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Abstract

The Manin-Drinfeld theorem is an important result of the theory of modular forms

on the existing of an isomorphism between the space of Eisenstein series E2(Γ0(N))

and a first homology group H1(X0(N),Z) of a modular curve X0(N). Explicitly such

an isomorphism was first constructed in [1] in the case when N = p is prime. In the

thesis we review the structure of an isomorphism in the case when N = p2 and p ≥ 3

is prime.
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Chapter 1

Introduction

The description of the structure of spacesMk(Γ) is the main objective of the theory

of modular forms. The theory had already found many applications, e.g. in number

theory where a version of Modularity Theorem was used to prove the Fermat’s The-

orem. There are still a number of open problems and conjectures around modular

forms such as the conjecture by Birch and Swinnerton-Dyer. The structure of the

spaceM2(Γ0(N)) was described by Manin and Drinfeld [2, 3]. They proved that the

Eisenstein element corresponding to the Eisenstein series E ∈ E2(Γ0(N)) is a com-

bination of certain modular symbols. Explicitly such representation was first found

in [1] for the case when N = p is prime. Below we review [4] where the analogous

representation is obtained for numbers N = p2, p ≥ 3 is prime.

1.1 Modular group

By SL2(Z) we denote the set of all 2×2 matrices with integer entries and determinant

1, that is a b

c d

 ∈ SL2(Z)
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if and only if a, b, c, d ∈ Z and ad−bc = 1. The inverse of a matrix

a b

c d

 ∈ SL2(Z)

is the matrix

 d −b

−c a

 .

Every element γ =

a b

c d

 ∈ SL2(Z) acts on the compactified complex plane

C ∪ {∞} by the following rule.

• If c = 0, then

γ(z) =


az+b
d
, z ∈ C

∞, z =∞

(action is well-defined since ad− bc = 1 = ad and d = ±1.

• If c 6= 0, then

γ(z) =


az+b
cz+d

, z ∈ C, z 6= −d/c

∞, z = −d/c

a/c, z =∞

γ : C ∪ {∞} → C ∪ {∞} is a group action, as the composition γ1 ◦ γ2 of actions

coincides with the action of the product γ1γ2.

The upper half-plane is H = {z ∈ C : Im(z) > 0}. For every z ∈ H

γ(z) =
az + b

cz + d
=

(az + b)(cz̄ + d)

|cz + d|2
=
ac|z|2 + bd+ (ad+ bc)Re(z) + i(ad− bc)Im(z)

|cz + d|2

Hence Im(γ(z)) = Im(z)
|cz+d|2 > 0 and SL2(Z) acts on the upper half-plane H. By defini-

tion, SL2(Z) also acts on Q ∪ {∞} which can be viewed as a projective space P1(Q)

(see section 1.6 about projective lines). With the usual topology H is a noncompact

Riemann surface. The union H ∪ P1(Q) can be given a topology which defined a

compact Riemann surface that compactifies H.
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1.2 Congruence subgroups

For a fixed integer N ≥ 1, Γ(N) denotes the set of all matrices

a b

c d

 ∈ SL2(Z)

such that a ≡ d ≡ 1 (mod N) and c ≡ b ≡ 0 (mod N). Γ(N) is a subgroup of SL2(Z),

since sums and products commute with taking resides modulo N. Moreover, Γ(N) is

a normal subgroup of SL2(Z) :

if α ∈ SL2(Z), then for every γ ∈ Γ(N)

α−1γα ≡ α−1

a b

c d

α =

a b

c d

 (mod N),

i.e. α−1Γ(N)α = Γ(N).

The index of Γ(N) in SL2(Z) is finite:

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)

where the product is taken over all prime divisors of N.

Γ(N) is a principle congruence subgroup. A subgroup Γ ⊂ SL2(Z) is a congruence

subgroup, if it contains Γ(N) for some level N. Two important examples of congruence

subgroups are

Γ1(N) =

{a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}

and

Γ0(N) =

{a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

}
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1.3 Modular curves

The quotient of the upper half-plane by the action of Γ0(N) is genoted by Y0(N) :

Y0(N) = Γ0(N) \H

The quotient of the compactified upper half-plane by the action of Γ0(N) is genoted

by X0(N) :

X0(N) = Γ0(N) \H ∪ P1(Q)

These modular curves are sets of orbits of Γ0(N) : Y0(N) = {Γ0(N)z, z ∈ H},

X0(N) = {Γ0(N)z, z ∈ H ∪ P1(Q)}. With the quotient topology they are Riemann

surfaces, X0(N) is a compact Riemann surface. The image Γ0(N) \ P1(Q) will be

denoted as cusps (it is called the set of cusps of X0(N)). More generally, Y (Γ) and

X(Γ) denoted non-compactified and compactified modular curves with respect to a

congruence subgroup Γ.

The topology on a modular curve is a quotient topology, so we need to introduce

a proper topology on H ∪ P1(Q). For every point τ ∈ H ∪ P1(Q) we define the

fundamental system of neighborhoods Uτ as follows.

1. If τ ∈ H (i.e. τ = x+ iy, y > 0), then

Uτ = {B(τ, ε) : ε ∈ (0, y)}.

Here B(τ, ε) = {z ∈ C : |z − τ | < ε} – a usual disk of center τ and radius

ε. Condition ε < y is needed to assure that the disk is in H. In other words,

fundamental system of neighborhoods of a (non-cuspidal) point τ ∈ H is the

same as on the complex plane.

2. If τ =∞, then

U∞ = {{∞} ∪ NM : M > 0},
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whereNM = {z ∈ H : Im(z) > M}. It means that a neighborhood of∞ contains

all points of the upper half plane with large enough imaginary part.

3. If τ = p ∈ Q, then

Up = {{p} ∪B(p+ iε, ε) : ε > 0},

i.e. a neighborhood of p ∈ Q contains a disk in H that is tangent to real axis at

a point p.

After we defined fundamental systems of neighborhoods, we can define the topology

on H ∪ P1(Q) : a set G ⊂ H ∪ P1(Q) is open if and only if for every τ ∈ G there is a

neighborhood B ∈ Uτ such that B ⊂ G.

In such a way a true topology is defined.

1. Assume that {Gα}α∈A is a family of open sets. We will show that the union

G = ∪α∈AGα is open. Indeed, if τ ∈ G, then τ ∈ Gα for some α ∈ A. By

definition of open sets there is B ∈ Uτ such that B ⊂ Gα ⊂ G. So, G is open.

2. Assume thatG1, G2 are open sets. We will show that the intersectionG = G1∩G2

is open. Indeed, if τ ∈ G, then τ ∈ G1 and τ ∈ G2. By definition of open sets,

there are B1, B2 ∈ Uτ such that B1 ⊂ G1, B2 ⊂ G2. As B1 ∩B2 ⊂ G, it remains

to observe that B1 ∩ B2 ∈ Uτ . For τ ∈ H and τ =∞ it is obvious, for τ = p we

have

B1 = {p} ∪B(p+ iε1, ε1), B2 = {p} ∪B(p+ iε2, ε2).

Assume that ε1 ≤ ε2. If z = x+ iy ∈ B1, then |z − p− iε1| < ε1,

(x− p)2 + (y − ε1)2 < ε21,

and

|z − p− iε2|2 = (x− p)2 + (y − ε2)2 <

< ε21 − (y − ε1)2 + (y − ε2)2 =

5



= ε22 − 2y(ε2 − ε1) ≤ ε22.

It means that B1 ⊂ B2 and B1 ∩B2 = B1 ∈ Uτ .

Now, H ∪ P1(Q) is a topological space. Moreover, every set B ∈ Uτ is open in

H∪ P1(Q). Indeed, consider z ∈ B. If z ∈ H, then either B ∩H is a disk, or B ∩H is

a strip NM . In any case one finds a disk around z that belongs to B. If z 6∈ H then

either z = ∞ or z = p ∈ Q. But if z = ∞, then ∞ ∈ B and necessarily B ∈ U∞.

Similarly, if z = p, then p ∈ B and necessarily B ∈ Up.

As a conclusion, the space H ∪ P1(Q) is equipped with a topology by specifying

fundamental system of neighborhoods of every its point. For this topology to be

properly transferred to the modular curve, we check that every element γ ∈ SL2(Z)

is a homeomorphism of H ∪ P1(Q).

Consider γ =

a b

c d

 with c 6= 0. We recall that

γ(τ) =


aτ+b
cτ+d

, τ 6=∞,−d
c

a
c
, τ =∞

∞, τ = −d
c

Then γ is a bijection of H∪P1(Q). Continuity at every τ ∈ H follow from the relation

γ(H) ⊂ H and the fact that H is equipped with the usual topology of a upper half

plane.

We check continuity at ∞. Now

γ(∞) = p =
a

c
.

Consider a neighborhood of p = a
c
. It is of the form {p}∪B(p+ iε, ε). We must find a

negihborhood {∞} ∪NM of ∞, such that γ(NM) ⊂ B(p+ iε, ε). Take M = 1
2εc2

. Let
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z ∈ NM , i.e. Im(z) > M. Then

|γ(z)− p− iε| =
∣∣∣∣az + b

cz + d
− a

c
− iε

∣∣∣∣ =
c(az + b)− a(cz + d)− iεc(cz + d)

|c||cz + d|
=

from condition ad− bc = 1

=
|1 + iεc(cz + d)|
|c||cz + d|

So, the condition to be verified is

|1 + iεc(cz + d)| < ε|c||cz + d|

Equivalently,

(1 + iεc(cz + d))(1− iεc(cz̄ + d)) < ε2c2|cz + d|2

1 + iεc(cz + d− cz̄ − d) < 0

1− 2εc2Im(z) < 0

which is true by Im(z) > M. Continuity at τ =∞ is verified.

We check continuity at p = −d
c
. Now

γ(p) =∞.

Consider a neighborhood of ∞. It is of the form {∞} ∪ NM . We must find a negih-

borhood {p} ∪ B(p + iε, ε) of p, such that γ(B(p + iε, ε)) ⊂ M. Take ε = 1
2Mc2

. Let

z ∈ B(p+ iε, ε). Then

|z − p− iε| < ε.

Equivalently, ∣∣∣∣z +
d

c
− iε

∣∣∣∣ < ε

|cz + d− icε| < ε|c|

7



Taking squares we get

(cz + d− icε)(cz̄ + d+ icε) < ε2c2

|cz + d|2 + icε(cz + d− cz̄ − d) < 0

|cz + d|2 − 2c2εIm(z) < 0.

So,

Im(γ(z)) =
Im(z)

|cz + d|2
>

1

2c2ε
= M.

Continuity at τ = −d
c

is verified.

We check continuity at τ = p 6= −d
c
. Now we have

γ(p) =
ap+ b

cp+ d
∈ Q.

Consider a neighborhood of γ(p). It is of the form {γ(p)} ∪B(γ(p) + iε, ε). We must

find a negihborhood {p}∪B(p+ iδ, δ) of p, such that γ(B(p+ iδ, δ)) ⊂ B(γ(p)+ iε, ε).

We observe from previous calculations that the relation

|z − p− iδ| < δ

is equivalent to

Im(z)

|z − p|2
>

1

2δ
.

Hence, the relation |γ(z)− γ(p)− iε| < ε is equivalent to

Im(γ(z))

|γ(z)− γ(p)|2
>

1

2ε
.

Further

|γ(z)− γ(p)| =
∣∣∣∣az + b

cz + d
− ap+ b

cp+ d

∣∣∣∣ =

=
|acpz + adz + bcp+ bd− acpz − bcz − adp− bd|

|cz + d||cp+ d|
=

|z − p|
|cz + d||cp+ d|

.

8



So,

Im(γ(z))

|γ(z)− γ(p)|2
=

Im(z)

|z − p|2
|cp+ d|2 > |cp+ d|2

2δ

and it is enough to take δ = ε
|cp+d|2 . Continuity of γ : H∗ → H∗ is verified.

It remains to consider the case c = 0. From the relation ad− bc = 1 it follows that

|a| = |d| = 1. Now

γ(τ) =


aτ+b
d
, τ 6=∞

∞, τ =∞

Again, continuity at τ ∈ H is immediate. Let us check continuity at ∞. The

relation for imaginary part takes the form

Im(γ(τ)) =
1

|d|2
Im(z) = Im(z),

so Im(z) > M implies Im(γ(z)) > M. Continuity at ∞ is verified. Let us check

continuity at p ∈ Q. But again we have |γ(z)− γ(p)| = |z − p|, so if |z − p− iε| < ε,

then

Im(z)

|z − p|
>

1

2ε
,

Im(γ(z))

|γ(z)− γ(p)|
>

1

2ε
,

and finally |γ(z)− γ(p)− iε| < ε. In the case c = 0 function γ simply shifts neighbor-

hood of p onto a neighborhood of γ(p).

With the quotient topology X(Γ) is a Riemann surface with the local coordinates

about a cusp s ∈ P1(Q) ∪ {∞} given by a composition of a straightening map δ ∈

SL2(Z), where δ(s)∞ and the wrapping map ρ(z) = e2πiz/h with width h equal to the

index of a subgroup Γs that fixes a point s [5, §2.4.].
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1.4 Modular forms

Let k ∈ Z. We will consider holomorphic functions f : H→ C. For every γ ∈ SL2(Z)

define the factor of automorphy

j(γ, τ) = cτ + d.

The wight-k operator is defined by

f [γ]k(τ) := j(γ, τ)−kf(γ(τ)).

Let Γ be a congruence subgroup of SL2(Z). A function f is weakly modular of weight

k with respect to Γ, if the relation

f [γ]k = f

holds for every γ ∈ Γ. Every weight-k weakly modular form admits a Laurent expan-

sion in the following sense.

