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Abstract

This project is a literature survey of various theorems and their applications in Choquet
theory. For a compact convex subset D of a locally convex topological vector space F,
each point x € D is a barycentre of a maximal probability measure on D. This is, in
fact, a generalized version of Minkowski’s Theorem for finite dimensional spaces. This
measure exists uniquely if the compact convex set is a simplez. If the compact convex set
is metrizable then the above measure is supported by the ext(D) but very few information
is available if the set is non-metrizable. Measures supported by the extreme points are
the maximal measures. For a non-metrizable compact convex set the set of all extreme
points may not be of Borel category, hence for such cases, the support of maximal measure
can have a non-empty intersection with a Borel set disjoint from the extreme boundary.
The Choquet-Bishop-De Leeuw Theorem, hence, states that - For an arbitrary locally
convex topological vector space, each point of a compact convex subset is represented by
a maximal probability measure which gives zero value to all Baire sets disjoint from the

extreme points.

Further, we study the analysis of function spaces, namely, C'(K) in the context of Choquet
boundary. If M is a uniform algebra of continuous functions over a compact Hausdorff
space K then the state space of M is defined; it is a w*-compact convex subset of M*.
The extreme points of the state space are precisely the point evaluation functionals. This
motivates to define the Choquet boundary of M, as a subset of K. Choquet boundary is a
boundary and its closure is the smallest closed boundary for M, called the Silov boundary.
Here we also study the notion of peak point and the result that when K is metrizable
then the set of all peak points is dense in the Choquet Boundary. As an application of
this notion, we discuss the well- known result by Saskin, which states that for a Korovkin

subspace of C(K') the Choquet boundary is the whole K and also vice versa.
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Chapter O

List of Notations

Represents set of natural numbers.

Represents set of integers.

Represents set of real numbers.

Boundary of D, if D is a compact convex subset of a lctvs E.
The underlying field (C or R).

min{a, b}.

max{a, b}.

The convex hull of set K.

The support of the measure p.

the Dirac delta measure on K.

The set of all extreme points of a compact convex D.

The set of real valued continuous functions on a compact Hausdorff space
K.

The set of complex valued continuous functions on a compact Hausdorff

space K.

For a compact convex subset D of a lctvs E, represents the set of all real

valued affine functions on D.

For a compact convex subset D of a lctvs E, S(D) represents the set of

all continuous convex functions on D.

Set of all regular Borel measures on K for a compact Hausdorff set K.



Chapter 0 List of Notations

Set of all non-negative regular Borel measures on K for a compact Haus-
dorff set K.

The State space of M; the continuous linear functionals on M with unit

norm and at 1 its value 1.

For a compact Hausdorff set K, represents the set of all probability mea-
sures on K. By a probability measure we mean a positive measure with

total variation norm 1.

inf{g(x) : g € =S(D),g = f}, the upper envelope of a bounded f on D.

~

f(x) = f(z) for x € D and is concave on D.
)

sup{g(x) : g € S(D),g < f}, the lower envelope of a bounded f on D.

~

f(z) < f(x) for x € D and is convex on D.



Chapter 1

Introduction

The importance of convexity in functional analysis has long been realized, but a com-
prehensive theory of infinite-dimensional convex sets has hardly existed for more than
a decade. In fact, the integral representation theorems of Choquet-Bishop-de Leeuw
together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-
dimensional convexity. Initially considered curious and technically difficult, these the-
orems attracted many mathematicians, and the proofs were gradually simplified and
fitted into a general theory. Today Choquet Theory provides a unified approach to study
integral representations and its applications in the fields like potential theory, probabil-
ity, function algebras, operator theory, group representations, and ergodic theory. At
the same time, the new concepts and results have made it possible and relevant to ask
new questions within the abstract theory itself. Such questions pertain to the inter-
play between compact convex sets D and their associated spaces, Ag(D), of continuous
affine functions; to the duality between faces of D and appropriate ideals of Ag(D);
to dominated extension problems for continuous affine functions on faces; and to direct
convex sum decomposition into faces, as well as to integral formulas generalizing such
decompositions. These problems are of geometric interest in their own right, but they
are primarily suggested by applications, in particular to operator theory and function

algebras.

In its geometrical form, the Choquet representation theorem can be viewed as an infinite-
dimensional generalization of a classical theorem of Minkowski concerning finite dimen-
sional compact convex sets. Indeed, suppose that D is a compact convex subset of a
locally convex Hausdorff real topological vector space E. If E is assumed to be finite
dimensional, then the Minkowski’s theorem asserts that each point x in D is a convex
combination (or barycenter) of some finite set of extreme points; that is, there exist pos-
itive real numbers ay, as, . . ., a, and points 1, xs, . .., z, in ext(D) such that Y  a; =1

and = > | a;x;. Furthermore, each point of D admits only one such representation if

3



4 Chapter 1 Introduction

and only if D is a simplex. If E is assumed to be infinite dimensional then Minkowski’s
theorem fails. However, the Krein-Milman Theorem rescues us and shows that such con-
vex combinations of extreme points are dense in D. If, in addition, D is metrizable then
the Choquet’s theorem applies and asserts that each point of D is a barycentre of a Borel
probability measure supported on ext(D). A curious reader must raise voice “Is this

measure unique?”

We define Choquet simplex in its classical form by means of the following. Here by D we

denote the convex cone generated by D.

Definition 1.0.1. Let D be a compact convex subset of a Ictvs E, lying on a hyperplane
H not containing the origin. D is said to be a simplex if the subspace generated by the

cone D viz. D — D is a lattice.

Theorem 1.0.2 (Choquet-Meyer). Let D be a compact convex subset of a locally convex
space E. D is a simplex if and only if each point of it is a barycentre of a unique maximal

Borel probability measure.

Mazimality of a measure depends on how closely the measure is supported on the set
of extreme points of D, although support of a maximal measure on D is not necessarily
contained in the set of extreme points of D. In finite dimensional case Choquet simplexes
are precisely the n-simplexes (convex combination of n extreme points) in a space of
dimension at most n — 1. Most common example of a simplex in an infinite dimensional
space is P (K), where K is a compact Hausdorff space. The list includes the State
space (say K(M)) of an uniformly closed subspace M of Cg(K) which separates points
and containing 1 provided K (M) satisfies a Uniqueness condition: For L € K(M) there
exists unique p € P (K), such that po ¢! is a boundary measure on K (M) and L(g) =
$ 9(x)dp(x), Vg e M. Here ¢ : K — M* be defined by ¢(t)(f) = f(t).

It is relevant to mention here that for the case of complex scalars the Uniqueness condition
may not be ensured by this property(Simplex) of the state space although a sophisticated
geometry takes place in this case; M satisfies Uniqueness condition if and only if the dual

closed unit ball of M* is Simplexoid, i.e. every proper face of it is a Simplex.

The goal of this project is to study the Choquet’s Theorems and its applications in

Functional Analysis in particular to the theory of convex sets in Banach spaces.

We now give a chapter-wise summary of this thesis. This is a literature survey and most
of the results are quoted from [1, 2, 9, 10]. [7, 11, 14] are some good references for the
theory of Convex sets in finite dimensional spaces, the first part of Chapter 2 is motivated
from these monographs. All our notations are standard and common in the literature. A

list of common symbols is given in the Chapter 0.
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In Chapter 2 we study Choquet Integral Representation Theorem (Theorem 2.2.2). It
states that corresponding to each probability measure supported on the extreme points
of a compact convex subset there exists a unique point of the compact convex set, called
the barycentre or resultant of the measure. This association is w*-continuous. It is rather
a deep fact and the central theme of this project is for any point of a compact convex set
there exists a measure supported on the extreme points of the set. In the same Chapter,
we study the Completely monotone function. A representation theorem for the class of

bounded completely monotone function is also discussed.

In Chapter 3 the main result is Choquet-Bishop-De Leeuw Theorem(Theorem 3.2.1) for a
compact convex metrizable set. It is, in fact, converse of Theorem 2.2.2 when the compact
convex set is metrizable. In this Chapter we introduce the space Ar(D) where D is a
compact convex subset of a Ictvs E. For a bounded function f, we introduce the upper
envelope and lower envelope of f. They are concave and convex functions respectively.

Several properties of these functions are also discussed.

Chapter 4 is devoted to discussing the Choquet-Bishop-De Leeuw Theorem for the non-
metrizable case. The tools developed in the literature have impacts on many other as-
pects also. This chapter starts with a generalization of Stone-Weierstrass Theorem which
asserts a sufficient condition which makes a subspace of Cg(K) uniformly dense in it
(Lemma 4.0.1). M™*(D) turns out to be a partially ordered set with respect to the par-
tial ordering defined in Pg.35. A judicious Zornification ensures that each element of
M™*(D) is dominated by a maximal measure in it(Lemma 4.1.4). The maximality of a
measure discussed at the beginning is analogous to the maximality defined here. In Theo-
rem 4.1.13, it is observed that a maximal measure p in M* (D) does not distinguish f and
f for f € Cr(D) (Mokobodzki). On the other hand, a point € D is an extreme point
if and only if f(z) = f(x) for f € Cgr(D), see Theorem 4.1.12. This clarifies S(x) must
be in a small neighborhood of ext(D). The notion of boundary measure is introduced for
a signed measure. Finally, the most generalized version of Choquet-Bishop-De Leeuw is
obtained in Theorem 4.1.16.

Theorem 1.0.3. Let D be a compact convex subset of a lctvs E. Then for each z € D
there exists a measure p € (D) such that x = r(u) and pu(F) = 0 for any Baire set
F < D\ext(D).

Chapter 4 ends with some applications of these results: The Rainwater Theorem (Theo-
rem 4.2.1) is proved, it is shown that in a compact convex set D a probability measure
p is a w*-limit of a net of discrete probability measure with the same resultant (see

proposition 4.2.5) as that for p. A new proof of Stone-Weierstrass Theorem is also given.

In Chapter 5 we discuss about a special type of compact convex subset of a lctvs F,

called Simplez(Definition 1.0.1). Various characterizations are discussed when a compact
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convex set is a Simplex. The most geometric version of Definition 1.0.1 is stated in
Theorem 1.0.2. Finally, it is observed that if for a compact convex X, dim <)~( - X ) =n
then X is a Simplex if and only if X has only n extreme points. Here X is assumed to

be a subset of a hyperplane in E not containing the origin.

Let M be a subalgebra of C¢(K) containing constants and separates points. The weak*
compact convex K (M) = {L € By : L(1) = 1} is called the State space of M, an obvious
generalization of Z(K). From Milman’s converse of Krein-Milman Theorem it follows
ext(K(M)) < ¢(K) and this leads to define B(M) = {t € K : ¢(t) € ext(S(M))}. It is
a boundary for M called the Choquet boundary, the smallest boundary contained in any
closed boundary. The aim of Chapter 6 is to discuss the analysis of the function spaces viz.
C(K) and its uniform algebras in the context of Choquet boundary. Choquet boundary
plays a crucial role in the analysis of continuous function spaces; it carries information
of the space, a glimpse of it may be found in Theorem 1.0.3 if D is replaced by the State
space of a subspace. m is the so-called Silov boundary for M. The interplay between
peak set and Choquet boundary are discussed and are explained with various examples.
The celebrated Korovkin Theorem is discussed with its full generality in the context of

the Choquet boundary.

Four appendixes at the end contain some basic prerequisites which make this Thesis self

contained and are also important in their own right.

This project initiates to create curiosity in the fields of infinite dimensional convexity,
function spaces of continuous functions over various domains and other allied areas which
have more or fewer connections with the Choquet Theory. We encounter numerous results
related to these fields (in Chapter 4, 6) which can be derived as consequences of Choquet’s
Theorems. In the last few decades, the territory of Choquet’s Integral Representation
has reached to the subjects like Mathematical Economics, Risk Management, Potential
Theory, Game Theory, Operations Research, etc. Interested readers can come across the

articles [4-6] to get an overview of the vastness of its applicabilities.



Chapter 2

Choquet Integral representation

theorem

We begin this Chapter with two fundamental theorems in Functional analysis, viz. Hahn-

Banach theorem and Hahn-Banach separation theorem.

Theorem 2.0.1. (Hahn-Banach theorem) Let M be a proper subspace of a lctvs E
and p be a sublinear functional on E. Let f be a linear functional on M such that
Re f(x) < p(x) for all z € M. Then f can be extended to whole E with Re f(z) < p(x)
for all x € E.

Theorem 2.0.2. (Hahn-Banach separation theorem) Let M be a convex subset of a
letvs E and xg € E\M. Then there exists a linear functional f € E* and A € R such that
Re f(x9) = A = sup,ep Re f(x).

A weakening or strengthening of the above separation depends on the topological prop-
erties of M. For example if M, N be two disjoint compact convex sets then a strict
separation is possible, on the other hand, if M is compact convex and xq is an extreme

point of M then only above separation is possible.

2.1 Carathéodory’s theorem

Proposition 2.1.1. Let K be a non-empty compact convex subset of a lctvs X. Suppose

® is a real-valued convex and usc funtion on K. Then, ¢ attains its supremum on K.

Proof. 1t is clear that sup, . ®(z) < o. In fact, if V, = {x € K : ®(z) < a} then (V,)aer

is an open cover of K, which in turn, admits a finite subcover for K and hence the result.

7



8 Chapter 2 Choquet Integral representation theorem

Choose (z,) € K such that ®(z,) — sup,cx P(x). Since K is compact, there exists a

subnet (z,,) of (z,) such that for some xy € K,

Lo, — Lo-
Now,
D(za,) — sup B(2).
reK
Thus,
sup ®(x) = ®(zg) = limsup ®(z,,) = sup ¢(z).
reK i zeK
This implies that ®(xg) = sup,cx (). Thus, ¢ attains its supremum on K. O

Let us recall upper semi continuous function in Chapter 0. Here are few remarks which

can be derived directly from the definition.

Proposition 2.1.2. (a) Let f be areal valued function of a topological space (X, 7).

f is usc function if and only if for any net z, — xo = f(x¢) = limsup f(z,).
(b) Let f be a real valued function of a topological space (X, 7). f is Isc function if
and only if for any net z, — z¢o = f(x¢) < liminf f(z,).

(c) Let (X,|.|]) be any normed linear space. We can define the weak* topology on X*
(refer Appendix B). If |.| is the induced norm on X*, then |.| : (X*, w*) — Ry,

is a lsc function:

Proof. (a) In fact if x, — zo and € > 0 then by the definition of usc function,
xg € {x € X : f(x) < f(xg) + €} is open in (X, 7). Therefore, by definition of

convergence of net, for infinitely many «,

fza) < flxo) + e

This implies, for all € > 0

limsup f(z,) < f(x) + €.

[0}

This implies,
lim sup f(za) < f(xo).

[0}

Conversely, let A\e Rand A = {x € X : f(z) = A}. We, now, show that A is closed.
Let (z,) € A such that x, — x¢. This implies, for all «,

flza) = A
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From hypothesis,
f(zo) = limsup f(z,) = A

07

This implies, g € A. Hence, A is closed. This implies, X\A is open. Therefore, f

is usc function.
(b) A similar proof like (a) .
(c) By the Banach Alaoglu Theorem B.1.1, {z* € X* : ||2*|| < 1} is w*-compact in

X*. Hence, {z* € X* : |z*| < 1} is w*-closed in X*. This implies, for any a € R,
{z* e X* ||a¥|| < a} ={y" € X* : ||y*|| < 1} is w*-closed in X*.

Hence, |.| is a Isc function on X*.

[]

Theorem 2.1.3 (Bauer’s Maximum Principle). Let K be a non-empty compact convex
subset of a lctvs X. Suppose @ is a real-valued convex and usc funtion on K. Then, ¢

attains its supremum at some extreme point of K.

Proof. Define ./ = {F < X : F' # ¢, F is closed extreme set of K}. . is non-empty as
K e 7. Now, . has the following properties:

(1) If (Xi)iel c . and ﬂiel Xz #* ¢, then m Xz €7

i€l
(ii) Foreach F' € .# and convex usc function g, let F' = {x € F': g(x) = sup,cr 9(y)}.
Then, F' € .7.

PROOF OF (i): Let (X;)ier €. and [),.; X; # ¢. Since each X is closed, so is [),.; Xi.
Let 2,y € (),c; Xi such that for some A € (0,1), Az + (1 — Ny € [),.; Xi. This implies, for
allie I, Az + (1 — Ny € X;. Hence, for each i € I, z,y € X;. Therefore, z,y € ),; X.

PROOF OF (ii): First of all, F” is non-empty, by Proposition (2.1.1). Let x,y € F such
that Az + (1 — Ny € F".

supg(z) = g(Az + (1 = N)y)

< Ag(z) + (1= N)g(y)

< Asupg(=) + (1= ) (supg(=) (2.1)
= supg(2).

This implies, Ag(x) 4+ (1 —N)g(y) = sup,.p g(2). Hence, g(z) = g(y) = sup,cr g(z). Thus,
x,y € F’. Therefore, F’ is an extreme set of F' and we have assumed F' is extreme set
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of K. This implies that F” is extreme set of K, since extreme sets of a given set are
transitive. It can be easily seen that F” is closed subset of K. Therefore, F” is non-empty

closed extreme set of K. Hence, F' € ..

Now, define a partial ordering < on .% as:
For Fy, Fy € ., F; < Fy if and only if F, € F}.

Thus, (-, <) is a partially ordered set. Let (X;);c; € % be any chain. Then, by Cantor’s
Intersection theorem and from property (i) of .77, ¢ # ()..; X; € ¥ and clearly, for all
1€ I, X; < ﬂ

upper bound. Now, by Zorn’s Lemma, (., <) has a maximal element say F' € ..

X;. Thus, (X;);e; has an upper bound. Hence, every chain in .% has an

el

Cramm: If F € . is a maximal element of (¥, <), then ' must be singleton.

PrOOF OF THE CLAIM: Suppose there exists z,y € F such that x # y. Then by Hahn
Banach theorem, there exists f € X*\{0} such that f(z) < f(y). Consider, F' = {z €
F: f(2) = sup,ep f(w)}. Clearly, F' & F, since x ¢ F’. By property (ii) of ./, F' € ..
This implies that F' < F’. But this contradicts the maximality of F'. Thus, F' must be

singleton.

Consider ' = {z € K : ®(x) = sup,r ®(y)}. Then, by property (ii), F" € #. We
can get a chain (X;);er in (., <) such that X; = F”, for some j € I. Then, let A be a
maximal element of (., <) such that X; < A, for all 7 € I. In particular, F’ < A, which
implies A € F’, Now, by above claim, A is singleton say A = {a}. It follows easily that

a is an extreme point of set K and hence, ® attains its supremum at a. O

Theorem 2.1.4 (Krein Milman’s Theorem). Let K be a non-empty compact convex
subset of a lctvs X. Then, ext(K) # ¢ and conv(ext(K)) = K.

Proof. From Bauer’s Maximum Principle (2.1.3), it is proved that ext(K) # ¢. Clearly,
conv(ext(K)) < K. Suppose there exists xy € K\conv(ext(K). Then, by Hahn Banach
separation theorem (2.0.2), there exists f € X*\{0} such that

f(xg) > sup f(conv(ext(K)).

Consider, M = {z € K : f(x) = sup,cx f(y)}. By Bauer’s Maximum Principle (2.1.3),
M is non-empty, closed subset of K and has an extreme point. This implies that
conv(ext(K)) n M # ¢. Now,

sup 1(y) > F (o) > sup f (@@ (ext(K)).
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This implies that conv(ext(K) n M = ¢. This is a contradiction. Hence, conv(ext(K))
= K. [l

Theorem 2.1.5 (Carathéodory’s theorem). Let X be alctvs. Let K < X be compact
and convex. Let dim X = n. Then, each point in K can be expressed as a convex

combination of at most (n + 1) extreme points of K.

Proof. We will prove by induction on n. The result is true for n = 1 since forn = 1, X is
a line and K is just a line segment. Suppose the result is true for any lctvs of dimension
n. We now prove the result for a lctvs X of dimension n + 1. Let K < X be compact

and convex. Let z € K.

CASE (1): Let z € K. Then by Hahn Banach separation theorem (2.0.2), there exists
a supporting hyperplane H of K in X such that x € H n K. Since H is a hyperplane in
X,

H={xeX: f(z) = a}, for some o € K and f e X*\{0}.

Now, dim(H n K)< n, since Hn K € H and dim X = n. Now, H n K is compact (since
it is a closed subset of the compact set K).

CLAM: H n K is convex set.

PROOF OF THE CLAIM: Let y,z€ H n K and A € (0,1). Then, Ay + (1 — \)z € K, since

K is convex set. Since y,z € H = f(y) = a and f(z) = a. Hence,

FAy+ (1 =X)z) =Af(y) + (1 =N f(2) = rda+(1—-Na=a.

This implies Ay + (1 — \)z € H and therefore Ay + (1 —\)z € H n K. It follows from here

that H n K is convex. This completes the proof of the claim.

Therefore, now, by induction hypothesis, there exists (n+ 1) extreme points 21, 22, ..., Zn4+1

such that x can be written as convex combination of z1, 2o, ..., Z,11.

We now claim that ext(HnK) € ext(K). It is sufficient to prove that H n K is an extreme
set of K and then since ext(H n K) < ext(K), we arrive at our claim. Let y, z € K such
that there exists A € (0,1) and Ay + (1 — A\)z € H n K. This implies \y + (1 — )z € H
and Ay + (1= X)z e K. Thus, f(Ay+ (1 —N)z) =a = Af(y) + (1= \)f(2) = a. Suppose
without loss of generality, f(y) # «. Assume without loss of generality that K lies in the
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half space {x € X : f(z) < a}. Then, f(y) < a. Now,

«

l

Af(y) + (1 =X f(z)
Af(y) + (1= Ve
<A+ (1=

N

(2.2)

Q.

which gives us a clear contradiction. Similarly, we get a contradiction if f(z) < «. This
implies f(y) = f(z) = «, which in turn, implies that y,z € H. Also, since y,z € K,
we get y,z € H n K. Therefore, H n K is an extreme set of K. Therefore, using a
similar result like Remark A.1.4(b), we get that ext(H n K) < ext(K). This implies that
21, 29, ..., Zny1 are extreme points of K. Therefore, x can be written as convex combination

of the extreme points of K namely 21, 2, ..., z,.1. Thus, the result is true in this case.

CASE 2: Let z € int(K).

By Krein Milman’s theorem (Theorem 2.1.4), ext(K) # ¢ and thus, there exists y €
ext(K). Consider the line joining y and = and intersecting the boundary of K at point
say z. Then, there exists (n + 1) extreme points z1, 2, ..., 2,41 such that z is convex
combination of 2, 29, ..., 2,41 by following the same proof as in Case(1). Finally, we get
x to be the convex combination of the points vy, z1, 2o, ..., 2,41. Hence, the result is true

in the case too. Hence, the result is true for any lctvs of dimension n + 1.

Thus, by 2"¢ principle of mathematical induction, the result is true for any lctvs of

dimension n, for any € N. m

2.2 Resultant of a Measure

Let X be a compact convex subset of a lctvs E. The Proposition C.2.2 in Appendix
C' tells us that the set of all extreme points of set of all probability measures &?(X) in
M (X) is the set of all Dirac measures {¢; : t € X}. Thus, by Krein Milman Theorem
2.1.4,

P(X) = conv” {6, : t e X}.

Definition 2.2.1 (Resultant of a Measure). Let X be a compact convex subset of a
letvs E. Let p € M(X). A point z is said to be a resultant (or barycentre) of p if
for any f e E*,

L fdu = f().

