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Abstract

This project is a literature survey of various theorems and their applications in Choquet

theory. For a compact convex subset D of a locally convex topological vector space E,

each point x P D is a barycentre of a maximal probability measure on D. This is, in

fact, a generalized version of Minkowski’s Theorem for finite dimensional spaces. This

measure exists uniquely if the compact convex set is a simplex. If the compact convex set

is metrizable then the above measure is supported by the extpDq but very few information

is available if the set is non-metrizable. Measures supported by the extreme points are

the maximal measures. For a non-metrizable compact convex set the set of all extreme

points may not be of Borel category, hence for such cases, the support of maximal measure

can have a non-empty intersection with a Borel set disjoint from the extreme boundary.

The Choquet-Bishop-De Leeuw Theorem, hence, states that - For an arbitrary locally

convex topological vector space, each point of a compact convex subset is represented by

a maximal probability measure which gives zero value to all Baire sets disjoint from the

extreme points.

Further, we study the analysis of function spaces, namely, CpKq in the context of Choquet

boundary. If M is a uniform algebra of continuous functions over a compact Hausdorff

space K then the state space of M is defined; it is a w˚-compact convex subset of M˚.

The extreme points of the state space are precisely the point evaluation functionals. This

motivates to define the Choquet boundary of M , as a subset of K. Choquet boundary is a

boundary and its closure is the smallest closed boundary for M , called the S̆ilov boundary.

Here we also study the notion of peak point and the result that when K is metrizable

then the set of all peak points is dense in the Choquet Boundary. As an application of

this notion, we discuss the well- known result by Šaškin, which states that for a Korovkin

subspace of CpKq the Choquet boundary is the whole K and also vice versa.
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Chapter 0

List of Notations

N Represents set of natural numbers.

Z Represents set of integers.

R Represents set of real numbers.

BD Boundary of D, if D is a compact convex subset of a lctvs E.

F The underlying field pC or Rq.

a^ b minta, bu.

a_ b maxta, bu.

conv(K) The convex hull of set K.

Spµq The support of the measure µ.

δt the Dirac delta measure on K.

extpDq The set of all extreme points of a compact convex D.

CRpKq The set of real valued continuous functions on a compact Hausdorff space

K.

CCpKq The set of complex valued continuous functions on a compact Hausdorff

space K.

ARpDq For a compact convex subset D of a lctvs E, represents the set of all real

valued affine functions on D.

SpDq For a compact convex subset D of a lctvs E, SpDq represents the set of

all continuous convex functions on D.

MpKq Set of all regular Borel measures on K for a compact Hausdorff set K.

1



2 Chapter 0 List of Notations

M`pKq Set of all non-negative regular Borel measures on K for a compact Haus-

dorff set K.

KpMq The State space of M ; the continuous linear functionals on M with unit

norm and at 1 its value 1.

PpKq For a compact Hausdorff set K, represents the set of all probability mea-

sures on K. By a probability measure we mean a positive measure with

total variation norm 1.

pfpxq inftgpxq : g P ´SpDq, g ě fu, the upper envelope of a bounded f on D.

f̂pxq ě fpxq for x P D and is concave on D.

qfpxq suptgpxq : g P SpDq, g ď fu, the lower envelope of a bounded f on D.
qfpxq ď fpxq for x P D and is convex on D.



Chapter 1

Introduction

The importance of convexity in functional analysis has long been realized, but a com-

prehensive theory of infinite-dimensional convex sets has hardly existed for more than

a decade. In fact, the integral representation theorems of Choquet-Bishop-de Leeuw

together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-

dimensional convexity. Initially considered curious and technically difficult, these the-

orems attracted many mathematicians, and the proofs were gradually simplified and

fitted into a general theory. Today Choquet Theory provides a unified approach to study

integral representations and its applications in the fields like potential theory, probabil-

ity, function algebras, operator theory, group representations, and ergodic theory. At

the same time, the new concepts and results have made it possible and relevant to ask

new questions within the abstract theory itself. Such questions pertain to the inter-

play between compact convex sets D and their associated spaces, ARpDq, of continuous

affine functions; to the duality between faces of D and appropriate ideals of ARpDq;

to dominated extension problems for continuous affine functions on faces; and to direct

convex sum decomposition into faces, as well as to integral formulas generalizing such

decompositions. These problems are of geometric interest in their own right, but they

are primarily suggested by applications, in particular to operator theory and function

algebras.

In its geometrical form, the Choquet representation theorem can be viewed as an infinite-

dimensional generalization of a classical theorem of Minkowski concerning finite dimen-

sional compact convex sets. Indeed, suppose that D is a compact convex subset of a

locally convex Hausdorff real topological vector space E. If E is assumed to be finite

dimensional, then the Minkowski’s theorem asserts that each point x in D is a convex

combination (or barycenter) of some finite set of extreme points; that is, there exist pos-

itive real numbers a1, a2, . . . , an and points x1, x2, . . . , xn in extpDq such that
řn
i“1 ai “ 1

and x “
řn
i“1 aixi. Furthermore, each point of D admits only one such representation if

3



4 Chapter 1 Introduction

and only if D is a simplex. If E is assumed to be infinite dimensional then Minkowski’s

theorem fails. However, the Krein-Milman Theorem rescues us and shows that such con-

vex combinations of extreme points are dense in D. If, in addition, D is metrizable then

the Choquet’s theorem applies and asserts that each point of D is a barycentre of a Borel

probability measure supported on extpDq. A curious reader must raise voice “Is this

measure unique?”

We define Choquet simplex in its classical form by means of the following. Here by rD we

denote the convex cone generated by D.

Definition 1.0.1. Let D be a compact convex subset of a lctvs E, lying on a hyperplane

H not containing the origin. D is said to be a simplex if the subspace generated by the

cone rD viz. rD ´ rD is a lattice.

Theorem 1.0.2 (Choquet-Meyer). Let D be a compact convex subset of a locally convex

space E. D is a simplex if and only if each point of it is a barycentre of a unique maximal

Borel probability measure.

Maximality of a measure depends on how closely the measure is supported on the set

of extreme points of D, although support of a maximal measure on D is not necessarily

contained in the set of extreme points of D. In finite dimensional case Choquet simplexes

are precisely the n-simplexes (convex combination of n extreme points) in a space of

dimension at most n´ 1. Most common example of a simplex in an infinite dimensional

space is PpKq, where K is a compact Hausdorff space. The list includes the State

space (say KpMq) of an uniformly closed subspace M of CRpKq which separates points

and containing 1 provided KpMq satisfies a Uniqueness condition: For L P KpMq there

exists unique µ P PpKq, such that µ ˝ φ´1 is a boundary measure on KpMq and Lpgq “
ş

K
gpxqdµpxq, @g PM . Here φ : K ÑM˚ be defined by φptqpfq “ fptq.

It is relevant to mention here that for the case of complex scalars the Uniqueness condition

may not be ensured by this property(Simplex) of the state space although a sophisticated

geometry takes place in this case; M satisfies Uniqueness condition if and only if the dual

closed unit ball of M˚ is Simplexoid, i.e. every proper face of it is a Simplex.

The goal of this project is to study the Choquet’s Theorems and its applications in

Functional Analysis in particular to the theory of convex sets in Banach spaces.

We now give a chapter-wise summary of this thesis. This is a literature survey and most

of the results are quoted from [1, 2, 9, 10]. [7, 11, 14] are some good references for the

theory of Convex sets in finite dimensional spaces, the first part of Chapter 2 is motivated

from these monographs. All our notations are standard and common in the literature. A

list of common symbols is given in the Chapter 0.



5 Chapter 1 Introduction

In Chapter 2 we study Choquet Integral Representation Theorem (Theorem 2.2.2). It

states that corresponding to each probability measure supported on the extreme points

of a compact convex subset there exists a unique point of the compact convex set, called

the barycentre or resultant of the measure. This association is w˚-continuous. It is rather

a deep fact and the central theme of this project is for any point of a compact convex set

there exists a measure supported on the extreme points of the set. In the same Chapter,

we study the Completely monotone function. A representation theorem for the class of

bounded completely monotone function is also discussed.

In Chapter 3 the main result is Choquet-Bishop-De Leeuw Theorem(Theorem 3.2.1) for a

compact convex metrizable set. It is, in fact, converse of Theorem 2.2.2 when the compact

convex set is metrizable. In this Chapter we introduce the space ARpDq where D is a

compact convex subset of a lctvs E. For a bounded function f , we introduce the upper

envelope and lower envelope of f . They are concave and convex functions respectively.

Several properties of these functions are also discussed.

Chapter 4 is devoted to discussing the Choquet-Bishop-De Leeuw Theorem for the non-

metrizable case. The tools developed in the literature have impacts on many other as-

pects also. This chapter starts with a generalization of Stone-Weierstrass Theorem which

asserts a sufficient condition which makes a subspace of CRpKq uniformly dense in it

(Lemma 4.0.1). M`pDq turns out to be a partially ordered set with respect to the par-

tial ordering defined in Pg.35. A judicious Zornification ensures that each element of

M`pDq is dominated by a maximal measure in it(Lemma 4.1.4). The maximality of a

measure discussed at the beginning is analogous to the maximality defined here. In Theo-

rem 4.1.13, it is observed that a maximal measure µ in M`pDq does not distinguish f and

f̂ for f P CRpDq (Mokobodzki). On the other hand, a point x P D is an extreme point

if and only if f̂pxq “ fpxq for f P CRpDq, see Theorem 4.1.12. This clarifies Spµq must

be in a small neighborhood of extpDq. The notion of boundary measure is introduced for

a signed measure. Finally, the most generalized version of Choquet-Bishop-De Leeuw is

obtained in Theorem 4.1.16.