Since Γ(N) ⊂ Γ, it follows that

1 N

0 1

 ∈ Γ. Let h be minimal positive integer

such that

1 h

0 1

 ∈ Γ. Then for every integer m ∈ Z we have γmh =

1 mh

0 1

 ∈ Γ.

and

f(τ +mh) = f [γmh]k(τ) = f(τ).

The mapping qh(τ) = e
2πiτ
h sends H onto the punctured unit disk D′ = {q ∈ C : 0 <

|q| < 1}. Define the function g : D′ → C by

g(qh) = f(τ), qh = e
2πiτ
h .

The definition is correct: if e
2πiτ
h = e

2πiτ ′
h , then τ − τ ′ = mh for some integer m and

f(τ) = f(τ ′+mh) = f(τ ′). Further, g is holomorphic in D′ and hence can be written

10



as a Laurent series:

f(τ) = g(qh) =
∑
n∈Z

anq
n
h .

f is called holomorphic at ∞, if an = 0 for all n < 0, i.e.

f(τ) = g(qh) =
∞∑
n=0

anq
n
h .

In this case the series expansion in powers of qh is called the Fourier expansion of

f [α]k.

If f is weight-k weakly modular with respect to Γ, then for any α ∈ SL2(Z) function

f [α]k is weight-k weakly modular with respect to α−1Γα. Since, Γ(N) is normal, the

subgroup α−1Γα is a congruence subgroup and the property to be holomorphic at ∞

makes sense for f [α]k as well.

Definition. A weight-k modular form with respect to a congruence subgroup Γ

is a function f : H→ C such that

• f is holomorphic

• f is weight-k weakly modular with respect to Γ

• for every α ∈ SL2(Z) f [α]k is holomorphic at ∞.

The space of all such forms is denoted Mk(Γ). It is a complex vector space. If,

additionally, for every α ∈ SL2(Z) the zero term in the Fourier expansion of f [α]k is

zero, then f is called a cusp form. The space of cusp forms is denoted by Sk(Γ), it

is a subspace of Mk(Γ). The qoutient Mk(Γ)/Sk(Γ) is called the space of Eisenstein

series and is denoted by Ek(Γ). In the chapter 3 we will specify representatives for

elements of Ek(Γ) that are true series. By definition, every Eisenstein series E is

represented up to a cusp form by some f ∈ Mk(Γ). For every α ∈ SL2(Z) the zero

Fourier coefficient of f [α]k is called the Fourier coefficient at∞ and it is independent

on the choice of f. It is assumed that all Fourier coefficients at ∞ of an Eisenstein

series E belong to some number filed K, i.e. a finite dimensional field extension of
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the field of rational numbers Q.

1.5 Homology and cohomology groups

1.5.1 General definitions

Denote by ∆n the standard n−simplex in Rn+1, that is

∆n = {(t0, t1, . . . , tn) ∈ Rn+1|t0, . . . , tn ≥ 0,
n∑
i=0

ti = 1}.

A singular n−simplex in a topological space X is a continuous mapping σ : ∆n →

X(Γ).

Let v0 = (1, 0, 0, . . . , 0), v1 = (0, 1, 0, . . . , 0), . . . , vn = (0, 0, 0, . . . , 1) be vertices of

the simplex ∆n. By [v0, . . . , v̂i, . . . , vn] we will understand the set

{(t0, t1, . . . , tn) ∈ ∆n|ti = 0}

and we will identify it with ∆n−1 by the correspondence

(t0, t1, . . . , tn)→ (t0, t1, . . . , ti−1, ti+1, . . . , tn) ∈ ∆n−1

This correspondence is a natural identification of i−th (n− 1)−dimensional facet of

∆n with ∆n−1. Respectively, the restriction

σ|[v0,...,v̂i,...,vn]

is a singular (n− 1)−dimensional simplex. Precisely,

σ|[v0,...,v̂i,...,vn]((t0, t1, . . . , tn−1)) = σ((t0, . . . , ti−1, 0, ti, . . . , tn))

12



Example 1.5.1. Let X = R2 and

σ((t0, t1, t2)) = (t20 + t1, sin(πt1) + t2)

be a singular 2−simplex in R2. Its vertices are v0 = (1, 0), v1 = (1, 0), v2 = (0, 1).

Vertices are 0−dimensional facets. Observe that two of them coincide. Form of the

simplex can be seen from the picture below. Vertices are represented by red points.

This simplex has three 1−dimensional facets (actually, curves on the plane) that

can be written in a parametrization t = t1 = 1 − t0, 0 ≤ t ≤ 1, in the following way

(the choice of parametrization is dictated by the fact that the order of vertices in the

sub-simplex must be the same)

σ|[v̂0,v1,v2] = {(1− t, sin(π(1− t)) + t) : 0 ≤ t ≤ 1};

13



σ|[v0,v̂1,v2] = {((1− t)2, t) : 0 ≤ t ≤ 1};

σ|[v0,v1,v̂2] = {((1− t)2 + t, sin(πt)) : 0 ≤ t ≤ 1}.

14



Let Cn(X) be a free abelian group with basis the set of all singular n−simplices

in X. Precisely,

Cn(X) = {
m∑
i=1

niσi|m ≥ 0, n1, . . . , nm ∈ Z, σ1, . . . , σm are singular n-simplices in X}.

It is called the set of n−chains in X.

Consider the (boundary) mapping ∂n : Cn(X) → Cn−1(X), defined as a group

homomorphism such that

∂n(σ) =
n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn].

The homomorphism property implies that ∂n is defined on all Cn(X) by the rule

∂n(
m∑
i=1

niσi) =
m∑
i=1

ni∂n(σi)

Example 1.5.2. We use 2−dimensional simplex in R2 defined in the example 1.5.1.

We find that

∂2(σ) = σ|[v̂0,v1,v2] − σ|[v0,v̂1,v2] + σ|[v0,v1,v̂2]

These three curves are given on the plot below.
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Observe that the arrow in σ|[v0,v̂1,v2] is reversed, which corresponds to minus sign.

∂2(σ) is the cycle around the boundary of a singular simplex.

Above constructions generalize to any field K. Let Cn(X(Γ), K) be a set of all

formal sums
m∑
i=1

kiσi,

where m ≥ 0, k1, . . . , km ∈ K and σ1, . . . , σm are singular n−simplices. The space

Cn(X(Γ), K) is an abelian group. The boundary map ∂n : Cn(X(Γ), K)→ Cn−1(X(Γ), K)

is defined as a group homomorphism such that

∂n(kσ) =
n∑
i=0

(−1)ikσ|[v0,...,v̂i,...,vn]

(here (−1)k means the additive inverse of an element k ∈ K).

We check that ∂n ◦ ∂n+1 = 0.

Indeed, given any (n+ 1)−chain kσ we have

∂n+1(kσ) =
n+1∑
i=0

(−1)ikσ|[v0,...,v̂i,...,vn+1]
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and

∂n(∂n+1(σ)) =
n+1∑
i=0

∂n((−1)ikσ|[v0,...,v̂i,...,vn+1]) =

=
n+1∑
i=0

( i−1∑
j=0

(−1)i+jkσ|[v0,...,v̂j ,...,v̂i,...,vn+1] −
n+1∑
j=i+1

(−1)i+jkσ|[v0,...,v̂i,...,v̂j ,...,vn+1]

)
=

=
∑

0≤j<i≤n+1

(−1)i+jkσ|[v0,...,v̂j ,...,v̂i,...,vn+1] −
∑

0≤i<j≤n+1

(−1)i+jkσ|[v0,...,v̂i,...,v̂j ,...,vn+1] = 0

The property ∂n ◦ ∂n+1 = 0 implies that one can define homology with coefficients

Hn(X(Γ), K) = Ker ∂n/Im ∂n+1

If A is a subspace of X(Γ), then we define relative n−chains with coefficients as a

quotient group

Cn(X(Γ), A,K) = Cn(X(Γ), K)/Cn(A,K).

If jn is the quotient map:

jn : Cn(X(Γ), K)→ Cn(X(Γ), A,K),

then the map jn−1◦∂n : Cn(X(Γ), K)→ Cn−1(X(Γ), A,K) factors through Cn(A,K).

It defines a factored boundary map

∂n : Cn(X(Γ), A,K)→ Cn−1(X(Γ), A,K)

by the property

∂n ◦ jn = jn−1 ◦ ∂n.

For factored boundary maps relation ∂n ◦ ∂n+1 = 0 is preserved and the relative

homology groups

Hn(X(Γ), A,K) = Ker ∂n/Im ∂n+1

are defined. In particular, H1(Y0(N), K) is a group of cycles modulo boundaries of
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2−chains in Y0(N) and H1(X0(N), cusps, K) is a group of continuous curves in X0(N)

with endpoints in cusps.

Homology groups were defined starting from the chain

. . .
∂3−→ C2(X)

∂2−→ C1(X)
∂1−→ C0(X).

To define cohomology groups at first we consider dual chain. Let Cn(X) be the

group Hom(Cn(X);Z) of all homomorphisms from Cn(X) to Z, i.e. Cn(X) consists

of mappings

φ : Cn(X)→ Z

such that φ(
∑m

i=1 niσi) =
∑m

i=1 niφ(σi). Elements of spaces Cn(X) are called cochains.

Coboundary map δn : Cn−1(X)→ Cn(X) is defined dually to boundary maps ∂n :

if φn−1 ∈ Cn−1(X), then

(δn(φn−1))(σ) = φn−1(∂n(σ)), σ ∈ Cn(X).

The definition is correct,as ∂n(σ) ∈ Cn−1(X). We obtain a chain

. . .
δ3←− C2(X)

δ2←− C1(X)
δ1←− C0(X).

Coboundary maps stasify the relation

δn+1 ◦ δn = 0.

Indeed, for every φ ∈ Cn−1(X) and any σ ∈ Cn+1(X) we have

(δn+1 ◦ δn(φ))(σ) = (δn(φ))(∂n+1(σ)) =

= φ(∂n ◦ ∂n+1(σ)) = φ(0) = 0.
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Cohomology groups are defined as factor groups

Hn(X) = Ker δn+1/Im δn.

One of the advantages of a cohomology is that it is clear how to define the product

of cohomologies. Given cochains φ ∈ Ck(X), ψ ∈ C l(X) we define a cochain φ ∪ ψ ∈

Ck+l(X) by the following rule:

for any σ : ∆k+l → X

(φ ∪ ψ)(σ) = φ(σ|[v0,...,vk])ψ(σ|[vk,...,vk+l])

The coboundary map satisfies the following relation

δk+l+1(φ ∪ ψ) = δk+1φ ∪ ψ + (−1)kφ ∪ δl+1ψ.

Indeed, for any simplex σ : ∆k+l+1 → X we have

δk+1φ ∪ ψ(σ) + (−1)kφ ∪ δl+1ψ(σ) =

= φ(∂k+1σ|[v0,...,vk+1])ψ(σ|[vk+1,...,vl+1]) + (−1)kφ(σ|[v0,...,vk])ψ(∂l+1σ|[vk,...,vk+l+1]) =

=
k+1∑
i=0

(−1)iφ(σ|[v0,...,v̂i,...,vk+1])ψ(σ|[vk+1,...,vl+1])+

+
l+1∑
j=0

(−1)k+jφ(σ|[v0,...,vk])ψ(σ|[vk,...,v̂k+j ,...,vk+l+1]) = (φ ∪ ψ)(∂k+l+1σ)

As a consequence of this formula, the cup product factorizes through coboundary

maps, and gives the cup product of cohomologies.

∪ : Hk(X)×H l(X)→ Hk+l(X).
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Relative cup products

∪ : Hk(X,A)×H l(X)→ Hk+l(X,A),

∪ : Hk(X)×H l(X,A)→ Hk+l(X,A),

∪ : Hk(X,A)×H l(X,A)→ Hk+l(X,A)

are also defined by the product formula.

The cap product is defined similarly to the cup product:

∩ : Ck(X)× C l(X)→ Ck−l(X)

for any σ : ∆k → X and φ ∈ C l(X) we define

σ ∩ φ = φ(σ|[v0,...,vl])σ|[vl,...,vk].

From the formula

∂(σ ∩ φ) = (−1)l(∂σ ∩ φ− σ ∩ δφ)

it follows that the cap product is defined for homologies

∩ : Hk(X)×H l(X)→ Hk−l(X).

For the n-dimensional manifold M, there is a natural homomorphism

D : Hk(M)→ Hn−k(M)

which is called duality. It allows to define cap product for homologies,

∩ : Hk(M)×Hn−l(M)→ Hk−l(X).
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For example, on a two-dimensional manifold M a cap product

∩ : H1(M)×H1(M)→ H0(M)

is defined. If a manifold is path-connected, then H0(M) ∼ Z and we have a mapping

(intersection pairing)

◦ : H1(M)×H1(M)→ Z

1.5.2 Group H1(X0(N), cusps,Z) and Eisenstein elements

As it was defined in the general case, H1(X0(N), cusps,Z) is a relative homology

group. To examine its structure we consider following objects. Cn(X0(N)) is a

group of formal linear combinations
∑m

i=1 niσ
(n)
i , where each σ

(n)
i is a continuous

mapping of n−simplex into X0(N); Cn(cusps) is a group of formal linear combinations∑m
i=1 niσ

(n)
i , where each σ

(n)
i is a continuous mapping of a simplex into the set of cusps.

As the set of cusps is finite (hence discrete), a continuous mapping σ
(n)
i : ∆n → cusps

reduces to a constant mapping. So we identify each σ
(n)
i with a cusp. With this

identification all groups Cn(cusps) become isomorphic to C0(cusps) – a group of formal

linear combinations of cusps.

Cn(X0(N), cusps) = Cn(X0(N)/C0(cusps) is a quotient group, where two n−chains

are identified if they differ by an element of C0(cusps) its elements are formal linear

combinations
∑m

i=1 niσ
(n)
i + C0(cusps) where each σ

(n)
i ; ∆n → X0(N) .

