is very sensitive to electric pulsed current. Reduc-

tion in springback and force reduction was observed for this material. Experiments

were performed for two different current value at 150 A and 300 A also experiment

without current was performed to compare the reduction in springback. Because of

higher electrical resistivity, slight increase in temperature was recorded and maximum

temperature reached during process was noted. Maximum temperature read by py-

rometer was 200o C. This temperature level is also very low compared to its melting

point (approx. 1600oC). Hence in this process also Joule heating effect was neglected.
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Figure A.6: Effect of current on springback (a) EDD Steel and (b) IF Steel

Figure A.7: Effect of electric current on bending force for Ti-6Al-4V

Figure A.8: Effect of current on springback for Ti-6Al-4V
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