Theorem 1.0.3. Let D be a compact convex subset of a lctvs E. Then for each x P D

there exists a measure µ P PpDq such that x “ rpµq and µpF q “ 0 for any Baire set

F Ď DzextpDq.

Chapter 4 ends with some applications of these results: The Rainwater Theorem (Theo-

rem 4.2.1) is proved, it is shown that in a compact convex set D a probability measure

µ is a w˚-limit of a net of discrete probability measure with the same resultant (see

proposition 4.2.5) as that for µ. A new proof of Stone-Weierstrass Theorem is also given.

In Chapter 5 we discuss about a special type of compact convex subset of a lctvs E,

called Simplex(Definition 1.0.1). Various characterizations are discussed when a compact
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convex set is a Simplex. The most geometric version of Definition 1.0.1 is stated in

Theorem 1.0.2. Finally, it is observed that if for a compact convex X, dim
´

X̃ ´ X̃
¯

“ n

then X is a Simplex if and only if X has only n extreme points. Here X is assumed to

be a subset of a hyperplane in E not containing the origin.

Let M be a subalgebra of CCpKq containing constants and separates points. The weak˚

compact convex KpMq “ tL P BM˚ : Lp1q “ 1u is called the State space of M , an obvious

generalization of PpKq. From Milman’s converse of Krein-Milman Theorem it follows

extpKpMqq Ď φpKq and this leads to define BpMq “ tt P K : φptq P extpSpMqqu. It is

a boundary for M called the Choquet boundary, the smallest boundary contained in any

closed boundary. The aim of Chapter 6 is to discuss the analysis of the function spaces viz.

CpKq and its uniform algebras in the context of Choquet boundary. Choquet boundary

plays a crucial role in the analysis of continuous function spaces; it carries information

of the space, a glimpse of it may be found in Theorem 1.0.3 if D is replaced by the State

space of a subspace. BpMq is the so-called Silov boundary for M . The interplay between

peak set and Choquet boundary are discussed and are explained with various examples.

The celebrated Korovkin Theorem is discussed with its full generality in the context of

the Choquet boundary.

Four appendixes at the end contain some basic prerequisites which make this Thesis self

contained and are also important in their own right.

This project initiates to create curiosity in the fields of infinite dimensional convexity,

function spaces of continuous functions over various domains and other allied areas which

have more or fewer connections with the Choquet Theory. We encounter numerous results

related to these fields (in Chapter 4, 6) which can be derived as consequences of Choquet’s

Theorems. In the last few decades, the territory of Choquet’s Integral Representation

has reached to the subjects like Mathematical Economics, Risk Management, Potential

Theory, Game Theory, Operations Research, etc. Interested readers can come across the

articles [4–6] to get an overview of the vastness of its applicabilities.



Chapter 2

Choquet Integral representation

theorem

We begin this Chapter with two fundamental theorems in Functional analysis, viz. Hahn-

Banach theorem and Hahn-Banach separation theorem.

Theorem 2.0.1. (Hahn-Banach theorem) Let M be a proper subspace of a lctvs E

and p be a sublinear functional on E. Let f be a linear functional on M such that

Re fpxq ď ppxq for all x PM . Then f can be extended to whole E with Re fpxq ď ppxq

for all x P E.

Theorem 2.0.2. (Hahn-Banach separation theorem) Let M be a convex subset of a

lctvs E and x0 P EzM . Then there exists a linear functional f P E˚ and λ P R such that

Re fpx0q ě λ ě supxPM Re fpxq.

A weakening or strengthening of the above separation depends on the topological prop-

erties of M . For example if M,N be two disjoint compact convex sets then a strict

separation is possible, on the other hand, if M is compact convex and x0 is an extreme

point of M then only above separation is possible.

2.1 Carathéodory’s theorem

Proposition 2.1.1. Let K be a non-empty compact convex subset of a lctvs X. Suppose

Φ is a real-valued convex and usc funtion on K. Then, Φ attains its supremum on K.

Proof. It is clear that supxPK Φpxq ă 8. In fact, if Vα “ tx P K : Φpxq ă αu then pVαqαPR

is an open cover of K, which in turn, admits a finite subcover for K and hence the result.

7



8 Chapter 2 Choquet Integral representation theorem

Choose pxαq Ď K such that Φpxαq Ñ supxPK Φpxq. Since K is compact, there exists a

subnet pxαiq of pxαq such that for some x0 P K,

xαi Ñ x0.

Now,

Φpxαiq Ñ sup
xPK

Φpxq.

Thus,

sup
xPK

Φpxq ě Φpx0q ě lim sup
i

Φpxαiq “ sup
xPK

Φpxq.

This implies that Φpx0q “ supxPK Φpxq. Thus, Φ attains its supremum on K.

Let us recall upper semi continuous function in Chapter 0. Here are few remarks which

can be derived directly from the definition.

Proposition 2.1.2. paq Let f be a real valued function of a topological space pX, τq.

f is usc function if and only if for any net xα Ñ x0 ñ fpx0q ě lim sup
α

fpxαq.

pbq Let f be a real valued function of a topological space pX, τq. f is lsc function if

and only if for any net xα Ñ x0 ñ fpx0q ď lim inf
α

fpxαq.

pcq Let pX, }.}q be any normed linear space. We can define the weak˚ topology on X˚

(refer Appendix B). If }.} is the induced norm on X˚, then }.} : pX˚, w˚q ÝÑ Rě0

is a lsc function:

Proof. paq In fact if xα Ñ x0 and ε ą 0 then by the definition of usc function,

x0 P tx P X : fpxq ă fpx0q ` εu is open in pX, τq. Therefore, by definition of

convergence of net, for infinitely many α,

fpxαq ă fpx0q ` ε.

This implies, for all ε ą 0

lim sup
α

fpxαq ď fpx0q ` ε.

This implies,

lim sup
α

fpxαq ď fpx0q.

Conversely, let λ P R and A “ tx P X : fpxq ě λu. We, now, show that A is closed.

Let pxαq Ď A such that xα Ñ x0. This implies, for all α,

fpxαq ě λ.
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From hypothesis,

fpx0q ě lim sup
α

fpxαq ě λ.

This implies, x0 P A. Hence, A is closed. This implies, XzA is open. Therefore, f

is usc function.

pbq A similar proof like paq .

pcq By the Banach Alaoglu Theorem B.1.1, tx˚ P X˚ : ||x˚|| ď 1u is w˚-compact in

X˚. Hence, tx˚ P X˚ : }x˚} ď 1u is w˚-closed in X˚. This implies, for any α P R,

tx˚ P X˚ : ||x˚|| ď αu “ ty˚ P X˚ : ||y˚|| ď 1u is w˚-closed in X˚.

Hence, }.} is a lsc function on X˚.

Theorem 2.1.3 (Bauer’s Maximum Principle). Let K be a non-empty compact convex

subset of a lctvs X. Suppose Φ is a real-valued convex and usc funtion on K. Then, Φ

attains its supremum at some extreme point of K.

Proof. Define S “ tF Ď X : F ‰ φ, F is closed extreme set of K}. S is non-empty as

K P S . Now, S has the following properties:

piq If pXiqiPI Ď S and
Ş

iPI Xi ‰ φ, then
Ş

iPI Xi P S .

piiq For each F P S and convex usc function g, let F 1 “ tx P F : gpxq “ supyPF gpyqu.

Then, F 1 P S .

Proof of piq: Let pXiqiPI Ď S and
Ş

iPI Xi ‰ φ. Since each Xi is closed, so is
Ş

iPI Xi.

Let x, y P
Ş

iPI Xi such that for some λ P p0, 1q, λx`p1´λqy P
Ş

iPI Xi. This implies, for

all i P I, λx` p1´ λqy P Xi. Hence, for each i P I, x, y P Xi. Therefore, x, y P
Ş

iPI Xi.

Proof of piiq: First of all, F 1 is non-empty, by Proposition (2.1.1). Let x, y P F such

that λx` p1´ λqy P F 1.

sup
zPF

gpzq “ gpλx` p1´ λqyq

ď λgpxq ` p1´ λqgpyq

ď λpsup
zPF

gpzqq ` p1´ λqpsup
zPF

gpzqq

“ sup
zPF

gpzq.

(2.1)

This implies, λgpxq`p1´λqgpyq “ supzPF gpzq. Hence, gpxq “ gpyq “ supzPF gpzq. Thus,

x, y P F 1. Therefore, F 1 is an extreme set of F and we have assumed F is extreme set
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of K. This implies that F 1 is extreme set of K, since extreme sets of a given set are

transitive. It can be easily seen that F 1 is closed subset of K. Therefore, F 1 is non-empty

closed extreme set of K. Hence, F 1 P S .

Now, define a partial ordering ă on S as:

For F1, F2 P S , F1 ă F2 if and only if F2 Ď F1.

Thus, (S ,ă) is a partially ordered set. Let pXiqiPI Ď S be any chain. Then, by Cantor’s

Intersection theorem and from property (i) of S , φ ‰
Ş

iPI Xi P S and clearly, for all

i P I,Xi ă
Ş

iPI Xi. Thus, pXiqiPI has an upper bound. Hence, every chain in S has an

upper bound. Now, by Zorn’s Lemma, (S ,ă) has a maximal element say F P S .

Claim: If F P S is a maximal element of (S ,ă), then F must be singleton.

Proof of the Claim: Suppose there exists x, y P F such that x ‰ y. Then by Hahn

Banach theorem, there exists f P X˚zt0u such that fpxq ă fpyq. Consider, F 1 “ tz P

F : fpzq “ supwPF fpwqu. Clearly, F 1 Ř F , since x R F 1. By property (ii) of S , F 1 P S .