Following general theory we introduce two boundary operators

∂1(
m∑
i=1

niσ
(1)
i + C0(cusps)) =

m∑
i=1

ni(σ
(1)
i (1)− σ(1)

i (0)) + C0(cusps)

∂2(
m∑
i=1

niσ
(2)
i + C0(cusps)) =

m∑
i=1

ni(σ
(2)
i (1, 2)− σ(2)

i (0, 2) + σ
(2)
i (0, 1)) + C0(cusps)
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It was checked that ∂1 ◦ ∂2 = 0, so we can define the quotient group

H1(X0(N), cusps,Z) = Ker ∂1/Im ∂2.

Below are two examples

Example 1.5.3. A continuous path σ : ∆1 → X0(N) such that σ(0) and σ(1) are

cusps, is an element of H1(X0(N), cusps,Z). Indeed, applying boundary operator we

get

∂1(σ) = σ(1)− σ(0) ∈ C0(cusps)

So, relative homology group contains not only cycles in X0(N) but also paths between

cusps.

Example 1.5.4. Consider two paths σ1 : ∆1 → X0(N) and σ2 : ∆2 → X0(N) that

connect two cusps, i.e. σ1(0, 1) = σ2(0, 1) = α, σ1(1, 0) = σ2(1, 0) = β. Assume that

these paths are homotopic in X0(N), i.e. there exists continuous mapping

φ : ∆1 × [0, 1]→ X0(N)

such that φ(0, 1; s) = α, φ(1, 0; s) = β, φ(t0, t1; 0) = σ1(t0, t1) and φ(t0, t1; 1) =

σ2(t0, t1). Then relative homological calsses of σ1 and σ2 coincide. Indeed, consider

2−simplex

σ(2)(t0, t1, t2) =


φ(t0, t1 + t2; t2

t1+t2
), t0 < 1

β, t0 = 1

Its continuity follows from continuity of φ. We compute its boundary:

∂2σ
(2)(t0, t1) = σ(2)(0, t0, t1)− σ(2)(t0, 0, t1) + σ(2)(t0, t1, 0) =

= φ(0, 1; t1)− φ(t0, t1; 1) + φ(t0, t1; 0) = α− σ2 + σ1

It follows that σ1 − σ2 ∈ C0(cusps) and σ1 = σ2 in H1.
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Let f ∈ M2(Γ). For any z0 ∈ H and γ ∈ Γ let c(γ) be the class in H1(Y (Γ),Z) of

the image in Y (Γ) of the geodesic in H joining z0 and γ(z0). The integral

πf (γ) =

∫
c(γ)

f(z)dz ∈ C.

is called the period homomorphism of the form f. The integral is independent on the

choice of z0 since for z1 = α(z0), α ∈ Γ, one has

∫ γ(α)(z0)

α(z0)

f(z)dz =

∫ γ(z0)

z0

f(α(z))
dz

j(α, z)2
=

∫ γ(z0)

z0

f(z)dz.

If all coefficients at∞ of the corresponding Eisenstein series E belong to K, we obtain

the homomorphsim

πE : H1(Y (Γ), K)→ K.

Assume for two cycles σ1 ∈ H1(X0(N), cusps, K) and σ2 ∈ H1(Y0(N), K) and a

point p ∈ σ1 ∩ σ2 the intersection of cycles at p is transversal – tangent spaces Tp(σ1)

and Tp(σ2) generate the two-dimensional tangent space Tp(X0(N)). Then there is

a basis for Tp(X0(N)) which consists of basises of Tp(σ1) and Tp(σ2). If this basis

preserves orientation, define the intersection index to be ip(σ1, σ2) = 1, otherwise

ip(σ1, σ2) = −1. Finally, the intersetion number for two cycles is defined as

σ1 ◦ σ2 =
∑

p∈σ1∩σ2

ip(σ1, σ2)

(here we assume that cycles intersect transversally at every point). The definition

depends only on the homological classes and thus gives the pairing of homological

groups H1 [6, Ch. 0, §4].

The Poincare duality theorem [6, Ch.0, §4] states that the pairing is perfect, that

is every linear functional on H1(Y0(N), K) is given by pairing with some element of
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H1(X0(N), cusps, K). Then there is an element E ∈ H1(X0(Γ), cusps, K) such that

πE(σ) = E ◦ σ

1.5.3 Modular symbols

The mapping ζ : SL2(Z) → H1(X0(N), cusps,Z) is defined as follows. Given any

γ ∈ SL2(Z) consider cusps γ(0), γ(∞) ∈ P1(Q). Let ζ(γ) be the homological class of

a path in X0(N) joining these two cusps.

Given elements α, β ∈ H∗ we denote by {α, β} the homology class of the geodesics

in X0(N) connecting α.z0 to β.z0. As homologies are defined up to boundaries of

2−simplices it follows that

{α, β}+ {β, γ}+ {γ, α} = 0. (1.1)

As {α, α} = 0, it follows that

{α, β} = −{β, α}.

Also, as X0(N) is the quotient under the action of Γ0(N) it follows that

{α, β} = {γ(α), γ(β)}

for all γ ∈ Γ0(N).

Proposition 1.5.1. Consider any α ∈ H∗ and a mapping

γ → {α, γ(α)}, γ ∈ Γ0(N).

This mapping is a surjective homomorphism, independent of α.

Proof. 1. The mapping is a homomorphism. Indeed, consider γ1, γ2 ∈ Γ0(N). Then
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by (1.1)

{α, γ1γ2(α)} = {α, γ1(α)}+ {γ1(α), γ1γ2(α)} =

from group invariance

= {α, γ1(α)}+ {α, γ2(α)}.

2. The mapping is independent of α.

For any β we have

{α, β} = {γ(α), γ(β)}

Or

{α, γ(α)}+ {γ(α), β} = {γ(α), β}+ {β, γ(β)}

So,

{α, γ(α)} = {β, γ(β)}

3. Surjectivity of the mapping follows from surjectivity of the canonical mapping

π1 : (X0(N), φ(α))→ H1(X0(N),Z)

(where π1 is the fundamental group and α is a parabolic point for Γ0(N)) [2,

Prop. 1.4]

The mapping ζ sends γ ∈ SL2(Z) into {γ(0), γ(∞)} ∈ H1(X0(N), cusps,Z). A

generic element of H1(X0(N), cusps,Z) is of the form {0, γ(0)} for some γ ∈ Γ0(N).

Surjectivity of ζ will follow once proved that any element {0, γ(0)} is a linear combi-

nation of elements {r(0), r(∞)}, where r ∈ SL2(Z).

If γ(0) = ∞ then we are representing the element {0,∞} and r can be taken as

identity matrix. So, we assume that γ(0) = b
d
6=∞. Also we assume that the rational

number b
d

is given in the lowest terms and b, d > 0.
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Fix right coset representatives for Γ0(N), i.e. fix matrices r0, . . . , rm such that

SL2(Z) = Γ0(N)r0 ∪ . . . ∪ Γ0(N)rm

and the union is disjoint. Write the number b
d

as a continued fraction

b

d
= a0 +

1

a1 + 1
a2+ 1

...+ 1
an

Then successive approximations a0 = p0
q0
, a0 + 1

a1
= p1

q1
, . . . , b

d
= pn

qn
satisfy

pjqj−1 − qjpj−1 = (−1)j−1,−1 ≤ j ≤ n

(additionally we put p−1

q−1
= 1

0
, p−2

q−2
= 0

1
).

It follows that

γj =

(−1)j−1pj pj−1

(−1)j−1qj qj−1

 ∈ SL2(Z).

Now

{0, b
d
} = {p−2

q−2

,
pn
qn
} =

=
n∑

j=−1

{
pj−1

qj−1

,
pj
qj

}
=

n∑
j=−1

{γj(0), γj(∞)}.

As a consequence, the group H1(X0(N), cusps,Z) is generated by a finite set of ho-

mologies {rj(0), rj(∞)}, where r0, . . . , rm are right coset representatives of the group

Γ0(N). ζ is a surjective mapping.
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1.6 Projective line over the ring

1.6.1 General construction and a projective line over Z/NZ

Let R be a commutative unital ring. Denote by U the set of unities in R, i.e. U is

the set of invertible elements of R. Let

P(R) = {(a, b) ∈ R2 : aR + bR = R}.

On P(R) we introduce equivalence relation

(a, b) ∼ (c, d)⇔ ∃λ ∈ U : c = λa, d = λb.

The projective line over R is the quotient set

P1(R) = P(R)/ ∼ .

Let us consider an example that was already met above.

Example 1.6.1. If R is a field, then U = R − {0} and P(R) = R2 − {(0, 0)}. Each

pair (a, b) ∈ P(R) with b 6= 0 is equivalent to (a
b
, 1) and such points can be identified

with a
b
∈ R. If b = 0, then a 6= 0 and a point (a, 0) is equivalent to a point (1, 0) which

is identified with ∞. So, a projective line over a field is a one-point extension of a

field. In particular, P1(Q) = Q ∪ {∞}.

Next we discuss projective lines over rings Z/NZ. Below ā denotes the residue

modulo N of an integer a ∈ Z.

Proposition 1.6.1.

P(Z/NZ) = {(ā, b̄) ∈ (Z/NZ)2 : gcd(a, b,N) = 1}.

Proof. The equality gcd(a, b,N) = 1 means that the only common divisors of a, b and

N are ±1. Since an integer d divides a and N if and only if it divides a+ kN and N,
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the property gcd(a, b,N) = 1 depends only on the residue classes of a and b modulo

N and is well-defined for ā, b̄ ∈ Z/NZ. If (ā, b̄) ∈ P(Z/NZ), then

1̄ ∈ Z/NZ = āZ/NZ + b̄Z/NZ

So, there is (ū, v̄) ∈ (Z/NZ)2 such that

au+ bv = 1̄

It means that N divides au+ bv − 1, i.e.

1 = au+ bv + kN = (ā+ lN)u+ (b̄+mN)v + kN = āu+ b̄v + (lu+mv + k)N

for some integers k, l,m. Then every common multiple of ā, b̄ and N divides 1. This

proves that gcd(ā, b̄, N) = 1.

Conversely, let gcd(ā, b̄, N) = 1. Then

āu+ b̄v + kN = 1

for some integers u, v, k. Then for every integer c

c̄ = c · 1 = c(au+ bv) = a(uc) + b(vc) ∈ āZ/NZ + b̄Z/NZ

So,

āZ/NZ + b̄Z/NZ = Z/NZ

and (ā, b̄) ∈ P(Z/NZ).

Following general approach, we define the projective line P1(Z/NZ) as the quotient

set

P1(Z/NZ) = P(Z/NZ)/ ∼,
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where the equivalence relation ∼ is defined on P(Z/NZ) by

(ā1, b̄1) ∼ (ā2, b̄2)

if and only if there exists a unit λ̄ ∈ (Z/NZ)× such that

ā2 = λa1, b̄2 = λb1,

(Z/NZ)× = {λ̄ ∈ Z/NZ : gcd(λ̄, N) = 1} is the group of units in Z/NZ.

The mapping of SL2(Z) into P1(Z/NZ)

a b

c d

→ (c̄, d̄)

factors through Γ0(N) and defines a bijection Γ0(N) \ SL2(Z)→ P1(Z/NZ)

1.6.2 Structure of P1(Z/p2Z)

p is a prime ≥ 3. In this subsection ā denotes the residue modulo p2 of an integer a.

The full set of coset representatives for P1(Z/p2Z) is given by p(p+ 1) pairs

(0̄, 1̄), (1̄, 0̄), (1̄, 1̄), . . . , (1̄, p2 − 1),

(p̄, 1̄), (2p, 1̄), . . . , ((p− 1)p, 1̄).

Proposition 1.6.2. Every x ∈ P1(Z/p2Z) not of the form (1̄, kp± 1), 0 ≤ k ≤ p2

can be represented in the form x = ( ¯r − 1, ¯r + 1) for an integer r such that p does not

divide r and 4 divides r − 1.

Proof. • Let x = (0̄, 1̄). Since p ≥ 3, then gcd(2, p2) = 1 and 2̄ is a unit in Z/p2Z.

(0̄, 1̄) is equivalent to (2 · 0, 2 · 1), i.e.

x = (0̄, 2̄) = (r − 1, r + 1)
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for r = 1.

• Let x = (1̄, t̄) and t̄ 6= kp± 1. If p divides t − 1, then t = kp + 1 which is not

the case, so t − 1 is a unit in Z/p2Z. Let v ∈ Z be such that v(t− 1) = 1̄.

Since (v + p2)(t− 1) = v(t− 1) = 1, we can take v even (if v is odd change it to

even v + p2 with same property). Let r = 1 + 2v. v is even, so 4 divides r − 1.

2v = r − 1 is a unit in Z/p2Z, so

(1̄, t̄) ∼ (r − 1, t(r − 1)) = (r − 1, 2vt) = (r − 1, 2(v + 1)) =

= (r − 1, 2v + 2) = (r − 1, r + 1)

It remains to check that p does not divide r. If it is not the case, then r = kp

and

kp = r = 1 + 2v, 2v = kp− 1

2̄ = 2v(t− 1) = (kp− 1)(t− 1)

So, p2 divides (kp− 1)(t− 1)− 2 = kp(t− 1)− (t+ 1). Then p divides t+ 1 and

t = kp− 1, which is impossible. p does not divide r.