Notation: x = r(u).
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Theorem 2.2.2. Let Y be a compact subset of a lctvs E. Suppose cono(Y') = X is also
compact. Let e Z(Y). Then, there exists a unique z € X such that x = r(u) and the

map r : Z(Y) — X defined as p —— r(u) is w*-continuous.

Proof. Let e P(Y) = cono”" {6, : t € Y}. This implies there exists a net (u,)

conv{d; : t € Y} such that u, —> u. Hence, for every «,
ka
Ho = D Biore
j=1
for some ¢ €Y, 3; > 0 and Z?il Bj = 1. Now,

ko
> Bty e comp(Y) = X.

j=1
Let
ko
Ty = Z Bjt?
j=1

For every f € B, f(za) = Y2, B f(t2) = §, fdpa

Hence, z, = r(ia). Now, since X is compact, there exists a convergent subnet say (z,)

such that z,, — x, for some z € X. Let f e E*. Then,

f(x) = Tim f(zq,)
ke,
= lim Z Bif(t5)
j=1

ka,

=1lim » B0 (f
lfnj; i) (2.3)

= lim p1q,(f)

Hence, z = r(u). Now, suppose there exists another y € X such that y = r(u). This
implies, for any f € E*,

ﬂw=ij=f@)

This is a contradiction, since by Hahn Banach theorem 2.0.1, there exists g € E* such

that g(z) # g(y). This implies there exists unique x € X such that x = r(u).



14 Chapter 2 Choquet Integral representation theorem

We now show the map v : Z2(Y) — X defined as u — r(p) is w*-continuous. Let
(fte) iIn P(Y) such that p, v, to- It is enough to show that any convergent subnet of
(r(pa)) converges to r(pg). Let 7(pa,) — y in X. Then, for any f e E*,

f(r(pa,)) — f(y)

which implies
| faue, — 1w
Y

Now,

L Fdta, — L Fdpo = F(r(po)).

This implies for all f € E*, f(y) = f(r(uo)). By Hahn Banach theorem 2.0.1, E* separates
points and hence, y = (o). Therefore, r(u,,) converges to (). Suppose (r(uq)) does
not converge to r(p). This implies, there exists a subnet (r(u,,)) and a neighborhood
U of r(uo) such that for all i, 7(pua,) ¢ U. Since X is compact, there exists a convergent
subnet of this subnet say (T(Maij)). Hence, r(,uaij) —> 7(pp). But, for all j, r(u%) ¢ U,

which is a contradiction. This implies, 7(pa) — 7(10)- O

Theorem 2.2.3. Let Y be a compact subset of a Ictvs E. Suppose conv(Y) = X is also
compact. Then, z € X if and only if there exists u € Z(Y) such that x = r(u).

Proof. The converse is true by the theorem 2.2.2. Now, assume x € X = ¢onv(Y’). Then,

there exists (z,) < conv(Y') such that z, — x. Hence,

k

Lo = Z ty;

i=1

where for some k€ N and all i, y* € Y, t% > 0 and 37 t* = 1 Define, 1, = Zle {§0ye €

1=1"1 7

P(Y). Then, ||pia|| = 1 and p, is a positive measure. Since Z(Y') is w*-compact, there
exists a subnet (p,,) in Z(Y) and pg € Z(Y) such that p,, AR po- Let f e E*. Then,

f fduy = lim f Fdua,
Y @ Jy
k
= lim ) ¢ J fdoye
) Y
k

= lim f (), 7y7)

i=1

= hén f(za)
= [f(x).
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This implies, x = r(ug) where py e 2(Y). O

Remark 2.2.4. Let K be a compact convex subset of a Ictvs X. Then, by Krein Milman
theorem (2.1.4), ext(K) # ¢ and conv(ext(K)) = K. Now, let Y = ext(K) c X is
compact and also, conv(Y) = K. Hence, by earlier theorem, for any x € X, there exists
pe P(Y) such that z = r(p). Thus, S(u) < ext(K).

As an immediate consequence of above Theorem we have the following.

Corollary 2.2.5. Let E be a lctvs. The following statements are equivalent.

(a) (Krein-Milman Theorem) If X < E is a compact convex set and Y = ext(X),
then X = conv(Y).

(b) Each x € X is represented by a ue Z(X) with S(u) €Y.

Theorem 2.2.6. (Bauer) Let K be a compact convex subset of a lctvs X. Let x € ext(K).
Then, d, is the unique probability measure such that x = r(d,).

Proof. Tt is clear that r(d,) = x. Now, let p € P(Y) where Y = ext(K) such that
x = r(p). It suffices to show that S(u) = {x}.

CramM: For any D < Y such that x ¢ D and D is compact, u(D) = 0.

PROOF OF THE CLAIM: Suppose for some compact D < Y\{z}, u(D) > 0. Since
DnS(p) # ¢, let 2 € Dn S(p) (If S() n D = ¢, then D < S(p)°. Since D is
compact, there exists open sets G, G, ..., Gy, such that for all i = 1,2,...,m, pu(G;) =0
and D < |J", G;. This implies u(D) = 0, which is a contradiction.) Let F < Y be
closed set such that z’ € F and = ¢ F( since X is normal space and Y is closed in X,
Y is normal space). Define the following measures: For any measurable set £ < Y,
i (E) = p(En F) and po(E) = w(E n Y\F). Hence, S(p1) = F. Also, uy + po = p
and 1 = |ju|| = || + |ue]. By Urysohn’s lemma, there exists a continuous function
f:Y —[0,1] such that f(y) = 0, for each y € F' and f(z) = 1. So,

U= f) = [ fdn= | fdwr | g | fd
Y F Y\F

Y\F

This implies that |us2| # 0. Similarly, we can show that [u| # 0, since S(u2) = Y\F.
Hence, we have 0 < ]| < 1 and 0 < |[ua] < 1. Now,

M1 2
po= ] + gl
2 22|

Let z; = r(ﬁ—iu) and zy = T(W%”) Therefore,

z=r(p) =z + lp2)z
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where [u1] + Jpe| = 1 and 0 < 1| < 1 and 0 < ||| < 1. This implies x ¢ ext(K),

which is a contradiction. Hence the claim.
Using above claim, u(Y\{z}) = sup{u(D) : D < Y\{x} is compact} = 0.

Hence, S(u) = {x}. This completes the proof. O

A partial converse of Krein-Milman theorem is the following.

Theorem 2.2.7. Let E be a lctvs and X < F be a compact convex set. Then for any
7 < X with eonv(Z) = X we have ext(X) € Z.

Proof. If Y = Z then X = conv(Y). Let € ext(X) then there exists u € Z(Y) such
that () = . Now from Theorem 2.2.6 y = §,. Hence x € Y. O

2.3 An application of Krein-Milman theorem

We conclude this Chapter by an interesting application of Krein-Milman Theorem.

Definition 2.3.1 (Completely monotonic functions). A real valued function f on (0, )
is said to be completely monotonic function if it has derivatives f(© = f, fO @ of
all orders and if (—1)"f™ > 0, for all n € N U {0}.

Remark 2.3.2. A completely monotonic function is non-negative and non-increasing, as
is each of the functions (—1)"f™. Examples of such functions are 2=, e=**, for o > 0.
Definition 2.3.3. (Convex cone) Let V' be a vector space. Let C < V. C is said to be
a cone if for any positive scalar o and for any x € C, ax € C. A cone C' is called convex

cone if for any positive scalars «, § and for any x,y € C, ax + Sy € C.

Example 2.3.4. Examples of convex cone are :

(i) for any vector space V', the empty set, the space V' and any linear subspace of V.

(ii) the set of all non-negative continuous functions on R

Sergei Natanovich Bernstein proved a fundamental representation theorem for completely
monotonic functions. We will prove the theorem for bounded functions. The proof of
this theorem is an application of Krein Milman theorem. Let us denote the one point
compactification of [0, ) as [0, o].

Theorem 2.3.5 (Bernstein). If f is bounded and completely monotonic function on

(0,00), then there exists a unique non-negative Borel measure ;o on [0,00] such that
w1([0,00]) = f(0%) and for each x > 0,

f@) = [ o).

0
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Proof. (The converse of the above theorem is true. Assume we have a function defined as
above. Then, by Leibniz Integral rule, differentiation under the integral sign is possible.

Hence, for any n =0, 1,2, ..., for each z > 0,
0
F@) = (1) | e dlam)
Therefore, since p is non-negative Borel measure and e=** > 0, for each x > 0,

1) = [ eaar > 0

0

This implies f is completely monotonic function on (0, c0). Now, define for all n € N and
a € [0, 0],

gnla) = e~/
Then,

lgn(a)] <1 and lim g,(a) = e /" = 1.
n—ao0

By dominated convergence theorem,

e} e 6}

lim e~ du(o J ldp(a)

in )=
— lim f(1/n) = ([0, 0]
— I f(z) = u([0,])
— £(0%) = ([0, ]).

(2.5)

Hence, f(0%) < co. This implies f is bounded function.)

Let us begin with the sketch of the proof. Let us denote C'M to be the convex cone of
all completely monotonic functions f such that f(07) < co. (f(0%) exists always since
f is completely monotonic function, although it may be infinite). Let K = {f € CM :
f(0F) < 1}. We will prove that K is convex. Now, if f € CM, f # 0, then % € K.
Thus, it suffices to prove the theorem for elements of K.

Let E be the space of all real valued infinitely differentiable functions on (0,00). Then,
K < E. Now, we digress a little from the proof sketching and define a topology on E.
For all n € N, let K,, = [£,n]. Then, (0,00) = (J,cx[£,n]. For all f € E, define the

seminorms
P (f) = sup{|f®(z)] : 2 € K,,,0 <k <m}.

Then, the countable collection of seminorms {p,, ,(f) : m,n € N} gives rise to a topology

on E say 7. (E,7) has the following properties:
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i) (E,7) is lctvs.
ii) (F,7) is metrizable and has Heine Borel property.

(
(
(iii) A < E is bounded if and ony if every p,, ,(f) is bounded on A.

(iv) fn. = f if and only if for each Compact set K < (0,0), [(fn = f)||o — 0in K.
If f, 5 £, it follows easily that £ 5 f® for all k =1,2,3,.. ..

We, now, continue with the sketch of the proof. We will show that K is compact in this
topology defined on E so that we can apply Krein Milman theorem on K. Futhermore, we
will show that the extreme points of K are precisely the functions z —— e~** « € [0, 0].
(Let us define e=** = 0, for each x € (0,0)). It is easy to see that the ext(K) is
compact since it is homeomorphic to [0, 0]. Applying Krein Milman theorem to K, each
f € K can be represented by a Borel probability measure m supported on ext(K). This
measure m can then be carried to a measure p on [0, 0] and the evaluational functionals
[+ f(z), for each > 0 are continuous on E. We combine all these facts and obtain
the desired representation of f. We can prove the uniqueness of such a Borel measure on
[0, 0] by applying Stone Weierstrass theorem on the subalgebra of C[0, o] generated by
the exponentials.

We, now, begin the proof. First we show that K is convex. Let f,g € K and A € (0, 1),
then A\f + (1 — X)g € CM since C'M is a convex cone. Also,

Af+ (L =N)g)(07) = Af(07) + (1= A)g(0") < A+ (1—-X) = 1.

Therefore, Af + (1 — X\)g € K. This implies K is convex set. Secondly, we show that K
is compact in (£, 7). From (ii), it is enough to show that K is closed and bounded. Let
(fn) © K such that f,, 5 f. Then, from (iv), we get f,S’“) S f® forall k = 1,2,3, ...

Hence, it follows easily from here that,
(=1)"f™ >0, for all n = 0,1,2,... and

f(0%) = glclir(l)f( z) = lim lim f,(x) = lim lim folz) = glciir(l)fn(OJr) < 1.

z—0n—o0 n—0o0 r—
Hence, f € K. This implies K is closed. In order to show that K is bounded, from (iii),
it suffices to show that for each m € N and n € N u {0}, sup{pm.(f) : f € K} is finite
i.e. to show sup( " {|f*(z)| : # € K,,, f € K} is finite. For this, it suffices to show
sup{|fm(z)| : x € K,,, f € K}, for all m > 0 and n > 1. Clearly, the following lemma will
prove this fact.

Lemma 2.3.6. Let I, = {(—1)"f™ : f € K}, for n = 0,1,2,.... Then, for each a > 0

and each n > 0, the functions in I,, are bounded above on [a, ) by d4p def a2 +1)(n/2)
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Proof. We prove by mathematical induction. It is clear that the lemma is true for n = 0
as the functions in Iy = K are bounded above by 1. Assume that the lemma is true
for I,, i.e. for each a > 0 and each n > 0, the functions in I, are bounded above
on [a,) by dan & am20+D®2) Now, consider I, = {(—1)Df0+D) o £ ¢ K}
Let a > 0. Since the functions in [,,; are non-increasing, it is enough to show that
(=)™ 4D (@) < G4(041). By Mean Value theorem applied to f on [£, a], there exists

¢ with % < ¢ < a such that

(5) £ 00) = @) = £ (3)

2
Hence,
a a
(1) (5) 1000 = 1 (5) = £a)
Therefore,
(-0 (5) £ = (<17 (5) - (1" a)

g(_q)nfm><g) (2.6)

< O(a/2)(n) --o--- by induction hypothesis.
Hence,

>m+”2m+nmm)

= (@)~ (HDrF(/D+(n+1) (2.7)
_ (a)" D2 1/2)
= Oa(n+1)
Since, (—1)"*! f("+1) is non-increasing and ¢ < a,
(=)™ (@) < Bagury.
Hence, the result follows. m

Next step will be to identify the extreme points of K.

Lemma 2.3.7. The extreme points of K are those functions f of the form for each
a € [0,0:], for all z > 0, f(z) = e,

Proof. Let f € ext(K). Let xop > 0. Define, for all x > 0, u(z) = f(x + zo) — f(xo)f(2).
We will prove that f+u € K. Then, since f € ext(K), u = 0. Hence, we get, f(z+xo) =

f(zo)f(z), for each x,zp > 0. Since f is continuous, this implies either f = 0 (the case
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axr

a = ) or f(x) = e, for some a. Since —f'(x) = ae™** = 0, we must have a > 0.

Thus, now, we are left to show f + u e K. We have,

(f +u)(07) = F(0")(1 = f(zo)) + flxo) <1

and
(f =u)(07) = f(0")(L = f(x0)) — flwo) <1

since f(0%), f(xo) < 1. Also, we have,

(=1)"(f + )" (@) = (=1)"FD (@)L~ f(z0)) + (=1)" (& +20) = 0

and

(—1)"(f =) (x) = [(=1)"f" (@) = (=1)"F" (@ + @0)] + (=1)" f (w0) f)(2) = 0
since (—1)" ™ is non-increasing.

To prove the converse, for r > 0, consider the transformation 7, : K — K defined as
T.(f)(z) = f(rx). Clearly, T, is well-defined. It is also easily seen that 7, is one-one,
onto and preserves convex combinations. We claim that T, takes ext(K) to ext(K). Let
f € ext(K). Define, for all x > 0, h(z) = f(r/x). Suppose there exists hy, hy € K such
that

hi + hy

h:2.

Then, for each = > 0,
hi(rz) + ha(rx)

2

h(rz) =

This implies

hi(rz) + hao(rx
f(.%') _ 1( )2 2( )
Since f € ext(K), for each x > 0, f(x) = hi(rz) and f(x) = ho(rz). Hence, for each
x>0, f(z/r) = hi(x) and f(z/r) = hs(x). Hence, for each x > 0, h(x) = hy(x) and
h(x) = he(x). This implies h € ext(K) and T,(h) = f. To prove reverse inclusion,
consider f € ext(K). Suppose there exists hy, hy € ext(K) such that

hi + ho

T?"(f) = 2 ‘

For each = > 0,
(z/r) + ha(z/r)

(1) afr) = "2

This implies
(z/r) + ha(z/r)

fla) = M2 Tl
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Since f € ext(K), for each z > 0, f(z) = hi(x/r) and f(z) = hao(x/r). Thus for each
x>0, f(rx) = he(x) and f(rx) = he(x). Hence,

T.(f) = hy and T,.(f) = ho.

This implies T,.(f) € ext(K). Therefore, T,(ext(K)) = ext(K). We just proved that
any extreme point of K is of the form e™** for some a and hence the image e™*"* of
this function under T, is an extreme point of K. Since this is true for all » > 0, all the
exponentials are extreme points of K (the constant functions 0 and 1 are clearly extreme

points) and hence the proof is complete. O

It can be easily seen that the map T': [0, 0] — K defined as o — e=®0) is well-defined
and continuous. Since [0, 0] is compact, its image under T' i.e. ext(K) is compact.
By Krein Milman representation theorem, for each f € ext(K), there exists regular Borel
measure m supported on ext(K') such that f is resultant of m i.e. for each linear functional
in E* L(f) = Sm(K) Ldm. Now, for each x > 0, consider the evaluational functional
L.(f) = f(x), which are continuous on E. Then, we have, for each x > 0, f(z) =
Sezt(K) L,dm. Define a measure p for each Borel subset B of [0, 0] as u(B) = m(T(B))

ie. p=moT. Since L,(T(a)) = e~**, we have for each x > 0,

f(x) - J;xt(K) Lxdm

= f L,oTd(moT) (2.8)
T-1(ext(K))

oe}
= f e ““du.
0

It is now just left to prove that p is unique. Suppose there exists another measure v on
[0, 0] such that for each z > 0, f(z) = " e7*®dv and v/([0, ]) = f(0*). For each > 0,
the function @ — e~** is continuous on [0,00]. Let A be the subalgebra of C([0,x0])
generated by these functions, then A consists of finite linear combinations of these same

functions. Now, for any « € [0, o],

w0 - |

0

0 Q0

e du = f(x) = J e dy = v (e7*V)).
0
Therefore, as linear functionals on C([0,0]), 1 and v are equal on A. Since A separates
points of [0,0] and for = 0, since the constant function 1 belongs to A, A vanishes

nowhere, by Stone Weierstrass theorem, A is dense in C'([0,o0]) and so u = v. O



Chapter 3

Choquet’s theorem for metrizable

compact convex sets

Our next objective is to prove Choquet’s theorem for metrizable compact convex sets.
Before that, we need to discuss some preliminaries about continuous affine functions

defined on a compact convex subset of a lctvs.

3.1 Preliminaries of Affine functions

Definition 3.1.1 (Affine function). Let Fy, F5 be two linear spaces. A map ¢ : E; — F,
is said to be affine if for any two vectors z,y € E; and o, € R with a + § = 1,
o(ax+ py) = ad(x) + o(y). Let D be a convex subset of a real linear space E. Then, a
real valued function f on D is said to be affine if for x,y € D and o, f € R with a+ 5 =1,

flazx + By) = af(x) + Bf(y), whenever ax + By € D.

Now, let D be a compact convex subset of a lctvs X. Let us recall that the set of all real
valued continuous affine functions on D is denoted to be Ag (D) or A when it is unlikely to
cause confusion. It is easily seen that the collection {®|p +r: & € X* r e R} < Ar(D).
This collection does not exhaust A and the following examples establish this fact.

Example 3.1.2. Consider (X = ¢;,w*) and D = {(z;) € ¢ : for each i € N, |z;| < 47}.
Let A € (0,1) and (x,), (y,) € £1. Since for each n € N, [Ax,, + (1 — Ny,| < A|a,| + (1 —
Myl S AA™)+ (1 =XNE™) =47, Mzp) + (1= XN (yn) = Azp + (1 = Ny,) € D.
This implies D is convex set. Also, since for each (z,) € D and ne N, x,, € [-47",47"],
D =~ [-47",47"]. Since [[_,[-47",47"] is compact w.r.t. product topology and

w* topology is same as product topology, we can conclude that D is compact in (41, w*).

22
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Define f: D — R as
Fl(@a)) = D 2",

n=1

Clearly, f is well-defined as

0 a0 Q0
)| < D02 < ) 2T = Y 27 < 0
n=1 n=1 n=1

Let A€ (0,1) and (), (y,) € ¢1. Then,

F(@n) + (1= A (yn) = f((Azn + (1= Nyn))

Z Az, + (1= Nyn)

{8 0(50

Zn)) + (1= A)f((yn))-

(3.1)

This implies f is affine function on D. Clearly, f is continuous on D. Thus, f € Ar(D).
We know (cg)* = ¢; and given any F' € (co)*, there exists (x,) € ¢; such that for each
(o) € co, F((aw)) = (n)((aw)) = Yo Tpav,. Also, D < ¢y and ¢ is embedded in /;.
Therefore, clearly, f ¢ ¢y + R and hence f ¢ D* + R.

Example 3.1.3. Consider (X = ly,w*) and D = {(z;) € {y : for each i € N, |z;| < 27}.
Then, on similar lines with example 3.1.2, we can show that D is w*-compact convex

subset of /5. Define f: D — R as

fl(@) = Y

n=1
Clearly, f is well-defined as
0 o0
|f(2n)| < Z |z,| < Z 27" < 0.
n=1 n=1

Again, on similar lines with example 3.1.2, we can show f € Ar(D) and also that f ¢
{®|p+7r:PelireR}

Remark 3.1.4. Ag(D) is uniformly closed in Cgr(D). Let (f,) < Agr(D) such that
fo =, £ Let Ae (0,1) and @,y € D. Then,

foha + (1= N)y) = lim fu,(Az + (1= N)y) = X lim f(2) + (1= A) lim f,,(y).

n—ao0 n—o0

This implies, fo(Az + (1 —A)y) = Afo(x) + (1 — X) fo(y). Hence, fy € Ar(D).
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Proposition 3.1.5. The subspace M = X*|p+R < Cg(D) is uniformly dense in Ag(D).

Proof. Let f € Ar(D) and n € N. Consider W = {(d, f(d)) : d € D}. Then, W <
D x f(D). Let ((dn, f(d,))) = W such that (d,, f(d,)) — (d,h). Since D is compact
subset of letvs X, D is closed in X. Hence, d € D. Now f € Ag(D) implies f(d,) — f(d).
Hence, f(d) = h € f(D). This implies (d,h) € W. Thus, W is closed in D x R. Let
A€ (0,1) and (dy, f(d1)), (da, f(d2)) € W. Then since D is convex set and f € Ar(D),

A(dy, f(dr)) + (1 = A)(da, f(d2)) = (Ady + (1 = N)da, Af(di) + (1 — A) f(d2))
= (Ady + (1 = AN)da, f(Ady + (1 — N)ds)) (3.2)
e W.

Hence, W is convex. Also, W is a closed subset of compact set D x f(D). Hence, W is

compact.