This implies that F ă F 1. But this contradicts the maximality of F . Thus, F must be

singleton.

Consider F 1 “ tx P K : Φpxq “ supyPK Φpyqu. Then, by property (ii), F 1 P F . We

can get a chain pXiqiPI in pS ,ăq such that Xj “ F 1, for some j P I. Then, let A be a

maximal element of (S ,ă) such that Xi ă A, for all i P I. In particular, F 1 ă A, which

implies A Ď F 1, Now, by above claim, A is singleton say A “ tau. It follows easily that

a is an extreme point of set K and hence, Φ attains its supremum at a.

Theorem 2.1.4 (Krein Milman’s Theorem). Let K be a non-empty compact convex

subset of a lctvs X. Then, extpKq ‰ φ and conv(extpKq) “ K.

Proof. From Bauer’s Maximum Principle (2.1.3), it is proved that extpKq ‰ φ. Clearly,

conv(extpKq) Ď K. Suppose there exists x0 P KzconvpextpKq. Then, by Hahn Banach

separation theorem (2.0.2), there exists f P X˚zt0u such that

fpx0q ą sup fpconvpextpKqq.

Consider, M “ tx P K : fpxq “ supyPK fpyqu. By Bauer’s Maximum Principle (2.1.3),

M is non-empty, closed subset of K and has an extreme point. This implies that

convpextpKqq XM ‰ φ. Now,

sup
yPK

fpyq ě fpx0q ą sup fpconvpextpKqq.
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This implies that convpextpKq XM “ φ. This is a contradiction. Hence, conv(extpKq)

“ K.

Theorem 2.1.5 (Carathéodory’s theorem). Let X be a lctvs. Let K Ď X be compact

and convex. Let dim X = n. Then, each point in K can be expressed as a convex

combination of at most (n` 1) extreme points of K.

Proof. We will prove by induction on n. The result is true for n “ 1 since for n “ 1, X is

a line and K is just a line segment. Suppose the result is true for any lctvs of dimension

n. We now prove the result for a lctvs X of dimension n ` 1. Let K Ď X be compact

and convex. Let x P K.

Case (1): Let x P BK. Then by Hahn Banach separation theorem (2.0.2), there exists

a supporting hyperplane H of K in X such that x P H XK. Since H is a hyperplane in

X,

H “ tx P X : fpxq “ αu, for some α P K and f P X˚
zt0u.

Now, dim(HXK)ď n, since HXK Ď H and dim X = n. Now, HXK is compact (since

it is a closed subset of the compact set K).

Claim: H XK is convex set.

Proof of the claim: Let y, z P H XK and λ P p0, 1q. Then, λy ` p1´ λqz P K, since

K is convex set. Since y, z P H ñ fpyq “ α and fpzq “ α. Hence,

fpλy ` p1´ λqzq “ λfpyq ` p1´ λqfpzq “ λα ` p1´ λqα “ α.

This implies λy`p1´λqz P H and therefore λy`p1´λqz P H XK. It follows from here

that H XK is convex. This completes the proof of the claim.

Therefore, now, by induction hypothesis, there exists pn`1q extreme points z1, z2, ..., zn`1

such that x can be written as convex combination of z1, z2, ..., zn`1.

We now claim that extpHXKq Ď extpKq. It is sufficient to prove that HXK is an extreme

set of K and then since extpH XKq Ă extpKq, we arrive at our claim. Let y, z P K such

that there exists λ P p0, 1q and λy ` p1 ´ λqz P H XK. This implies λy ` p1 ´ λqz P H

and λy`p1´λqz P K. Thus, fpλy`p1´λqzq “ αñ λfpyq` p1´λqfpzq “ α. Suppose

without loss of generality, fpyq ‰ α. Assume without loss of generality that K lies in the
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half space tx P X : fpxq ď αu. Then, fpyq ă α. Now,

α “ λfpyq ` p1´ λqfpzq

ď λfpyq ` p1´ λqα

ă λα ` p1´ λqα

“ α.

(2.2)

which gives us a clear contradiction. Similarly, we get a contradiction if fpzq ă α. This

implies fpyq “ fpzq “ α, which in turn, implies that y, z P H. Also, since y, z P K,

we get y, z P H X K. Therefore, H X K is an extreme set of K. Therefore, using a

similar result like Remark A.1.4pbq, we get that extpH XKq Ď extpKq. This implies that

z1, z2, ..., zn`1 are extreme points of K. Therefore, x can be written as convex combination

of the extreme points of K namely z1, z2, ..., zn`1. Thus, the result is true in this case.

Case 2: Let x P int(K).

By Krein Milman’s theorem (Theorem 2.1.4), extpKq ‰ φ and thus, there exists y P

extpKq. Consider the line joining y and x and intersecting the boundary of K at point

say z. Then, there exists pn ` 1q extreme points z1, z2, ..., zn`1 such that z is convex

combination of z1, z2, ..., zn`1 by following the same proof as in Case(1). Finally, we get

x to be the convex combination of the points y, z1, z2, ..., zn`1. Hence, the result is true

in the case too. Hence, the result is true for any lctvs of dimension n` 1.

Thus, by 2nd principle of mathematical induction, the result is true for any lctvs of

dimension n, for any P N.

2.2 Resultant of a Measure

Let X be a compact convex subset of a lctvs E. The Proposition C.2.2 in Appendix

C tells us that the set of all extreme points of set of all probability measures PpXq in

MpXq is the set of all Dirac measures tδt : t P Xu. Thus, by Krein Milman Theorem

2.1.4,

PpXq “ convw
˚

tδt : t P Xu.

Definition 2.2.1 (Resultant of a Measure). Let X be a compact convex subset of a

lctvs E. Let µ P MpXq. A point x is said to be a resultant (or barycentre) of µ if

for any f P E˚,
ż

X

fdµ “ fpxq.

Notation: x “ rpµq.
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Theorem 2.2.2. Let Y be a compact subset of a lctvs E. Suppose convpY q “ X is also

compact. Let µ P PpY q. Then, there exists a unique x P X such that x “ rpµq and the

map r : PpY q ÝÑ X defined as µ ÞÝÑ rpµq is w˚-continuous.

Proof. Let µ P PpY q “ convw
˚

tδt : t P Y u. This implies there exists a net pµαq Ă

convtδt : t P Y u such that µα ÝÑ µ. Hence, for every α,

µα “
kα
ÿ

j“1

βjδtαj

for some tαj P Y , βj ě 0 and
řkα
j“1 βj “ 1. Now,

kα
ÿ

j“1

βjt
α
j P convpY q “ X.

Let

xα “
kα
ÿ

j“1

βjt
α
j .

For every f P E˚, fpxαq “
řkα
j“1 βjfpt

α
j q “

ş

Y
fdµα.

Hence, xα “ rpµαq. Now, since X is compact, there exists a convergent subnet say pxαiq

such that xαi ÝÑ x, for some x P X. Let f P E˚. Then,

fpxq “ lim
i
fpxαiq

“ lim
i

kαi
ÿ

j“1

βjfpt
αi
j q

“ lim
i

kαi
ÿ

j“1

βjδtαij pfq

“ lim
i
µαipfq

“ lim
i

ż

Y

fdµαi

“

ż

Y

fdµ.

(2.3)

Hence, x “ rpµq. Now, suppose there exists another y P X such that y “ rpµq. This

implies, for any f P E˚,

fpyq “

ż

Y

fdµ “ fpxq.

This is a contradiction, since by Hahn Banach theorem 2.0.1, there exists g P E˚ such

that gpxq ‰ gpyq. This implies there exists unique x P X such that x “ rpµq.
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We now show the map γ : PpY q ÝÑ X defined as µ ÞÝÑ rpµq is w˚-continuous. Let

pµαq in PpY q such that µα
w˚
ÝÝÑ µ0. It is enough to show that any convergent subnet of

prpµαqq converges to rpµ0q. Let rpµαiq ÝÑ y in X. Then, for any f P E˚,

fprpµαiqq ÝÑ fpyq

which implies
ż

Y

fdµαi ÝÑ fpyq.

Now,
ż

Y

fdµαi ÝÑ

ż

Y

fdµ0 “ fprpµ0qq.

This implies for all f P E˚, fpyq “ fprpµ0qq. By Hahn Banach theorem 2.0.1, E˚ separates

points and hence, y “ rpµ0q. Therefore, rpµαiq converges to rpµ0q. Suppose prpµαqq does

not converge to rpµ0q. This implies, there exists a subnet prpµαiqq and a neighborhood

U of rpµ0q such that for all i, rpµαiq R U . Since X is compact, there exists a convergent

subnet of this subnet say prpµαij qq. Hence, rpµαij q ÝÑ rpµ0q. But, for all j, rpµαij q R U ,

which is a contradiction. This implies, rpµαq ÝÑ rpµ0q.

Theorem 2.2.3. Let Y be a compact subset of a lctvs E. Suppose convpY q “ X is also

compact. Then, x P X if and only if there exists µ P PpY q such that x “ rpµq.

Proof. The converse is true by the theorem 2.2.2. Now, assume x P X “ convpY q. Then,

there exists pxαq Ă convpY q such that xα ÝÑ x. Hence,

xα “
k
ÿ

i“1

tαi y
α
i

where for some k P N and all i, yαi P Y , tαi ě 0 and
řk
i“1 t

α
i “ 1 Define, µα “

řk
i“1 t

α
i δyαi P

PpY q. Then, ||µα|| “ 1 and µα is a positive measure. Since PpY q is w˚-compact, there

exists a subnet pµαiq in PpY q and µ0 P PpY q such that µαi
w˚
ÝÝÑ µ0. Let f P E˚. Then,

ż

Y

fdµ0 “ lim
α

ż

Y

fdµαi

“ lim
α

k
ÿ

i“1

tαi

ż

Y

fdδyαi

“ lim
α
fp

k
ÿ

i“1

tαi y
α
i q

“ lim
α
fpxαq

“ fpxq.