• Let x = (kp, 1̄), where 1 ≤ k ≤ p− 1. Since kp− 1 is not divisible by p, kp− 1

is a unit in Z/p2Z. Let v ∈ Z be such that v(kp− 1) = 1̄. We can assume that

v is odd (as we can change v to v + p2). Let r = −2v − 1. From representation

r = −2(v+ 1) + 1 and the fact that v+ 1 is even, it follows that 4 divides r− 1.

r + 1 = −2v is a unit, so

(kp, 1̄) ∼ (kp(r + 1), r + 1) = (−2vkp, r + 1) = (−2(v + 1), r + 1) =

= (−2v − 2, r + 1) = (r − 1, r + 1).
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It remains to check that p does not divide r. If it is not the case, then r = lp and

lp = r = −1− 2v, 2v = −lp− 1

2̄ = 2v(kp− 1) = (−lp− 1)(kp− 1)

So, p2 divides (−lp − 1)(kp − 1) − 2 = −1 + p(l − k − lkp). Then p divides −1

which is impossible. p does not divide r.

Several special matrices are introduced

αr =

1 −r

0 2p2

 , βr =

1 −r

0 p2



∇k =

 1 1

skp skp+ 2

 , κk =

1 + skp skp+ 3

2skp 2(skp+ 2)



where δk =


1, k odd

0, k even

, sk = k + (δk − 1)p =


k, k odd

k − p, k even
.

1.7 Special values of L-functions and the function FE

Let f ∈M2(Γ). In [5, Proposition 5.9.1] the growth of coefficients is estimated:

there is a constant C > 0 such that for all n ≥ 1

|an| ≤ Cn (1.2)

From this the following estimate

∀ε > 0∃C > 0 : |f(iy)| ≤ Cy−2−ε for 0 < y < 1 (1.3)

is derived in [7, Proposition 1].
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Also, if we write f̃(z) = f(z)− a0(f), then [8, Lemma 2.1.1]

∃C > 0 : |f(iy)| ≤ Ce−y/N for y > 1 (1.4)

Using these estimates we can define the L-function as a series

L(f, s) = N s

∞∑
n=1

an(f)n−s. (1.5)

Proposition 1.7.1. s→ L(f, s) is a holomorphic function in the region {s : Re(s) >

2}.

Proof. We must check that for Re(s) > 2 the series in the definition of L(f, s)

converges absolutely and that the convergence is uniform on compact subsets of

{s : Re(s) > 2}. From (1.2) we estimate

∞∑
n=1

|an(f)n−s| ≤ C
∞∑
n=1

n|n−s| = C
∞∑
n=1

n1−Re(s)

If s ∈ K where K is a compact in {s : Re(s) > 2}, then we can estimate Re(s) > c

for some c > 2 and all s ∈ K. So,

∞∑
n=1

sup
s∈K

(
n1−Re(s)

)
≤

∞∑
n=1

n1−c <∞

The latter convergence follows from 1− c < −1.

By the expression (1.5) function L is defined only in the half-plane Re(s) > 2. We

will show that it can be extended to a meromorphic function in C with possible poles

only at s = 0 or s = 2. To do this we use the Mellin transform of the function f.

Consider the infinite vertical line ζ(y) = iy, y ≥ 0. The Mellin trasform is the

integral along ζ

D(f, s) =

∫
ζ

f̃(z)(Im(z))s−1dz.
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Equivalently,

D(f, s) = i

∫ ∞
0

f̃(iy)ys−1dy.

Proposition 1.7.2. s→ D(f, s) is a holomorphic function in the region {s : Re(s) >

2}.

Proof. We must check that for Re(s) > 2 the integral in the definition of D(f, s)

converges absolutely and that the convergence is uniform on compact subsets of {s :

Re(s) > 2}. At first we observe that the integral

∫ ∞
1

f̃(iy)ys−1dy

converges absolutely for all values of s. Indeed, using (1.4) we estimate the integrand

as

|f̃(iy)ys−1| ≤ CyRe(s)−1e−y/N

If s ∈ K where K is a compact, then we can estimate Re(s) ≤ c for some c > 0 and

all s ∈ K. So, the integrand is estimated uniformly as

Cya−1e−y/N

which is integrable on (1,∞).

To prove convergence of the integral

∫ 1

0

f̃(iy)ys−1dy

we use (1.3):

|f̃(iy)ys−1| ≤ Cy−2−ε+Re(s)−1

If Re(s) > 2 + ε, then the estimate has the form Cyβ, β > −1 and the result follows
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from convergence of the integral

∫ 1

0

yβdy =
1

1 + β
<∞.

The next proposition establishes a relation between L-function attached to f and

a Mellin transform of f.

Proposition 1.7.3. For all s with Re(s) > 2

D(f, s) = iΓ(s)(2π)−sL(f, s)

Proof. We use the Fourier transform of f :

D(f, s) = i

∫ ∞
0

( ∞∑
n=1

an(f)e−
2πn
N
y

)
ys−1dy =

= i
∞∑
n=1

an(f)

∫ ∞
0

e−
2πn
N
yys−1dy =

change variables t = 2πn
N
y

= i
∞∑
n=1

an(f)
N s

(2πn)s

∫ ∞
0

ts−1e−tdt = iΓ(s)(2π)−sL(f, s)

Rewrite obtained relation as

L(f, s) = −i(2π)s
1

Γ(s)
D(f, s).

The function 1
Γ(s)

is holomorphic on C [9, Chapter VII, §7]. So, if we extend D(f, s)

to a meromorphic function with possible poles at s = 0 and s = 2 then we will get

the needed extension of L(f, s).
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Consider the matrix σ =

 0 1

−1 0

 ∈ SL2(Z).

Proposition 1.7.4. For all s with Re(s) > 2

D(f, s) = −ia0(f)

s
+ i

a0(f [σ]2)

2− s
+ i

∫ ∞
1

f̃(iy)ys−1ds− i
∫ ∞

1

f̃ [σ]2(iy)y1−sdy

Remark 1.7.1. Proposition 1.4 establishes the needed extensions of D(f, s) as both

integrals in the right side are holomorphic on C (proved in proposition 1.2).

Proof. By definition of the Mellin transform

D(f, s) = i

∫ ∞
0

f̃(iy)ys−1dy = i

∫ ∞
1

f̃(iy)ys−1dy + i

∫ 1

0

f̃(iy)ys−1dy.

We have to transform the second summand.

i

∫ 1

0

f̃(iy)ys−1dy = i

∫ 1

0

(f(iy)− a0(f))ys−1dy =

= i

∫ 1

0

f(iy)ys−1dy − ia0(f)

∫ 1

0

ys−1dy =

= i

∫ 1

0

f(iy)ys−1dy − ia0(f)

s
=

change variables u = 1/y

= i

∫ ∞
1

f(i/u)u−(s+1)du− ia0(f)

s
=

observe that f [σ]2(z) = z−2f(−1/z) so that f(i/u) = f(− 1
iu

) = −u2f [σ]2(iu)

= −i
∫ ∞

1

f [σ]2(iu)u1−sdu− ia0(f)

s
=

= −i
∫ ∞

1

f̃ [σ]2(iu)− ia0(f [σ]2)

∫ ∞
1

u1−sdu− ia0(f)

s
=

= −i
∫ ∞

1

f̃ [σ]2(iu) + i
a0(f [σ]2)

2− s
− ia0(f)

s
.
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Extend the defintion of a weight-2 operator to any matrix α ∈ GL2(Q) with

positive determinant as follows:

f [α](z) = det(α)j(α, z)−2f(α(z)).

The function f [α] is a weight-2 modular form with respect to a congruence subgroup

α−1Γα. For an Eisenstein series E ∈ E2(Γ0(p2)) the function FE is defined in terms

special values of associated L-functions:

FE : P1(Z/p2Z)→ K

FE(x) =



1
2πi

(2L(E[αr], 1)− L(E[βr, 1])), x = (r − 1, r + 1)∫∞
0

2(2E[∇k]− E[κk])dz, x = (1 + kp, 1)

−FE((1 + kp, 1)), x = (kp− 1, 1)

0, x = (±1, 1)

In the main result of the paper [4], the Eisenstein element E is found as a linear

combination of modular symbols ζ(g), g ∈ P1(Z/p2Z) with explicit coefficients:

E =
∑

g∈P1(Z/p2Z)

FE(g)ζ(g),

if E is an element of a basis for E2(Γ0(p2)) given in Lemma 3.1. Though ζ(γ) was de-

fined for γ ∈ SL2(Z), it factors through Γ0(p2) (orbits in X0(p2) are Γ0(p2)-invariant),

so ζ is defined on Γ0(p2) \ SL2(Z) ∼ P1(Z/p2Z).
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Chapter 2

Intersection with Γ(2)

2.1 Cusps of Γ0(p
2)

To describe cusps of the group Γ0(p2) we find the index of Γ0(p2) in SL2(Z) and relate

this subgroup to SL2(Z/p2Z).

Let N > 1 be an integer. The group SL2(Z/NZ) is defined similarly to the modular

group SL2(Z) but with all operations taken modulo N.

Definition 2.1.1. SL2(Z/NZ) is the set of all matrices γ =

a b

c d

 , such that

a, b, c, d ∈ Z/NZ and ad− bc ≡ 1(mod N).

SL2(Z/NZ) is a group as the relation ad − bc ≡ 1(mod N) implies that ad − bc

and N are coprime and there is a multiplicative inverse (ad− bc)−1 ∈ Z/NZ. Then

γ−1 = (ad− bc)−1

 d −b

−c a

 .

Example 2.1.1. For N = 2 the group SL2(Z/2Z) consists of 6 elements:

1 0

0 1

1 0

1 1

0 1

1 0

0 1

1 1

1 1

1 0

1 1

0 1


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Proposition 2.1.1. The mappinga b

c d

→
a(mod N) b(mod N)

c(mod N) d(mod N)


is a surjective homomorphism of a group SL2(Z) onto a group SL2(Z/NZ).

Proof. The mapping is a homomorphism since addition, subtraction and multipli-

cation commute with taking residue modulo N. Only surjectivity must be proved.

Assume that a′ b′

c′ d′

 ∈ SL2(Z/NZ).

We will find the matrix

a b

c d

 ∈ SL2(Z) such that

a(mod N) = a′, b(mod N) = b′, c(mod N) = c′, d(mod N) = d′.

Consider several cases.

• Let c′ 6= 0, d′ 6= 0. Denote by g the greatest common divisor of c′ and d′.

From the relation a′d′ − b′c′ ≡ 1( mod N) it follows that g has a multiplicative

inverse modulo N and thus (g,N) = 1. Let P (c′) be the set of all distinct

prime multiples of c′. Every two elements of P (c′) are coprime and the Chinese

Remainder Theorem applies: there is an integer t such that for every p ∈ P (c′),

p|g

t ≡ 1( mod p)

and for every p ∈ P (c′), p 6 |g

t ≡ 0( mod p).

Integers c′ and d′+tN are coprime. Indeed, assume that there is a prime number
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p > 1 such that p|c′ and p|(d′+ tN). Then p ∈ P (c′). There are two possibilities.

If p|g, then p|d′. So, p|(tN). But (g,N) = 1 hence p 6 |N and p|t which is

impossible as t ≡ 1( mod p).

The second possibility is p 6 |g. Then p|t and p|d′. From p|c′ and p|d′ it follows

that p|g which is not the case.

• Let c′ 6= 0, d′ = 0. We repeat considerations of previous case substituting g with

c′. From the relation −b′c′ ≡ 1( mod N) it follows that (c′, N) = 1. Let P (c′) be

the set of all distinct prime multiples of c′. By the Chinese Remainder Theorem

there is an integer t such that for every p ∈ P (c′),

t ≡ 1( mod p).

Integers c′ and tN(= d′+ tN) are coprime. Indeed, assume that there is a prime

number p > 1 such that p|c′ and p|tN. Then p ∈ P (c′) and p 6 |t. But from

(c′, N) = 1 it follows that p 6 |N which is impossible.

• If c′ = 0, d′ 6= 0, then we interchange roles of c′ and d′ and obtain coprime

integers sN(= c′ + sN) and d′.

In any case, there are coprime integers c′+ sN and d′+ tN. There are integers k, l

such that

k(c′ + sN) + l(d′ + tN) = 1

On the other hand the condition a′d′− b′c′ ≡ 1( mod N) implies a′(d′+ tN)− b′(c′+

sN) ≡ 1( mod N) and the existence of an integer m such that

a′(d′ + tN)− b′(c′ + sN) +mN = 1.

Then

(a′ + lmN)(d′ + tN)− (b′ − kmN)(c′ + sN) =
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= a′(d′ + tN)− b′(c′ + sN) +mN(l(d′ + tN) + k(c′ + sN)) = 1−mN +mN = 1

and a′ + lmN b′ − kmN

c′ + sN d′ + tN

 ∈ SL2(Z)

is the needed matrix.

Corollary 2.1.1. If N1 divides N2 then the mappinga b

c d

→
a(mod N1) b(mod N1)

c(mod N1) d(mod N1)


is a surjective homomorphism of a group SL2(Z/N2Z) onto a group SL2(Z/N1Z).

When N = p is prime, then Z/pZ is a field. Consider the group GL2(Z/pZ) of all

2× 2 invertible matrices over Z/pZ. As Z/pZ is a field, invertibility of a matrix γ is

equivalent to the condition det γ 6= 0.

Proposition 2.1.2. The order of GL2(Z/pZ) is p(p− 1)(p2 − 1).

Proof. We will construct all matrices GL2(Z/pZ). There are p2 possible 2-rows from

elements of Z/pZ. The first row can be any nonzero row, i.e. there are p2 − 1 possi-

bilities for the first row. The second row can be any row but the multiple of the first

row, i.e. given the first row there are p2 − p possibilities for the second row and

|GL2(Z/pZ)| = (p2 − 1)(p2 − p) = p(p− 1)(p2 − p)

Proposition 2.1.3. The order of SL2(Z/pZ) is p3(1− 1
p2

).

Proof. The mapping a b

c d

→ ad− bc

40



is a homomorphism of the group GL2(Z/pZ) onto the multiplicative group (Z/pZ) \

{0} = {1, 2, . . . , p − 1}. Its kernel consists of matrices with determinant 1, i.e.