Now, consider Wy = {(d, f(d) + =) : d € D} < D x (f + £)(D). Then, clearly, W,
is also compact convex subset of D x R. Also, W n W; = ¢. Therefore, by Hahn
Banach separation theorem, there exists A, € (X x R)* and A, € R such that for each
(d, f(d)) € W and (s, f(s) + 2) € Wi, A,((d, f(d))) < An < Au((s, f(s) + 1)) Let
Ay = (hy, pn) € X* x R*. This implies, for each d € D,

ho(d) + puf(d) < Ay < hn(d) + p (f(d) + %) |

Thus, from the first and third inequalities, pn% > 0. Hence, p, > 0. Again, from the
above inequality, for each d € D,

1
This implies, for each d € D,
A — hy(d 1
o< ld) _pgy oL
Pn n
Let ®,, = _ﬁl e X*and r, = ;—: € R*. Therefore,
1
sup [ f(d) — (@5, + 1) (d)] < —.
deD n

This implies (®,,r,) — f. Therefore, M = X*|p + R is uniformly dense in Ag(D). O

Now we can have a new characterization of the space of continuous functions on K, viz.

we claim that Cr(K) = Ar(Z2(K)).
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Remark 3.1.6. Proposition 3.1.5 enable us to identify Cr(K) as a space of affine
functions on a compact convex subset of a lctvs. Let us recall Z(K), a (w*) com-
pact convex subset of a lctvs (M (K),w*). From the above Proposition it is clear that
Cr(K) = (M(K),w*)* — Ar(Z(K)), which is clearly an embedding. In fact for

Fe CrlK),Ifle = swier LFE)] = supg [F6)] = subyeonisey [F(w)]. On the other
hand, for any ¢ € Ap(Z(K)), ||| = SuDs,em i) [0(d¢)]. Thus if we define f(t) = ¢(d;)
then f € Cr(K), which ensures that the other 51de is also an embedding.

Note 3.1.7. We denote the set of all continuous convex functions on D by S. Hence, —S5
denotes the collection of continuous concave functions and A = S u —S. We will write S

as S(D) if there is some chance of confusion.

Definition 3.1.8. Let g : D — R be a bounded function on D. For each x € D, define,

g(x) = nf{f(z) : fe =5 f =g} and g(z) =sup{f(z): feS f<g}

We list out some basic properties of the maps g — ¢ and g — ¢ which are required in the

subsequent discussion.
Proposition 3.1.9. Let g be a bounded function defined on a closed convex set D.
Then,

(a) g is concave usc function and ¢ is convex lsc function.

(b) For each x € D, g(x) < g(x) < g(z) and g, g are bounded on D.

(¢) The map g — ¢ is increasing and sublinear while ¢ — ¢ is increasing and

superlinear.

(d) g =g on D if and only if g is concave and usc function, while g = g on D if and

only if g is convex and Isc function.

(e) If g e Ag(D) and f is a real valued bounded function on D, then

(Df —f+g
(i) f+g9=1/F+g
(f) g9(x) = mf{a( ):a€ Ar(D),a = g} and g(x) = sup{a(x) : a € Ag(D),a < g}.

)
(9) If g € Cr(D), then g(x) = sup{u(f) : pe £(D),r(n) = x}, for all z € D.
(h) If z € D then for any two f,g € Ca(D) [f(x) — g(x)| < |f = gl

Proof. (a). Let z,y € D and A € (0,1). Let f € —S such that f > g and let h € S such
that h < g. Then, by definition of —S, S, ¢ and ¢,

fOr+ (1 =Ny) = Af(2) + (1 =N [f(y) = Ag(x) + (1 = N)g(y)
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and

h(Az + (1 — N)y) < Ah(z) + (1 — Nh(y) < Ag(z) + (1 — N)g(y).

Therefore, by definition of g and g,

g + (1= Ny) = Ag(z) + (1 = N)g(y)

and
Az + (1= Ny) < Ag(z) + (1= N)g(y)-

Thus, g is concave and § is convex. Now, we prove that g is usc function. Let a € R.
Let g € {x € X : g(x) < a}. Then, g(x¢) < «. This implies there exists f € —S such
that f > g and f(z) < a. Since f is continuous, there exists an open set U containing
xo such that f(z) < «, for each x € U. Thus, o€ U < {x € X : §(x) < o}. This implies

{re X :g(x) < a}isan open set in X, for each a € R. Therefore, ¢ is usc function.

Next, we prove ¢ is Isc function. Let a € R. Let g € {z € X : g(x) > a}. Then,
g(xo) > a. This implies there exists f € S such that f < g and f(x¢) > «. Since f is
continuous, there exists an open set U containing z( such that f(x) > «a, for each z € U.
Thus, zg € U < {z € X : §(x) > «}. This implies {z € X : §(z) > a} is an open set in X.
Thus, for each a € R, {x € X : §(x) < a} is a closed set in X.

(b). Let x € D. Let f € —S such that f > ¢g and h € S such that h < g. Then, by
definition of ¢ and ¢,

~

9(x) = g(x) and g(x) < g(x).

Hence, for each z € D, g(z) < g(z) < g(x).

Since ¢ is bounded on D and g < g on D, g is bounded on D. Now, since g is bounded,
9] is finite. Consider the concave function, f(z) = |¢|w, for each x € D. Then, g < f
on D. Thus, by definition of g, for each z € D, g(x) < f(z) i.e. g(z) < |g].. Hence, g is
bounded on D.

(c). Let g1 and go be any two bounded function on D such that g; < go. Then,

{f(x): fe=5T2g0tc{f(x):fe=5F=>an}

and
{h(z) :heS h< g} c{h(x):heS h<g}.

This implies,

inf{f(x): fe =S, f=aq}<inf{f(x): fe=S, f= g}
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and

sup{h(z) : he S;h < g1} < sup{h(x): he S, h < go}.
Hence, ¢; < g2 and ¢; < go on D. Hence, the maps ¢ — g and g — § are increasing.

We now prove that the map g — ¢ is sublinear. Let a > 0 and x € D. Then,

aj(x) = ainf{f(z): fe =5 f>g}
= inf{(af)(x):af € =S,af = ag} ....since a > 0 (3.3)

> ag(x).
and

ag(z) = inf{f(z): f € =5, f = ag}
= inf{f(x): fe -5, éf > g} ....since o > 0

=ainf{(lf) (x):éfe—S,éf)g}

o

> ag(x).

Therefore, for any a > 0, a@g = ag. Consider two bounded functions on D say g; and gs.
Let x € D. Let € > 0. Then, there exists hy, ho € —S with hy > ¢g; and hy > g5 such that

hi(z) < gi(z) + % and ho(z) < Ga(z) +

DO ™

Then,
(hl + hg)(l’) < g](:v) + g}(:ﬂ) + €

where hy + ho € —S and hy + ho = g1 + go. As a result,
91/@2@) < gi(x) + g2(x) + ¢, for any € > 0.

Thus, g1 + ¢2(z) < G1(x) + go(x), for each z € D. Hence, the map g — § is sublinear.

Next we prove the map g — ¢ is superlinear. Let o > 0 and x € D. Then,

ag(x) = asup{f(z): f €S, f<g}
= sup{(af)(z): af € S,af < ag} ...since a > 0 (3.5)

< ag(x).
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and

ag(z) = sup{f(x) : f €5, f < ag}
=sup{f(x): fes, éf < g} ....since a > 0

:asup{(lf)m:éfeséfgg} (3.6)

Therefore, for any a > 0, a@g = ag. Consider two bounded functions on D say g; and gs.
Let x € D. Let € > 0. Then, there exists hy, hy € S with hy < g; and hy < g9 such that

hi(z) > gi(z) — g and ho(z) > Go(z) — %

Then,
(h1 + ho)(x) > Gi(z) + ga(z) — €
where hy + ho € S and hy + hy < g1 + g2. As a result,

—_—

g1+ go(x) > gi(z) + ga(x) — €, for any € > 0.
Thus, g1 + g2(z) = ¢i(z) + ga(z), for each z € D. Hence, the map g — § is superlinear.

(d). If g = g on D, then clearly from (a), g is concave and usc function. Assume g is
concave and usc function. Then, g € —S. Thus, § < g on D and clearly, by definition of

g, g = g on D. Therefore, g = g on D.

If g = g on D, then clearly from (a), g is convex and lsc function. Assume ¢ is convex
and lsc function. Then, g € S. Thus, § > g on D and clearly, by definition of g, § < g on
D. Therefore, g = g on D.

().

(i) From (c) and (d), f+g f+g—f+g

Now to prove f < f+g—g. Let # € D. From (), (f +9g)(x) < (m)(:ﬁ)
Thus, for each w € D, f(x) < (f + g)(x) — g(x). Also, (f +g) — g € —S. Thus, by
definition of f, f < (f + g) gon D.

(ii) From(c)and(),f—l—g f+3=Ff+g.

Now to prove f = (f + g) g. Let z € D. From (b), (f+g)(z) = (f\—-k/g)(x) Thus,
for each z € D, f(x) > (f + g)(z) —g(x). Also, (m) —g € S. Thus, by definition

Off?fv>(f+g)_ on D.
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(f). Let xg € D. Clearly,

inf{g(xg) : g€ =S, f = f} <inf{a(xg) : a € Ag(D),a = f}.

Suppose
inf{g(xg) : g€ —=S,9 = [} <inf{a(xg) : a € Ar(D),a = f}.

Let m = inf{a(xg) : a € Ag(D),a = f}. If we can prove that there exists h € Ag(D) such
that h > f and h(xg) < m, then it would be a contradiction. Now, there exists g € —S
such that ¢ > f and g(z9) < m. Consider, A = {(z,t) € D x R : t < g(x)} which is,
clearly, a convex set and (zg,m) ¢ A. Therefore, by Hahn Banach separation theorem,
there exists (®,r) € (X x R)* and A € R such that

(®,7)(zg,m) > A > sup (P,r)(z,1).
(z,t)eA

Hence, we get the following inequalities, for each x € D:

. A — D(xp) and A —d(x)

r r

> 1.

Also, we get, rm > rt which implies (m — t) > 0 and hence r > 0. Note that % €

Agr(D) which satisfies our desired properties. This completes the proof. On similar lines,
we can show f(z) = sup{a(z) : a € Ag(D),a < f}.

(9). Let f'(x) = sup{p(f) : pe P(D),r(un) = x}, for all x € D. Since r(d,) = x, observe
that f'(x) > f(z), for all z € D. Now, let z,y € D and € > 0. Then there exist measures
w, v on D with r(u) = x and r(v) = y such that,

@ W) e = S(F@) -9+ 5(F )~ o
< S+ )
u+v ,, Tty n+v r+y
- R < e () - 55

This implies f’ is a concave function on D. Now, we show that f’ is usc. Let z, — zo.
Let t < f/(x4), for infinitely many a. Then it remains to prove that f'(xg) = t. Let e > 0.
Then for every infinitely many «, there exists p, with r(p,) = x, such that p,(f) > t—e.
Now, (pa) has a convergent subsequence in & (D) say (fta,) Where fi,, v, o Without
loss of generality, assume that z,, — 2o in D. For any a € Ag(D), pia,(a) = a(x,,) and
a(zs,;) — a(xg). This implies po(a) = a(xg), for all a € Ar(D). Hence x¢ = r(uo). Now,
po(f) = lim; pg, (f) = t — e. Therefore, f'(xg) = t — ¢, for every € > 0, which implies
f'(xg) = t. So, we get that f’ is concave and usc on D and hence by Lemma 4.1.5,

f'(x) =inf{a(x) :a = f',ae Ar(D)}. Now, {a€ Ar(D):a > f'} = {aec Ar(D) :a > f},
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which implies f'(x) = f(z). On the other hand, if x € D, h € Ag(D) and h > f, then
for any measure p on D with r(u) = x, we have h(x) = p(h) = pu(f). This implies
h(z) > f'(x) and hence (from (f)) f(x) = f'(z). This completes the proof.

(h). It is clear that {u € P(D) : r(u) = x} is a w*-closed subset of Z(D), hence w*-

compact. Hence there exists o € (D) with r(uy) = = such that puo(f) = f(x). Now
po(g) < g(x). Hence f(x) = g(x) < po(f) — po(g) < |f = gleo- Similarly, g(z) — f(z) <
|f — glloo. This completes the proof. m

We can now prove Choquet’s theorem for metrizable compact convex sets. Let us consider

the below example for motivation:

Consider K to be a compact, T subset of a lctvs X. Then, (M (K),w*) is a lctvs and
(D = Z(K),w*) is compact convex subset of M(K). Let u € Z(K). Now, clearly,
K — {6 : t e K} = ext(Z(K)). Define the same topology on ext(Z(K)) as on K.
Hence, ext(Z(K)) is now topologized. Let B be any Borel subset of ext(K). Define
ia(B) = u({t e K : 6 € B}) and i = 0 on & (K)\ext(K). Thus, fi is a measure on
P(K) which we have defined using p. Now, we claim p = r(g). Let g € M(K)*.
Then, by Riesz representation theorem and definition of w* topology, g has to be an
evaluational functional on M (K) i.e. there exists fy € Cr(K) such that for any v € M (K),
g(v) = v(fy). Therefore, in particular,

g(p) = plfo) = L fodp = LZ(K) u(fo)dji

Therefore,

g(p) = J gdji.
2(K)

This implies that u = r(f).
Before going to the main result of this chapter let us recall the following well known fact.
For the sake of completeness we include the proof here.

Proposition 3.1.10. Let K be a metrizable compact Hausdorff space and Cg(K), the

space of all real valued continuous functions on K. Then, Cr(K) is separable.

Proof. Let d be the metric on K. Since K is metrizable, K is separable. Let {x, : n € N}
be a dense subset of K. Let m,n € N. Define f,,, : K — R as

0 if otherwise

() = { L —d(z, x,) if L>d(z,z,) (3.7)
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It is clear that for all m,n € N, f,,,, € Cr(K) and it vanishes outside the open ball
B(xy, =). Consider the countable set &/ < Cr(K) to be collection of all f,,, for every
m,n € N and the constant function 1. Let z,y € K such that x # y, let m € N be
sufficiently large such that d(z,y) > +. Since {x,, : n € N} is dense in K, there exists n €
N such that z, € B(z, 5). Hence, fun(z) # 0 but f,,(y) = 0. Therefore, o separates
points on K. We now show that ' forms a separable subalgebra of Cr(K), hence by
Stone-Weierstrass Theorem it follows that, 7 is dense in Cr(K). Therefore, Cr(K) is
separable. Now consider the algebra generated by 7, {[ [, fm.n, : ¢ Tuns over a finite set}.
First observe that for two points x,,, and z,,, the possible values of m; and mgy for which
fming - fmans 18 non zero should satisfy d(z,,, z,,) < m% + m% Now cardinality of the set
of pair of natural numbers, taken two at a time, is countable and set of all finite product
of any such pair is again countable: any function of type [[. fm,n, 1S associated to a
finite subset of the set of pair of natural numbers, viz. {(m;,n;)}. This leads to that </
generates a separable subalgebra over Cg(K) and this completes the proof. [

The converse of Proposition 3.1.10 is also true and it follows from Proposition B.1.4.

3.2 Main results: Choquet-Bishop-De Leeuw exis-

tence Theorem

We now come to the main Theorem of this chapter.

Theorem 3.2.1. Let D be a metrizable compact convex subset of an Ictvs X and xy € D.
Then, there exists u € (D) which is supported on ext(D) such that xq = r(u).

Proof. The metrizability of D implies Cg(D), the space of all real valued continuous
functions on D, is separable in the sup norm topology, by earlier remark. We know

Ag(D) is uniformly closed in Cr(D) and also separable.

Hence Sa,py = {f € Ar(D) : ||| = 1} is separable. Let {h,};_, be a dense subset of

Sag(p)- Define, for each z € D,

ha) = Y hz(f).

It is easily seen that h € Cgr(D). We now claim that h is strictly convex on D. Let
x,y € D such that = # y. Then, there exists h,, such that h,,(x) # h,(y). Let A € (0,1).
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Consider,

h(Az + (1= \)y) = i ha(Az + (1= A)y)

=1 2n
R Az + (1 — \)y) R2(Ax + (1 — \)y)
) - +2; N (3.8)
3.8
(A () + (1 = N him(y))? (A () 4+ (1 = Nha(y))?
< o + n;n o
. (Mh,(x 1= Nh,(y))?
:Zl( ( )+(2n )a(y))”

The strictly inequality in the third step is due to the fact that the map t — t* is
strictly convex on R. Thus, we showed that h is strictly convex on D. Now, define
Y = span{Agr(D) u {h}} = {9+ ah : g € Ar(D),a € R}. Define p : Cg(D) — R as
p(g) = g(xg). As a result of property (c¢) of ¢ function, p is sublinear on Cg(D). Define
®:Y - Ras &g+ ah) = g(xo) + ah(x,). Clearly, @ is linear on Y. If o > 0, then by

properties (¢) and (e) we get,

O(g + ah) = g(wo) + (o) = glxo) + ah(zg) = (g + ah)(x0) = p(g + ah).
If & = 0, then by property (b),

®(g) = g(wo) < g(wo) = p(g)-

Now, assume o < 0. Then, by property (b), ah(zo) < ah(xy). Since h is strictly convex
and continuous on D, ah is strictly concave and also continuous on D. Thus, by property

(d), &71(3:0) = ah(x). Using all these facts and property (e), we get,

~

O(g + ah) = g(zo) + ah(xg) < g(zo) + ah(zg) = g(xo) + &E(:{:o) = g + ah(x).

Hence, ®(g + ah) = p(g + ah). This shows that & < p on D. Therefore, by Hahn
Banach extension theorem, we can extend ® to the whole space Cg(D) such that for each
f € Cr(D), ®(f) < p(f). Now, for any f € Cr(D) such that || f|, < 1,

(N < (N = |F(z0)] < 1o

This implies |[®] < 1. Since &(1) =1, [®| =1
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By, Riesz Representation theorem, there exists a regular Borel measure on D such that

for each f e Cr(D), ®(f) = §,, fdm. Since |®|| =1, [m| = 1. Now,

o(1) = L 1dm = m(D) = |m| = 1.

f 1dm = 1.
D

Thus, m e Z(D). Let f € Ag(D). Then,

This implies

Flaw) = () = | fim.

This implies xy = r(m).

We now prove that the measure m is supported on ext(D). Now, by definition of ® and

Riesz Representation theorem, we get

®(h) = h(xo) = m(h) = JD hdm.

Since h < fL, this implies

J hdm <J hdm.
D D

This implies m(k) < m(h). If a € Ag(D) such that a > h, then a = h, by property (f).

Therefore,
a(xg) = J adm > J hdm.
D D

This implies h(zy) = o hdm. Hence, §phdm = § hdm, which implies m(h) = m(h).
Thus, m(h) = m(h). Hence, we get that {, hdm = §, hdm, which implies §,(h—h)dm =
0. Therefore, h — h = 0 a.e.[m]. This implies m({z € D : h(x) # h(z)}) = 0. Thus,
m(D) = m({z € D : h(x) = h(x)}). We now claim that {z € D : h(z) = h(z)} < ext(D).
Let x € D such that h(x) = ﬁ(m) Suppose z = 322 such that 2, # 5. Consider,

1 + X9 h(x1) + h(xs)
2 ) D
h(x1) + h(xs)

2 (3.9)
X1+ T2

)

h(w):h<

N

< iz(

>

The first inequality is due to the fact that h is strictly convex on D. Hence, h(x) < h(x),
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which is a contradiction. This implies = € ext(D). Therefore, the measure m is supported

on ext(D). This completes the proof. O

Let us recall if X is a separable normed linear space then the dual ball is a metrizable
compact convex subset of (X*, w*)(see Appendix B), hence Theorem 3.2.1 is applicable
for such spaces. Now, by Choquet’s theorem for metrizable compact convex sets, for

every o* € By, there exists u € Z(Bxx) supported on ext(Bxx) such that * = r(u).

We now prove the converse of Proposition 3.1.10. If C'(K) is separable, for some compact,
Hausdorff space K, then K is metrizable: Let X = C(K), from the above Example it
follows that (Bxx,w*) is metrizable. Now Bxx = Bk and hence ext(Bx+) = {+0; : t €
K}. Now as ({0; : t € K}, w*) =~ K (homeomorphism), the topology on K is metrizable.

We end this Chapter by giving an example of a compact, Hausdorff and also compact,
convex subset of a lctvs E which are not metrizable. These examples are relevant in the

context of the discussion in the next Chapter.

Let AN be the Stone-Cech compactification of the natural numbers. It is well known that
C(PN) = /44 (isometrically isomorphic). Non separability of C'(8N) ensures that SN is
non metrizable. From our earlier arguments it is clear that &(SN) and hence By gy are

some examples of compact convex subsets which are non metrizable.



Chapter 4

Choquet’s theorem for non

metrizable compact convex sets

We begin this Chapter with Stone’s generalization of Stone-Weierstrass Theorem. The
main Theorem in [12] is proved in a more general setup, we only mention the following

result which is relevant to our investigation.

Lemma 4.0.1 (Stone, [12]). Let K be a compact Hausdorft space and U be a sublattice
of Cr(K) such that, for any f € Cr(K), for any two points z,y € K and for any positive
number ¢, there exists a function f,, € U such that |f(z) — fo,(2)| < e, |f(y)— fay(y)| < e.
Then f e U.

Proof. Tt remains to prove that there exists h € U such that |[f — h|, < e.

Fix x € K and define Gy, = {2z : |f(2) — fuy(2)| < €}. By hypothesis z,y € G, and hence
Uye x Gy = K. The compactness of K ensures the existence of points y, ..., y, such that
U, Gy, = K. Define g, = max{f,y,,. .., fuy,}. Choose any z € K and get G,, such that
z € Gy, then g,(2) = fu,(2) > f(2) —e.

On the other hand f,,(z) < f(z) + ¢ for all y implies g,(z) < f(z) +e. We now continue
a similar argument for g,. Let H, = {z € K : g,(2) < f(2) + €}, then x € H, and hence
there exist 1, 2o, ..., x, such that K = (JI_, H,,. Let h(z) = min{g,,, ..., gz, }-

Since for any z € K there exists H,, such that z € H,,, hence h(z) < g, (2) < f(2) + €.
On the other hand, the fact that g,(z) > f(z) — e for all z and all = implies that
h(z) > f(z) — € for all z. Thus we have |h(z) — f(2)| <e¢, for all z € K. This completes
the proof. n

35
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4.1 A new setup: Boundary measure

We begin this Section with the following important fact.

Proposition 4.1.1. For a compact convex set D of a lctvs E, S(D) — S(D) is uniformly
dense in Cr(D).

Proof. First observe that S(D) — S(D) forms a lattice in Cg(D). In other words for
any f,g € S(D)— S(D), fvg fnrgeSD)—SD). In fact, fori = 1,2, f;,g; €
SD), (fr=g) v (fa=g2) = (fi+92) v (fa+91) = (91 + g2) and (fy —g1) A (f2—92) =
L fi+ fo) = (g2+91) — |(fi+92) — (fa+ g1)[]. The last identity follows from the fact that,
for any two reals a,b a nb = 1(a+b—|a—0b|). Clearly (fi + f2) — (g2 +g1) € S(D)—S(D)
and both (f1+¢2) — (fa+ 1), (fo+91) — (fi+92) € S(D)—S(D). Now for any function h,
\h(x)| = max{h(x), —h(x)}, hence |(fi1 + g2) — (f2+ g1)| € S(D) —S(D); being a subspace
(fi =a1) A (f2 = g2) € S(D) = S(D).

Also the subspace S(D) — S(D) satisfies the condition in Lemma 4.0.1, which is in fact
a direct consequence of Agr(D) < S(D). Hence S(D) — S(D) is uniformly dense in
Cr(D). O

We now turn our attention to the non-metrizable version of Choquet’s theorem. Before

proceeding, we need to define few notions.

S(D) is a cone in Cg(D). So, define an ordering < on M (D), the set of all non-negative
regular Borel measures on D, by p < v if and only if u(f) < v(f), for all f e S(D).

Clearly, < is reflexive and transitive.