(2.4)
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This implies, x “ rpµ0q where µ0 P PpY q.

Remark 2.2.4. Let K be a compact convex subset of a lctvs X. Then, by Krein Milman

theorem (2.1.4), extpKq ‰ φ and convpextpKqq “ K. Now, let Y “ extpKq Ă X is

compact and also, convpY q “ K. Hence, by earlier theorem, for any x P X, there exists

µ P PpY q such that x “ rpµq. Thus, Spµq Ă extpKq.

As an immediate consequence of above Theorem we have the following.

Corollary 2.2.5. Let E be a lctvs. The following statements are equivalent.

paq (Krein-Milman Theorem) If X Ď E is a compact convex set and Y “ extpXq,

then X “ convpY q.

pbq Each x P X is represented by a µ P PpXq with Spµq Ď Y .

Theorem 2.2.6. (Bauer) Let K be a compact convex subset of a lctvs X. Let x P extpKq.

Then, δx is the unique probability measure such that x “ rpδxq.

Proof. It is clear that rpδxq “ x. Now, let µ P PpY q where Y “ extpKq such that

x “ rpµq. It suffices to show that Spµq = {x}.

Claim: For any D Ă Y such that x R D and D is compact, µpDq “ 0.

Proof of the claim: Suppose for some compact D Ă Y ztxu, µpDq ą 0. Since

D X Spµq ‰ φ, let x1 P D X Spµq (If Spµq X D “ φ, then D Ă Spµqc. Since D is

compact, there exists open sets G1, G2, ..., Gm such that for all i “ 1, 2, ...,m, µpGiq “ 0

and D Ă
Ťm
i“1Gi. This implies µpDq “ 0, which is a contradiction.) Let F Ă Y be

closed set such that x1 P F and x R F ( since X is normal space and Y is closed in X,

Y is normal space). Define the following measures: For any measurable set E Ă Y ,

µ1pEq “ µpE X F q and µ2pEq “ µpE X Y zF q. Hence, Spµ1q “ F . Also, µ1 ` µ2 “ µ

and 1 “ }µ} “ }µ1} ` }µ2}. By Urysohn’s lemma, there exists a continuous function

f : Y Ñ r0, 1s such that fpyq “ 0, for each y P F and fpxq “ 1. So,

1 “ fpxq “

ż

Y

fdµ “

ż

F

fdµ1 `

ż

Y zF

fdµ2 “

ż

Y zF

fdµ2.

This implies that }µ2} ‰ 0. Similarly, we can show that }µ1} ‰ 0, since Spµ2q “ Y zF .

Hence, we have 0 ă }µ1} ă 1 and 0 ă }µ2} ă 1. Now,

µ “ }µ1}
µ1

}µ1}
` }µ2}

µ2

}µ2}
.

Let z1 “ rp µ1
}µ1}
q and z2 “ rp µ2

}µ2}
q. Therefore,

x “ rpµq “ }µ1}z1 ` }µ2}z2
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where }µ1} ` }µ2} “ 1 and 0 ă }µ1} ă 1 and 0 ă }µ2} ă 1. This implies x R extpKq,

which is a contradiction. Hence the claim.

Using above claim, µpY ztxuq “ suptµpDq : D Ă Y ztxu is compactu “ 0.

Hence, Spµq “ txu. This completes the proof.

A partial converse of Krein-Milman theorem is the following.

Theorem 2.2.7. Let E be a lctvs and X Ď E be a compact convex set. Then for any

Z Ď X with convpZq “ X we have extpXq Ď Z.

Proof. If Y “ Z then X “ convpY q. Let x P extpXq then there exists µ P PpY q such

that rpµq “ x. Now from Theorem 2.2.6 µ “ δx. Hence x P Y .

2.3 An application of Krein-Milman theorem

We conclude this Chapter by an interesting application of Krein-Milman Theorem.

Definition 2.3.1 (Completely monotonic functions). A real valued function f on p0,8q

is said to be completely monotonic function if it has derivatives f p0q “ f , f p1q, f p2q,... of

all orders and if p´1qnf pnq ě 0, for all n P NY t0u.
Remark 2.3.2. A completely monotonic function is non-negative and non-increasing, as

is each of the functions p´1qnf pnq. Examples of such functions are x´α, e´αx, for α ě 0.

Definition 2.3.3. (Convex cone) Let V be a vector space. Let C Ă V . C is said to be

a cone if for any positive scalar α and for any x P C, αx P C. A cone C is called convex

cone if for any positive scalars α, β and for any x, y P C, αx` βy P C.

Example 2.3.4. Examples of convex cone are :

piq for any vector space V , the empty set, the space V and any linear subspace of V .

piiq the set of all non-negative continuous functions on R

Sergei Natanovich Bernstein proved a fundamental representation theorem for completely

monotonic functions. We will prove the theorem for bounded functions. The proof of

this theorem is an application of Krein Milman theorem. Let us denote the one point

compactification of r0,8q as r0,8s.

Theorem 2.3.5 (Bernstein). If f is bounded and completely monotonic function on

p0,8q, then there exists a unique non-negative Borel measure µ on r0,8s such that

µpr0,8sq “ fp0`q and for each x ą 0,

fpxq “

ż 8

0

e´αxdµpαq.
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Proof. (The converse of the above theorem is true. Assume we have a function defined as

above. Then, by Leibniz Integral rule, differentiation under the integral sign is possible.

Hence, for any n “ 0, 1, 2, ..., for each x ą 0,

f pnqpxq “ p´1qn
ż 8

0

e´αxdpαnµq.

Therefore, since µ is non-negative Borel measure and e´αx ą 0, for each x ą 0,

p´1qnf pnqpxq “

ż 8

0

e´αxdpαnµq ě 0.

This implies f is completely monotonic function on p0,8q. Now, define for all n P N and

α P r0,8s,

gnpαq “ e´α{n.

Then,

|gnpαq| ď 1 and lim
nÑ8

gnpαq “ e´α{n “ 1.

By dominated convergence theorem,

lim
nÑ8

ż 8

0

e´α{ndµpαq “

ż 8

0

1dµpαq

ùñ lim
nÑ8

fp1{nq “ µpr0,8sq

ùñ lim
xÑ0`

fpxq “ µpr0,8sq

ùñ fp0`q “ µpr0,8sq.

(2.5)

Hence, fp0`q ă 8. This implies f is bounded function.)

Let us begin with the sketch of the proof. Let us denote CM to be the convex cone of

all completely monotonic functions f such that fp0`q ă 8. (fp0`q exists always since

f is completely monotonic function, although it may be infinite). Let K “ tf P CM :

fp0`q ď 1u. We will prove that K is convex. Now, if f P CM , f ‰ 0, then f
fp0`q

P K.

Thus, it suffices to prove the theorem for elements of K.

Let E be the space of all real valued infinitely differentiable functions on p0,8q. Then,

K Ă E. Now, we digress a little from the proof sketching and define a topology on E.

For all n P N, let Kn “ r 1
n
, ns. Then, p0,8q “

Ť

nPNr
1
n
, ns. For all f P E, define the

seminorms

pm,npfq “ supt|f pkqpxq| : x P Kn, 0 ď k ď mu.

Then, the countable collection of seminorms tpm,npfq : m,n P Nu gives rise to a topology

on E say τ . pE, τq has the following properties:
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piq pE, τq is lctvs.

piiq pE, τq is metrizable and has Heine Borel property.

piiiq A Ă E is bounded if and ony if every pm,npfq is bounded on A.

pivq fn
τ
ÝÑ f if and only if for each compact set K Ă p0,8q, }pfn ´ fq|}8 Ñ 0 in K.

If fn
τ
ÝÑ f , it follows easily that f

pkq
n

τ
ÝÑ f pkq, for all k “ 1, 2, 3, . . ..

We, now, continue with the sketch of the proof. We will show that K is compact in this

topology defined on E so that we can apply Krein Milman theorem on K. Futhermore, we

will show that the extreme points of K are precisely the functions x ÞÝÑ e´αx, α P r0,8s.

(Let us define e´8x “ 0, for each x P p0,8q). It is easy to see that the extpKq is

compact since it is homeomorphic to r0,8s. Applying Krein Milman theorem to K, each

f P K can be represented by a Borel probability measure m supported on extpKq. This

measure m can then be carried to a measure µ on r0,8s and the evaluational functionals

f ÞÝÑ fpxq, for each x ą 0 are continuous on E. We combine all these facts and obtain

the desired representation of f . We can prove the uniqueness of such a Borel measure on

r0,8s by applying Stone Weierstrass theorem on the subalgebra of Cr0,8s generated by

the exponentials.

We, now, begin the proof. First we show that K is convex. Let f, g P K and λ P p0, 1q,

then λf ` p1´ λqg P CM since CM is a convex cone. Also,

pλf ` p1´ λqgqp0`q “ λfp0`q ` p1´ λqgp0`q ď λ` p1´ λq “ 1.

Therefore, λf ` p1 ´ λqg P K. This implies K is convex set. Secondly, we show that K

is compact in pE, τq. From (ii), it is enough to show that K is closed and bounded. Let

pfnq Ă K such that fn
τ
ÝÑ f . Then, from (iv), we get f

pkq
n

τ
ÝÑ f pkq, for all k “ 1, 2, 3, ....