SL2(Z/pZ). It follows that the quotient GL2(Z/pZ)/SL2(Z/pZ) is isomorphic to

(Z/pZ) \ {0} and

|GL2(Z/pZ)| = |SL2(Z/pZ)| · (p− 1)

We find that the order of SL2(Z/pZ) is p(p−1)(p2−1)
p−1

= p3(1− 1
p2

).

Consider the mappinga b

c d

→
a(mod p) b(mod p)

c(mod p) d(mod p)


of the group SL2(Z/p2Z) onto the group SL2(Z/pZ) (it is defined in corollary 1.1).

The kernel of this mapping consists of matrices that are equivalent to the identity

matrix modulo p, i.e. it consists of matrices of the form1 + pa pb

pc 1 + pd


where a, b, c, d ∈ Z/pZ and a + d ≡ 0 modulo p. Moreover, such representation is

unique. Now, for (a, b, c) there are p3 choices and d is determined from a+ d ≡ 0. So,

the kernel consists of p3 elements, and the order of SL2(Z/p2Z) is

p3 · p3(1− p−2) = p6

(
1− 1

p2

)

Remark 2.1.1. Obtained result is generalized to all N as follows. The order of

SL2(Z/NZ) is

N3
∏

p|N,p prime

(
1− 1

p2

)

By Γ0(p2) \ SL2(Z) we denote the family of right cosests {Γ0(p2)γ : γ ∈ SL2(Z)}.
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Two cosets are either disjoint or equal and

Γ0(p2)α = Γ0(p2)β ⇔ αβ−1 ∈ Γ0(p2).

We compute the order of Γ0(p2) \ SL2(Z) in three steps.

1. Denote by Γ(p2) the subgroup of SL2(Z) consisting of matrices

a b

c d

 that are

equivalent to identity modulo p2 (principal congruence subgroup). Then

|Γ(p2) \ SL2(Z)| = p6

(
1− 1

p2

)

Indeed, two matrices α, β have the same cosets if and only if α( mod p2) =

β( mod p2) (where taking residue is understood element-wise). So, the quotient

Γ(p2) \ SL2(Z) is naturally isomorphic to SL2(Z/p2Z).

2. Denote by Γ1(p2) the subgroup of SL2(Z) consisting of matrices

a b

c d

 that

are equivalent to the matrix

1 ∗

0 1

 modulo p2. Then

|Γ1(p2) \ SL2(Z)| = p6

(
1− 1

p2

)

Indeed, the mapping a b

c d

→ b

is a homomorphic surjection of Γ1(p2) to the additive group Z/p2Z :

a b

c d

a′ b′

c′ d′

 =

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

→
→ ab′ + bd′ ≡ b+ b′( mod p2)
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Its kernel is Γ(p2) as a ≡ d ≡ 1 and c ≡ 0 by definition of Γ1(p2). So, the index

of Γ(p2) in Γ1(p2) is p2 and

|Γ1(p2) \ SL2(Z)| = |Γ(p2) \ SL2(Z)|
p2

= p4

(
1− 1

p2

)

3. The mapping a b

c d

→ d

is a homomorphic surjection of Γ0(p2) to the multiplicative group (Z/p2Z)\{0} :

a b

c d

a′ b′

c′ d′

 =

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

→
→ cb′ + dd′ ≡ dd′( mod p2)

Its kernel is Γ1(p2), so the index of Γ1(p2) in Γ0(p2) is p2 − p.

|Γ0(p2) \ SL2(Z)| = |Γ1(p2) \ SL2(Z)|
p2 − p

= p4 p2 − 1

p2(p2 − p)
= p2 + p.

[Γ0(N) : SL2(Z)] = N
∏
p|N

(
1 +

1

p

)
In the case N = p2, the index is

p2

(
1 +

1

p

)
= p(p+ 1).

Now we can find a complete set of representatives for Γ0(p2) in SL2(Z).

Lemma 2.1.1. [4, Lemma 2.1] Matrices

I =

1 0

0 1

 , αt =

0 −1

1 t

 , 0 ≤ t ≤ p2 − 1,
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βkp =

 1 0

kp 1

 , 1 ≤ k ≤ p− 1

form a complete set of representatives for P1(Z/p2Z).

Proof. There are

1 + p2 + p− 1 = p(p+ 1)

matrices listed, so one only must check that neither two of them are equivalent modulo

Γ0(p2). But if 0 ≤ t < s ≤ p2 − 1, then

αtα
−1
s =

0 −1

1 t

 s 1

−1 0

 =

 1 0

s− t 1

 6∈ Γ0(p2)

as 1 ≤ s− t < p2.

If 0 ≤ t ≤ p2 − 1 and 1 ≤ k ≤ p− 1, then

αtβ
−1
kp =

0 −1

1 t

 1 0

−kp 1

 =

 kp −1

1− tkp t

 6∈ Γ0(p2)

as p 6 |1

If 1 ≤ k < l ≤ p− 1, then

βlpβ
−1
kp =

 1 0

lp 1

 1 0

−kp 1

 =

 1 0

(l − k)p 1

 6∈ Γ0(p2)

as p 6 |(l − k).

Lemma 2.1.2. [4, Lemma 2.2] Cusps of Γ0(p2) are {0,∞, 1
p
, . . . , 1

(p−1)p
}.

Proof. Let P be the parabolic subgroup of SL2(Z),

P =

{1 n

0 1

∣∣∣∣ n ∈ Z
}
.
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By [5, Prop. 3.8.5] there is a bijection between the double coset space {Γ0(p2)γP |γ ∈

SL2(Z)} and the set of cusps of Γ0(p2), given by

Γ0(p2)γP → Γ0(p2)γ(∞).

We compute this mapping for a complete set of representatives found in Lemma 2.1.

For identity matrix: 1 0

0 1

 (∞) =
z

1

∣∣∣∣
z=∞

=∞

For αt, 0 ≤ t ≤ p2 − 1: 0 −1

1 t

 (∞) =
−1

z + t

∣∣∣∣
z=∞

= 0

For βkp, 1 ≤ k ≤ p− 1:

 1 0

kp 1

 (∞) =
z

kpz + 1

∣∣∣∣
z=∞

=
1

kp

2.2 Subgroup Γ

A subgroup Γ is defined as the intersection of two congruence subgroups

Γ = Γ0(p2) ∩ Γ(2)

It is a congruence subgroup as it contains, e.g. Γ(2p2). XΓ is the corresponding

modular curve and πΓ(z) = Γz is the canonical surjection H ∪ P1(Q)→ XΓ.
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Lemma 2.2.1. [4, Lemma 2.3] Matrices

I =

1 0

0 1

 , γk =

 (skp)
3 −1 + s2

kp
2

1 + s2
kp

2 psk

 , 1 ≤ k ≤ p− 1,

βt+δtp2 =

 1 0

(t+ δtp
2)p 1

 , 0 ≤ t ≤ p2 − 1

form a complete set of representatives for P1(Z/p2Z).

Proof. There are 1 + p − 1 + p2 = p(p + 1) matrices listed, neither two of them are

congruent modulo Γ0(p2). Indeed,

γkγ
−1
l =

 (skp)
3 −1 + s2

kp
2

1 + s2kp2 psk

 psl 1− s2
l p

2

−1− s2
l p

2 (slp)
3


and the lower left element is

psl + p3s2
ksl − psk − p3s2

l sk ≡ p(sl − sk) (mod p2).

The latter expression is not divisible by p2 as sk 6≡ sl modulo p.

Further,

βt+δtp2γ
−1
l =

 1 0

(t+ δtp
2)p 1

 psl 1− s2
l p

2

−1− s2
l p

2 (slp)
3


and the lower left element is

p2sl(t+ δtp
2)− 1− s2

l p
2 ≡ −1 (mod p2).

The latter expression is not divisible by p2.
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Finally,

βt+δtp2γ
−1
l+δlp2

=

 1 0

(t+ δtp
2)p 1

 1 0

(−l − δlp2)p 1


and the lower left element is

p(t− l + p2(δt − δl)) ≡ p(t− l) (mod p2).

The latter expression is not divisible by p2 as t 6≡ l modulo p.

Lemma 2.2.1 differs from the lemma 2.1.1, as it gives representatives from the

subgroup Γ(2). As a corollary, there is an isomorphism between a subgroup

Γ \ Γ(2) = Γ0(p2) ∩ Γ(2) \ Γ(2)

and P1(Z/p2Z) ∼ Γ0(p2) \ SL2(Z).

Lemma 2.2.2. [4, Lemma 2.4] The mapping

a b

c d

→ (
c d

)

is an isomorphism betwenn Γ \ Γ(2) and P1(Z/p2Z).

Proof. The map is injective by definition of equality in P1(Z/p2Z) since Γ−equivalent

matrices have rows that differ by a unity in Z/p2Z. By the lemma 2.3 cardinalities of

sets Γ \ Γ(2) and P1(Z/p2Z) coincide, so the mapping is an isomorphism.
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2.3 Relative homologies for XΓ

Since Γ is a subgroup of Γ(2), the mapping

π0 : Γ \H ∪ P1(Q)→ Γ(2) \H ∪ P1(Q)

given by π0(Γz) = Γ(2)z is well-defined. The group Γ(2) has three cusps [5, §3.8].

As a representatives one can take Γ(2)0, Γ(2)1 and Γ(2)∞. Indeed, assume thata b

c d

 ∈ Γ(2). Then a and d are odd, b and c are even. The relation

a · 0 + b

c · 0 + d
= 1

is impossible since b 6= d. The relation

a · ∞+ b

c · ∞+ d
= 1

is impossible since a 6= c. The relation

a · ∞+ b

c · ∞+ d
= 0

is impossible since a 6= 0.

Preimages of cusps for Γ(2) in XΓ are given by

P− = π−1
0 (Γ(2)1), P+ = π−1

0 ({Γ(2)0,Γ(2)∞}).

Following two properties of relative homology groupsH1(XΓ−P−, P+, K) andH1(XΓ−

P+, P−, K) were proved in [1]. They are stated in terms of two operators:

for every g ∈ Γ \ Γ(2) the homological class in XΓ of a geodesics joining g0 and

g∞ is denoted by [g]0 and the homological class in XΓ of a geodesics joining g1 and

g(−1) is denoted by [g]0.
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Theorem 2.3.1. [1, Th. 5] Mapping g → [g]0 extends to an isomorphism

ζ0 : KΓ\Γ(2) → H1(XΓ − P+, P−, K).

Mapping g → [g]0 extends to an isomorphism

ζ0 : KΓ\Γ(2) → H1(XΓ − P−, P+, K).

Remark. The theorem states that the relative homology groupH1(XΓ−P+, P−, K)

consists of K−linear combinations of paths joining cusps from P− and the relative ho-

mology group H1(XΓ−P−, P+, K) consists of K−linear combinations of paths joining

cusps from P+.

Theorem 2.3.2. [1, Th. 6] For any g, h ∈ Γ(2) the intersection pairing of [g]0 and

[h]0 is given by

[g]0 ◦ [h]0 =


1, Γg = Γh

0, Γg ∩ Γh = ∅

The structure of a set P− can be specified via Lemma 2.2.1.

Lemma 2.3.1. [4, Lemma 2.7] Every element in P− is equal to Γk for some

k ∈
{

1,
1

p2
,

1

sp
, . . . ,

1

s(p−1)p

}

Proof. The set P− consists of cusps in Γ that equivalent to 1 modulo Γ(2), i.e. cusps

of the form Γθ1. For the complete set of representatives we take matrices from Lemma

2.3. Then all of them except βj with j + 1 divisible by p give the same cusp.

Let π : Γ \H ∪ P1(Q)→ X0(p2) be the mapping

π(Γz) = Γ0(p2)z
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and let π′ : Γ \H ∪ P1(Q)→ X0(p2) be the mapping

π(Γz) = Γ0(p2)
z + 1

2
.

These mappings will allow to transfer the Eisenstein element from the modular curve

XΓ to the modular curve X(Γ0(p2)).

Proposition 2.3.1. π′ is well-defined.

Proof. Assume that Γz1 = Γz2. Then there exists γ =

a b

c d

 ∈ Γ such that

az1 + b

cz1 + d
= z2.

Condition γ ∈ Γ = Γ0(p2) ∩ Γ(2) means that a ≡ d ≡ 1 (mod 2), b ≡ c ≡ 0 (mod 2)

and p2|c. Consider matrix σ =

1 1

0 1

 . Then

z2 + 1 = σ(z2) = σγ(z1) = σγσ−1(z1 + 1).

We compute the product

σγσ−1 =

1 1

0 1

a b

c d

1 −1

0 1

 =

a+ c b+ d− a− c

c d− c


Observe that b+ d− a− c ≡ 0 + 1− 1− 0 = 0 (mod 2), so that the matrix

γ̃ =

a+ c b+d−a−c
2

2c d− c

 ∈ Γ0(p2)

For this matrix

γ̃
z1 + 1

2
=

(a+ c) z1+1
2

+ b+d−a−c
2

2c z1+1
2

+ d− c
=

1

2

(a+ c)(z1 + 1) + (b+ d− a− c)
c(z1 + 1) + d− c

=
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=
1

2
σγσ−1(z1 + 1) =

z2 + 1

2

Hence, Γ0(p2)z1 = Γ0(p2)z2.

From the explicit form of local coordinates in a neighborhood of any cusp in P−

[5, §2.2] one can deduce the next result.

Lemma 2.3.2. [4, Lemma 2.8] For any rational function f : X0(p2)→ C the function

(f◦π)2

f◦π′ has no zeroes or poles in P−.

Proof. Local coordinates around cusps Γ0(p2)0, Γ0(p2)∞, Γ0(p2) s
tp

are given by map-

pings q0(z) = e
2πi 1
−p2z , q∞(z) = e2πiz, qs/tp(z) = e2πi z

s(−tpz+s) (local coordinates were

introduced in section 1.3).