Now, we prove that < is antisymmetric. Let u,v € M*(D) such that u < v and v < p.
This implies for all f,h e S(D),

p(f) < v(f) and v(h) < p(h)
Thus, for all g € S(D),
p(=g) < v(=9)

Hence, for all f,g € S(D),
u(f —g) <v(f—g)

Similarly, we get for all h,p e S(D),

v(h —p) < p(h —p)
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Therefore, for all f € S(D)—S(D), u(f) = v(f). By our earlier observation, S(D)—S(D)
is dense in Cg(D) and hence, y = v on Cr(D).
Proposition 4.1.2. (a) Let p, Ae MH(D). If p < A, then r(u) = r(N).

(b) If we M*(D) represents x € D, then d, < p.

Proof. (a). Let r(u) = x and r(\) = y. Suppose = # y. Then there exists f € X* < S(D)
such that f(z) > f(y), without loss of generality( otherwise we will consider —f). Now,
f(x) = p(f) and f(y) = A(f). Thus, u(f) > A(f) which is a contradiction since p < .
Therefore, r(p) = r(A).

—

(b). Let f e S(D). Then, —f is concave. Hence, (—f) = —f. Since = = r(u), we have,
(=f)(z) = inf{h(z) : he A(D),h = (=f)}
= inf{u(h): he A(D),h = (—f)} (4.1)

= p(—f)
This implies, u(f) = f(x). Hence, u(f) = 6,(f). This is true for any f € S(D). Hence,
0z < L. O

Remark 4.1.3. We can give an intuitive justification for the definition of 4 < A as

follows:

FIGURE 4.1

If D is a polygon and z € D, first write = as the resultant of points on the two faces (as
shown in Figure 4.1) and then write these points as the resultants of the vertices of the
polygon. Finally, we obtain z as a resultant of the vertices {z;;}. Roughly speaking, we
made x more and more diffused such that the points of support approach the extreme

elements.
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Thus, u(f) < A(f), for f e S(D), should mean that the mass of A is more concentrated
in the neighbourhood of extreme points than that of u. This leads to the hope that, in
this ordering, a measure is maximal that is completely diffused when it is concentrated

on the extreme points.

Lemma 4.1.4. If y € M* (D), then there exists a maximal measure A € M* (D) such
that p < A.

Proof. Let .# = {\ e M*(D) : p < A}. Then, .# is a partially ordered set w.r.t. the
ordering <. It is enough to show that .# has a maximal element in .% since if v € M* (D)
such that A < v, then u < v and hence v € .% and this implies v = \. Consider Z to be
a chain in .%#. We now regard £ as a net in the obvious way (denoted by the elements of
Z themselves) and clearly, using proposition 4.1.2 (a), Z < {Ae MT(D) : A(1) = p(1)}.
Now, the set {A e M*(D) : A(1) = u(1)} = u(1)Z2(D) is w*-compact in Cr(D)*. Thus,
there exists uo € M (D) and a subnet {pn}o of 2 which converges to po in the w*
topology. If \; € &, then by definition of subnet, A\; < p, eventually and hence \; < py,
which implies that pg is an upper bound for 2. Futhermore, since u < pg, we have

lo € Z. By Zorn’s lemma, .% contains a maximal element. O

We now state here a technical result. Let S or S(D) denote the collection of lsc convex

functions on D.

Lemma 4.1.5. Let D be a compact convex set of a lctvs X. Let f € S(D). Then, for
every x € D, f(x) = sup{a(x) : a € Ar(D),a < f}.

Proof. Let f e S(D). Consider M = {(y,a) :ye D,a > f(y)} = X x R. Let {(ys, as)}
be a net in M converging to (y, «). Thus, ys3 — y and ag — «, which implies f(ys) — a.
Since f is Isc function, f(y) < liminfs f(ys) < liminfz o = . This implies (y, ) € M.
Hence, M is closed in X x R. Let (y1, 1), (y2,a0) € M and A € (0,1). Since D is convex,
Ayp + (1= Nyz € D. Also,

Aoy + (1= Nag = Af(y1) + (1= A) f(y2) = f(Ayr + (1 = N)ya).

This implies A(y1,a1) + (1 — A)(y2,a2) € M. Hence, M is convex.

Let x € D be fixed. Clearly, f(x) = sup{a(x) : a € Ar(D),a < f}. Let € < f(x) be
arbitrary. We shall show that there exists a € Ag(D) such that a < f and € < a(x).

CASE 1: f(z) < . By Hahn Banach separation theorem, there exists a closed hyper-
plane H in X x R which strictly separates M from the point (z,€¢). Here H ¢ X x R
is graph of an affine function say a : X — R (Note: H cannot be of the form H; x R,
where H; is a hyperplane in X as H separates (z,€) from (x, f(z)). The open half spaces
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associated with H are {(y,«) : @ > a(y)} and {(y, @) : @ < a(y)}. By assumptions, one
of these contains (z,€) and other all of M. Since € < f(x), we get € < a(z) and a < f.
Also, a is continuous on D, since a~!({0}) is closed as a=1({0}) x {0} = H n (X x {0}).

CASE 2: f(x) = 0. Let 6 > 0 be an arbitrary number such that € < 0 < o0 and define
N = conv((z,d) u M). We now claim that (x,€) ¢ N. Define the sets A = {(y,«) : y €
D,a> 8} and B = {(y,0) sy € D, f(y) < o < 0},

CramM: conv((x,d) u M) < AU conv((x,d) U B)

PROOF OF THE CLAIM: Let Y | 0;(y;, oy) + B(z,0) € conv((x,§) u M), where Y | 0; +
S = 1. Since D is convex, >, &y; + Bx € D. Suppose >, 4(yi, ;) + B(z,0) ¢
conv((x,0) u B). This implies that (y;, ;) ¢ B and hence f(y;) > «; or § < «, for
every i = 1,2,.... Since (y;,;) € M, we have § < «, for every i = 1,2,... Thus,
D ooy + Bd > Y7 0,0 + S0 = 0. This implies > | 0i(yi, i) + B(z,0) € A. This

completes the proof.

Therefore, N ¢ A u conv((z,d) u B) = A U conv((z,d) U B), since B is closed subset of
D x [m,d], where m = inf{f(y) : y € D} which implies it is compact and also, convex
hull of finite union of compact sets is compact. Clearly, (x,€) ¢ A U conv((z,d) u B) and

so (z,€) ¢ N. Now, we apply the same argument as in Case 1 to V. O

Remark 4.1.6. In order to prove the next lemma, we need Dini’s lemma for a net of

functions which states as follows:

Let D be a compact subset of a lctvs X. Let {f,} be an increasing net of real valued
continuous functions where for each «, f, is continuous on D. Assume that { f,} converges
pointwise to a continuous function f : D — R. Then, {f,} converges to f uniformly on
D.

Lemma 4.1.7. S(D) consists of all pointwise limits of increasing nets of functions of the
form a; v as v ... v a,, where for all i = 1,2, ....,n, a; € Ag(D). Similarly, S(D) consists

of all uniform limits of increasing nets of above such functions.

Proof. Let x € D be arbitrary. By previous lemma,
f(z) =sup{a(x) : a € Ag(D),a < f}.

This implies there exists a sequence {a,}, where a, € Ag(D) and a, < f such that

f(z) = sup,{a,(z)}. Define g, = a; v ... v a, then g, < g,+1. Hence,

F(x) = supfan(2) - a, € Ax(D).a, < f} = lim g, ().
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Since x € D is arbitrary, f is pointwise limit of {g,}.

Let f e S(D). Now, S(D) < S(D) and hence f is pointwise limit of increasing nets of
functions of the form a; v ag v ... v a,, where for all i = 1,2,....,n, a; € A(D). By Dini’s

lemma, we get that f is uniform limit of above such functions. O]

Remark 4.1.8. Let a;,a, € A(D), A€ (0,1) and x,y € D. Consider,

(a1 v ag)(Ax + (1 — N)y) = max{a;(Az + (1 — N)y),ae(Az + (1 — N)y)}
< max{Aai () + (1 — Aaz(y), Aaz(z) + (1 = A)az(y)}
< Amax{ai(x),az(z)} + (1 — X) max{a1(y), az(y)}
= Aay v az)(z) + (1 — N)(ay v a2)(y).

(4.2)

Thus, a; v ay € S(D). Therefore, by induction, we can conclude that, for any n € N,

ay Vv ... v a, € S(D), where for all i = 1,2, ...,n, a; € A(D).

Proposition 4.1.9. Let u,v € M*(D). Then, the following are equivalent:

(a) p<v.
(b) For any f e Ca(D), u(f) < v(f).
() For any f € Ca(D), v(f) < u(f).

Proof. First we prove (i) implies (ii). Assume pu < v. We know that f € S(D). Hence,
by above Lemma 4.1.7, there exists an increasing sequence say (g,) such that g, — 1,
where each g, = ay v ... v ay,, for some a; € A(D), for all i = 1,2, ...,n. Now, by Remark
4.1.8, for each n € N, g, € S(D). Since p < v, pi(g,) < v(g,). Also,

p(f) = lim pi(g,) and v(f) = lim v(g,).

n—ao0

Hence, u(f) < v(f). Now, since v(f) < v(f), we get u(f) < v(f).

We prove (i) implies (i). Assume for each f € Cr(D), u(f) < v(f). Let f € S(D). Then,

f = f. This implies u(f) = u(f) < v(f) and hence, for every f e S(D), u(f) < v(f).
Therefore, u < v.

We now prove (ii) implies (iii). Assume for each f € Cgr(D), u(f) < v(f). Hence,
,u(:?) < v(—f). For each x € D, consider,

—f(w) = sup{g(z) : g < —f, g € S(D)}
=sup{g(z) : —g = f,—g € S(D)}
= —inf{—g(z) : —g = f,—g € S(D)}
- —f(2).
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This implies u(—f) = p(—f) = —pu(f). HeAnce, —u(f) < v(—f), which implies pu(f) >
v(f). Thus, for each f e Cr(D), v(f) < pu(f).

Finally, we prove (iii) implies (ii). Assume for each f € Cr(D), v(f) < u(f). Hence,
v(—f) < pu(—f). For each z € D, consider,

~f(z) = inf{g(x) : g > —f, g € S(D)}
=inf{g(z): —g < f,—g€ —=S(D)}
= —sup{—g(r) : —g < f,—g € S(D)}
= —f(2).

(4.4)

This implies p(:}) w(—f) = —p(f). Hence, —u(f) = v(—f), which implies u(f) <
v(f). Thus, for each f e Cr(D), u(f) < v(f). O

We will now prove one of the main tools used in this theory.

Proposition 4.1.10. Let f € Cr(D) and p € &(D). Then, there exists v € & (D) such
that 4 < v and v(f) = p(f).

Proof. Let p € &(D). Define for every g € Cr(D), ®(g) = p(g). Then, for any g, h €
Cr(D), -

(g +h) = p(g +h) < p(@+h) = pg) + p(h) = e(g) + S(h).
Note that the second inequality is due to the fact that the map g — ¢ is sublinear. This
implies @ is sublinear functional on Cg(D). Let f € Cr(D). Consider the subspace
Y = {af : a € R} € Cr(D). Define the map vy on Y as vy(af) = au(f), for all a € R.
Clearly, vy is linear.

Let o > 0. Then, vo(af) = au(f) = u(&?) = ®(af). Let @ < 0. Then, write o« = —,
for some 5 > 0. Now,

0= u(0) = u(BF — Bf) < w(BS) + u(=5F).
That is, —/L(B?) < ,u(fﬁ\f) Hence,
vo(af) = —Bulf) = —p(Bf) < u(—BF) = u(af) = ®(af).

Therefore, by Hahn Banach theorem, there exists a linear functional v on Cg(D) which
extends vy with v < ®. Hence, v(f) = u(f) and for each g € Cr(D), v(g) < ®(g) = ().
Hence, by proposition 4.1.9; u < v.
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Now, it remains to show that v € (D). We have, v(1) < ®(1) = u(1) = (1) = 1 and
since p < v, 1 = p(1) < v(1). This implies v(1) = 1. Hence, v € &(D). This completes
the proof. n

Our ground work for the Choquet Theorem for non metrizable case is complete. Before
going to the main result we prove a very useful characterization of extreme points. We

need the following Proposition in this context.

Proposition 4.1.11. Let K be a compact Hausdorff space such that Cg(K) is separable.
Let f be an upper semi continuous function on K, then there exists a sequence (g,) <
Cr(K) such that g, = g,+1 and lim, g, (t) = f(t), for all ¢.

Proof. CASE 1: When f > 0.

Fix xy € K aribitrarily and let o > f(xg). Let U = {t € K : f(t) < a}, then U < K is
open and zg € U. By Urysohn’s lemma there exists g € Cg(K) such that g(U¢) = {0}
and g(zg) = a. Thus f(xg) = inf{h(xg) : h € Cr(K),h > f}.

Consider the subset C in Cr(K) consisting of all positive functions h where h > f, as
Cr(K) is separable, C is also separable. Let (p,)°_; < C be a dense subset of C. Then,

f(330> = 1Hf{h($0) che CR(K), h > f}
= i%f{pn(xo)}'

Define g, = minj<;<, p;, then (g,) € Cr(K), g, = gny1 and finally, f(x¢) = inf, p,(x¢) =

lim,, g, (o). Since xy € K is arbitrary we are through.
CASE 2: When f # 0.
Then f = f* — f~, where f* = max{f,0} and f~ = max{—f, 0}.

For any real scalar r with f*(zq) < r, it is clear f(zo) < r and hence there exists an open
V' containing z such that V < {t € K : f(t) <r} < {te K : f*(t) < r}. On the other
hand if f~(z9) > r then — f(z¢) > r, which is a lower semi continuous, hence there exists
an open W containing zo such that W < {te K : —f(t) >r} S {te K : f~(t) > r}.

Hence there exist sequences (g,), (hn,) € Cr(K) such that g, | f* and h, 1 f~. Finally,
gn — hy, | f, this completes the proof. n

Theorem 4.1.12. Let = be a point in compact convex set D. Then, the following

statements are equivalent.

(a) z € ext(D).



43 Chapter 4 Choquet’s theorem for non metrizable compact convex sets

(b) f(z) = f(z), for each f e Cr(D).
() flo)=f

One may replace f by f in (b) and in (¢) usc by lIsc.

f(x), for each usc real function f: D — [—00,00).

Proof. We prove (a) = (b). Let z € ext(D). Then, ¢, is the unique probability measure
which represents z. Let f € Cr(D). By proposition 4.1.10, there exists v € & (D) such

~ ~

that 0, < v and v(f) = 0,(f). This implies §, = v and hence, 6,(f) = 0,(f). Therefore,
flx) = f(z).

Now, we prove (b) = (a). Assume for each f € Cg(D), f(z) = f(z). We know, z = r(4,).
Let 6, < p. Hence, by proposition 4.1.9, for each f € Cr(D),

u(f) < 6.(f) = f(x) = f(x) = 5.(f).

This implies for all f € S(D), u(f) < 6.(f). Hence, pu < 6,. Therefore, u = §,. Thus, J,

is the unique probability measure which represents x. This implies = € ext(D).

Clearly, (¢) = (b) since Cgr(D) is contained in the set of all usc real valued functions on

~

D. Tt remains to prove (b) = (c¢). Assume for each f € Cr(D), f(x) = f(z). Let f be
a bounded usc real function on D. Then, by Proposition 4.1.11 there exists a decreasing
net f, © Cr(D) such that f(z) = inf, fa(x) = infy fo(z), using (b). Also, inf, f, is an
usc and concave function. Hence f is usc and concave. Therefore, by property 3.1.9 (d),
f= f . This completes the proof. O

We next prove an important characterisation of maximal measures.

Theorem 4.1.13 (Mokobodzki Theorem). Let pn € M* (D). Then, the following state-

ments are equivalent.

(a) pis maximal in M*(D) w.r.t. ordering < defined as above.
(b) p(f) = u(f), for cach f € Cx(D).
(¢) p(f) = u(f), for cach f e S(D).

One may replace f by f in (b) and in (¢) S(D) by —S(D).

Proof. We prove (a) implies (b). Let f € Cr(D). Then, by proposition 4.1.10 exists

v e P(D) such that p < v and v(f) = pu(f). Since p is maximal measure, v = p and so

w(f) = u(f). Now, (b) implies (c) is obvious. We prove (c) implies (a). Let v € M*(D)
such that u < v.Let f € S(D), then f = f. By proposition 4.1.9, it follows,

ulf) = u(f) <v(f) < p(f) = ulf).
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This implies p = v on S(D). Since S(D) — S(D) is uniformly dense in Cg(D) we have
w=von Cgr(D). O

Definition 4.1.14. A measure pu on a compact convex set D is said to be a boundary
measure if |u], the total variation measure associated with p, satisfies one of the three

equivalent conditions of Mokobodzki Theorem 4.1.13

For each f e Cr(D), we define the following set,

By ={zeD: f(z) = ()}
Clearly,
ﬂ{xeD flz) — f(x)<%}
and it follows that By is a G set.

Note that from the characterisation of extreme points given in proposition 4.1.11, it

follows that,
ext(D) = ﬂ By.
feCr(D)

It is clear from statement (b) of Mokobodzki’s theorem that p is a boundary measure if
and only if |u|(D\By) = 0, for all f € Cgr(D). Since on a metrizable compact convex set D,
there exists a strictly convex continuous function f and hence ext(D) = By and thus p is

a boundary measure on a metrizable compact convex set if and only if |u|(D\ext(D)) = 0.

We need one more result before establishing Choquet’s theorem for non-metrizable com-

pact convex sets.

Lemma 4.1.15. Let D be a compact convex subset of a lctvs X. Let f = limsup,, f,
where { f,} is a bounded above sequence from S(D). If f(x) < a on ext(D), then f(z) <
on D.

Proof. Let x € D be arbitrary. By Lemma 4.1.5, there exists a sequence {a,} from Ag(X)
such that a, < f, and f,(z) < an(z) + £, for n = 1,2,... Define ® : X - R =[] R
as y — {a,(y)}. @ is continuous on X, since for any open set U of R®, & 1(U) is
intersection of inverse images of open sets of R under some finite numer of a,. Also,
¢ is affine function on E as for each n = 1.2..., a, is affine on E since Ag(D) is set
of all real valued continuous affine functions on E which are restricted to D. ® maps
D onto a metrizable compact convex set say D’. Since ® is continuous affine function
and D is compact, (D) is compact and convex. Now, since for each n = 1,2,..., a, is
real valued continuous affine function, a,(D) is a closed interval say [ay, b,]. Therefore,
D' =117 [an,bn] < l. Hence, D' is metrizable.

n=1
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For every n = 1,2, ..., denote the n'® canonical projection in R® as p,. Then, p, is

continuous linear functional on R* and p, o ® = a,, forn =1,2,....

We now claim that

limsup p,(y') < «

n

for all ' € ext(D’). We first prove that D n ®~({y'}) is closed face of D. D n ®~*({y'})
is closed since it is intersection of two closed sets in X. Let y,z € D and A € (0,1)
such that Ay + (1 — Nz € D n @ '({y/}. Then, ®(A\y + (1 — X\)z) = y/. This implies
AP(y) + (1—=N)P(2) = ¢'. Since ¢ € ext(D), P(y) = v and ®(z) = ¢/, hence proving that
D n @ '({y'}) is a face of D. Now, by Krein Milman theorem, ext(D n ®~1({y'})) # ¢.
Let y € ext(D n® ' ({y'})). Also ext(D n® '({y/})) < ext(D). Therefore, y = ®(y) and
so by hypothesis, we get

lim sup p,,(y') = limsup p,(®(y)) = limsup a,(y) < f(y) < a.

n n n

By the metrizable version of Choquet’s theorem, there exists € M*(D’) which represents
the point 2’ = ®(x) € D’ and for which u(D"\ext(D’)) = 0.

The sequence {p,} is bounded above on D’ since {a,} is bounded above on D. Hence, by

Fatou’s lemma for superior limits,

f(x) = limsup f,(x)

= limsup a,(z)

= lim sup p, (z')

(4.5)
= lim supf DPndit
n  Jext(D')
< J lim sup p,du
ext(D’) n
< .
Hence, f(z) < a on D. O

Theorem 4.1.16 (Choquet-Bishop-deLeeuw). If u is a boundary measure on D, then
|| (C) = 0, for every Baire set C' disjoint from ext(D).

Proof. We know that if A > 0 is a regular Borel measure, then for any Baire set B,
A(B) = sup{\(C) : C < B,C is a compact Gs set}. Hence, it suffices to assume that C
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is a G5 compact set disjoint from ext(D). Let

Q0
C= (U

n=1

where U,, are open sets. By Urysohn’s lemma, there exists a bounded sequence {f,} from
Cgr(D) such that f,(z) = 1, for z € C, for each n € N and lim,, f,(z) = 0, for x € D\C,
that is, lim, f, = x¢. Clearly, |u|(f.) = |u/(C), for n € N. Now, since for each n € N,
fn < fu, for each z € ext(D),

limsup f,, < 0.

n—o0

Consequently, by Fatou’s lemma and Mokobodzki theorem,

0< |pu(C)
< limsup |p|(fn)

n—0o0

= limsup [p|(f) (4.6)

n—ao0

< |p|(limsup f£,)

n—o0

<0.

Hence, |u|(C) = 0. O

4.1.1 Dual of Ar(D)

We claim that, (Ag(D))* =~ {u € M(D) : |p| is maximal }. In fact if F € (Ag(D))" then
extend F to C(D)* by Hahn-Banach Theorem. Then F € C(D)* is a signed measure say
pwon D,y = pt — p~. Clearly the positive measures u*, u~ are dominated by maximal
measures say v1, Vs with same resultants, by proposition 4.1.2. Hence v —1» is a boundary

measure on D and for every a € Agr(D), p(a) = v(a). F — v is an isometric isomorphism.

4.2 Some applications

We present two non-trivial results which are interesting applications of Choquet-Bishop-

deLeeuw theorem.

Theorem 4.2.1 (Rainwater). Let E be a normed linear space and suppose that z, x,,
for n = 1,2, ... are elements of E. Then, the sequence (z,) converges to = weakly if and
only if (z,) is bounded and lim,, f(z,) = f(z), for all f € ext(U), where U is closed unit
ball of E*
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Proof. Let J : E — E** be defined as for each f € E* J(z)(f) = f(z), which is a
linear isometry. Assume that (z,) converges to x in F weakly. Then for each f € E*,
{J(x,)(f) : n € N} is bounded and hence by uniform bounded principle, {J(z,) : n € N}

is bounded in norm. Since J is an isometry, (z,) is bounded in norm.

We now prove the converse. Assume that (z,) is bounded, that is, (J(z,)) is bounded in

norm and also for all f € ext(U),

f(an) = J(@n)(f) = J(2)(f) = f(2).

Let g be an arbitrary element of U. It suffices to show that J(x,)(g) — J(z)(g). In the
weak™ topology on E*, by Banach Alaoglu theorem, U is compact and also, it is convex.
Hence, there exists u € Z(U) such that g = r(u), support of p is contained in ext(D)

and also for every weak* continuous affine function ® on U,

ﬂ@=L©@-

In particular, for each n € N,

J(22)(9) = 9(za) = f J () dp = f I () dp

ext(U)

and

J(2)(g) = 9(z) = f J(2)dp = f J(x)dp.

ext(U)
Furthermore, by assumption, J(z, ) converges to J(z) on U a.e. [u]. Hence, by dominated

convergence theorem, §_, . J(zn) = §., 0y J(2).

This implies g(x,) — g(z). O

The second application deals with arbitrary Banach spaces. It is clear that if K is a w*-
compact, convex, norm separable subset of E*  for a real Banach space E, then ext(K)
is also norm separable and hence it is natural to ask what are the remaining points in K,

not in conv(ext(K)).