Hence, it follows easily from here that,

p´1qnf pnq ě 0, for all n “ 0, 1, 2, . . . and

fp0`q “ lim
xÑ0

fpxq “ lim
xÑ0

lim
nÑ8

fnpxq “ lim
nÑ8

lim
xÑ0

fnpxq “ lim
xÑ0

fnp0
`
q ď 1.

Hence, f P K. This implies K is closed. In order to show that K is bounded, from (iii),

it suffices to show that for each m P N and n P N Y t0u, suptpm,npfq : f P Ku is finite

i.e. to show sup
Şm
k“0t|f

kpxq| : x P Kn, f P Ku is finite. For this, it suffices to show

supt|fmpxq| : x P Kn, f P Ku, for all m ě 0 and n ě 1. Clearly, the following lemma will

prove this fact.

Lemma 2.3.6. Let In “ tp´1qnf pnq : f P Ku, for n “ 0, 1, 2, .... Then, for each a ą 0

and each n ě 0, the functions in In are bounded above on ra,8q by δan
def
“ a´n2pn`1qpn{2q
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Proof. We prove by mathematical induction. It is clear that the lemma is true for n “ 0

as the functions in I0 “ K are bounded above by 1. Assume that the lemma is true

for In i.e. for each a ą 0 and each n ě 0, the functions in In are bounded above

on ra,8q by δan
def
“ a´n2pn`1qpn{2q. Now, consider In`1 “ tp´1qpn`1qf pn`1q : f P Ku.

Let a ą 0. Since the functions in In`1 are non-increasing, it is enough to show that

p´1qpn`1qf pn`1qpaq ď δapn`1q. By Mean Value theorem applied to fn on ra
2
, as, there exists

c with a
2
ă c ă a such that

´a

2

¯

f pn`1q
pcq “ f pnqpaq ´ f pnq

´a

2

¯

.

Hence,

p´1q
´a

2

¯

f pn`1q
pcq “ f pnq

´a

2

¯

´ f pnqpaq.

Therefore,

p´1qn`1
´a

2

¯

f pn`1q
pcq “ p´1qnf pnq

´a

2

¯

´ p´1qnf pnqpaq

ď p´1qnf pnq
´a

2

¯

ď δpa{2qpnq ......by induction hypothesis.

(2.6)

Hence,

p´1qn`1f pn`1q
pcq ď

´a

2

¯´pn`1q

2pn`1qpn{2q

“ paq´pn`1q2pn`1qpn{2q`pn`1q

“ paq´pn`1q2pn`2qpn`1{2q

“ δapn`1q.

(2.7)

Since, p´1qn`1f pn`1q is non-increasing and c ă a,

p´1qn`1f pn`1q
paq ď δapn`1q.

Hence, the result follows.

Next step will be to identify the extreme points of K.

Lemma 2.3.7. The extreme points of K are those functions f of the form for each

α P r0,8s, for all x ą 0, fpxq “ e´αx.

Proof. Let f P extpKq. Let x0 ą 0. Define, for all x ą 0, upxq “ fpx ` x0q ´ fpx0qfpxq.

We will prove that f ˘u P K. Then, since f P extpKq, u “ 0. Hence, we get, fpx`x0q “

fpx0qfpxq, for each x, x0 ą 0. Since f is continuous, this implies either f “ 0 (the case



20 Chapter 2 Choquet Integral representation theorem

α “ 8) or fpxq “ e´αx, for some α. Since ´f 1pxq “ αe´αx ě 0, we must have α ě 0.

Thus, now, we are left to show f ˘ u P K. We have,

pf ` uqp0`q “ fp0`qp1´ fpx0qq ` fpx0q ď 1

and

pf ´ uqp0`q “ fp0`qp1´ fpx0qq ´ fpx0q ď 1

since fp0`q, fpx0q ď 1. Also, we have,

p´1qnpf ` uqpnqpxq “ p´1qnf pnqpxqp1´ fpx0qq ` p´1qnf pnqpx` x0q ě 0

and

p´1qnpf ´ uqpnqpxq “ rp´1qnf pnqpxq ´ p´1qnf pnqpx` x0qs ` p´1qnfpx0qf
pnq
pxq ě 0

since p´1qnf pnq is non-increasing.

To prove the converse, for r ą 0, consider the transformation Tr : K ÝÑ K defined as

Trpfqpxq “ fprxq. Clearly, Tr is well-defined. It is also easily seen that Tr is one-one,

onto and preserves convex combinations. We claim that Tr takes extpKq to extpKq. Let

f P extpKq. Define, for all x ą 0, hpxq “ fpr{xq. Suppose there exists h1, h2 P K such

that

h “
h1 ` h2

2
.

Then, for each x ą 0,

hprxq “
h1prxq ` h2prxq

2
.

This implies

fpxq “
h1prxq ` h2prxq

2
.

Since f P extpKq, for each x ą 0, fpxq “ h1prxq and fpxq “ h2prxq. Hence, for each

x ą 0, fpx{rq “ h1pxq and fpx{rq “ h2pxq. Hence, for each x ą 0, hpxq “ h1pxq and

hpxq “ h2pxq. This implies h P extpKq and Trphq “ f . To prove reverse inclusion,

consider f P extpKq. Suppose there exists h1, h2 P extpKq such that

Trpfq “
h1 ` h2

2
.

For each x ą 0,

Trpfqpx{rq “
h1px{rq ` h2px{rq

2

This implies

fpxq “
h1px{rq ` h2px{rq

2
.
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Since f P extpKq, for each x ą 0, fpxq “ h1px{rq and fpxq “ h2px{rq. Thus for each

x ą 0, fprxq “ h2pxq and fprxq “ h2pxq. Hence,

Trpfq “ h1 and Trpfq “ h2.

This implies Trpfq P extpKq. Therefore, TrpextpKqq “ extpKq. We just proved that

any extreme point of K is of the form e´αx, for some α and hence the image e´αrx of

this function under Tr is an extreme point of K. Since this is true for all r ą 0, all the

exponentials are extreme points of K (the constant functions 0 and 1 are clearly extreme

points) and hence the proof is complete.

It can be easily seen that the map T : r0,8s Ñ K defined as α ÞÝÑ e´αp.q is well-defined

and continuous. Since r0,8s is compact, its image under T i.e. extpKq is compact.

By Krein Milman representation theorem, for each f P extpKq, there exists regular Borel

measurem supported on extpKq such that f is resultant ofm i.e. for each linear functional

in E˚, Lpfq “
ş

extpKq
Ldm. Now, for each x ą 0, consider the evaluational functional

Lxpfq “ fpxq, which are continuous on E. Then, we have, for each x ą 0, fpxq “
ş

extpKq
Lxdm. Define a measure µ for each Borel subset B of r0,8s as µpBq “ mpT pBqq

i.e. µ “ m ˝ T . Since LxpT pαqq “ e´αx, we have for each x ą 0,

fpxq “

ż

extpKq

Lxdm

“

ż

T´1pextpKqq

Lx ˝ Tdpm ˝ T q

“

ż 8

0

e´αxdµ.

(2.8)

It is now just left to prove that µ is unique. Suppose there exists another measure ν on

r0,8s such that for each x ą 0, fpxq “
ş8

0
e´αxdν and νpr0,8sq “ fp0`q. For each x ě 0,

the function α Ñ e´αx is continuous on r0,8s. Let A be the subalgebra of Cpr0,8sq

generated by these functions, then A consists of finite linear combinations of these same

functions. Now, for any α P r0,8s,

µ
`

e´αp.q
˘

“

ż 8

0

e´αxdµ “ fpxq “

ż 8

0

e´αxdν “ ν
`

e´αp.q
˘

.

Therefore, as linear functionals on Cpr0,8sq, µ and ν are equal on A. Since A separates

points of r0,8s and for x “ 0, since the constant function 1 belongs to A, A vanishes

nowhere, by Stone Weierstrass theorem, A is dense in Cpr0,8sq and so µ “ ν.
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Choquet’s theorem for metrizable

compact convex sets

Our next objective is to prove Choquet’s theorem for metrizable compact convex sets.

Before that, we need to discuss some preliminaries about continuous affine functions

defined on a compact convex subset of a lctvs.

3.1 Preliminaries of Affine functions

Definition 3.1.1 (Affine function). Let E1, E2 be two linear spaces. A map φ : E1 Ñ E2

is said to be affine if for any two vectors x, y P E1 and α, β P R with α ` β “ 1,

φpαx` βyq “ αφpxq` βφpyq. Let D be a convex subset of a real linear space E. Then, a

real valued function f on D is said to be affine if for x, y P D and α, β P R with α`β “ 1,

fpαx` βyq “ αfpxq ` βfpyq, whenever αx` βy P D.

Now, let D be a compact convex subset of a lctvs X. Let us recall that the set of all real

valued continuous affine functions on D is denoted to be ARpDq or A when it is unlikely to

cause confusion. It is easily seen that the collection tΦ|D ` r : Φ P X˚, r P Ru Ă ARpDq.

This collection does not exhaust A and the following examples establish this fact.

Example 3.1.2. Consider pX “ `1, w
˚q and D “ tpxiq P `1 : for each i P N, |xi| ď 4´iu.

Let λ P p0, 1q and pxnq, pynq P `1. Since for each n P N, |λxn ` p1 ´ λqyn| ď λ|xn| ` p1 ´

λq|yn| ď λp4´nq ` p1 ´ λqp4´nq “ 4´n, λpxnq ` p1 ´ λqpynq “ pλxn ` p1 ´ λqynq P D.