Local coordinates around cusps Γ1, Γ 1
p2
, Γ 1

skp
∈ P− on the curve XΓ are given by

mappings q1(z) = e2πi z
2(−z+1) , q∞(z) = e

2πi 1
2(−p2z+1) , q1/szp(z) = e

2πi z
2(−skpz+1) .

It follows from shift invariance that

q0(πz) = e
2πi 1
−p2z = e

2πi 1
p2(−z+1) = q2

1(z)

and

q0(π′z) = e
2πi 2
−p2(z+1) = q4

1(z).

For any analytic function f the order of f ◦π′ at Γ1 coincides with the order of (f ◦π)2

and the ratio (f◦π)2

f◦π′ has no zeroes or poles.

Further, at a point Γ 1
p2

relations

q1/p2(πz) = q2
1/p2(z), q1/p2(π

′z) = q4
1/p2(z)

imply that for any analytic function f the order of f ◦ π′ at Γ 1
p2

coincides with the

order of (f ◦ π)2 and the ratio (f◦π)2

f◦π′ has no zeroes or poles.
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Finally,

q sk
(1+skp)

(π′z) = q2
sk

(1+2skp)p
(πz)

and for any analytic function f the order of f ◦ π′ at Γ 1
skp

coincides with the order of

(f ◦ π)2 and the ratio (f◦π)2

f◦π′ has no zeroes or poles.
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Chapter 3

Eisenstein series for Γ0(p2)

3.1 Basic Eisenstein series

A Dirichlet character modulo N is a mapping φ : (Z/NZ)∗ → C∗ which is a mul-

tiplicative homomorphism of a group of units modulo N into the group of non-zero

complex numbers, i.e. φ(a · b) = φ(a)φ(b) for all a, b ∈: (Z/NZ)∗. A Dirichlet charac-

ter φ is non-trivial if φ(a) 6= 1 for all a. If M divides N then any Dirichlet character

φ modulo M induces a Dirichlet character ψ modulo N by the rule

ψ(a) = φ(a mod M).

A Dirichlet character is primitive if it is not induced by a Dirichlet character of a

smaller modulus.

Every Dirichlet character φ defines an eigenspace of the space of modular forms.

The φ−eigenspace is defined by

Mk(N, φ) = {f ∈Mk(Γ1(N))| f [γ]k = φ(dγ)f for all γ ∈ Γ0(N)},

where γ =

aγ bγ

cγ dγ

 .

In particular, Mk(Γ0(N)) is an eigenspace corresponding to the trivial character,
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Mk(Γ0(N)) =M2(N, 1).

Consider the Eisenstein series

E ′2(τ) = − 1

24
+
∑
n≥1

σ1(n)qn

where σ1(n) =
∑

m|nm.

Let Ap2,2 be the set of all triples (φ, ψ, t), where φ and ψ are primitive Dirichlet

characters modulo u and v such that φψ = 1, and 1 < tuv|p2. Possible cases are the

following:

• u = v = p and t = 1. The corresponding Eisenstein series is

Eφ,φ̄
2 (τ) =

∑
n≥1

σφ,φ̄1 (n)qn, q = e2πiτ .

σφ,φ̄1 (n) =
∑

m|n φ( n
m

)φ(m)m.

• u = v = 1 and t = p. The corresponding Eisenstein series is

E1(τ) = E ′2(τ)− pE ′2(pτ).

• u = v = 1 and t = p2. The corresponding Eisenstein series is

E2(τ) = E ′2(τ)− p2E ′2(p2τ).

A specification of [5, Th. 4.6.2.] to the case N = p2 implies that the se-

ries E1, E2, E
φ,φ̄
2 for all non-trivial Dirichlet characters modulo p form a basis for

E2(Γ0(p2)). Using this result period homomorphism is computed for basic Eisenstein

series and the answer is given in terms of function FE.
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3.2 Divisors

For any compact Riemann surface X a divisor is a formal sum of integer multiples of

points of X,

D =
∑
x∈X

nxx,

where only finitely many coefficients nx 6= 0. Divisors form an Abelian group Div(X).

Every nonzero meromorphic function f on X defines a divisor

div(f) =
∑
x

νx(f)x,

where νx(f) is the order of x (as a zero or a pole of f). By Div0(X) we denote the

subgroup of all divisors of meromorphic functions.

By [8, §1.8] the space E2(Γ0(N)) is isomorphic to the abelian group Div0(cusps)

(viewed as a K-module). The isomorphism is given by

δ(E) =
∑

x∈cusps(Γ0(p2))

eΓ0(p2)(x)a0(E[x]){x},

where eΓ0(p2)(x) is a ramification degree of a canonical mapping H∪ P1(Q)→ X0(p2)

at a point x.

3.3 Properties of πE

The Dedekind sum of integers u, v is given by

S(u, v) =
v−1∑
r=1

r

v

(
ur

v
−
[
ur

v

]
− 1

2

)
.
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Then for the Eisenstein series E2 and γ =

a b

c d

 ∈ Γ0(p2)

1

πi
L

(
E2

[1 −d

0 c

], 1) = −sgn(c)(S(d, |c|)− S(d, |c|/p2))

This value of an L−function is connected to the πE(γ) by [8]

πE(γ) =


a+d
c
a0(E)− 1

2πi
L(E2[

1 −d

0 c

], 1), c 6= 0

b
d
a0(E), c = 0
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Chapter 4

Eisenstein element

4.1 Eisenstein element for XΓ

For an Eisenstein series E ∈ E2(Γ0(p2)) the function ψE(c) =
∫
c
k∗(ωE) is the integral

along c ∈ H1(XΓ − P+, P−, K) of a logarithmic derivative of a function (λE◦π)2

λE◦π′
where

the logarithmic derivative of λE : X0(p2)→ C is equal to 2πiωE = 2πiE(z)dz. There

exist an Eisenstein element E0 ∈ H1(XΓ − P−, P+, K) such that

E0 ◦ c = ψE(c).

By Theorem 2.3.1 this element is a sum of basis elements

E0 =
∑

g∈P1(Z/p2Z)

F0(g)ζ0(g).

In fact, coefficients F0(g) are given by the function FE.

Lemma 4.1.1. [4, Lemma 4.1] For every g ∈ P1(Z/p2Z)

ψE(ζ0(g)) = FE(g)

Proof. For each x ∈ P1(Z/p2Z) we compute the value of ψE(ζ0(x)). Points of the

projective line are classified along the lines of the proposition 1.6.2.
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• Case x = (r − 1, r + 1) for some r ∈ Z such that p does not divide r and 4

divides r − 1 (in particular, r is odd). r is coprime with 4p2 and there exists an

integer s ∈ Z such that 4p2 divides rs− 1. Consider matrix

V (r, s) =

 r−3
2

r−1
2

1−r
2

−1−r
2

1 2

0 1

 s−3
2

s−1
2

1−s
2

−1−s
2


4 divides r − 1, hence r−1

2
is even, r−3

2
= r−1

2
− 1, −1−r

2
= −1 − r−1

2
are odd.

Matrix

g =

 r−3
2

r−1
2

1−r
2

−1−r
2

 ∈ Γ(2).

Further,

g(−1) =
3− r + r − 1

r − 1− 1− r
= −1

and

V (r, s)(−1) =

 r−3
2

r−1
2

1−r
2

−1−r
2

1 2

0 1

 (−1) =

 r−3
2

r−1
2

1−r
2

−1−r
2

 1 = g(1)

By definition of ψE,

ψE(ζ0(x)) =

∫ g(−1)

g(1)

(
2E(z)dz − E

(
z + 1

2

)
d

(
z + 1

2

))
=

=

∫ −1

V (r,s)(−1)

(
2E(z)dz − E

(
z + 1

2

)
d

(
z + 1

2

))
=

Introduce matrix h =

1 1

0 2



= 2

∫ −1

V (r,s)(−1)

E(z)dz −
∫ −1

V (r,s)(−1)

E(h(z))dh(z) =

= 2

∫ −1

V (r,s)(−1)

E(z)dz −
∫ h(−1)

hV (r,s)(−1)

E(z)dz =
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= 2

∫ −1

V (r,s)(−1)

E(z)dz−
∫ h(−1)

hV (r,s)h−1(h(−1))

E(z)dz = −2πE(V (r, s))+πE(hV (r, s)h−1)

To express values of πE in terms of L−functions, we will use the Atkin-Lehner

involution law

πE

a b

c d

 = πE

 a c/p2

p2b d


By proposition 3.2 the mapping πE : Γ0(p2) → C is a homeomorphism. The

matrix V (r, s) ∈ Γ0(p2) (its left lower element is rs−1
2

). Consider matrices

1 1

0 1


and

1 −1

0 1

 . Both are in Γ0(p2) and they are inverses one to another, so

πE

1 1

0 1

 · πE
1 −1

0 1

 = 1

and

πE(V (r, s)) = πE

1 1

0 1

 πE
1 −1

0 1

πE(V (r, s)) =

= πE

1 1

0 1

V (r, s)

1 −1

0 1

 =

= πE

 s 2

rs−1
2

r

 = πE

 s rs−1
2p2

2p2 r

 =
s+ r

2p2
a0(E)− 1

2πi
L

(
E

1 −r

0 2p2

 , 1)

Similarly,

πE(hV (r, s)h−1) = πE

 s 1

rs− 1 r

 =

= πE

 s rs−1
p2

p2 r

 =
s+ r

p2
a0(E)− 1

2πi
L

(
E

1 −r

0 p2

 , 1)
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So,

FE(x) =
1

2πi

(
2L

(
E

1 −r

0 2p2

 , 1)− L(E
1 −r

0 p2

 , 1))

• Let x = (1, (−k)p+ 1) = (kp+ 1, 1) (the last equality follow from the fact that

kp+ 1 is an inverse to (−k)p+ 1). In this case x corresponds to the matrix

β1+skp =

 1 0

1 + skp 1


where sk = k if k is odd, and sk = k − p when k is even. Now

β1+skp1 =
1

2 + skp
, β1+skp(−1) =

1

skp
,

and

ψE(ζ0(x)) =

∫ β1+skp(−1)

β1+skp1

(
2E(z)dz − E

(
z + 1

2

)
d

(
z + 1

2

))
=

introduce a function f(z) = 2E(z)− 1
2
E( z+1

2
)

=

∫ 1
skp

1
2+skp

f(z)dz =

limits of integration are ∇k0 and ∇k∞ for ∇k =

 1 1

skp 2 + skp



=

∫ ∇k∞
∇k0

f(z)dz = 2

∫ ∞
0

f [∇k](z)dz

where 2 comes from the determinant of ∇k. In this case

FE(x) = 2

∫ ∞
0

f [∇k](z)dz, f(z) = 2E(z)− 1

2
E

(
z + 1

2

)
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• Let x = (1, 1̄), y = (−1, 1̄). Corresponding matrices are

β1+p2 =

 1 0

1 + p2 1

 , β−1−p2 =

 1 0

−1− p2 1


β1+p21 = 1

2+p2
, β1+p2(−1) = 1

p2
and

ψE(ζ0(x)) =

∫ 1
p2

1
2+p2

f(z)dz,

where f(z) = 2E(z) − 1
2
E( z+1

2
). Assume that E has real Fourier coefficients.

Since f is Γ(2)-invariant, it is written as

f(z) =
∞∑
n=0

ane
πinz.

Consequently, the complex conjugate of f(z) is
∑∞

n=0 ane
−πinz̃, where z̃ is the

complex conjugate of z :

f̃(z) = f(−z̃).

Then

ψE(ζ0(x)) =

∫ 1
p2

1
2+p2

f(−z̃)dz̃ =

=

∫ − 1
2+p2

− 1
p2

f(z)dz = ψE(ζ0(y)).

The last transition follows from β−1−p21 = − 1
p2
, β−1−p2(−1) = − 1

p2+2
.

Further, we observe that for the matrix σ =

0 −1

1 0

 we have

β1+p2σ =

0 −1

1 −1− p2


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And this product sends 1 to 1
p2

and −1 to 1
2+p2

. So,

ψE(ζ0(x)) =

∫ 1
p2

1
2+p2

f(z)dz =

∫ β1+p2σ(1)

β1+p2σ(−1)

f(z)dz =

introduce a matrix σp2 =

1− p2 −p2

p2 1 + p2



=

∫ σ−1

p2
β1+p2σ(1)

σ−1

p2
β1+p2σ(−1)

f(σp2(z))dσp2(z) =

since f(z)dz is invariant

= −
∫ σ−1

p2
β1+p2σ(−1)

σ−1

p2
β1+p2σ(1)

f(z)dz

We compute the product

σ−1
p2 β1+p2σβ

−1
−1−p2 =

p6 − p4 − 2p2 − 1 p4 − 2p2 − 1

p6 + 2p4 − p2 p4 + p2 − 1


and it belongs to Γ0(p2) ∩ Γ(2). So, the matrix σ−1

p2 β1+p2σ is Γ−equivalent to

β−1−p2 and ∫ σ−1

p2
β1+p2σ(−1)

σ−1

p2
β1+p2σ(1)

f(z)dz = ψE(ζ0(y))

It follows that ψE(ζ0(x)) = −ψE(ζ0(y)) and finally

ψE(ζ0(x)) = ψE(ζ0(y)) = 0.
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4.1.1 Subgroups Γ0(N) for N = p3 or N = pq

Next two cases show that there are no such simple description of the projective line

over Z/NZ when N is not a square of a prime.