Theorem 4.2.2 (Haydon). Let E be a real Banach space and K be a weak* compact
convex subset of E* such that ext(K) is norm separable. Then K is the norm closed

convex hull of its extreme points(and hence is itself norm separable).

Proof. Let M = sup{||f| : f € K}. Let ¢ > 0 and {f,} be a norm dense subset of ext(K).
For each n € N, let B,, be the intersection of K and the closed ball of radius £ centered at

fn. Since K is weak* compact and by Banach Alaoglu theorem, the closed ball of radius
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¢ centered at f, is also weak® compact, both the sets are weak® closed and hence their

intersection is weak* compact, as it is contained in K. Also, this intersection is convex

and
U B, o ext(K).

Let f € K. Then, there exists u € Z(K) such that p is maximal and r(u) = f. Since

U,, B is a weak™ Fy; set, u(l,, Bn) = p(ext(K)) = 1. Let n e Nand D = U,, Bn- Then,

p(D) > 1 — 35;. Then, p can be decomposed into 1 = Apy + (1 — A)pp, where A = pu(D)

and i1, pio are probability measures on K defined as follows:

A = plp and (1= A)(p2) = plr\p-

Note that if A = 1 then us is an arbitrary probability measure on K. Then,

f=r(p) = Ar(p) + (1= A)r(pa).

Since r(u9) € K,

|f=r(p)] = (L= N)r(ue)] < B_M'M -3

Since py is a probability measure supported on D,
r(p) € conv((Bi)izy) = conv((B;)isy)-

Hence, there exists g; € B; and \; > 0 with Z?zl A = 1, for 1 < i < n such that
r(p) = Z Aigi-
i=1
Let h = X" | Aif;. Then, h € conv(ext(K)). Also,

n n n c
I (pa) = Rl = > Mg = D il < D (Nillgi = fil) < Ly
i=1 i=1 i=1
Consequently,
€ € €
I = BI< 1 = el + (U= Nl + Ir(s) Al < S+ S+ £ =

This implies h € conv(ext(K)). Therefore, conv(ext(K)) is norm dense in K. O

We give two examples, one where the assumption in the above Theorem is true and the

other where it is not true.
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Example 4.2.3. Let K = By, then ext(K) = {+e, : n = 1}. It is obvious that
By, = convll (ext(K)).

Example 4.2.4. Let K = By01]. Let A be the Lebesgue measure on [0, 1] and it is clear
that A ¢ convll(ext(K)). Since (by Mazur’s Theorem) convll(ext(K)) = conv® (ext(K)),
it remains to prove that A ¢ cono® (ext(K)). In fact for any finitely many points (¢;)7, <
K there exists a continuous f € C[0, 1] such that §, , fdA =1 but f(t;) = 0,1 <i <n.

Our next result ensures that a net convergence is always possible to any point in K with
a very special restriction. Let us recall Remark 4.1.3 and the figure therein. The point x
is the resultant of finitely many measures, where the maximal measure is supported only

on the extreme points of K.

Proposition 4.2.5. Let F be a lctvs and X be a compact convex subset of E. If
e P(X), then there exists a net (u;) € &(X) with each p; discrete( S(u;) is discrete),
r(pi) = r(p) and p; = p.

Proof. Let %, be a finite covering of X by closed convex neighbourhoods and let {gx} <
Cgr(X) be a finite subordinate partition of unity, that is, % = (Uy,...,U,) with X =
Ui U ... uUy,; supp(gi) < Uy, for each k = 1,2,...,n and 1 = > | gi. Define

(4.7)

g )
vy, = ,u(;k)d,u if u(ge) # 0
0 otherwise

Then, v, € Z(X). Let r(v;) = xp. Define

Clearly, pugy € Z(X), since

ZM(Qk)ZZJ gedp = | Yige=1.

k=1 k=1YX X k=1

Let P be the set of all finite partitions of X with closed convex subsets of X. Define the
partial ordering < where for %, % € P, it % < ¥ then % < ¥, that is, ¥ is a refinement
of . Then, (P,<) is a directed set and % +— gy is a net. If supp(gr) < U € %, then
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x € U since S(vx) < supp(gr) < U. If | € E*, then

M=

pa (1) = ) 11(gr)da, (1)

b
Il
—

p(gr) ()

Il
=

B
Il
—_

Il
=

11(gk ) Ve, (1)

bl
Il
—_
—~
e
0]
~—

Il
M=

1(9x)

x>
I
=
N
TR
<
=
=Y
=

1(Lgr)

).

I
M=

ol
I
~

=

This implies 7(pg ) = r(p).

Let f € Cr(X) and € > 0. Choose a covering % such that for all U € %, for each
T,y € U7 ‘f(l’) - f(y)| < €. Then7

=

\a (f) — () < ) |lgw) f () — p(gef)]

e
I
—

=

<

|1((gie) (f () = f))]

e
I
—

(4.9)

N
1=

(i)l f = f(xk)Hsupp(gk)

i
)

A
=

e(gr)

e
I
—

[
o

*

This implies 1y —> L. [

We will now give a proof of Stone Weierstrass theorem using Krein Milman and Choquet

theorems.

Lemma 4.2.6. Let T be a compact Hausdorff space and </ be a subalgebra of C(T)
with K = {ue ot : |p| < 1}. If p € ext(K) and f is a real valued function in &/ such
that 0 < f < 1, then f is constant on S(pu).

Proof. 1f p = 0, S(u) = ¢, then the assertion is trivially true. If p # 0, then |u| = 1.
Define regular complex Borel measure v and A by v = fdu and A = (1 — f)du. Since o
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is an algebra, it follows that v, A € &/*. Also, v and A are non-zero because 0 < f < 1.

Now,
v

A

p= vl B

is a convex combination of elements of K as
o+ N = [+ [ (1= £l = 1ul(T) = i = 1.

1 being an extreme point, we must have y = m and so v = |v|u. Hence, for every Borel

set B,
WE) = | fdu= | wldu

This implies f(t) = ||v| a.e. [n]. Since f is continuous, f(t) = |v|| on S(u). O

Theorem 4.2.7 (Stone Weierstrass theorem). Let T" be a compact Hausdorff space and

</ be a closed (that is supremum closed) subalgebra of C'(T") with the property that

(a) the constant functions are in .
(b) of separates the points of T
(c) if fe o, then fe ..

Then, o = C(T).

Proof. Let K = {ue o+ : |u| < 1}. Then, K # ¢(in fact K = &+~ C(T)*). Also, K is
convex and weak* compact (as it is the intersection of a weak* closed convex set with the
weak* compact set C'(7')*). Hence, by Krien-Milman theorem, there exists p € ext(K).
Suppose S(u) contains two distinct points s and ¢. From the properties of 7, it follows
that .o contains a real valued function f such that 0 < f <1 and f(s) # f(¢). But this
is impossible by the previous lemma. Hence, u = ad;, for some a € C and t € K and for
every f € </,

L fdp = af(t).

But pe &7+, so af(t) =0, for f € o/. Since 1 € &7, this means a = 0 and hence u = 0,
which shows that the only extreme point of K must be the zero measure and hence, by
Krein-Milman theorem, K = {0} and &/ = {0}. Then, Hahn Banach theorem implies
that o7 = C(T), as & is closed by assumption. O



Chapter 5

Choquet Simplex and its

Characterizations

In this chapter, we will investigate the characterisations of a simplex as given by Choquet-
Meyer. Let E be a real lctvs. Let P be a cone in E. Then we know that P induces a
translation invariant partial ordering on E: = < y if and only if y — x € P. Examples of
cone are M*(K), where K is a compact Hausdorff space, the set of all positive operators

on a Hilbert space H, etc.
Example 5.0.1. Let K be a compact Hausdorff space. Consider M*(K') which is the

set of all non-negative regular Borel measures on K. We know that M *(K) is a cone.

We now claim that M ™ (K) forms a lattice with the ordering, say <, induced by M™*(K)
as a cone. Let \,u € M*T(K). Given any Borel set A < K, (A + pu)(A) = 0 implies
A(A) + p(A) = 0 and hence \(A) = u(A) = 0. This implies that A and g are absolutely
continuous with respect to A + p and hence have Radon-Nikodym derivatives say f and
g respectively. Let h = min(f, g), which is defined a.e. A + p. We claim that A A p =
hd(A + p). Now, A — hd(A + p) = (f — h)d(A + p) € M*(K), since f > min(f,g).
Similarly, u — hd(A + p) € M*T(K). Let v € M*(K) such that v < X and v < p.
Hence, A — v,u — v € M*(K). Given any Borel set A < K, (A + p)(A) = 0 implies
A(A) = p(A) = 0. Now, (A—v)(A) = —r(A), which is possible only if v(A) = 0. It follows
that v is absolutely continuous with respect to A + p and hence have Radon-Nikodym
derivative say s. We have, therefore, (f — s)d(A + ), (g — s)d(A + p) € M*(K). Since
(f—s) = 0and (g—s) = 0, it follows that (h—s) = 0 and hence (h—s)d(A+u) € M (K).
Therefore v < hd(A + p). This proves that M*(K) is a lattice.

Let 0 # p € M*(K). Then clearly u/|pl| € Z(K). Also, 0 ¢ Z(K) and Z(K) is
contained in the hyperplane {yz € M(K) : u(1) = 1}, which does not contain 0. It follows
that Z(K) is a base of M *(K). Therefore, by Remark D.1.4 (a), M*(K)n(—-M*(K)) =

52
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{0}. By Remark D.1.5 (¢), we also get that M (K)— M™*(K) is a lattice. Now by Jordan
measure decomposition, we have M(K) = M*(K) — M*(K). This example serves as a

motivation for the definition of a simplex which is as follows.

Definition 5.0.2 (Simplex). Let D be a compact convex subset of a lctvs E, which is
contained in a hyperplane H which misses origin. Then D is said to be a simplex if D-D

is a lattice in F/, where D is the cone generated by D.

Theorem 5.0.3 (Choquet-Meyer Theorem). Let X be a non-empty compact convex set
in a lctvs E such that X is contained in a hyperplane which does not contain zero. Then

the following are equivalent:

(i) X is a simplex in E.

~

(ii) For any f € Cr(X) such that f is convex, f is affine on X.

(iii) If p is maximal measure on X with resultant = € X and f € Cr(X), where f is
convex, then f(z) = u(f).

(iv) For each continuous convex functions f, g € Cgr(X), m -+

(v) Each z € X is represented by a unique maximal measure on X.

Proof. (i) implies (i7): Assume X is a simplex in E. This implies there exists a hyperplane
H={xeFE: L) =r}, forsome L € E* r > 0such that 0 ¢ H, X « H and X is a
lattice. Let f € Cr(X) be a convex function on X. We know that f is concave on X. Tt
remains to prove that f is convex. Let x1,29 € X and ay,as > 0 with a3 + s = 1. Let

z = a2 + axy. Now, from proposition 3.1.9 and 4.2.5,

f(2) = sup{uf) : e P(X),r(n) = 2} = suplu(f) : p is discrete, r(n) = 2}.

Let us assume that u is a discrete probability measure and r(u) = z. Then there exists
finite sequences (y;)jes and (8;)jes, with 8; > 0, for each j € J, in X such that >, ; 5; = 1
and p1 = 3 ; B;6,,. Since for every g € E*

9(2) = u(g) = >, Bigy;),

jed

we get

2 = 11 + Qo = Zﬁ]y]
jed
Since X is a lattice, there exists {z;; : i = 1,2;j € J} < X such that for each i = 1,2,
T = D s z;j and for each j € J, By, = 2?21 z;j, where for each i, j, there exists v;; = 0

! . — .
and z;; € X such that z;; = ~;;2i;. Therefore, for each i = 1,2, z; = o; ! ZjeJ VijZij. Since
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xi,zij € X € H, L(z;) = r = L(2;;). Thus,
r=L(z:) = a; ' ) i Lzy) = a7t ) yir
jedJ jedJ

This implies 1 = >’ jeg O '9:;. Therefore, x; is a convex combination of elements in X.
Define for i = 1,2, y; = o' Zjej%'j(szu- Then r(u;) = ;. Thus, f(xz) > u(f) =
Zje] a;lfyljf(zlj) AISO, M(f) = Zje] BJf(yJ) For each j € J7

Flys) = (87 215 + 85 2y)
F(B 215 + B ag205) (5.1)

Bflﬁjf(zlj) + 5}1’723‘]0(22]')'

N

Therefore, we have

D8 F(ws) < X i f(215) + 705 (22))

= <2 %jf(zlj)> + (Z 72jf(32j)> (5:2)

= a1 (f) + agpa(f)-
This implies
p(f) < arpa(f) + copa(f) = arf(z1) + aaf(x2).

Thus f(2) < ayf(z1) + aof(22) < o1 f(x1) + aof(z2). This implies f is convex.

(7) implies (i7i): Suppose p is a maximal measure such that r(u) = z, for some x € X and

f € Cr(X) is a convex function on X. Then by (i7), f is affine. Then by the assumption
that r(u) = x and by Mokobodzki Theorem 4.1.13 we get,

(#4i) implies (iv): Let x € X. Then there exists a maximal measure say p on X and by

proposition 4.1.2, r(u) = . Let f, g € Cr(X) such that f, g are convex. Then by (iii),

—

F+g@) = u(f +9) = u(f) + plg) = f(2) + j).
Therefore, for each x € X, f/+\g(x) — f(x) + §(x).

(tv) implies (v): Let z € X. We know that S := S(X) is a cone in Cg(X) and S — S
is a subspace of Cgr(X). Define 4 : S —S — R as A(f —g) = f(z) — §(z). Let
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fi— a1, f2—g2€ S — 5 and o € R. Then by assuming (iv), we get,

A((fr = g1) + (fa = 92)) = A(f1 + f2) = (91 + 92))
= f/\f2 - 91/4_'\92
= fi+ fam
— (h—ag) + (f2 92)
= A(fi — g1) + A(f2 — g2)-

If & = 0, then clearly, A(a(f1 — g1)) = aA(f1 — ¢1). Now, if a < 0, then

Ala(fi — 1)) = AM(—a)g1 — (—a) f1)

(5.3)

since S — S is a subspace. Therefore, this proves that A is linear on S — S. Now the set

T ={pe PX):r(u) =z} is w*-compact in Z(X), since we know that the function

r: P(X) — X defined by (i) = 2 is w*-continuous. Therefore, f(z) = sup{su(f)

T} = po(f), for some g € T. Also, g(x) = po(g). This implies

~

f(@) = g(z) < po(f —g) < molllf =gl = | = gllee-
Similarly, we can get

i(@) = f(2) < | = gl

Hence
[f(2) = g(@)] < [f = glee,
which implies ||[A|] < 1. Since 1 € § — S and A(1) = 1, ||4] =

S HE

Therefore, A is

continuous linear functional on S —S. Since S — S is uniformly dense subspace in Cg(X),

A has a unique extension to Cg(X). By Riesz Representation theorem, there exists a
unique p, € M(X) such that for each h € Cr(X), A(h) = p(h), |[A] =1 = |u.| and

pz(1) = A(1) = 1. This implies p, € Z(X). Also, r(p,) = x. Let f € S(X). Then

1o(f) = A(f) = f(z) = sup{v(f) 1 v e P(X);r(v) = z}.

Let v € M (X) such that p, < v. This implies r(u,) = r(v). Hence,

A~

F@) = pa(f) <v(f) < fla).

This implies for each f € S(X), p.(f) = v(f). It follows that for f,g € S(X), then
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wo(f —¢g) = v(f —g). Again since S — S is dense in Cr(X), for each f € Cr(X),
te(f) = v(f). This implies pu, = v. Hence p, is a maximal measure representing .
Suppose A is another maximal probability measure such that r(\) = z. For each f € S,
pio(f) = f(x) = A(f). This implies A\ < pi,. Since A is maximal, A\ = ;. This proves the

uniqueness of such a maximal measure.

To prove (v) implies (7), we need the following lemmas.

Definition 5.0.4 (Hereditary subcone). Let P;, P, be two cones in a lctvs E such that
P, < P,. Then P is said to be Hereditary subcone of P, if for x € P, y € P, such that
y < = (where < is the ordering induced by P,), then y € P;.

Lemma 5.0.5. Let P; be a hereditary subcone of cone P,. If P; is a lattice, then P; is

a lattice.

Proof. We assume that P, and P, are cones with vertex 0. Let <; and <5 be the orderings
induced by P, and P; respectively. Let z,y € P, € P,. Since P, is a lattice, x A y € P.
Since x Ay <9z, x Ay € P. Let z € P, © P, such that z <; x, 2 <; y. This implies
2z <gxAy. Since 0 <5 2z, tAYy—2 <9 & Ay. Thisimplies x Ay—2z € P;. Hence z <y x A y.

This completes the proof. n

Remark 5.0.6. Let P, be a hereditary subcone of cone P,. Let x,y € P;. If x <5 v,
then x <4 y.
Lemma 5.0.7. Let X be a compact convex subset of a lctvs E. Let .# be the set of all

maximal positive measures on X. Then . is a hereditary subcone of M*(X) ( which is
a cone with vertex 0), Z(X) is a base of .# and (X)) is a simplex.

Proof. Clearly, # < M*(X). Let A€ .# and r > 0. Let u € M*(X) such that 7\ < p.
This implies for each f € S, rA(f) < u(f). Since A is maximal measure on X, it follows
that A = p/r and hence A = u. This proves that . is a cone. In order to prove that .#
is convex, it suffices to show that for each \,u e 4, N+ pe 4. Let \,u € 4. Using
Mokobodzki Theorem, for each f € Cg(X),

~ A A

A+ ) (f) = Af) +p(f) = Af) + pn(f) = A+ p)(f)

Thus by Mokobodzki theorem, A + u € .#. Now, 0 ¢ {ue M(X) : pu(l) = 1} is a w*-
closed hyperplane in M (X) and

P(X) ={pe MX):p(l) =1} n 4.

This implies &(X) is a base for .#. It remains to prove that .# is a hereditary subcone
of MY(X). Let A € 4 and p € M*(X) such that 4 < A (where < is the ordering
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induced by M*(X)). Let pu; € .4 such that g < py. This implies for each f € S(X),
w(f) < pa(f). p < XAimplies A —p e MT(X). Now, A = p+ (A —pu) < pug + (A — p).
Since A € A, A\ = uy + A — p which implies 1y = p. Therefore, € .#. Hence, 4 is a
hereditary subcone of M*(X). O

We will now prove (v) implies (7). The function r : Z(X) — X defined by r(u) = z is
w*-continuous. By assumption (v), r™' : X — Z2(X) is one-one and onto map. Also,
r~! is affine function. Therefore, 2(X) and X are affinely homeomorphic. By Lemma
5.0.7, Z(X) is a simplex. We can continuously extend 7 to ﬁ ). Let us denote the
extension also as 7 for simplicity. Then 7 is one-one and r(ﬂ )) = X. Let tzy, szs € X.
This implies tr=(z1) A s (z2) € 2(X) and hence r(tr—'(z1) A sr~(22)) € X. We now
claim that tz; A szo = r(tr~1(zy) A sr~1(xy)). Consider

r (tay — r(tr @) A st (x))) = tr7H(ay) — tr (@) A st (a0) € 2(X).

Therefore,

—_———

tay — r(tr (1) A st (w2)) € r(P2(X)) = X.
Similarly, we can prove that,

~

tog —r(tr H(a) A st (x0)) € X.

Let w € X such that w < tr1 and w < sxy. Note that the ordering < on X is induced

—_——

by r and Z(X). Then

rHw) < v (txy) = tr (o) and T (w) < 7 (s2g) = s ().

Therefore
rHw) < trt(zy) A sr ().
and hence
w < r(trHx) A srH(wy)).
This proves that X is a lattice. [

We conclude this chapter with a proof that the definition of simplex coincides with the

usual one for finite dimensional spaces.

Result 5.0.8. Let X be a non-empty compact convex set in a lctvs E such that X is
contained in a hyperplane which does not contain zero. Suppose X — X is of dimension
n. X is the convex hull of n linearly independent vectors of F if and only if X has exactly

n extreme points.
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Proof. Assume X = conv({z;}!~,), where {x;}I", is a linearly independent set in E.

By the converse of Krein-Milman Theorem, ext(X) < {z;}~,. Suppose without loss of

generality, x,, ¢ ext(X). This implies there exists a; > 0, for each 1 < i < n — 1, with
n—1

o a; =1 suc at ©, = ), a;x;. is is a contradiction to our assumption tha
! 1 such that " Th tradiction t tion that

{x;}I | is linearly independent. Hence, X has exactly n extreme points.

Conversely, assume X has exactly n extreme points in E say xq,xs,...,2Z,. Therefore,
X = conv({z;}I~,). Suppose {z;}I~, is not linearly independent set. Without loss of
generality, let {z;}7, be linearly independent set where 1 < m < n. This implies X-X
is a linear span of {x;}™,, which is a contradiction to the fact that dimension of X — X

is n. This implies that {z;}! ; is linearly independent set in F. O

FiGURE 5.1

Example 5.0.9. Consider a triangle X in R? as shown in the above figure. We embed X
as X x {1} in the hyperplane R2 x {1}. Clearly, it follows that X forms a lattice. Hence,
X is a simplex. Also, observe that X is the convex hull of its three linearly independent
vertices. This example leads us to the following characterization of a simplex in finite

dimensional spaces.

Theorem 5.0.10. Let X be a non-empty compact convex set in a lctvs E such that X
is contained in a hyperplane which does not contain zero. Suppose X — X is of dimension
n. Then X is a simplex if and only if X is a convex hull of n linearly independent vectors

of E, equivalently X has exactly n extreme points.
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Proof. Assume that X is a simplex. Since X is a compact convex subset of F, X =
conv(ext(X)). X cannot have less than n extreme points, otherwise X — X will be
a span of less than n vectors which is a contradiction to the fact that X — X is of
dimension n. Suppose X has n + 1 extreme points say yi, ¥, - .., Yns1- Lhen there exists

a;, 1 <1< n+ 1, atleast one of «; is non-zero, such that

n+1
2 a;y; = 0.
i=1
Consider the sets N = {a : a = «;, for some i such that a; < 0} and P = {a :

a = «; for some i such that a; > 0}. Let a = ZaiePOéi > 0. Otherwise if « = 0,
FOIH i) = 0, for a f € (X — X)* such that f(y;) = 1, for each 1 < i < n + 1. This

implies
n+1 n+1

ZozlfyZ Za,zO.

i=1

Now the above sum can be written as

O0=a+ ZO.@:O-F ZO{Z‘Z ZO&Z‘<0,

O(iEN Oz,L‘EN Oz,L‘EN

which is a contradiction. Also, @ = =3 va; > 0. Let x = 3 _pa oy, where
Yieep @t = 1. Also, x = 3, _y(—a"agy;, where 3 v (—a~)a; = 1. Therefore,

=7 <Z a_laidyZ) = <Z (—04_1)04i(5yi> .
o;eP ;€N

This implies z has two distinct representing measures which is a contradiction since every
point of the simplex X is represented by a unique maximal measure on X. Therefore X

has exactly n extreme points.