This implies D is convex set. Also, since for each pxnq P D and n P N, xn P r´4´n, 4´ns,

D –
ś8

n“1r´4´n, 4´ns. Since
ś8

n“1r´4´n, 4´ns is compact w.r.t. product topology and

w˚ topology is same as product topology, we can conclude that D is compact in p`1, w
˚q.

22
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Define f : D Ñ R as

fppxnqq “
8
ÿ

n“1

2nxn.

Clearly, f is well-defined as

|fpxnq| ď
8
ÿ

n“1

2n|xn| ď
8
ÿ

n“1

2n4´n “
8
ÿ

n“1

2´n ă 8.

Let λ P p0, 1q and pxnq, pynq P `1. Then,

fpλpxnq ` p1´ λqpynqq “ fppλxn ` p1´ λqynqq

“

8
ÿ

n“1

2npλxn ` p1´ λqynq

“ λ

˜

8
ÿ

n“1

2nxn

¸

` p1´ λq

˜

8
ÿ

n“1

2nyn

¸

“ λfppxnqq ` p1´ λqfppynqq.

(3.1)

This implies f is affine function on D. Clearly, f is continuous on D. Thus, f P ARpDq.

We know pc0q
˚ – `1 and given any F P pc0q

˚, there exists pxnq P `1 such that for each

pαnq P c0, F ppαnqq “ pxnqppαnqq “
ř8

n“1 xnαn. Also, D Ă c0 and c0 is embedded in `1.

Therefore, clearly, f R c0 ` R and hence f R D˚ ` R.

Example 3.1.3. Consider pX “ `2, w
˚q and D “ tpxiq P `2 : for each i P N, |xi| ď 2´iu.

Then, on similar lines with example 3.1.2, we can show that D is w˚-compact convex

subset of `2. Define f : D Ñ R as

fppxnqq “
8
ÿ

n“1

xn.

Clearly, f is well-defined as

|fpxnq| ď
8
ÿ

n“1

|xn| ď
8
ÿ

n“1

2´n ă 8.

Again, on similar lines with example 3.1.2, we can show f P ARpDq and also that f R

tΦ|D ` r : Φ P `˚2 , r P Ru.

Remark 3.1.4. ARpDq is uniformly closed in CRpDq. Let pfnq Ă ARpDq such that

fn
}.}8
ÝÝÑ f0. Let λ P p0, 1q and x, y P D. Then,

f0pλx` p1´ λqyq “ lim
nÑ8

fnpλx` p1´ λqyq “ λ lim
nÑ8

fnpxq ` p1´ λq lim
nÑ8

fnpyq.

This implies, f0pλx` p1´ λqyq “ λf0pxq ` p1´ λqf0pyq. Hence, f0 P ARpDq.
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Proposition 3.1.5. The subspace M “ X˚|D`R Ă CRpDq is uniformly dense in ARpDq.

Proof. Let f P ARpDq and n P N. Consider W “ tpd, fpdqq : d P Du. Then, W Ă

D ˆ fpDq. Let ppdn, fpdnqqq Ă W such that pdn, fpdnqq Ñ pd, hq. Since D is compact

subset of lctvs X, D is closed in X. Hence, d P D. Now f P ARpDq implies fpdnq Ñ fpdq.

Hence, fpdq “ h P fpDq. This implies pd, hq P W . Thus, W is closed in D ˆ R. Let

λ P p0, 1q and pd1, fpd1qq, pd2, fpd2qq P W . Then since D is convex set and f P ARpDq,

λpd1, fpd1qq ` p1´ λqpd2, fpd2qq “ pλd1 ` p1´ λqd2, λfpd1q ` p1´ λqfpd2qq

“ pλd1 ` p1´ λqd2, fpλd1 ` p1´ λqd2qq

P W.

(3.2)

Hence, W is convex. Also, W is a closed subset of compact set D ˆ fpDq. Hence, W is

compact.

Now, consider W1 “ tpd, fpdq ` 1
n
q : d P Du Ă D ˆ pf ` 1

n
qpDq. Then, clearly, W1

is also compact convex subset of D ˆ R. Also, W X W1 “ φ. Therefore, by Hahn

Banach separation theorem, there exists Λn P pX ˆ Rq˚ and λn P R such that for each

pd, fpdqq P W and ps, fpsq ` 1
n
q P W1, Λnppd, fpdqqq ă λn ă Λnpps, fpsq `

1
n
qq. Let

Λn “ phn, pnq P X
˚ ˆ R˚. This implies, for each d P D,

hnpdq ` pnfpdq ă λn ă hnpdq ` pn

ˆ

fpdq `
1

n

˙

.

Thus, from the first and third inequalities, pn
1
n
ą 0. Hence, pn ą 0. Again, from the

above inequality, for each d P D,

pnfpdq ă λn ´ hnpdq ă pn

ˆ

fpdq `
1

n

˙

.

This implies, for each d P D,

0 ă
λn ´ hnpdq

pn
´ fpdq ă

1

n
.

Let Φn “
´hn
pn
P X˚ and rn “

λn
pn
P R˚. Therefore,

sup
dPD

|fpdq ´ pΦn ` rnqpdq| ď
1

n
.

This implies pΦn, rnq Ñ f . Therefore, M “ X˚|D ` R is uniformly dense in ARpDq.

Now we can have a new characterization of the space of continuous functions on K, viz.

we claim that CRpKq – ARpPpKqq.
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Remark 3.1.6. Proposition 3.1.5 enable us to identify CRpKq as a space of affine

functions on a compact convex subset of a lctvs. Let us recall PpKq, a (w˚) com-

pact convex subset of a lctvs pMpKq, w˚q. From the above Proposition it is clear that

CRpKq “ pMpKq, w˚q˚ ãÑ ARpPpKqq, which is clearly an embedding. In fact for

f P CRpKq, }f}8 “ suptPK |fptq| “ suptPK |f̃pδtq| “ supµPPpKq |f̃pµq|. On the other

hand, for any ϕ P ARpPpKqq, }ϕ}8 “ supδtPPpKq |ϕpδtq|. Thus if we define fptq “ ϕpδtq

then f P CRpKq, which ensures that the other side is also an embedding.

Note 3.1.7. We denote the set of all continuous convex functions on D by S. Hence, ´S

denotes the collection of continuous concave functions and A “ S Y´S. We will write S

as SpDq if there is some chance of confusion.

Definition 3.1.8. Let g : D Ñ R be a bounded function on D. For each x P D, define,

ĝpxq “ inftfpxq : f P ´S, f ě gu and ǧpxq “ suptfpxq : f P S, f ď gu.

We list out some basic properties of the maps g ÞÑ ĝ and g ÞÑ ǧ which are required in the

subsequent discussion.

Proposition 3.1.9. Let g be a bounded function defined on a closed convex set D.

Then,

paq ĝ is concave usc function and ǧ is convex lsc function.

pbq For each x P D, ǧpxq ď gpxq ď ĝpxq and ĝ, ǧ are bounded on D.

pcq The map g Ñ ĝ is increasing and sublinear while g Ñ ǧ is increasing and

superlinear.

pdq g “ ĝ on D if and only if g is concave and usc function, while g “ ǧ on D if and

only if g is convex and lsc function.

peq If g P ARpDq and f is a real valued bounded function on D, then

piq zf ` g “ f̂ ` g.

piiq ~f ` g “ f̌ ` g.

pfq ĝpxq “ inftapxq : a P ARpDq, a ě gu and ǧpxq “ suptapxq : a P ARpDq, a ď gu.

pgq If g P CRpDq, then ĝpxq “ suptµpfq : µ P PpDq, rpµq “ xu, for all x P D.

phq If x P D then for any two f, g P CRpDq |f̂pxq ´ ĝpxq| ď }f ´ g}8.

Proof. paq. Let x, y P D and λ P p0, 1q. Let f P ´S such that f ě g and let h P S such

that h ď g. Then, by definition of ´S, S, ĝ and ǧ,

fpλx` p1´ λqyq ě λfpxq ` p1´ λqfpyq ě λĝpxq ` p1´ λqĝpyq
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and

hpλx` p1´ λqyq ď λhpxq ` p1´ λqhpyq ď λǧpxq ` p1´ λqǧpyq.

Therefore, by definition of ĝ and ǧ,

ĝpλx` p1´ λqyq ě λĝpxq ` p1´ λqĝpyq

and

ǧpλx` p1´ λqyq ď λǧpxq ` p1´ λqǧpyq.

Thus, ĝ is concave and ǧ is convex. Now, we prove that ĝ is usc function. Let α P R.

Let x0 P tx P X : ĝpxq ă αu. Then, ĝpx0q ă α. This implies there exists f P ´S such

that f ě g and fpx0q ă α. Since f is continuous, there exists an open set U containing

x0 such that fpxq ă α, for each x P U . Thus, x0 P U Ă tx P X : ĝpxq ă αu. This implies

tx P X : ĝpxq ă αu is an open set in X, for each α P R. Therefore, ĝ is usc function.

Next, we prove ǧ is lsc function. Let α P R. Let x0 P tx P X : ǧpxq ą αu. Then,

ǧpx0q ą α. This implies there exists f P S such that f ď g and fpx0q ą α. Since f is

continuous, there exists an open set U containing x0 such that fpxq ą α, for each x P U .

Thus, x0 P U Ă tx P X : ǧpxq ą αu. This implies tx P X : ǧpxq ą αu is an open set in X.

Thus, for each α P R, tx P X : ǧpxq ď αu is a closed set in X.

pbq. Let x P D. Let f P ´S such that f ě g and h P S such that h ď g. Then, by

definition of ĝ and ǧ,

ĝpxq ě gpxq and ǧpxq ď gpxq.

Hence, for each x P D, ǧpxq ď gpxq ď ĝpxq.