Consider an element (p, 1) ∈ P1(Z/p3Z). Take λ = 2(p2 +p+1). Since λ is coprime

with p, it represents a unit λ̄ in Z/p3Z. For this choice of λ

(p, 1) ∼ (λp, λ) = (2(p3 + p2 + p), 2(p2 + p+ 1)) ≡

modulo p3

≡ (2(p2 + p), 2 + 2(p2 + p)) = (r − 1, r + 1),

where r = 1 + 2(p2 + p). Further, r = 1 + 2p(p+ 1) ≡ 1 modulo 4, since p+ 1 is even

and 2p(p+ 1) is divisible by 4. Inverse of r modulo 4p3 is s = 1 + 2(p2 − p). Indeed,

rs = (1 + 2p2 + 2p)(1 + 2p2 − 2p) = (1 + 2p2)2 − 4p2 = 1 + 4p4 ≡ 1 (mod 4p3)

Now let p and q be distinct odd primes. We check that if p ≡ 1 (mod q), then

(p, 1) ∈ P1(Z/pqZ) cannot be written as (r− 1, r+ 1). Indeed, assume there is a unit

λ in Z/pqZ such that modulo pq

λp ≡ r − 1, λ ≡ r + 1.

Then

(r + 1)p ≡ λp ≡ r − 1

and

r(p− 1) + (p+ 1) ≡ 0

It means that pq divides r(p− 1) + (p + 1). But by assumption q divides p− 1, so q

divides p+ 1 and q divides 2 = (p+ 1)− (p− 1) which is impossible.
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4.2 Eisenstein element for XΓ

Proposition 4.2.1. [4, Prop. 4.2] If the element E0 ∈ H1(XΓ−P−, P+, K) is defined

by

E0 =
∑

g∈P1(Z/p2Z)

FE(g)ζ0(g),

then

E0 ◦ c = ψE(c), c ∈ H1(XΓ − P−, P+, K)

Proof. It is enough to check equality for c = [h]0. Then

E0 ◦ c =
∑

g∈P1(Z/p2Z)

FE(g)[g]0 ◦ [h]0 =

the bilinear pairing is 1 when g = h and 0 otherwise

= FE(h) = ψE(c)

where the last equality follwos from Lemma 4.1.1.

4.3 Fourier coefficients of Eisenstein series at cusps and the

main theorem

Result of the proposition 4.2.1 gives the Eisenstein element corresponding to E ∈

E2(Γ0(p2)) in the relative homology H1(XΓ − P−, P+, K). By specifying values of

basic Eisenstein series at cusps the representation will be extended to the modular

curve X0(p2).

Lemma 4.3.1. [4, Lemma 4.3] Fourier coefficient at 1
kp

of Eφ,φ̄
2 is a constant multiple

of φ(k)tφ, where

tφ =

p−1∑
d,e=0

φ(d)2
∑

l≡(d+ep)(modp2),l 6=0

1

l2
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Proof. The proof relies on properties of the series [5, §4.2]

E v̄
2 (z) =

∑
(c,d)≡v̄(mod p2)

1

(cz + d)2
,

where v̄ ∈ (Z/p2Z)2. By [5, Prop. 4.2.1],

E v̄
2 [γ]2 = Evγ

2 .

It follows that the same property holds for

Gv̄
2(z) =

∑
(c,d)≡v̄(modp2)

1

(cz + d)2
=

∑
n∈(Z/p2Z)∗

ζn+(2)En−1v̄
2 (z)

The latter equality follows from [5, §4.2]. The series Eφ,φ̄
2 is given in terms of Fourier

series which coincides up to a constant multiple with the Fourier series of

Gφ,φ̄
2 (z) =

p−1∑
c,d,e=0

φ(c)φ(d)G
(cp,d+ep)
2 (z)

[5, Th. 4.5.1]. So, it is enough to find the constant Fourier coefficient of Gφ,φ̄
2 at the

cusp 1
kp
. By the calculation in Lemma 2.1.2,

1

kp
= βkp(∞).

Hence, the needed Fourier coefficient is found from

Gφ,φ̄
2 [βkp]2 =

p−1∑
c,d,e=0

φ(c)φ(d)G
(cp,d+ep)βkp
2 =

=

p−1∑
c,d,e=0

φ(c)φ(d)G
(cp+kp(d+ep),d+ep)
2

By [5, Th. 4.2.3] the constant term of Gv̄
2 is non-zero if and only if cv ≡ 0 (mod p2)
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(the first component of v̄). In our case this reduces to p|c+ kd, or

c ≡ −kd (mod p).

As φ is a Dirichlet character modulo p,

φ(c) = φ(−k)φ(d).

Further, by [5, Th.4.2.3] the coefficient is exactly
∑

l≡(d+ep)(modp2),l 6=0
1
l2

and the con-

stant Fourier coefficient at 1
kp

is a multiple of

φ(−k)

p−1∑
d,e=0

φ(d)2
∑

l≡(d+ep)(modp2),l 6=0

1

l2
= φ(−k)tφ.

Lemma 4.3.2. [4, Lemma 4.4] Fourier coefficient at 1
kp

of E1 is p−1
24
. Fourier coeffi-

cient at 1
kp

of E2 is 0.

Proof. Since βkp∞ = 1
kp

what must be shown is that the constant terms of the Fourier

expansion at ∞ of E2[βkp]2 is zero.

The Ramanujan cusp form is

∆(z) = 216000G3
4(z)− 529200G2

6(z),

where Gk(z) =
∑

(c,d)∈Z2−{(0,0)}
1

(cz+d)k
. The form ∆ is the basis of the one-dimensional

space S12(SL2(Z)). Its logarithmis derivative satisfies

d

dz
log ∆(βkp(z)) = 12

d

dz
log(kpz + 1) +

d

dz
log ∆(z)
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and

d

dz
log ∆

(p l

k m

 (z − l/p)
)

) = 12
d

dz
log(kpz + 1) +

d

dz
log ∆(z − l/p)

It remains to substitute E2 = 1
2πi

d
dz

log ∆(p2z)
∆(z)

and get that a0(E2[βkp]) = 0.

Since E1 = 1
2πi

d
dz

log ∆(pz)
∆(z)

and all cusps 1
kp

represent ∞ for Γ0(p) it follows that

values at cusps are equal and equal to p−1
24
.

The mapping π : XΓ → X0(p2) is defined by π(Γz) = Γ0(p2)z. It defines naturally

a mapping

π∗ : H1(XΓ \ P−, P+, K)→ H1(X0(p2), cusps, K).

π∗ sends a path γ(t) in XΓ into a path π(γ(t)). The boundary operator

∂ : H1(X0(p2), cusps, K)→ H0(X0(p2), cusps, K)

sends a path (γ(t))t∈[0,1] into a formal difference of endpoints, ∂(γ) = γ(1) − γ(0).

So, a boundary operator acts from the homological group of cycles into formal linear

combination of cusps.

Two propositions below compute boundaries of elements π∗(E0), E ∈ H1(X0(p2), cusps, K)

by relating them with divisors (i.e. a formal linear combination of cusps). With an

Eisenstein series E there is associated a divisor

δ(E) = p2a0(E[0]){0}+

p−1∑
k=1

a0(E[1/kp]){1/kp}+ a0(E[∞]){∞}

The notation means that the divisor δ(E) assigns value p2a0(E[0]) to the cusp 0, the

value a0(E[1/p]) to the cusp 1/p, and so on. Here for any cusp x E[x] denotes E[α]
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for a matrix α such that α∞ = x. Let

π∗(E0) =
∑

g∈P1(Z/p2Z)

FE(g)ζ(g)

be the image in X0(p2) of the modular symbol E0.

Proposition 4.3.1. [4, Prop. 4.5] The boundary of π∗(E0) is a constant multiple of

δ(E).

Proof. Using complete set of coset representatives of P1(Z/p2Z) from lemma 2.1.1,

we write the boundary of an element π∗(E0) as follows

∂(π∗(E0)) = FE((0, 1))∂(ζ(I)) +

p2−1∑
t=0

FE((1, t))∂(ζ(αt))+

+

p−1∑
k=1

FE((kp, 1))∂(ζ(βkp))

For each summand we find the boundary

∂(ζ(I)) = {I∞}− {I0} = {∞} − {0}

∂(ζ(αt)) = {αt∞}− {αt0} = {0} − {−1

t
}

∂(ζ(βkp)) = {βkp∞}− {βkp0} = { 1

kp
} − {0}

If t is coprime with p, then we can write nt + mp2 = 1 for some integers n,m. The

matrix  n −1

mp2 t

 ∈ Γ0(p2)

takes 0 to −1
t

and {0} = {−1
t
}. Summands coresponding to αt when t is coprime

with p do not contribute to the boundary. We regroup remained summands as

∂(π∗(E0)) = FE((0, 1))({∞} − {0}) + FE((1, 0))({0} − {∞})+
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+

p−1∑
k=1

(
FE((kp, 1))({ 1

kp
} − {0}) + FE((1, kp))({0} − {− 1

kp
})
)

Let g = (kp, 1̄) ∈ P1(Z/p2Z). Since λ = 2 + 2kp = 2(1 + kp) is a unit in Z/p2Z,

g = (λkp, λ) = (2kp+ 2k2p2, 2 + 2kp) = (2kp, 2 + 2kp) = (r − 1, r + 1)

for r = 1 + 2kp. In this case we take s = 1− 2kp so that rs = 1− 4k2p2 ≡ 1 (modulo

4p2).

Let g = (1̄,−kp) ∈ P1(Z/p2Z). Since λ = −2 + 2kp = 2(−1 + kp) is a unit in

Z/p2Z,

g = (λ,−λkp) = (−2 + 2kp, 2kp− 2k2p2) = (−2 + 2kp, 2kp) = (r − 1, r + 1)

for r = −1 + 2kp. In this case we take s = −1 − 2kp so that rs = 1 − 4k2p2 ≡ 1

(modulo 4p2).

By the lemma 4.1.1

FE((kp, 1)) = −2πE(V (2kp+ 1,−2kp+ 1)) + πE(hV (2kp+ 1,−2kp+ 1)h−1)

FE((1,−kp)) = −2πE(V (2kp− 1,−2kp− 1)) + πE(hV (2kp− 1,−2kp− 1)h−1)

Explicitly,

V (2kp+ 1,−2kp+ 1) =

2k2p2 − 2kp+ 1 2k2p2 − 4kp+ 2

−2k2p2 −2k2p2 + 2kp+ 1

 ,

V (2kp− 1,−2kp− 1) =

2k2p2 − 2kp− 1 2k2p2 − 4kp+ 2

−2k2p2 −2k2p2 + 2kp− 1


and from formulas of chapter 3, we deduce

FE((kp, 1)) = −FE((1,−kp))
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Let

α =

1 1

0 1

 , β =

1 2

0 1


Then

a0(E[βkp]) = πE[βkp](α) =

∫ αz0

z0

E[βkp](z)dz

2a0(E[βkp]) = πE[βkp](β) =

∫ βz0

z0

E[βkp](z)dz

Since βkpββ
−1
kp =

1− 2kp 2

−2k2p2 1 + 2kp

 , from explicit formulas we have

2a0(E[βkp]) =

∫ βz0

z0

E[βkp](z)dz =

∫ (βkpββ
−1
kp )βkpz0

βkpz0

E(z)dz =

= πE(βkpββ
−1
kp ) = πE(V (1− 2kp, 1 + 2kp))

Similarly, a0(E[β2kp]) = πE(hV (1 + 2kp, 1− 2kp)h−1) and

FE(kp, 1) = −4a0(E[βkp]) + a0(E[β2kp])

The boundary of π∗(E0) is

∂(π∗(E0)) = −
p−1∑
k=1

2

(
4a0(E[1/kp])− a0(E[1/2kp])

)
{ 1

kp
} − 6a0(E){∞}+

+

( p−1∑
k=1

2

(
4a0(E[1/kp])− a0(E[1/2kp])

)
+ 6a0(E)

)
{0}

Consider the basic series E = Eφ,φ̄. The constant Fourier coefficient of E at the

cusp 1
kp

is a constant multiple of φ(k). Then the boundary ∂(π∗(E0)) assigns to the

cusp 1
kp

the value that is proportional to

−2(4φ(k)− φ(2k)) = (2φ(2)− 8)φ(k)
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But the value of a divisor δ(E) at [1/kp] is a0(E[1/kp]) which is a constant multiple

of φ(k). So, ∂(π∗(E0)) is a constant multiple of δ(E).

Consider the basic series E1. By the lemma 4.3.2, the value of E1 at all cusps is

constant and equal to a0(E1) = p−1
24
. The boundary becomes

∂(π∗(E0)) = −
p−1∑
k=1

6a0(E1){ 1

kp
} − 6a0(E1){∞}+ 6pa0(E1){0} = −6δ(E1).

Consider the basic series E2. By the lemma 4.3.2, the value of E2 at all cusps

except ∞ is zero. The boundary becomes

∂(π∗(E0)) = −6a0(E2){∞} = −6δ(E2)

Proposition 4.3.2. [4, Prop. 4.7] Let E ∈ H1(X0(p2), cusps, K) be the Eisenstein

element corresponding to E ∈ E2(Γ0(p2)). Its boundary is equal to −δ(E).