Conversely, let X have exactly n extreme points say 1, xs, . .., ,. Then X = conv({z;}1,).
Also, {x;}I  is a linearly independent set of vectors in E. Otherw1se without loss of gen-
erality, we can remove vectors from the set {x;}"_; such that {z;}/",, where 1 < m < n is
linearly independent set. Now, X — X is a linear span of {m 7, which is a contradiction
to the fact that dimension of X — X is n. Let B, = X — X and {x;}1_, forms a basis of
E;. Choose fi, fa,..., fo € E* such that fi(x;) = d;j, foreach 1 <j<nand1<i<n.
Define T': By — R" as Tz = (f1(x), fo(x), ..., fu(x)). Clearly, T is linear and continuous
on Ey. Consider Tz = 0. This implies f;(xz) = 0, for each 1 < i < n. Now, z = >, | a;z;,
for some «; € R, for each 1 < ¢ < n. Hence, f;(z) = a; = 0, for each . Therefore, z = 0.
This proves that T is one-one. Let (aq, o, ..., ;) € R". Then z = > | az; € Ey. Ev-
idently, Tx = (o, o, . .., ), which proves that T is onto. Let {e;}!; be the standard
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basis of R™. Then Tx; = ¢;, for each 1 < i < n. Therefore, TX = conv({e;}!,) which
is a compact convex subset of R". Hence, TX = {(an,0,...,0p) :a; =2 0,1 < i < n}
and is clearly a lattice in R™. Therefore, T'X is a simplex. It follows that X itself is a

simplex. O



Chapter 6

Choquet Boundary

6.1 Definitions and basic properties

Let K be a compact Hausdorff space and C¢(K) denote the space of all complex valued
continuous functions on K with the supremum norm. Let us recall some basic facts about
any complex Banach space E. The dual of (E* w*) is E itself, with each z € E defining

a continuous linear functional f — f(x) on E*.

Definition 6.1.1 (State space). Let M be a linear subspace(not necessarily closed) of
Cr(K)( or of Cc(K)) such that 1 € M. Then the state space of M, denoted by K (M),
is defined as K(M) = {Le M*: L(1) = 1,|L| = 1}.

Consider (M*,w*). Then clearly K (M) is non-empty( since for any t € K, §; € K(M))
and convex set. Also, K(M) is a w*-closed subset of the w*-compact unit ball of
M*(by Banach Alaoglu theorem) and hence K (M) is w*-compact set. When M =
Cr(K), K(M) = Z(K). Then by Krein-Milman theorem, we know that Z(K) =
conv”” (ext(P(K))). In order to use the results in previous chapters, it is necessary to

know the description of extreme points of K (M).

We shall now define a map ¢ from K into K (M) as k — d, where 6x(f) = f(k), for all
fe M. Let k, — k be any net in K. Then for any f e M, f(k,) — f(k), which implies
that oy, 2 S Hence, ¢ is continuous map from K into (K (M), w*).

If M separates points of K, then ¢ is one-one and hence ¢ is a homeomorphism, embedding
K as a compact subset of K(M). If L € K(M) and p is a measure on K such that for
every fe M, L(f) = u(f), then p can be carried to a measure x on K (M) in the obvious
way: 1 = po ¢, Since the dual of (M*,w*) is M itself, it follows that y" represents L.

61



62 Chapter 6 Choquet Boundary

Lemma 6.1. Let M be a subspace of Cr(K)( or of Cc(K)) such that 1 € M. Then
K (M) = om®* (4()).

Proof. Clearly, conv®” (¢(K)) < K(M). Suppose there exists L € K(M) such that
L ¢ conv”” (¢(K)). Then by Hahn Banach separation theorem, there exists f € M such
that,

sup Ref(o(K)) = sup{Ref(y) : y € K} < Re(L(f)) < |Ref|||L] = |[Ref] (1).

Now, by adding a large positive constant M to both sides of the above inequality such
that g = f + M = 0, we get

| Re(g)|| = sup{Re(g)(y) : y € K} < |[Re(g)],

which is a contradiction. O

Definition 6.1.2 (Choquet Boundary). Let M be a linear subspace of Cr(K)( or of
Cc(K)) such that 1 € M. Then the Choquet boundary of M, denoted by B(M), is
defined as B(M) = {k € K : ¢(k) € ext(K(M))}.

Remark 6.1.3. Let L € K(M). L is an extreme point of K (M) if and only if L = ¢(y),
for some y € B(M).

Proof. Now, by previous lemma, K(M) = conv®” (¢(K)). Hence, by partial converse of
Krein-Milman theorem, ext(K(M)) < ¢(K). Assume L = ¢(y), for some y € B(M),
then by definition of B(M), L is an extreme point of K (M). O

Let us look at the following characterization of B(M) in terms of measures on K for

subspaces M that separates points of K.

Theorem 6.1.4. Let M be a subspace of Cgr(K)( or of Cc(K')) which separates points
of K and contains the constant functions. Then k € B(M) if and only if p = ¢y is the
only probability measure on K such that f(k) = SK fdu, for all fe M.

Proof. Assume that k € B(M) and suppose p is a measure on K such that f(k) = §,. fdu,
for all f € M. Hence, we can carry u to a measure ' on K (M) such that p1'|gx) = pod™".
Since ¢(k) € ext(K(M)), dg() is the only probability measure that represents ¢(k). Using
the fact that the dual of (M* w*) is M itself, from the above relation, for all f € M, we
get the following

5&ﬂ=ij=J S =k )

K(M
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This implies

po¢ ™t =p =0y = 0o .

Since ¢ is a homeomorphism, g = d.

Conversely, suppose k ¢ B(M). This implies ¢(k) ¢ ext(K(M)). Thus, there exists
two distinct measures p; and ps on K which represent ¢(k) such that for every f e M,
o(k)(f) = ’”T(f) + “QT(f) Let p = & + £2. By assumption, p = 0. Since p; and jip are
distinct, py # 0 implies pq({k}) < 1. Hence u({k}) < 1. Therefore p # J5, which is a

contradiction. This implies k € B(M). O

The above theorem tells us that when M = Cr(K) or C¢(K), B(M) = K. An example
where B(M) # K can be constructed as follows:

Consider K = [0,1] and let M = {f € Ca(K) : f (1) = {2 + LU} Then B(M) =

2 2
K\ {%} Clearly, from the definition of M, for each f e M,

do(f) + 01(f)
—

This implies 01 ¢ ext(K(M)) and hence § ¢ B(M). Let z € K\ {1}. Suppose there exists
a probability measure p on K such that for each f € M, f(z) = SK fdu. In order to
show that p = ¢,, it is enough to show that u(K\{x}) = 0 Now, we can choose a function
g € M such that for any y # z, |g(y)| < |g(z)| = |¢]w- Consider

loko =lo@) < | loldn = | ottt < lolentton) + | o

If u(K\{x}) > 0, then the above inequality will become,

oo < lalotaah) + [

{«}

gldp < llgleop(iz}) + lglopn(KA\i2}) = llg]eo,

which is a contradiction and hence p(K\{z}) = 0. Therefore, B(M) = K\ {3}.

Definition 6.1.5 (Boundary and Silov Boundary for M). Let M be a subspace of Cg (k)
or of C¢c(K) and that 1 € M. A subset B of K is said to be a boundary for M if for each
f € M, there exists y € B such that |f(y)| = |f|c. The smallest closed boundary for

M (i.e. it is the closed boundary which is contained in every other closed boundary) is
called the Silov boundary for M.

Proposition 6.1.6. Let M be a subspace of Cgr(K)(or of C¢(K)) with 1 € M. Then
B(M) is a boundary for M.
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Proof. Let f € M. Since the dual of (M* w*) is M itself, f attains its supremum on
K(M)u—-K(M). Let Ly e K(M) u —K (M) such that

Lo(f) = sup f(K(M) v —K(M)).

Suppose Lg € K(M). Then the set F' = {L € K(M) : L(f) = Lo(f)} is a non-empty w*-
compact convex subset of K (M) and also clearly, a face of K(M). Therefore, ext(F) <
ext(K(M)) c ¢(K). Let k € K such that ¢(k) € ext(F'). This implies ¢(k)(f) = Lo(f) =
| fleo and hence f(k) = | f]( since sup f(K(M)) = sup f($(K))). If Ly € =K (M), we
do a similar argument as above and get the required conclusion by considering F' = {L €

K(M) : L(f) = —Lo(f)}, a non-empty w*-compact convex face of K(M). O

Proposition 6.1.7. Let M be a subspace of Cg(K)(or of Cc(K')) which contains constant
functions and separates points of K. Then the closure of B(M) is the Silov boundary of
M.

Proof. By previous proposition, B(M) is a boundary for M. Hence, W is a closed
boundary for M. Let B be any closed boundary for M. It suffices to show that B(M) c B.
Suppose there exists y € B(M)\B. Since y ¢ B, there exists a neighbourhood U of y
such that y € U < K\B. If we show that there exists f € M such that sup |f(K\U)| <
sup | f(U)|, then we get a contradiction to the fact that B is a boundary for M. Now
0y € ext(K(M)) and ¢(U) is a weak™ neighbourhood of §, in ¢(/). By definition of weak*
topology and the fact that the dual of (M*, w*) is M itself, there exists g1, 92, ...,9, € M
such that

ﬂ{LGM*' (91) = 9:(Y)| < €} 0 O(K)) = ¢(U).

Now
ﬂ ({L e M*:|L(gi) — gi(w)| < e} n oK ﬂ{a € 0(K) : [gi(2) — gi(y)] < e}.
Let for any 1 <i<mn, f; = g — g:(y) € M. Tt follows that,

({6- € 6(K) : |g:(2) — ()| < €}

i=1

{5 € o(K) : [fi(2)] < €}
(6.1)

DL HD:

({5 € o(K) : fi(z) < e} n{d: € 9(K) : —filz) < €})

i

ﬂ{5 € p(K) : fi(z) <€}

=1
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Therefore,

5, € ﬂ{(sz e ¢(K) : fi(2) < €} < ¢(U).

For each i = 1,2,...,n,let K; = {L e M*: L(f;) = ¢} n K(M). Then K; is w*-compact
convex sets for each i = 1,2,...,n. Let J = conv(|J;_, K;), which is also a w*-compact
convex subset of K (M). Now d, ¢ J. By Hahn Banach separation theorem, there exists
f € M such that

sup f(J) < 6,(f) = f(y)-
Since

SN o0) = | J Ko

we have

sup f(¢(K)\o(U)) < f(y).

This implies
sup [(K\U) < f(y) <sup f(U).

Now there exists a large C' > 0 such that ¢ = f + C' > 0. It follows from the above
inequality that
sup [g(K\U)| < sup |g(U).

Therefore the closure of B(M) is the Silov boundary for M. O

We will now show that every non-empty compact convex subset of a lctvs is of the form
K (M), for a suitable K and M.

Proposition 6.1.8. If X is a compact convex subset of a lctvs FE, then there exists a
separating subspace M of Cg(X) with 1 € M such that X is affinely homeomorphic with
K(M).

Proof. Let M be set of those functions in Cg(X) of the form g = f + r, for some f € E*
and r € R. Then, M separates points of X, since E* separates points of X and clearly
1 € M. Define ¢ from X to K(M) as we had earlier. Let «, 5 € R such that a + § =1
and x,y € X. Then for each f e M,

¢lax + By)(f) = flox + By) = af (x) + Bf (y) = ad(x)(f) + Bo(y)(f).

This implies ¢ is affine. Let L € K(M). Then by Hahn Banach extension theorem, there
exists an extension of L, L € Cg(X)* such that | L] = 1. Now, by Riesz Representation
theorem, there exists p € Z(X) such that L(f) = p(f), for each f € M. Then by
Theorem 2.2.2, p has a unique resultant in X, which implies ¢(x) = L. Hence, ¢(X) =
K(M). O
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We conclude this chapter with a form of the representation theorem which is due to

Bishop-de Leeuw.
Theorem 6.1.9. Let M be a subspace of Cr(K)(or of Cc(K)) such that it separates

points of K and contains constant functions. If L € M*, then there exists a real measure
pon K such that L(f) = §, fdu, for each f e M and p(S) = 0, for any Baire set S in
K which is disjoint from the Choquet boundary B(M) for M.

Proof. Let L € M*. By Hahn Banach extension theorem, L can be extended to continuous
linear functional L on Cg(K) such that |L| = |L|. By Riesz Representation theorem,
there exists p € M(K) such that L(g) = § gdp, for each g € Cr(K). Now there exists
positive measures on K say pq and po such that p = p; — pe. We can carry these
two measures to measures j; and py on K (M). Therefore, by lemma 4.1.4 there exists
maximal measures v, v, on K (M) such that y; < v; and py < v,. By Choquet-Bishop-de
Leeuw theorem 4.1.16, for i = 1,2, v;,(S) = 0, for any Baire set S which is disjoint from
ext(K(M)). Therefore, vy = v, 0 ¢ and v = v, 0 ¢ are measures on K and v = vy — vy is
a boundary measure on K such that y < v and v(5) = 0, for any Baire set S in K which
is disjoint from B(M) = ¢~ '(extK(M)). Also, by proposition 4.1.2, L(g) = §,. gdv, for
each ge M. O]

6.2 Choquet Boundary for uniform algebras

Let K be a compact Hausdorff space.

Definition 6.2.1 (Uniform algebra or function algebra). A uniform algebra <7 of C¢(K)
is defined as a uniformly closed subalgebra of C¢(K) such that o/ separates points of K

and contains constant functions.

For a metrizable K, Bishop and de Leeuw prescribe a simple description of the Choquet

boundary for a uniform algebra o7 i.e it consists precisely of all the peak points for <.

Definition 6.2.2 (Peak point). A point x € K is said to be a peak point for a subalgebra
M of C¢(K) if there exists a f € M such that for each y # z, | f(y)| < |f(x)].

We will now move to the main theorem of this chapter which is due to Bishop and de
Leeuw. A special case of this theorem will yield the above claim regarding the Choquet

boundary for uniform algebras.

Definition 6.2.3. Let &/ be a uniform algebra of Cc(K) and that y € K. We say that

y satisfies:
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Condition (I) - if for any open neighbourhood U of y and € > 0, there exists f € 7 such
that | fe <1, |f(y)] >1—€cand |f| <ein K\U.

Condition (II) - if whenever S is a G5 set containing y, there exists f € &7 such that
[F @)l = [flleo and {z € K- [f(2)] = [flo} = 5.
Theorem 6.2.4 (Bishop-de Leeuw). Let &7 be a uniform algebra of Cc(K) and y € K.

Then the following are equivalent:

(i) The point y satisfies Condition (I).

(ii) For each open set U containing y, there exists f € o/ such that |f(y)| = | f]«
and |f| < | fle in K\U.

(iii) For each x € K with y # x, there exists f € & such that | f(z)| < |f(y)] = | fle-

(iv) The point y satisfies Condition (II).

(v) The point y is in the Choquet boundary B(</) for <.

Proof. We prove first (i) implies (ii). Suppose y satisfies Condition I and let U be
any open set containing y. We will construct a sequence {g,} in & with the following

properties:

a) [ gns1 = gnlloo <2777
b) gnllee <3(1—27"7)
¢) gn(y) = 3(1-2")

(
(
(
(d) |gny1 — gn| <271 in K\U

Suppose, let us assume, that we have the above sequence. Then (a) implies that {g,} is
Cauchy in o7 and since & is complete, there exists f € & such that g, — f uniformly.
(b) implies that ||f| < 3 but (c) gives us that f(y) = 3, hence |f|, = 3 = f(y). If

x € K\U, then writing f = g, + >, (gr+1 — gk), We get

@) < lgnloe + D] lgrsa(@) = gr(@)] < 3(1 =277 Z 27h 1 <

k=n

We apply induction to contruct the sequence {g,}. Since y € U, by Condition I, there
exists f € o such that |f|l, < 1, [f(y)] > % and |f| < 7 in K\U. Define ¢; = 5%
Since |f(y)| > 1,

ot = 2 e
2Tl S

——2 3(1—272).
3 <3 )
Also
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Therefore g, satisfies the relevant conditions.

Suppose we have chosen functions g1, gs, . . ., gr to satisfy the above four conditions. Since

gr is continuous at y, there exists a neighbourhood of y say V < U such that in V,
gk < lge(y)| +27% 2 <3(1—27%) + 2772

Now again by Condition I, we get another f € ./ such that ||f|, < 1,|f(y)| > % and
[fl < §in K\V. Define b = (3.27% )55, Then [k < (3.27%71)5 = 2751 h(y) =
3.27" 1 and in K\V, |h| < (3.27%71).2.5 = 27%71. Define gy11 = gx + h. Then it follows
easily that gy, satisfies (a), (c¢) and (d

4
3
). To check (b); let z € V', then

g1 (@)] < lgr(@)] + [A(@)] < 3(1—27%) + 27772 4 271 = 3(1 — 27477
and let z € K\V, then

|gk41(2)] < lgilloe + [A(2)] < 3(1 =271 + 2771 =3 - 28 < 3(1 - 277%),

Thus, |ges1lle < 3(1 —27%72). This completes the induction and hence the proof of (i)
implies (i1).
(27) implies (i77) is immediate; if x # y, we consider the open set K\{z} which contains

y and (zi1) follows easily.

To prove (iii) implies (iv); consider S to be any Gs set containing y. Let {U,} be a
decreasing sequence of open sets in K such that S = ()_, U,. For each n € N, we will
find f,, € &/ with the properties | f,|c =1 = fu(y) and |f,,| < 1 in K\U,. Once we have
this function, we define f = >," 27" f,. Then

F)l =D 27 fuly) = D 27" =1

n=1

and

0 0
£l < DS 27" fullw = D 27" = 1.
n=1 n=1

Hence, ||f|oc = 1 = f(y). Moreover, if z € K such that |f(z)] = |f|. = 1; suppose
x ¢ U,, for some N € N, then

L=f@)] <D 27" flx) < D 27" =1,

which is a contradiction. This implies x € S. Hence, f satisfies the properties of Condition
IT. Let n € N and = € K\U,. (¢ii) implies there f, € o such that ||f,|x =1 = |fa(y)|
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and |f.| < 1 in the neighbourhood V. of z. Since K\U,, is compact, we can choose finite
number fy,, fu,, - -, fz, of such functions for which V,,, V,, ..., V,, cover K\U,. Define

fo=k"1 Zle fz;- Then

k
:k;*lzl:

1=

k
| fallo <& £o,
=1

—

and .
)=k~ fol -k 1=1

Hence | f.| =1 = fu(y). For x € K\U,, there exists j € {1,2,...,k} such that x € V, ,

hence
’fn < k™ Z‘fxz |<k 21_1

This completes the proof of (ii7) implies (iv).

We now prove (iv) implies (v). Suppose y satisfies Condition II. By theorem 6.1.4, it is
enough to show that p = ¢, is the only probability measure on K such that f(y) = u(f)
for each f € o7. Suppose that p is a measure on K such that f(y) = p(f) for each f € of.
It suffices to show u(S) = 1 for each S is a G5 containing y. Suppose we have this, then
K\{x} is a G§ set and hence pu(K\{z}) = 1, for each = # y. This implies S(u) = {y}. Let
S be a G set containing y. (iv) implies there f € & such that y € {z : f(z) = | f|»} = S;
then

wm:mw=wm<me+f|wmww<>ﬁ$mm

If u(K\S) > 0, then SK\S \fldp < || fllope(K\S), which is a contradiction. This implies
w(K\S) = 0. Hence, u(S)=1. This completes the proof.

To prove (v) implies (i), we need a simple lemma.

Lemma 6.2.5. If M is a separating subspace C¢(K) with 1 € M, then ReM (the space
of real parts of functions in M) is also a separating subspace of Cr(K) and B(M) =
B(ReM).

Proof. Let x,y € K be such that x # y. Then there exists f € M such that f(x) # f(y).

Suppose f = u+4v. This implies either u(x) # u(y) or v(z) # v(y). If u(z) # u(y), then
we are done. Otherwise, if € M and if(x) # if(y). This implies

—v(z) + iu(z) # —v(y) + iu(y).

Hence —v € ReM serves our purpose.
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Using theorem 6.1.4 and the fact that for a real measure p on K, u(Ref) = (Ref)(y),
for each f e M if and only if u(f) = f(y), for each f € M, we get B(M) = B(ReM). O

Let us now return to the proof of (v) implies (i). Suppose y € B(«/) = B(Res/) and
that U is a open neighbourhood of y and 0 < ¢ < 1. We can choose a function g € Cr(K)
such that 0 < g < 1 and ¢g(y) = 1 and ¢ = 0 in K\U. Let us denote the w* compact
convex set K(Rea/) — (Re«/)* by X. By Tietze extension theorem, we can obtain
f € Cr(X) such that f = go ¢ on ¢(K) < X. Since ¢(y) € ext(X), by theorem 4.1.12,
:}(gb(y)) = (=f)(¢(y)) = —g(y) = —1. By proposition 3.1.5, the space of continuous
functions on X is isomorphic to the uniform closure of Reo? and hence

ZF(y) = inf{h(y) : he Res/,h > —f}
= —sup{—h(y) : —he o, —h < [} (6.2)
=1.

It follows that there exists hg € Reo? such that hy < f and ho(y) > %, where 6 = 1/e.
Define h = (logd)(hg — 1), then h € o/ and there exists k € Res/ such that h + ik € 7.
Since o7 is closed in Cc(K), fo = " e o/. Now |fy| = e". Since hg < g < 1, it implies

ho — 1 < 0 and hence h < 0. Therefore e” < 1 i.e. |fy| < 1. Since

log(d — 1)

(log 8)(ho(y) — 1) > (log ) < log §

) a0

therefore
| foly)| = eloedho)=1) 5 plog(l—e) _ 1 _ ¢

In K\U, g = 0 and hence hg < 0 and (logd)(hg — 1) < —logé = loge. This implies
’f0| — e(logd)(ho(y)=1) < ploge — ¢ ip K\U. n

Corollary 6.2.6. If K is metrizable compact Hausdorff space and o7 is a function algebra
in C¢(K), then the Choquet boundary B(</) coincides with the set of peak points for
o

Proof. Since K is metrizable, {y} is a G for all y € K. From the above theorem, assertion

(7v) implies that y is a peak point for «7. Hence, (iv) implies (v) proves the required. [J

Example 6.2.7. This example is the motivation for the term boundary. Let D = {z €
C : |z| < 1} and consider the disk algebra A(D) = {f € Cc(D) : f is analytic in D}. We
claim that the Choquet boundary for A(D) coincides with its Silov boundary and these
equal the boundary T = {z € C : |z| = 1} of D. Let 2, € C such that |z| = 1. Define
f(2) = 2z + 2, for all z € D. Clearly, f € A(D). Now |f(2)| = 2. For any z € T,

|f(2)] = |z + 20| < 2, since T is strictly convex and for any z € C with |z| < 1, clearly
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|f(2)] < 2. This implies z is a peak point for A(D). Also, it follows from the maximum
modulus principle for analytic functions that no point in D can be a peak point for A(ID).
Since D is metrizable, by above corollary, the claim is proved.

Example 6.2.8. This is another example for the case when Choquet and Silov boundaries
are different. Let M = {f € A(D) : f(0) = f(1)}, a closed subalgebra of A(D). It
follows from the Maximum Modulus Principle that the Choquet boundary B(M) does
not contain 1, as B(M) and the set of peak points are same for this case. We claim that
B(M) = T\{1}. Tt remains to prove that for any zy € T\{1}, 2o is a peak point for M.
Let us recall the Condition (I) in Definition 6.2.3. Now choose € > 0 and a neighborhood
U of zpin T.

CASE 1: When |zp — 1| > 1.
Get f € A(D) such that |f(z)| > 1 — 5 and [f||ye< §.
CASE 2: When |z — 1] < 1.