Since g is bounded on D and ǧ ď g on D, ǧ is bounded on D. Now, since g is bounded,

}g}8 is finite. Consider the concave function, fpxq “ }g}8, for each x P D. Then, g ď f

on D. Thus, by definition of ĝ, for each x P D, ĝpxq ď fpxq i.e. ĝpxq ď }g}8. Hence, ĝ is

bounded on D.

pcq. Let g1 and g2 be any two bounded function on D such that g1 ď g2. Then,

tfpxq : f P ´S, f ě g2u Ă tfpxq : f P ´S, f ě g1u

and

thpxq : h P S, h ď g1u Ă thpxq : h P S, h ď g2u.

This implies,

inftfpxq : f P ´S, f ě g1u ď inftfpxq : f P ´S, f ě g2u
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and

supthpxq : h P S, h ď g1u Ă supthpxq : h P S, h ď g2u.

Hence, ĝ1 ď ĝ2 and ǧ1 ď ǧ2 on D. Hence, the maps g Ñ ĝ and g Ñ ǧ are increasing.

We now prove that the map g Ñ ĝ is sublinear. Let α ą 0 and x P D. Then,

αĝpxq “ α inftfpxq : f P ´S, f ě gu

“ inftpαfqpxq : αf P ´S, αf ě αgu ....since α ą 0

ě xαgpxq.

(3.3)

and

xαgpxq “ inftfpxq : f P ´S, f ě αgu

“ inftfpxq : f P ´S,
1

α
f ě gu ....since α ą 0

“ α inf

"ˆ

1

α
f

˙

pxq :
1

α
f P ´S,

1

α
f ě g

*

ě αĝpxq.

(3.4)

Therefore, for any α ą 0, xαg “ αĝ. Consider two bounded functions on D say g1 and g2.

Let x P D. Let ε ą 0. Then, there exists h1, h2 P ´S with h1 ě g1 and h2 ě g2 such that

h1pxq ă ĝ1pxq `
ε

2
and h2pxq ă ĝ2pxq `

ε

2
.

Then,

ph1 ` h2qpxq ă ĝ1pxq ` ĝ2pxq ` ε

where h1 ` h2 P ´S and h1 ` h2 ě g1 ` g2. As a result,

{g1 ` g2pxq ă ĝ1pxq ` ĝ2pxq ` ε, for any ε ą 0.

Thus, {g1 ` g2pxq ď ĝ1pxq ` ĝ2pxq, for each x P D. Hence, the map g Ñ ĝ is sublinear.

Next we prove the map g Ñ ǧ is superlinear. Let α ą 0 and x P D. Then,

αǧpxq “ α suptfpxq : f P S, f ď gu

“ suptpαfqpxq : αf P S, αf ď αgu ....since α ą 0

ď |αgpxq.

(3.5)
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and

|αgpxq “ suptfpxq : f P S, f ď αgu

“ suptfpxq : f P S,
1

α
f ď gu ....since α ą 0

“ α sup

"ˆ

1

α
f

˙

pxq :
1

α
f P S,

1

α
f ď g

*

ď αǧpxq.

(3.6)

Therefore, for any α ą 0, |αg “ αǧ. Consider two bounded functions on D say g1 and g2.

Let x P D. Let ε ą 0. Then, there exists h1, h2 P S with h1 ď g1 and h2 ď g2 such that

h1pxq ą ǧ1pxq ´
ε

2
and h2pxq ą ǧ2pxq ´

ε

2
.

Then,

ph1 ` h2qpxq ą ǧ1pxq ` ǧ2pxq ´ ε

where h1 ` h2 P S and h1 ` h2 ď g1 ` g2. As a result,

g1 ` g2pxq ą ǧ1pxq ` ǧ2pxq ´ ε, for any ε ą 0.

Thus, g1 ` g2pxq ě ǧ1pxq ` ǧ2pxq, for each x P D. Hence, the map g Ñ ǧ is superlinear.

pdq. If g “ ĝ on D, then clearly from paq, g is concave and usc function. Assume g is

concave and usc function. Then, g P ´S. Thus, ĝ ď g on D and clearly, by definition of

ĝ, ĝ ě g on D. Therefore, g “ ĝ on D.

If g “ ǧ on D, then clearly from paq, g is convex and lsc function. Assume g is convex

and lsc function. Then, g P S. Thus, ǧ ě g on D and clearly, by definition of ǧ, ǧ ď g on

D. Therefore, g “ ǧ on D.

peq.

piq From pcq and pdq, zf ` g ď f̂ ` ĝ “ f̂ ` g.

Now to prove f̂ ď zf ` g ´ g. Let x P D. From pbq, pf ` gqpxq ď {pf ` gqpxq.

Thus, for each x P D, fpxq ď {pf ` gqpxq ´ gpxq. Also, {pf ` gq ´ g P ´S. Thus, by

definition of f̂ , f̂ ď {pf ` gq ´ g on D.

piiq From pcq and pdq, ~f ` g ě f̌ ` ǧ “ f̌ ` g.

Now to prove f̌ ě pf ` gq´ g. Let x P D. From pbq, pf ` gqpxq ě pf ` gqpxq. Thus,

for each x P D, fpxq ě pf ` gqpxq´gpxq. Also, pf ` gq´g P S. Thus, by definition

of f̌ , f̌ ě pf ` gq ´ g on D.
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pfq. Let x0 P D. Clearly,

inftgpx0q : g P ´S, f ě fu ď inftapx0q : a P ARpDq, a ě fu.

Suppose

inftgpx0q : g P ´S, g ě fu ă inftapx0q : a P ARpDq, a ě fu.

Let m “ inftapx0q : a P ARpDq, a ě fu. If we can prove that there exists h P ARpDq such

that h ě f and hpx0q ă m, then it would be a contradiction. Now, there exists g P ´S

such that g ě f and gpx0q ă m. Consider, A “ tpx, tq P D ˆ R : t ď gpxqu which is,

clearly, a convex set and px0,mq R A. Therefore, by Hahn Banach separation theorem,

there exists pΦ, rq P pX ˆ Rq˚ and λ P R such that

pΦ, rqpx0,mq ą λ ą sup
px,tqPA

pΦ, rqpx, tq.

Hence, we get the following inequalities, for each x P D:

m ą
λ´ Φpx0q

r
and

λ´ Φpxq

r
ą t.

Also, we get, rm ą rt which implies rpm ´ tq ą 0 and hence r ą 0. Note that λ´Φ
r
P

ARpDq which satisfies our desired properties. This completes the proof. On similar lines,

we can show f̌pxq “ suptapxq : a P ARpDq, a ď fu.

pgq. Let f 1pxq “ suptµpfq : µ P PpDq, rpµq “ xu, for all x P D. Since rpδxq “ x, observe

that f 1pxq ě fpxq, for all x P D. Now, let x, y P D and ε ą 0. Then there exist measures

µ, ν on D with rpµq “ x and rpνq “ y such that,

1

2
f 1pxq `

1

2
f 1pyq ´ ε “

1

2
pf 1pxq ´ εq `

1

2
pf 1pyq ´ εq

ă
1

2
pµpfq ` νpfqq

“
µ` ν

2
pfq ď f 1p

x` y

2
q, as r

´µ` ν

2

¯

“
x` y

2
.

This implies f 1 is a concave function on D. Now, we show that f 1 is usc. Let xα Ñ x0.

Let t ď f 1pxαq, for infinitely many α. Then it remains to prove that f 1px0q ě t. Let ε ą 0.

Then for every infinitely many α, there exists µα with rpµαq “ xα such that µαpfq ą t´ε.

Now, pµαq has a convergent subsequence in PpDq say pµαiq where µαi
w˚
ÝÝÑ µ0. Without

loss of generality, assume that xαi Ñ x0 in D. For any a P ARpDq, µαipaq “ apxαiq and

apxαiq Ñ apx0q. This implies µ0paq “ apx0q, for all a P ARpDq. Hence x0 “ rpµ0q. Now,

µ0pfq “ limi µαipfq ě t ´ ε. Therefore, f 1px0q ě t ´ ε, for every ε ą 0, which implies

f 1px0q ě t. So, we get that f 1 is concave and usc on D and hence by Lemma 4.1.5,

f 1pxq “ inftapxq : a ě f 1, a P ARpDqu. Now, ta P ARpDq : a ě f 1u Ď ta P ARpDq : a ě fu,
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which implies f 1pxq ě f̂pxq. On the other hand, if x P D, h P ARpDq and h ě f , then

for any measure µ on D with rpµq “ x, we have hpxq “ µphq ě µpfq. This implies

hpxq ě f 1pxq and hence (from pfq) f̂pxq ě f 1pxq. This completes the proof.

phq. It is clear that tµ P PpDq : rpµq “ xu is a w˚-closed subset of PpDq, hence w˚-

compact. Hence there exists µ0 P PpDq with rpµ0q “ x such that µ0pfq “ f̂pxq. Now

µ0pgq ď ĝpxq. Hence f̂pxq ´ ĝpxq ď µ0pfq ´ µ0pgq ď }f ´ g}8. Similarly, ĝpxq ´ f̂pxq ď

}f ´ g}8. This completes the proof.

We can now prove Choquet’s theorem for metrizable compact convex sets. Let us consider

the below example for motivation:

Consider K to be a compact, T2 subset of a lctvs X. Then, pMpKq, w˚q is a lctvs and

pD “ PpKq, w˚q is compact convex subset of MpKq. Let µ P PpKq. Now, clearly,

K ãÑ tδt : t P Ku “ extpPpKqq. Define the same topology on extpPpKqq as on K.