Proof. Eisenstein element has a representation

E =
∑

g∈P1(Z/p2Z)

GE(g)ζ(g)

for some coefficients GE(g). Taking the boundary operator, we get similarly to propo-

sition 4.5

∂(E) = GE((0, 1))({∞} − {0}) +GE((1, 0))({0} − {∞})+

+

p−1∑
k=1

(
GE((kp, 1))({ 1

kp
} − {0}) +GE((1, kp))({0} − {− 1

kp
})
)

Let ρ = 1+i
√

3
2

, ρ∗ = −1+i
√

3
2

. For any g ∈ SL2(Z) denote by g{ρ, ρ∗} the image in

X0(p2) of the geodesics in H joining g(ρ) and g(ρ∗). By definition, ζ(k) is the image
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in X0(p2) of the geodesics joining k(0) and k(∞). Let

s =

0 −1

1 0


By [10],

ζ(g) ◦ h{ρ, ρ∗} =


1, if Γ0(p2)g = Γ0(p2)h

−1, if Γ0(p2)g = Γ0(p2)hs

0, otherwise

By definition of the Eisenstein element,

E ◦ h{ρ, ρ∗} = πE(h{ρ, ρ∗}) =

∫ h(ρ∗)

h(ρ)

E(z)dz

On the other hand, matrices g ∈ P1(Z/p2Z) form a complete set of representatives

for Γ0(p2) \ SL2(Z). So, if Γ0(p2)h 6= Γ0(p2)hs, in the sum

E ◦ h{ρ, ρ∗} =
∑

g∈P1(Z/p2Z)

GE(g)ζ(g) ◦ h{ρ, ρ∗}

there is a summand corresponding to g such that Γ0(p2)g = Γ0(p2)h (that contributes

with +GE(h)) and a summand corresponding to g such that Γ0(p2)g = Γ0(p2)hs (that

contributes with −GE(hs)).Then

E ◦ h{ρ, ρ∗} =

∫ h(ρ∗)

h(ρ)

E(z)dz = GE(h)−GE(hs)

Take h = βkp, βkp(∞) = 1
kp
. We observe that Γ0(p2)βkp 6= Γ0(p2)βkps since

βkpsβ
−1
kp =

 1 0

kp 1

0 −1

1 0

 1 0

−kp 1

 =

 kp −1

1 + k2p2 −kp

 6∈ Γ0(p2)
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Then

GE(βkp)−GE(βkps) =

∫ βkpρ
∗

βkpρ

E(z)dz =

since ρ = 1+i
√

3
2

= ρ∗ + 1 = αρ∗ for α =

1 1

0 1



=

∫ βkpρ
∗

βkpαρ∗
E(z)dz

and

GE(βkps)−GE(βkp) =

∫ βkpαρ
∗

βkpρ∗
E(z)dz =

∫ αρ∗

ρ∗
E[βkp](z)dz =

by proposition 2.3.3, (d) in [8]

= a0(E[βkp]) = a0(E[1/kp])

(since βkp sends ∞ to the cusp 1/kp). Since

βkps =

0 −1

1 −kp


we find that the coefficient near {1/kp} in the boundary ∂(E) is

GE(1, kp)−GE(1,−kp) = GE(βkp)−GE(βkps) = −a0(E[1/kp])

Since s 6∈ Γ0(p2), we have Γ0(p2)I 6= Γ0(p2)s and

GE(s)−GE(I) =

∫ ρ

ρ∗
E(z)dz =

∫ αρ∗

ρ∗
E(z)dz = a0(E)

The coefficient near {∞} in the boundary ∂(E) is

GE(0, 1)−GE(1, 0) = GE(I)−GE(s) = −a0(E)
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Coefficients of ∂(E) and −δ(E) coincide. Since coefficients sum to zero (δ(E) is an

element of Div0 ) we obtain the equality ∂(E) = −δ(E).

Let E ∈ H1(X0(p2), cusps, K) and E0 ∈ H1(XΓ−P−, P+, K) be Eisenstein elements

corresponding to the Eisenstein series E ∈ E2(Γ0(p2)). The mapping π : XΓ → X0(p2)

is given by πΓz = Γ0(p2)z. It induces the element π∗(E0) ∈ H1(X0(p2), cusps, K).

Explicitly, for g ∈ Γ \ Γ(2) we consider ζ0(g) – the image in XΓ of the geodesic in

H ∪ P1(Q) joining g0 and g∞; and ζ(g) – the image in X0(p2) of the geodesic in

H ∪ P1(Q) joining g0 and g∞. Then π∗(ζ
0(g)) = ζ(g).

Lemma 4.3.3. [4, Lemma 4.9] The integrals of every holomorphic differential over

E and π∗(E0) are zeroes.

Proof. Let λE be the rational function on X0(p2) whose logarithmic derivative is

2πiE(z)dz. Let y ∈ H1(XΓ−P+, P−, K). Denote by (λE)∗(y) the corresponding path

in H1(H ∪ P1(Q)− {0,∞}, 1, K). By proposition 4.2.1,

E0 ◦ y = ψE(y) =
1

2πi

∫
y

dλE
λE

= γ1 ◦ (λE)∗(y),

where γ1 is the path in H1(H ∪ P1(Q) − {1}, {0,∞}, K) that connects 0 to ∞ (the

latter relation is the definition of the period homomorphism). So,

E0 = (λE)∗(γ1)

Now, for any holomorphic differential ω on X0(p2) we have

∫
π∗(E0)

ω =

∫
γ1

(λE)∗(ω ◦ π) = 0.

The latter equality follows from the fact that the differential (λE)∗(ω ◦π) is holomor-

phic on H ∪ P1(Q) (no zeroes or poles occur at 1 by lemma 2.3.2).
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Theorem 4.3.1. [4, Th. 1.1] Let E ∈ E2(Γ0(p2)) be an Eisenstein series with

coefficients at infinity from a fixed number field K. If E is a basic series from section

3.1, then the corresponding Eisenstein element is given by

E =
∑

g∈P1(Z/p2Z)

FE(g)ζ(g).

In all other cases there is similar representation with FE(g) changes to an explicitly

computable function GE(g).

Proof. Let E ∈ H1(X0(p2), cusps, K) be the Eisenstein element corresponding to the

basic Eisenstein series E (i.e. E is one of the series E1, E2 or Eφ,φ̄
2 ). Also, let

π∗(E0) =
∑

g∈P1Z/p2Z

FE(g)ζ(g) ∈ H1(X0(p2), cusps, K).

From propositions 4.3.1 and 4.3.2 it follows that the boundary of E is a constant

multiple of π∗(E0) :

∂(E − kπ∗(E0)) = 0.

We will check that E − cπ∗(E0) ∈ H1(X0(p2), K). After that the theorem will be

proved. Indeed, by the lemma 4.3.3 every holomorphic differential is integrated to

zero over E − cπ∗(E0) which implies that E = cπ∗(E0) (the last conclusion follows from

the fact the intersection pairing is perfect).

Let {β1, . . . , βm} be cusps in X0(p2). Write

E − kπ∗(E0) =
∑

1≤i<j≤m

cij{βi, βj}. (1)

Here the modular symbol {βi, βj} is the geodesics from βi to βj. The representation

(1) is the general form of an element of H1(X0(p2), cusps, K), because the first relative

homology is the group of curves with endpoints in the set cusps.
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We use the condition of zero boundary:

0 =
∑

1≤i<j≤m

cij∂{βi, βj} =
∑

1≤i<j≤m

cij({βj} − {βi}) =

=
m∑
j=1

(∑
i:i<j

cij

)
{βj} −

m∑
i=1

(∑
j:j>i

cij

)
{βi}.

Gathering coefficients near {βi} we get that for every i ∈ {1, . . . ,m} :

∑
j:j<i

cji =
∑
j:j>i

cij.

Solving with respect to cim we get

cim =
∑
j:j<i

cji −
∑

j:i<j≤m−1

cij.

Finally, ∑
1≤i<j≤m

cij{βi, βj} =

=
∑

1≤i<j≤m−1

cij{βi, βj}+
m−1∑
i=1

cim{βi, βm} =

=
∑

1≤i<j≤m−1

cij{βi, βj}+
m−1∑
i=1

(∑
j:j<i

cji −
∑

j:i<j≤m−1

cij

)
{βi, βm} =

=
∑

1≤i<j≤m−1

cij{βi, βj}+
m−1∑
j=1

(∑
i:i<j

cij

)
{βj, βm} −

m−1∑
i=1

( ∑
j:i<j≤m−1

cij

)
{βi, βm} =

=
∑

1≤i<j≤m−1

cij

(
{βi, βj}+ {βj, βm} − {βi, βm}

)
=

=
∑

1≤i<j≤m−1

cij

(
{βi, βj}+ {βj, βm}+ {βm, βi}

)
In the latter expression the sum {βi, βj} + {βj, βm} + {βm, βi} is a cycle, i.e. an

element of H1(X0(p2),Z).

So, E − cπ∗(E0) ∈ H1(X0(p2), K) hence, by perfect intersection pairing it is zero.
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Denote by {0,∞} the image in H1(X0(p2), cusps) of the geodesics joining 0 and

∞. The winding element ep2 is a modular symbol such that defines an integration of

a holomorphic form along {0,∞}.

The exact expression for ep2 is obtained by integrating a holomorphic form ω over

the Eisenstein element E2, where E2 corresponds to the basic form E2. We recall that

by the main theorem,

E2 =
∑

g∈P1(Z/p2Z)

FE2(g)ζ(g).

Corollary 4.10.

p2 − 1

4
ep2 = −

∑
x∈(Z/p2Z)∗

F ((1,−x))0,
1

x

Proof. The structure of a projective line P1(Z/p2Z) is the following:

P1(Z/p2Z) = {(0, 1), (1, 0), (1, 1), . . . , (1, p2 − 1), (p, 1), . . . , ((p− 1)p, 1)}

(each pair is an element of (Z/p2Z)2).

For each g we find the modular symbol ζ(g). It is the image in H1(X0(p2)) of the

geodesics that connects g(0) to g(∞).

(0, 1) is the second row of the identity matrix I. ζ((0, 1)) = {0,∞}

(1, 0) is the second row of the matrix

0 −1

1 0

 . ζ((1, 0)) = {∞, 0} = −{0,∞}.

For t ∈ {1, 2, . . . , p2 − 1}

(1, t) is the second row of the matrix

0 −1

1 t

 . ζ((1, t)) = {−1
t
, 0}

For k ∈ {1, 2, . . . , p− 1}

(kp, 1) is the second row of the matrix

 1 0

kp 1

 . ζ((kp, 1)) = {0, 1
kp
}.
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For any holomorphic differential ω,
∫
E2 ω = 0, i.e.

∑
g∈P1(Z/p2Z)

FE2(g)

∫
ζ(g)

ω = 0

In this sum the coefficient near
∫
{0,∞} ω is

FE2((0, 1))− FE2((1, 0)).

We compute this coefficient using the definition of the function FE2 . Since 2 is a unit

modulo p2, (0, 1) = (0, 2) = (1−1, 1+1). We apply the definition of FE2((r−1, r+1))

with r = 1 :

FE2((0, 1)) =
1

2πi

(
2L

(
E2

1 −1

0 2p2

 , 1)− L(E2

1 −1

0 p2

 , 1)) =

= −S(1, 2p2) + S(1, 2) +
1

2
S(1, p2)− 1

2
S(1, 1).

Here S(u, v) is the Dirichlet sum,

S(u, v) =
v−1∑
t=1

B̄1(
tu

v
)B̄1(

t

v
),

B̄1(x) = x− 1
2
, 0 < x < 1, B̄1(0) = 0 and B̄1 is 1-periodic. We compute

S(1, v) =
v−1∑
t=1

B̄1(
t

v
)2 =

v−1∑
t=1

(
t

v
− 1

2

)2

=

=
1

v2

v−1∑
t=1

t2 − 1

v

v−1∑
t=1

t+
v − 1

4
=

=
(v − 1)v(2v − 1)

6v2
− v(v − 1)

2v
+
v − 1

4
=

(v − 1)(2v − 1)

6v
− v − 1

4
=

(v − 1)(v − 2)

12v
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It follows that

FE2((0, 1)) =
(p2 − 1)(p2 − 2)− (2p2 − 1)(2p2 − 2)

24p2
=
−p2 + 1

8

Similarly, we find FE2((1, 0)). Since 2p2− 2 is a unit modulo p2, (1, 0) = (2p2− 2, 2p2)

and we apply the definition of FE2((r − 1, r + 1)) with r = 2p2 − 1.

FE2((1, 0)) =
1

2πi

(
2L

(
E2

1 −2p2 + 1

0 2p2

 , 1)− L(E2

1 −2p2 + 1

0 p2

 , 1)) =

= −S(2p2 − 1, 2p2) + S(2p2 − 1, 2) +
1

2
S(2p2 − 1, p2)− 1

2
S(2p2 − 1, 1).

We compute Dirichlet sums: S(2p2 − 1, 1) = 0,

S(2p2 − 1, 2) = B̄1(
2p2 − 1

2
)B̄1(

1

2
) = 0

S(2p2 − 1, 2p2) =

2p2−1∑
t=1

B̄1(
t(2p2 − 1)

2p2
)B̄1(

t

2p2
) =

by periodicity

=

2p2−1∑
t=1

B̄1(− t

2p2
)B̄1(

t

2p2
) =

2p2−1∑
t=1

(
− t2

4p4
+

1

4

)
=

=
2p2 − 1

4
− 1

4p4

2p2−1∑
t=1

t2 =
2p2 − 1

4
− (2p2 − 1)2p2(4p2 − 1)

24p4
= −(p2 − 1)(2p2 − 1)

12p2

S(2p2 − 1, p2) =

p2−1∑
t=1

B̄1(
t(2p2 − 1)

p2
)B̄1(

t

p2
) =

by periodicity

=

p2−1∑
t=1

B̄1(− t

p2
)B̄1(

t

p2
) =

p2−1∑
t=1

(
− t2

p4
+

1

4

)
=
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=
p2 − 1

4
− 1

p4

p2−1∑
t=1

t2 =
p2 − 1

4
− (p2 − 1)p2(2p2 − 1)

6p4
= −(p2 − 1)(p2 − 2)

12p2

It follows that

FE2((1, 0)) =
(p2 − 1)(2p2 − 1)

12p2
− (p2 − 1)(p2 − 2)

24p2
=
p2 − 1

8

The coefficient near
∫
{0,∞} ω in

∫
E2 ω is −p2−1

4
. It follows that

p2 − 1

4
ep2 =

∑
g 6=(1,0),(0,1)

FE2(g)ζ(g).

Similar calculations for g = (kp, 1) and g = (1, kp) show that corresponding terms

will cancel.
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