Get f € A(D) such that [f(z)| > 1 — 5|20 — 1| and |f|

Now define g(z) = 25 f(2). Clearly g € M and |g(z)| > 1 —¢, |g||ue <e.

BE

This shows 2y is a peak point for M and hence B(M) = T\{1}.
Remark 6.2.9. (i) Tt is not generally true that the peak points and the Choquet

boundary coincide(in the metrizable case) for linear subspaces M of C¢(K) which

are not algebras.
(ii) One inclusion does hold; in the above Bishop-deLeeuw theorem, the proof of
(737) implies (7v) and (iv) implies (v) did not use the fact that <7 is an algebra. For

any separating linear subspace, every peak point is in the Choquet boundary.

FIGURE 6.1

Now consider the following example:
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Example 6.2.10. Let K be the subset of the plane consisting of the convex hull of two
disjoint circles(figure 6.1) and let M be the complex-valued affine functions on K. Let

the four tangent points be p,q,r, s, denote the open arcs ;0—1: and /qg as S7 and S, and

denote the smaller circle as D, and the bigger circle as Ds.

Let xy be any point on the open line segment joining p and ¢. Then there exists distinct

points y and z on the line segment such that xq = % For any fe M, f(zg) = w;

this implies f(zo) = {, fd(éygéz), but 4., # 53’;62. Hence, 2o ¢ B(M) and hence is not a

peak point for M.

Consider any zo € S; U S5 and the tangent line say ax + by = ¢ for some a,b,c € R to
the point zy as shown in the above figure. Then K < {x + iy € C : ax + by < ¢} and
g : C — R defined as g(z + iy) = azx + by is a real linear functional. Without loss of
generality assume that ¢ > 0. Hence, §(z) = g(z) —ig(iz), is a complex linear functional.
Now sup, . |G(2)| = sup,cx |g(2)|- Hence the maximum of § is same as that of g. Now

G(20) = 1g(20)|€?, ie. e7¥G(z0) = |g(20)| = |g(20)| = supy g(2) = c¢. Consider the linear

functional e~%*g(z), which is affine on K and |e=*§(2)| = |§(z)| < ¢. Hence, 2 is a peak

point for M.

Now suppose p is not in the Choquet boundary for M. This implies 6, ¢ ext(K(M)).

82y +6: o . .
—5—2. This implies p = 25 which

is a contradiction since p lies on the boundary of the circle. This implies p is in B(M).

Therefore there exists z1, 25 € S; U S, such that 9, =

Similarly, the remaining tangent points also lie in the Choquet boundary for M.

Suppose p is a peak point for M. Then we will get f € M such that |f(z)| < |f(p)],
for € K\{p}. Now f(p) = |f(p)]e”, define h(z) = Re(e="f(2)), then |h(z)| < |f(z)].
for all z € C and h(p) = |f(p)| = supk|f(z)|. That is h is a real linear functional on
C which attains its supremum over a smooth surface K at p. It shows that A must be
the tangent to the surface. Hence h must coincide with the line segment pg. That is
|[f(p)] = h(p) = h(q) < |f(q)| <|f(p)|, a contradiction. Hence such an f does not exist.
Therefore, p is not a peak point for M.

Therefore, we get that B(M) is precisely S; uSs U {p, q,r, s} and p, ¢, r, s are not the peak
points for M. Observe that in this example, the peak points are dense in B(M). This
is true in general and is a corollary to the following classical result concerning Banach

spaces.

Definition 6.2.11 (Smooth point). Let E be a Banach space and S denote the unit
sphere of E. A point x € S is said to be a smooth point of the unit sphere of E' if there
exists unique f € E* such that f(z) =1 = | f] -

Let us recall the smoothness in a normed linear space. See Appendix A.
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Proposition 6.2.12 (S. Mazur). Let E be a separable real(or complex) Banach space
and let S = {z € FE: |z| = 1} denote the unit sphere of E. Then the smooth points of S

form a dense G5 subset of S.

Proof. Let us denote the set of smooth points of S by smS. We know that the dual of
E' as a real space is isometrically isomorphic to the dual of E, where E is considered as
a real space and hence in the case of a complex space, we will consider it as a real space
and sm.S is unchanged. We will show that sm.S is a countable intersection of dense open
subsets of S; since S is a complete metric space, the Baire category theorem wil give the

desired conclusion.

Let {z,} be a dense sequence in S. Let m,n € N. Define D,,,, = {r € S : whenever f, g€
E* satisfy ||f| = f(z) = 1 = g(x) = |g, f(z,) — g(zn) < m~'}. We first prove that
smS = ﬂm’neN D,,,. Clearly, smS < ﬂmmeN D,,,. Let x ¢ smS. Then there exists
two distinct f,g € E* such that |f|| = f(z) = 1 = g(z) = |g|. Since f # g, for some
1

large enough n,m € N, f(x,) — g(z,) = m~'. This implies x ¢ D,,,. This proves

smS =) D,

m,neN

Next we prove S\D,,, is closed in S. Suppose that (yx) < S\Dpy, and y, — y. For each
k € N, choose functions fi, g € E* such that |fx| = fe(yr) = 1 = gx(yx) = |gx| and
fr(zn) — gr(zn) = m~ 1. By Banach Alaoglu theorem, there exists convergent subnets of
{fx} and {gi} say {f.} and {g,} respectively such that f, 2 f and g, A g. Clearly,

f(xn) — g(zn) = m™t. Given € > 0, for all a greater than(w.r.t the ordering) some «y,

1f ) = U < |f(w) = fa@)| + 1fa(y) = falba)l < [f(y) = fa)] + [ fallly — val <e.

This implies f(y) = 1. Similarly, we can prove g(y) = 1. Since w* convergence implies
norm convergence and ||fo| — [|fll| < |fa — fIl, we get ||f| = 1 = |g[|. This implies
y € S\Dyp. Hence S\D,,, is closed in S.

It remains to show that each set D,,, is dense in S. Suppose not; then for some m,n € N,
we can choose y € S and § > 0 such that |z —y| < 0 and |z| = 1 imply 2 ¢ D,p,.
Let y1 = y. Then choose fi1,g1 € E* such that fi(y1) = |[fi| =1 = |g1]| = g1(y1) and
fi(z,) = m™ + g1 (x,). We will proceed by induction to define a sequence {y;} in S and
corresponding functionals fi, g, € E* such that |y1 — yi| < (1 —27%)8, | fe| = fu(yr) =
1= gi(yr) = |g&| and fr(z,) = km™' + gi(x,). Since fy(x,) < 1, this implies for each
keN, 1= km*+ g(zx,), which gives us a contradiction. Suppose we have chosen y;
which has the above properties. We define yy11 = yg + oz, /||yx + oz, |, where o > 0 is

chosen to be small enough so that |y, — yxi1| < 277716, Clearly |yrs1| = 1. Also

lyr = yral < (1 =270 + e =y < (1 =278 <.
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It follows that yxi1 ¢ Dyupn. Therefore there exists fri1,grsi1 € E* such that |fii 1| =

Sri1(Wr1) = 1= [grril = g1 (Yrer) and fria(2n) =m™" + gera(2,). Now
L= |lyps1] = fulyesrr) = [1 + afilzn)]/| vk + x|
Since g1 (Yrt+1) = 1 = grt1(yr), we have
yx + azn| = gryr(yr + axn) <1+ agrpa ().

Combining the above facts we get the following,
fera(@n) =m™ + gepa(zn) = m™ + fillzn) = (B + 1)m™ + g1 (wn).

This completes the proof. O

Corollary 6.2.13. Suppose K is a compact metrizable space and M is a uniformly closed
separating subspace of C¢(K)(or of Cr(K')) which contains the constant functions. Then
the peak points for M are dense in the Choquet boundary for M.

Proof. Let P be the set of y € K such that there exists a smooth point f of the unit
sphere of M such that f(y) = ||f|w. Let y € P. Then there exists a smooth point
f of the unit sphere of M such that f(y) = |f|w. Suppose f(z) = f(y), for some
x # y. Then we have §,(f) = 0,(f) = 1 = |f|w, which is a contradiction to the
fact that f is a smooth point of the unit sphere of M. This implies every point of
P is a peak point for M. Now P will be dense in B(M) if ¢(P) is a w* dense in
ext(K(M)). Suppose K (M) is the w*-closed convex hull of ¢(P). Then by the partial
converse of Krein-Milman theorem, ext(K(M)) < Ww* which implies B(M) < P and
hence the claim. Suppose K (M) is not the w*-closed convex hull of ¢(P) then there
exists L € K(M)\eonv”" (¢(P)). Then by Hahn Banach theorem, there exists g € M
with ||g| = 1 such that (Re g)(L) > sup(Re g)(P). By above theorem, the smooth points
are uniformly dense in the unit sphere of M and hence there would exist a smooth point

f satisfying the above same inequality. Then we get

[fllee = L(f) > sup(f)(P) = | flle;

which is a contradiction. This completes the proof. O



75 Chapter 6 Choquet Boundary

6.3 Choquet Boundary and approximation theory

Many of the classical approximation theory can be formulated in terms of convergence of
a sequence of linear operators to the identity operator. To illustrate this, let us consider

the Bernstein polynomials. For each n € N, define the operator B, on C[0,1]. For

feCo,1], §
Bof = ;;) (Z)f (g) 21— 2"z e [0, 1],

Bernstein proved that B, f converges uniformly to f, which gives a constructive proof of
the Weierstrass approximation theorem. Now note that for each n € N. whenever f > 0,
B,f = 0 which implies B, is a positive operator on C[0, 1], for each n € N. Observing

this fact, P. Korovkin proved the following interesting result.

Theorem 6.3.1 (Korovkin). Suppose that (T, ).en iS a sequence of positive operators
from C0,1] into itself with the property that (7, f) converges uniformly to f for the
three functions f(x) = z*, for k = 0,1,2. Then (T, f) converges uniformly to f for every
feC|o,1].

A new proof through inequalities of the above Theorem can be found in [13].

We mention two sets of positive linear operators on Cg[0, 1] which approximate identity.
A routine verification ensures that these two sets of operators satisfy the stated conditions
in Theorem 6.3.1.

Example 6.3.2. (a) The Bernstein operators: (B,)x_, where B, : Cg[0,1] —
Cr[0, 1] be defined by B,(f) = >r_, () f(£)z*(1 — 2)"~*. A routine verification
of the Binomial Theorem guarantees that (B, f) converges to f uniformly on [0, 1]

where f = 1,2, 2°.

e operators induced by the Schauder basis of Cgr[0,1]: Define a sequence
b) Th induced by the Schauder basis of Cg|0,1]|: Defi

(sn)i_y = Cr[0,1] as follows: For each n € N, there exists m € N such that
2m~1 < n < 2™, then define-

om (t — 222 ) if 22 -1 <t< 2t —1
sn(t) =4 (1—2m) (t— (32 —1)) if 22 — 1<t < 22— (6.3)
0 otherwise

The sequence (s,) are called Schauder basis of Cg[0,1]. For f e C[0,1], define

another sequence (p,)x_, as follows:
po = f(0)so

p1=po+ (f(1) —po(1))s1

p2 = p1+ (f(1/2) = p1(1/2))s,
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ps = p2 + (f(1/4) = p2(1/4))s3

ps = ps + (f(3/4) — p3(3/4))s4 and so on.

Hence for each n > 0, there exists o, a,..., o, € R such that p, = X" as;.
Define P, : C[0,1] — C[0, 1] as for each f € C[0,1], P,f = py. Clearly each P, is a
positive operator on C[0, 1]. It is easy to verify that (P, f) converges to f uniformly
on [0,1] when f = 1,2, 2%

Definition 6.3.3 (Korovkin set). Let K be a compact Hausdorff space. Let M be
a subset of Cgr(K) such that for any countable family of positive operators (T,)nen,
whenever for each g € M, T,,g — g( i.e. T,g converges to g uniformly), we have T,,f — f,
for each f € Cr(K). Then M is said to be Korovkin set of Cg(K).

Remark 6.3.4. Let M < Cr(K). M is a Korovkin set of Cg(K) if and only if the linear
span of M is a Korovkin set of Cr(K).

Remark 6.3.5. Let K = [0, 1]. Let ¢ be an arbitrary point in [0, 1]. Now, by Korovkin’s
theorem and earlier remark, M = span{l,z,z?} is a Korovkin set of C[0,1]. Consider
f(x) =1— (x —x0)? for all z € [0,1]. Clearly f € M and attains its supremum only at
xo and hence zg is a peak point for M. This implies B(M) = [0, 1]. This leads us to the

main theorem of this Chapter.

Theorem 6.3.6 (Saskin). Let K be a metrizable compact space and M be a linear
subspace of Cr(K) which contains 1 and separates points of K. Then M is a Korovkin
set of Cgr(K) if and only if the Choquet boundary B(M) for M is all of K.

Proof. Assume that M is a Korovkin set of Cg(K'). To prove B(M) = K, using Theo-
rem 6.1.4, it is enough to prove that for any t € K, u = d; is the only probability measure
on K such that u(g) = g(t), for all g € M. Let t € K and p be a probability measure on K
such that p(g) = g(t), for all g € M. Since K is metrizable space, we can choose a decreas-
ing sequence of open sets (U, )nen such that (1) U, = {t}. By Urysohn’s lemma, for each
n € N, there exists g, € Cr(K) such that 0 < g, < 1, g,(t) = 1 and g, = 0in US. For each
n €N, define T, as T,,f = pu(f)gn + (1 — gn) f, for each f € Cr(K). Clearly T,, is a linear
operator on Cgr(K) and T,,(1) = 1. Since p is a probability measure on K and 0 < g, < 1,
whenever f > 0, T,,f = 0, which implies 7}, is a positive operator on Cg(K). Also ||, f| <
[l 1 ol gnllon + (14 g o) |f oo < [f o0 +2[f oo = 3] flloo, which implies | T, < 3. Hence,
T, is a linear bounded operator on Cr(K), for each n € N. Let g € M and € > 0, then
there exists N € N such that |g(t) — g(y)| <€, for all y € Uy. This is because g € Cr(K)
and hence there exists N € N such that t € Uy = g *((g(t) —¢€, g(t) +¢€)). Let x € K, then
forall n > N, [Thg(z) — g(z)| = |n(g) — 9(2)||gn(2)] = |9(t) — 9(2)|gn(@)|. Now if z € Uy,
then [Tg(z) — ()| = |g(t) — g(z)llgn(2)] < € and i z ¢ Uy, [Tug(z) — g(x)| = 0. This
implies for each g € M, |T,,9 — g|c — 0 as n — 0. Since M is Korovkin set of Cr(K),
for each f e Cr(K), [|Tnf — flloo — 0 as n — oo. This implies T,,f(t) — f(t) as n — 0.



7 Chapter 6 Choquet Boundary

Now, for each n € N, T,, f(t) = p(f). Hence u(f) = f(t), for all f € Cr(K). This implies
on = 5t'

Conversely, let {1, },en be a family of positive operators on Cg(K) such that for each
ge M, T,g — gasn — ©. Let f e Cr(K). In order to show that |T,,f — flle —
0, it suffices to show that every subsequence of {|T,,f — f|} itself has a subsequence
which converges to 0. For simplicity of notation, assume that {|7,,f — f|«} is the initial
subsequence and for each n € N, choose z,, € K such that |T,,f — flleoc = |10 f(xn) — f(xn)]-
Since K is compact, by taking a further subsequence, we can assume that z, — z, for
some x € K. For each n € N, define L, : Cr(K) — R as L,(g9) = Thg(x,). Clearly
L, is a linear functional on Cr(K) and also |L,(g9)| < |T,.||g]w, which implies L, is
bounded. Also whenever g > 0, since T,, is a positive operator on Cgr(K), L,(g) = 0.
Hence, L, e M*(K). As1e M, |T,1(x,) — 1(x,)| < ||Tn(1) — 1|, — 0. Hence, L,1 — 1.
Without loss of generality assume that L,1 > 0, for all n € N. For any f € Cx(K) such
that |f|o < 1,1 — f = 0 and hence L,1 > L, f. This implies HLL_:lH < 1. Therefore,
oy = LL—ﬁ € Z(K). Since K is metrizable, Cr(K) is separable. This implies (Bas(x), w™)
and hence (Z(K),w*) is metrizable compact space. Therefore {u,} has a convergent

subsequence say ft,, — p, for some pe Z(K). Let g € M. Then

T 9 (@) =9(0)| < [Ty g0y ) =g(@n, )|+ 19 (@n,) =9(2) ] < | T g—=glloo+1g(n, ) —9(x)] =0,

since |1}, 9 — glle — 0, by assumption and |g(z,,) — g(z)| — 0 because g € Cr(K) and

x, — x. Therefore we get that |L,, g — g(z)| — 0. Now, consider

Lng 1 9(z)
—g(x)| = . — L g— —g(2)|.
o a) = 96| = [ 722 — 960 = (L) 1B = 9ol + |25 — gt
As k — oo, |L,, g — g(x)] — 0 and L,, 1 — 1, hence |u,, (9) — g(x)| — 0, which implies
tn,(9) — g(x) but p,, (9) — p(g). Therefore, u(g) = g(x), for all g € M. Since

xe B(M) =K, pu=20d,, ie. LL”kl %, §,. Consider
"k

1T f = flloo < | To f (2ny) = f@)] + 1f () = f2n,)]

T, f(2n,) (6.4)

< L 1|7 )|+ 1 (0) = )]+ 1) = )

As k — oo, i”’“{ — f(z) and L,, 1 — 1, |T,,, f — f| — 0. This completes the proof. [
N
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Convexity and Smoothness

A.1 Convexity in a topological vector space

Definition A.1.1. (Extreme points)

(a) Let K be a compact convex subset of a topological vector space (tvs for short)
E. A point x € K is said to be an extreme point of K if there does not exist y,z € K
such that z = Ay + (1 — \)z, for some A € (0, 1).

(b) A normed linear space X is said to be strictly convex if for every = € Sy, x is an
extreme point of By.

A.1.1 Characterizations

Proposition A.1.2. Let K be a closed, bounded and convex subset of a tvs X. Then
the following are equivalent.

(a) z € K is an extreme point.

(b) K\{z} is convex set in X.

(c) there does not exist y, z € K\{z} such that z = £=.

A.1.2 Extreme set(or Face)

Definition A.1.3. (Extreme set) Let X be a tvs, K € X be a compact convex subset
and F' < K be closed and convex. F' is said to be an extreme set or face of K if for every
z,ye K, Ax + (1 — Ny € X, for some A € (0,1) would imply z,y € K.

78
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Remark A.1.4. (a) If Y is a subspace of a normed linear space X and y* € Sy,

then HB(y*) = {* € Sx= : 2*|y = y*} is an extreme subset of Bxx.

(b) If F is an extreme subset of Bx and z € F' is an extreme point of F', then x is

an extreme point of By.

A.2 Smoothness in a Normed Linear Space

Let us recall the following definition of differentiability in R"™.

Definition A.2.1. Let f : R” — R™ and xy € R" be nonzero. f issaid to be differentiable

at zg if there exists a linear T : R® — R™ such that f(xq +y) = f(zo) + T'(y) + e(y),

q L@l

ol 0 as |y| — 0.

where y € R™ an

The linear map T is called the derivative of f at xy and is denoted by f'(zg). Let us
recall that a norm function on a finite dimensional vector space can be considered as a
continuous convex function and the smoothness of this function at a non-zero zy can be
interpreted as the existence of a unique tangent plane passing through the point zy at

the level surface {x € R" : |z| = |zo|}.

The following result motivates us to define the notion of differentiability in a normed

space X.
Proposition A.2.2. Let f : R® — R be defined as f(z) = ||z|| and xy € R"\{0}. f is

differentiable at x if and only if there exists a unique linear functional A : R” — R such
that A(xg) = |xol and |A] = 1.

Proof. Suppose f is differentiable at z. We know that f'(z,) is a linear map on R™. We
will show that f'(xo)(xo) = |lzo| and |f (20)| = 1. We know that

flao+y) = f(zo) + [ (z0)(y) + £(v),

where £(y) € R such that % — 0 as |y| — 0. Now choose y = tzg for t > 0, then as
t\ 0, [ly| — 0. Hence,

flzo + tzg) = f(xo) + fl(xo)(tmo) + e(txy),

that is,
[(o(1 + )] = [[(o) ]| + £ (w0)(w0) + £(t0).
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Simplifying the above equation we get,

6(t$0) - S(tl’o)

ol = o)) = 20D — S
Therefore, — [(wo)(zo)| = ‘Htf()o”” |lzo| — 0ast — 0. This implies f'(z)(zo) =
| zoll-

Now for any y € R" and t > 0, ||zo + ty| = |zo| + tf (z0)(y) + e(ty). Then by triangle
inequality,
ol + tlyll = [zoll + tf (x0)(y) + &(ty).

Thus,
tlyl = tf (o) (y) + e(ty),
that is,
/ e(ty
bl > 7 o)) + Sl = £ ) + S
Since % can be made arbitrarily small, we have |y|| > f(z )( ). Hence, | (x0)] <1

and also we proved f (20)(z¢) = |||, which implies | f (zo)| =

Conversely, assume that there exists a unique linear functional A on R" such that A(zg) =

| o] and |A] = 1. We will show that for every y € R”, lim,_,o ZH=lzol oxists. Since ||
is a convex function, both
tyll — -
O T IO ] [ 0 R
t—0+ t 50~ S
Also, define for every y € R,
o) = tim Lzt =l o syl = ool _
t—0+ t T 0 s '

We now claim that p : R” — R and ¢ : R™ — R are sublinear and superlinear functionals

respectively. Let y1, 42 € R® and o > 0. Then we have,

|70 + t(y1 + y2)[| = [0

= lim
Plyr +92) = lim t
iy 12%0 + 26(y1 + 4o) | — [[220]
t—0+ 2t (A.1)
2ty | — 2tya|| —
< lim 1ot 20l = ool . oo + 2tys] — o]
t—0+ 2t t—0+ 2t

= p(y1) + p(y2)-
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and

. Nwo + tlay) | — [l

=1
p(ay1> t_l)%}*_ t
) (A2)
s—0+ S
= ap(y1).

Hence, p is a sublinear functional on R". Now, clearly, p(—y) = —q(y), for any y € R"

and hence ¢ is superlinear functional on R".

Let y € R™. Now for any p(y) =t = q(y), we can define @ : span{y} — R as ®(ay) = ta.
Then, clearly ® is linear functional on span{y}. Now whenever o > 0, ®(ay) < p(ay),
for any y € R". For any y € R, ®(—y) = —t < —q(y) = p(—y) and hence whenever
a < 0, ®(ay) < p(ay). This implies ® is a linear functional on span{y} dominated by the
sublinear functional p. Therefore by Hahn Banach theorem, ® can be extended to R",
which is also dominated by p. Since p(xo) = |xol| = ¢(z0), ®(z0) = |z0o|. Now for some
y € R™, suppose p(y) > t; # ty > q(y), then there exists two distinct linear functionals
on span{y} and finally by Hahn Banach theorem, two distinct linear functionals on R™,

which contradicts the uniqueness of the given A. m

Definition A.2.3. A normed linear space X is said to be smooth at zy € R™ if there

exists unique z* € Sy such that 2*(z¢) = |zo].

Remark A.2.4. (a) Let X be a normed linear space and f : X — R be a convex
function. If the partial derivatives exist in all direction y € Sx at xy then f is

differentiable at x.

(b) Many other notions of differentiability are also available in the literature. The
notion defined in Definition A.2.3 is called Gateaux differentiability. The other
notions like Fréchet differentiability, Uniformly Gateaux differentiability, Uniformly
Fréchet differentiability, etc are all strengthenings of Definition A.2.3. All these

notions are equivalent under the assumption that the unit sphere is norm-compact.



Appendix B

Weak and Weak* Topologies

Definition B.0.1. Let E be any tvs over a field F. Let ¥ = (f;)iesr be a collection of

linear functionals on E. For any finite sub-collection (f;,)7_; of ¥ and € > 0, let
W(fi17fi27 ceey finve) = ﬂ{x e k: ‘fl](x)‘ < 6}'
j=1

Then, the collection,
B = {W<fi17fi27 "'7fin7€) : (fij)?zl c Y ande> O}

forms a basis of E.

For any xg € F, one can define the neighbourhood system at x( as follows,

{W(fi17fi27"'7fin7€> + Zo ¢ W(fiufiz?"'afime) € ‘%}

Then there exists a unique topology 7 on E for which 4 is a neighborhood base of 0 and

7 is the smallest such topology on E such that the functionals in ¥ are continuous.

Suppose X is a normed linear space. With these notations defined above, the topology
defined on X** is said to be weak™ topology if ¥ = X* and F = X™* and is denoted
by o(X**, X*). The corresponding subspace topology on X viz. o(X** X*)|x is called
the weak topology on X. If there is no chance of confusion, we denote the topology
o(X**, X*) on X** by (X** w*) and o(X**, X*)|x by (X, w).
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B.1 Basic Properties

Proposition B.1.1. Let (X, ||.||) be an infinite dimensional NLS. Then, the weak topol-

ogy on X is not first countable.

Proof. Suppose (X, w) is first countable. Let f € X*. Consider,
Oe{re X :|f(zr) <e}ew.

Since X is first countable, there exists fi, fa, ..., fn € X™* such that

W1, far s fnr€) S {w e X2 |f(z)] < €}

This implies that,
ﬂ{xeX:|fi(ac)|<e}§{xeX:|f(x)|<e}. (B.1)

CrLAaM : (., ker(f;) < ker(f).

Let x € (_, ker(f;). Since f/s are linear functionals on X, for any n € N, nx €

i ker(f;). This implies that nz € ()_,{r € X : [fi(z)| < €}. Hence, from (B.1),
nx € {x € X : |f(x)| < e}. Thus, for all n € N, |f(nx)| < e. This implies for all n € N,
|f(z)] < £. Therefore, f(x) = 0. This implies that x € ker(f).

CrLAIM : There exists oy, ag, ..., o, € F such that f = >" | a;fi.

Define ¢ : X — F" as ¢(z) = (fi(x), fo(2), ..., fu(z)). Clearly, ¢ is a linear map, since

fi1, fa, ..., fn are linear functionals on X. Hence, ¥ (X) is a subspace of F". Now, define

p:(X) = Fas p((fi(2), f2(2), ..., ful2))) = f(2).

Then, clearly, p is well-defined and a linear functional on F", since from above claim
v ker(fi) < ker(f).

Since ¥(X) is a subspace of F", p can be extended linearly to F". Let the extension
be p : F* — F. This implies that there exists ai,as,...,a, € F such that for any

(1, T2, ..o, Tp) € F™,
n
p(x1, 29, .y zp)) = Zaixi.
i=1

Thus, for any z € X,

L) o) ) = ) ) ) = D).
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Hence, by definition of p, for any z € X, f(z) = X", a;f;(z). Hence the claim follows.

Therefore, the above claims are true for any f € X*. This implies that we will get a

collection of linear functionals such that (f;):en.

Let Z, = span{f; :i=1,2,....,n} € X*. Since each Z, is a proper subspace of X*, each
Z, is closed in X* and hence, int(Z,) = ¢. Also, X* = |J*_, Z,. However, this is a

contradiction to the Baire Category theorem, since X* is complete.

Hence, our assumption was wrong. This implies that the weak topology on X is not first

countable. n
Remark B.1.2. (i) If X is an infinite dimensional NLS, then neither o(X** X*)
nor o(X** X*)|x are first countable.
(ii) If X is infinite dimensional then both |.|| : (X** o(X** X*)) - R and |.| :

(X, o(X**, X*)|x) — R are lower semi continuous.

(iii) With these notations defined above, the set of continuous linear functionals
on (X,o(X*, X*)|x) is X* and the set of continuous linear functionals  on
(X*, o(X* X)) is X.

B.1.1 Banach-Alaoglu Theorem

It is well known in infinite dimensional case that the norm topology cannot allow the

closed unit ball to be compact but the situation can occur in a weaker topology.

Theorem B.1.3. Let (X, ||.||) be any normed linear space over a field F. Then, (Bxx,w*)
is compact, where Bxx = {f € X* : ||f]| < 1}.

Proposition B.1.4. Let X be any separable infinite dimensional normed linear space.

Then (Bxx,w*) is metrizable.
Proof. Let (x,) be a countable dense subset of Sx. Define d : Bx x Bxx — [0,0) such
that .

el vl

=01 + |(z* — y*) ()|

Clearly, d is well-defined map since the series in RHS is uniformly convergent by Weierstrass-
M test. It is also clear that for any z* y* € X* d(z*,y*) = 0. Let 2*, y* € X*. Then,

oe]

i x -y )( )’ _ 2 9—n ’(y* —.’L'*)(.Tn)’ _ d(y*,l'*)

1+| (2% — y*)(xn)] 1+ [(y* — ) ()]

n=1 n=1
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Let z*,y*, 2* € X* and k € N. We know that ([0,00),].|) is a metric space and hence

([0, 00), L\I) is also a metric space. Then,

Zk] (2" — y*)(zn)| <i2n (2 = 2%) ()| +i2n (2 = y) ()|

1+\ w* —y*) ()| Lt [ = 29)(wn)| - 2 T+ —y)(a)|

n=1

This implies for all k£ € N,

k

1+| T —y* )(flrn)\

n—1
Hence,
d(z*,y*) < d(z*,2") + d(z*, y¥).
Therefore, d is a metric.
Now consider the identity map I : (Bx*,w*) — (Bxx,d). Let (z¥) be a net in (Byx,w")

such that 2% v, xg. Then, for every z € X, a2 (z) — 2f(x) in (R,|.|). In particular, for

any n € N, z*(x,) — z§(x,). This implies,

| (27, — 25) (xn)|
+ [ (2% — g) (xn)|

L2 n lwaat) @)l o yniformly convergent in [0, 00)
TH(@E—a3) )] C

hm = 0.

Therefore, since Y,

*

e¢]
(25 — 25)(@n (27 — 25)(20)|
E E 27" lim = 0.

1 +| vl —ap)(x (@7, — 5)(20)|
Hence, lim, d(z%, x}) = 0. This implies in (Bxsx,d), Id(z¥) — Id(z).

Therefore, I is continuous on (Bxs,w*). Moreover, (Bxx,w*) is compact and (Bxx,d)
is Hausdorff. As a result, / is homeomorphism. Therefore, (Bxs,w*) is a metrizable

compact convex subset of a non-metrizable letvs (X*, w*). O



Appendix C

On some basic results in Measure

Theory

Let (X, 7) be any topological space and 9t be the Borel o-algebra over X. Let u be a
measure on (X, ) and E € M. Then p is said to be,

Outer Regular if 1(E) inf{u(U) : U is open and £ < U},V E.
Inner Regular if (E) = sup{u(K): K is compact and K < E},V E with u(F) < .

The measure p is said to be Regular if it is both Inner and Outer Regular. A complex

measure p on K is said to be Regular if the positive measure |u| is Regular. Here
|ul(E) := supp 35, [w(En)|, where T' = {{E}77y : L By, = B}

Let K be any compact Hausdorff space and M(K) be the space of all regular Borel
Complex measure on K. For any p € M(K), define ||ul|| := |p|(K). Then, (M(K),||.||)

forms a normed linear space over C. ||u| is called the total variation norm of p.

Analogous structure can be obtained if the underlying scalar field is R. M(K) is the

space of all finite Signed measure in this case.

C.1 Riesz Representation Theorem

Let C(K) be the space of all Complex(or Real) valued continuous functions on K. The

underlying scalar field would be understood from the context.

Theorem C.1.1 (Riesz Representation Theorem). Let K be a compact Hausdorff space
and L : (C(K),||-||ls) — C(R) be a bounded linear functional. Then, there exists a
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unique Complex (Signed) measure p in (K, 9) such that for all f e C(K),

L(f) = L Fd.

Remark C.1.2. (a) The association L — p is an isometric isomorphism.

(b) For t € K, the Dirac measure (pn =)0y € M(K) and §,. fdu = f(t).

C.2 Probability measure

Definition C.2.1. (Probability measure) Let K be a compact Hausdroff space. A mea-

sure u € M(K) is called probability measure if p is a positive measure and ||u|| = 1.

Notation:

(a) Let Z(K) denotes the set of all probability measures on K.
(b) Let M*(K) denotes the class of all positive measure in (M (K),|l.||).
Proposition C.2.2. (a) P(K)={veM(K):|lv]|=1and §, ldv = 1}.
(b) Z(K) is a w*-compact convex subset of M (K). Z(K) is also a face of By(k).
(¢) For any t € K, the Dirac measure d; is an extreme point of Z(K).

(d) €It<BM(K)) = {aét . |O{| = 1, te K}

Proof. (a). If v e Z(K), then nothing to prove.

Conversely, assume . 1dv = 1. Let dv = hd|v| be the polar decomposition of v, where h

be a measurable function on K such that |h| = 1 a.e [v]. This implies §, 1dv = {, hd|v|.

Thus,
f h*d|v| —J h=d|v| = 1.
K K

U h*d|v| <f |h+|d|y|<f 1d|v] = |v|(K) = 1.
K K K

Since §,. h*d|v| > 0, we have {, h*d|v| < 1. Also, §,. h™d|v| = 0. Therefore,

f hdly) :J htdjy] = 1 and f hdj| — 0.
K K K

This implies h* = 1 a.e. [|v|] and h~ = 0 a.e. [|v]]. Hence, h = h* —h™ =1 a.e. [JV|].

This implies v = |v| Hence, v is a positive measure and ||v|| = 1.

Now,
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(b). It follows from (a) that Z(K) is w*-compact. Let puy, po € Bagx) such that Ay +
(1 = XNpg € Z(K), for some A € (0,1). Since |[[Ap; + (1 — Npe|| = 1, it follows that
||p17]] = [|p2]| = 1. From result in (a),

)\f du1+(1—)\)f dpis = 1.
K K

J dpia
K

Similarly, we will get, |, dus| < 1. Hence,

fdﬂlzj dpg = 1.
K K

This implies ji1, o € P (K ). Therefore, Z(K) is a face of Byy(k).

Now,

< [ dil = 1l 5) = ]| = 1.

(c). Let py, po € Z(K) such that

_|_
5t:/$12ﬂ2'

Suppose 3 and po are not Dirac measures. This implies S() is not singleton. Hence,
we can choose s € S(u1) such that s # t. Then by Urysohn’s lemma, there exists a
continuous function f : K — [0,1] such that f(¢) = 0 and f(s) = 1. Now, since
se€ S(u) and f(s) = 1, m(f) = 4 fdpur > 0. Also, since py € Z(K), sy is a positive
measure. This implies {,. fdus = 0. Now, 6,(f) = (p1(f) + p2(f))/2. Hence,

0= f(t) = % UK fdp + JK fduz> > 0.

which is a contradiction. This implies there exists z,y € K such that j1 = 9, and py = 0,.

Suppose z # t. Now,

R UIEA )

Hence, 6,({t}) = 2, which is a contradiction. Similarly, we will arrive at a contradiction

if y # t. Hence, x = y = t. Therefore, u; = 6; and uy = d;. Hence, the Dirac measure ¢,

is an extreme point of Z(K).
As Z(K) is a face of Byy(k), we have, ext(P(K)) < ext(Ba(k))-

(d). First we prove that for any « € F such that || = 1 and t € K, pu := «d, is an extreme
point of By k). Let B := Byk). Suppose there exists vy,15 € B such that for some
A€ (0,1), uw= Ay + (1 — Ny, We want to prove that vy = vy = .
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Now, ||v)]] = ||r2]| = 1. By definition of p,
O = || = A + (1 = Nwe| < M| + (1= N)|wsl.

Now, let v := Avy| + (1 — A)|rn|. Hence, &; < v. In fact, §; = v because if E is any
measurable set containing ¢, then 1 = 0,(F) < v(E) < 1. On the other hand, if ¢ is not
in E, then v(E) = v(K) — v(K\E) = 0. Hence, v = 0, that is, &, = AMvy| + (1 — A)|val.
Now, |v1] and || are probability measures and ¢; is extreme point of & (K) (from result

in (c)). Hence, |v1| = || = 6.

Now, for i = 1,2, if E is any measurable set not containing t, then |v;(E)| < |[14|(E) =
0:(E) = 0. Hence, v;(F) = 0. On the other hand, if £ contains ¢, then v;(E) = v;(K) —
vi(K\E) = v;(K). Therefore, we have v; = b;0;, where b; = v;(K) and |v;|(K) = |b;]6:(K)
implies |b;| = 1.

Hence, by our assumption, we get, ad; = (Aby + (1 — A)bs)d;, which gives us a = \by +
(1 — A)by. Since |by| = |be] = 1 and X € (0,1), this implies, a = by = by. Hence, we can

conclude that vy = 1y, = ;.

Conversely, let p be any extreme point of Bysky. It is enough to show that S(u) is
singleton. Suppose it is not the case. Let z,y € S(u) such that x # y. Then, there exists
open sets U and V such that € U and y € V and U nV = ¢. By Urysohn’s lemma,
there exists a continuous function f : K — [0,1] such that f|7z = 1 and flyz = 0.
Consider, fdu and (1 — f)dp e M(K). Let a = || fdu||. Then,

o= | Apldlal = [ falud < | el = lel() = ol < 1.
Now, consider, 1 —a =1 —§. fdu = §,. (1 — f)du = |[(1 — f)dp||. Now,
— | fdipl = | fdlpl = | dlpl = @) > o.
o= | sl = | sal = | dul = () >0

Also, 1 —a = §.(1 = fdlp| = §,(1 = fdlu| = §, 1d|p| = |u[(V) > 0. Thus, a < 1.

Hence, 0 < a < 1. Therefore, %, W € Buy(x). Now,
d 1—f)d
Q@ «
Since p is an extreme point of Bys(x), we have, u = % = %. Thus, we get,

adp = fdu. This implies f = a < 1 a.e. [u]. But, f =1 on U and |p|(U) > 0, which is
not possible. Hence, S(u) is singleton. Thus, pu = ady, for some « € F such that |a] =1
and t € K. O



Appendix D

Preliminaries on Vector Lattice

Definition D.0.1. (a) A vector space V over R is said to be an ordered vector space
if for any x,y,z€ V and © < y imply « + 2 < y + z. If A > 0 then 2 < y implies
Ar < Ay.

(b) An ordered set (L, <) is called a lattice if for each pair (z,y) € L x L, there exist
elements z v y = lub{z,y} and = A y := glb{z,y} exist in L. If, in addition, the
distributive law

(xvy)rz=(xArz2)v(yAaz) (D.1)

is satisfied for all z,y € L, L is called a distributive lattice.

A vector lattice is an ordered vector space which satisfies the condition (b). It is due to

Birkhoff that the condition D.1 is equivalent to (z Ay) vz = (x v 2) A (y v 2).

If (L, <) is a lattice, the mappings (z,y) — x vy and (z,y) — x Ay are usually called the
lattice operations. As laws of composition they are idempotent, associative, commutative,
and satisfy x A (x vy) = z as well as v (z Ay) = . On the other hand it is not difficult
to verify that if a non-void set L is endowed with two laws of composition having these
properties, then x > y if and only if x v y = y defines an ordering under which L is a
lattice in the sense of Definition D.0.1. Recall also that a lattice L is called (countably)
complete if every (countable) subset of L possesses a least upper bound and a greatest

lower bound.

Let L be a lattice, a subset Ly closed under the lattice operations is called a sublattice of
L. Ly is called a (countably) complete sublattice of L if Lg is closed under the formation
of arbitrary (countable) infima and suprema. However, infima or suprema of a sublattice

may not be the same as those of the lattice.
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Example D.0.2. If M is a non-void set and (L,<) is a lattice. The set LM of all
mappings f : M — L is a lattice under the canonical ordering defined by:f < g if and
only if f(t) < g(t) for all t € M.

Definition D.0.3. Let E be a vector lattice. For all z € E, we define 2t := 2 v 0,
x” = (—x) v 0, |z|:=2+ (—z). *,2~ and |z| are called the positive part, the negative

part, and the modulus (or absolute value,) of z, respectively.

D.1 Basic Properties

Theorem D.1.1. Let E be a vector lattice and x,y € F and A\ € R. Then the following

are true.

() v =at —a~.
(b) |x| =a* + 2.
(€) Az = [Allal, |z +y| <[] + |y
(d) z+y=(vy +@nry),lr—yl=(@vy —(zAry).
Definition D.1.2 (Base of a cone). Let X be a compact convex subset of a cone P in a

lctvs E. X is said to be a base for the cone P if P = {tx :t > 0,2 € X}.
Note D.1.3. If P is a cone with base X, then we denote P as X.

In the rest of this Section, we will assume that P is a cone with vertex at the origin and a
base X in a lctvs F such that X is contained in some hyperplane H = {x € E : L(z) = r},

for some L € E*,r € R, which misses the origin.

More precisely, P = {ax : x € X, = 0}. Note that there is no generality lost in making
this assumption since we may embed F as a hyperplane £ x {1} in F x R(with product
topology); the image of X x {1} is affinely homeomorphic with X. Due to this assumption,
we have uniqueness as follows: y € P if and only if there exists a unique @ > 0 and z € X

such that y = ax.
Proposition D.1.4. Let P be a cone in a lctvs E and X be its base.

(a) P (=P) = {0}

(b) P n (—P) = {0} if and only if given z,y € E such that z < y and y < = implies

x =y, in other words, < is antisymmetric.
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Proof. (a) Suppose 0 # z € P n (—P). Then there exists t,s > 0 and z,y € X such
that z = tx = —sy. This can be written as
t s
T + y=0eX.
t+s t+s

which is a contradiction. Therefore, P n (—P) = {0}.

(b) Suppose P n (—P) = {0}. Let 2,y € E such that x < y and y < x. This implies
y—az,x —y € P and hence y —x € P n (—P) = {0}, which implies x = y. Now
suppose < is antisymmetric. Let z € P n (—P). This implies z = tx = —sy, for
some t,s = 0;z,y € X. Hence, tx + sy = 0. Now, z — 0 =tz — (tx + sy) € P and
0— z = (tzr + sy) — sy € P. This implies z < 0 and 0 < 2z and hence z = 0.

Let us now look at few elementary properties of a lattice.

Proposition D.1.5. .

(a) Let (E, <) be a lattice where < is the ordering induced by the cone P. Suppose
x,y € E, then —(—x A —y) is the least upper bound (lub for short) of = and y.

(b) Let P be a cone in a real lIctvs E. Then P— P = {x —y : z,y € P} is a subspace
of F.

(¢) Let P be a cone in E such that P n (—P) = {0}. (P, <) is a lattice w.r.t. the
partial ordering induced by P if and only if P — P is a lattice subspace of E.

Proof. (a) Clearly, (—z A —y) < —z and (—z A —y) < —y. This implies —z —
(—x A —y) € P, which can be written as —(—z A —y) — 2 € P. Therefore, z <
—(—x A —y). Similarly, y < —(—2z A —y). Let z € P such that z < z and y < z.
It follows that —z < —x and —z < —y and hence, —z < (—z A —y). This implies
z—[—(=z A =y)] = (—z A —y) — (—2) € P and thus —(—x A —y) < z. Therefore,
—(—x A —y) is the lub of x and y.

(b) Let x,y € P — P. Then there exists z1,x2,y1,y2 € P such that x = x; — x5
and y = y; — y2. Now, since 1 + y1,20+ Y2 € P, x+y =21 — T2 + Y1 — Y2 =
(x1+y1)— (za+y2) € P—P. Let @ = 0. Then ax = o(x1—1x9) = a1 —axy € P—P.
Let @ < 0. Hence, a = —f, for some > 0. We then have ax = —f(x; — x5) =
Bxy — Pxy € P — P. Therefore, P — P is a subspace of E.

(c) Assume P is alattice. Let x = x1—x9,y = y1—y2 € P—P, where x1, 25, y1,y2 € P.
Let z = (z1+y2) v (y1+x2) —(24y2). Then z—z = (z14+y2) v (y1+x2)—(x1+y2) € P,
which implies x < z. Similarly, y < z. Let w = w; — wy € P — P such that x < w
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and y < w. Now, 1 — z9 < w; — we implies x1 + wy + Yo < Wy + To + Yo
and y; — yo < w; — wo implies y; + we + 9 < w1 + Yo + 2. Then w — 2z =
(w1 + 22 + yo) — [(wo + 1 + y2) v (wa + y1 + x2)] € P. Therefore, z < w. Hence,
z is the lub for z,y in P — P. P — P is a subspace of F by the earlier remark.
Conversely, P — {0} € P — P. Since P — P is a lattice subspace of E, so is P — {0}.

Hence P is a lattice.

Proposition D.1.6. Let (E, <) be a lattice, where < is induced by a cone P. Then,

(i) For any a,b,ce E, (a nb)+c=(a+c) A (b+¢)
(ii) For 0 < a,b,ce E, (a+b) nc<(anc)+ (bnc).

(iii) If {a; : ¢ € I} and {b; : j € J} are finite sequences of non-negative elements
of E, and if ), ,a; = Zje] b; then there exists z;; = 0, (4,5) € I x J such that
a; = Yiey %y (i€ 1) and by = 3c; 25

Proof. (i). Let a,b,c € E. Then (a+¢) —(a nb+c¢) =a— (a A b) € P. Similarly, we
get (b+c¢)—(anb+c)e P. Therefore, (a A b) +c¢ < (a+c¢) A (b+c¢). We now prove
the other inequality. We know a = (a+¢) A (b+¢)—cand b= (a+¢) A (b+¢) —c.
Therefore a Ab = (a+¢) A (b+¢) —c. This impliesaAb+c = (a+c¢) A (b+ ).

(7). Let a,b,c > 0. Let u = (a+b) Ac. Sincea >0, u<a+c (a+c>=c>uimplies
(a+c—c)+(c—u) e P). Thus, u < (a+b) A (a+¢) =bAc+a, since u < a+ b and from
(7). Also, u < c+ (b Ac) (since b A ¢ =0). Therefore, u < [c+ (bAac)|Ala+ (bAac)]=
(@~ c¢)+ (b c). This implies (a +b) Ac<(anc)+ (bac).

(77i). We can easily use induction on the number of elements in I and in J and reduce
the proof to the case I = J = {1,2}. Assume a; + az = by + by. Define z1; = a; A by =0,
219 = a1 — 211 = 0 and 299 = by — 2117 = 0. We will now choose 299 > 0 such that
Z99 = Qg — 291 = by — z12. We now claim that as — 291 = by — 219, that is, by — a; + 211 =
as — b1+ z11. This is clearly true because of the assumption that a; +as = by +by. Clearly,
a1 = a; — by and by = ay — by. This implies z17 = a; — by and hence by — a1 + 217 = 0.

Therefore, z59 > 0. This completes the proof. O
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