Hence, extpPpKqq is now topologized. Let B be any Borel subset of extpKq. Define

µ̃pBq “ µptt P K : δt P Buq and µ̃ ” 0 on PpKqzextpKq. Thus, µ̃ is a measure on

PpKq which we have defined using µ. Now, we claim µ “ rpµ̃q. Let g P MpKq˚.

Then, by Riesz representation theorem and definition of w˚ topology, g has to be an

evaluational functional on MpKq i.e. there exists f0 P CRpKq such that for any ν PMpKq,

gpνq “ νpf0q. Therefore, in particular,

gpµq “ µpf0q “

ż

K

f0dµ “

ż

PpKq

µpf0qdµ̃

Therefore,

gpµq “

ż

PpKq

gdµ̃.

This implies that µ “ rpµ̃q.

Before going to the main result of this chapter let us recall the following well known fact.

For the sake of completeness we include the proof here.

Proposition 3.1.10. Let K be a metrizable compact Hausdorff space and CRpKq, the

space of all real valued continuous functions on K. Then, CRpKq is separable.

Proof. Let d be the metric on K. Since K is metrizable, K is separable. Let txn : n P Nu
be a dense subset of K. Let m,n P N. Define fmn : K Ñ R as

fmnpxq “

#

1
m
´ dpx, xnq if 1

m
ě dpx, xnq

0 if otherwise
(3.7)
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It is clear that for all m,n P N, fmn P CRpKq and it vanishes outside the open ball

Bpxn,
1
m
q. Consider the countable set A Ă CRpKq to be collection of all fmn, for every

m,n P N and the constant function 1. Let x, y P K such that x ‰ y, let m P N be

sufficiently large such that dpx, yq ą 1
m

. Since txn : n P Nu is dense in K, there exists n P

N such that xn P Bpx,
1

2m
q. Hence, fmnpxq ‰ 0 but fmnpyq “ 0. Therefore, A separates

points on K. We now show that A forms a separable subalgebra of CRpKq, hence by

Stone-Weierstrass Theorem it follows that, A is dense in CRpKq. Therefore, CRpKq is

separable. Now consider the algebra generated by A , t
ś

i fmini : i runs over a finite setu.

First observe that for two points xn1 and xn2 , the possible values of m1 and m2 for which

fm1n1 .fm2n2 is non zero should satisfy dpxn1 , xn2q ă
1
m1
` 1

m2
. Now cardinality of the set

of pair of natural numbers, taken two at a time, is countable and set of all finite product

of any such pair is again countable: any function of type
ś

i fmini is associated to a

finite subset of the set of pair of natural numbers, viz. tpmi, niqu. This leads to that A

generates a separable subalgebra over CRpKq and this completes the proof.

The converse of Proposition 3.1.10 is also true and it follows from Proposition B.1.4.

3.2 Main results: Choquet-Bishop-De Leeuw exis-

tence Theorem

We now come to the main Theorem of this chapter.

Theorem 3.2.1. Let D be a metrizable compact convex subset of an lctvs X and x0 P D.

Then, there exists µ P PpDq which is supported on extpDq such that x0 “ rpµq.

Proof. The metrizability of D implies CRpDq, the space of all real valued continuous

functions on D, is separable in the sup norm topology, by earlier remark. We know

ARpDq is uniformly closed in CRpDq and also separable.

Hence SARpDq “ tf P ARpDq : }f}8 “ 1u is separable. Let thnu
8
n“1 be a dense subset of

SARpDq. Define, for each x P D,

hpxq “
8
ÿ

n“1

h2
npxq

2n
.

It is easily seen that h P CRpDq. We now claim that h is strictly convex on D. Let

x, y P D such that x ‰ y. Then, there exists hm such that hmpxq ‰ hmpyq. Let λ P p0, 1q.
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Consider,

hpλx` p1´ λqyq “
8
ÿ

n“1

h2
npλx` p1´ λqyq

2n

“
h2
mpλx` p1´ λqyq

2m
`

ÿ

n‰m

h2
npλx` p1´ λqyq

2n

ă
pλhmpxq ` p1´ λqhmpyqq

2

2m
`

ÿ

n‰m

pλhnpxq ` p1´ λqhnpyqq
2

2n

“

8
ÿ

n“1

pλhnpxq ` p1´ λqhnpyqq
2

2n
.

(3.8)

The strictly inequality in the third step is due to the fact that the map t Ñ t2 is

strictly convex on R. Thus, we showed that h is strictly convex on D. Now, define

Y “ spantARpDq Y thuu “ tg ` αh : g P ARpDq, α P Ru. Define p : CRpDq Ñ R as

ppgq “ ĝpx0q. As a result of property pcq of ĝ function, p is sublinear on CRpDq. Define

Φ : Y Ñ R as Φpg ` αhq “ gpx0q ` αĥpx0q. Clearly, Φ is linear on Y . If α ą 0, then by

properties pcq and peq we get,

Φpg ` αhq “ gpx0q ` αĥpx0q “ gpx0q `
xαhpx0q “

{pg ` αhqpx0q “ ppg ` αhq.

If α “ 0, then by property pbq,

Φpgq “ gpx0q ď ĝpx0q “ ppgq.

Now, assume α ă 0. Then, by property pbq, αĥpx0q ď αhpx0q. Since h is strictly convex

and continuous on D, αh is strictly concave and also continuous on D. Thus, by property

pdq, xαhpx0q “ αhpx0q. Using all these facts and property peq, we get,

Φpg ` αhq “ gpx0q ` αĥpx0q ď gpx0q ` αhpx0q “ gpx0q `
xαhpx0q “

{g ` αhpx0q.

Hence, Φpg ` αhq “ ppg ` αhq. This shows that Φ ď p on D. Therefore, by Hahn

Banach extension theorem, we can extend Φ to the whole space CRpDq such that for each

f P CRpDq, Φpfq ď ppfq. Now, for any f P CRpDq such that }f}8 ď 1,

|Φpfq| ď |ppfq| “ |f̂px0q| ď }f}8.

This implies }Φ} ď 1. Since Φp1q “ 1, }Φ} “ 1
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By, Riesz Representation theorem, there exists a regular Borel measure on D such that

for each f P CRpDq, Φpfq “
ş

D
fdm. Since }Φ} “ 1, }m} “ 1. Now,

Φp1q “

ż

D

1dm “ mpDq “ }m} “ 1.

This implies
ż

D

1dm “ 1.

Thus, m P PpDq. Let f P ARpDq. Then,

fpx0q “ Φpfq “

ż

D

fdm.

This implies x0 “ rpmq.

We now prove that the measure m is supported on extpDq. Now, by definition of Φ and

Riesz Representation theorem, we get

Φphq “ ĥpx0q “ mphq “

ż

D

hdm.

Since h ď ĥ, this implies
ż

D

hdm ď

ż

D

ĥdm.

This implies mphq ď mpĥq. If a P ARpDq such that a ě h, then a ě ĥ, by property pfq.

Therefore,

apx0q “

ż

D

adm ě

ż

D

ĥdm.

This implies ĥpx0q ě
ş

D
ĥdm. Hence,

ş

D
hdm ě

ş

D
ĥdm, which implies mphq ě mpĥq.

Thus, mphq “ mpĥq. Hence, we get that
ş

D
hdm “

ş

D
ĥdm, which implies

ş

D
pĥ´hqdm “

0. Therefore, ĥ ´ h ” 0 a.e.rms. This implies mptx P D : hpxq ‰ ĥpxquq “ 0. Thus,

mpDq “ mptx P D : hpxq “ ĥpxquq. We now claim that tx P D : hpxq “ ĥpxqu Ă extpDq.

Let x P D such that hpxq “ ĥpxq. Suppose x “ x1`x2
2

such that x1 ‰ x2. Consider,

hpxq “ h
´x1 ` x2

2

¯

ă
hpx1q ` hpx2q

2

ď
ĥpx1q ` ĥpx2q

2

ď ĥ
´x1 ` x2

2

¯

“ ĥpxq.

(3.9)

The first inequality is due to the fact that h is strictly convex on D. Hence, hpxq ă ĥpxq,
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which is a contradiction. This implies x P extpDq. Therefore, the measure m is supported

on extpDq. This completes the proof.

Let us recall if X is a separable normed linear space then the dual ball is a metrizable

compact convex subset of pX˚, w˚q(see Appendix B), hence Theorem 3.2.1 is applicable

for such spaces. Now, by Choquet’s theorem for metrizable compact convex sets, for

every x˚ P BX˚ , there exists µ P PpBX˚q supported on extpBX˚q such that x˚ “ rpµq.

We now prove the converse of Proposition 3.1.10. If CpKq is separable, for some compact,

Hausdorff space K, then K is metrizable: Let X “ CpKq, from the above Example it

follows that pBX˚ , w
˚q is metrizable. Now BX˚ “ BMpKq and hence extpBX˚q “ t˘δt : t P

Ku. Now as ptδt : t P Ku, w˚q – K (homeomorphism), the topology on K is metrizable.

We end this Chapter by giving an example of a compact, Hausdorff and also compact,

convex subset of a lctvs E which are not metrizable. These examples are relevant in the

context of the discussion in the next Chapter.

Let βN be the Stone-Čech compactification of the natural numbers. It is well known that

CpβNq – `8 (isometrically isomorphic). Non separability of CpβNq ensures that βN is

non metrizable. From our earlier arguments it is clear that PpβNq and hence BMpβNq are

some examples of compact convex subsets which are non metrizable.



Chapter 4

Choquet’s theorem for non

metrizable compact convex sets

We begin this Chapter with Stone’s generalization of Stone-Weierstrass Theorem. The

main Theorem in [12] is proved in a more general setup, we only mention the following

result which is relevant to our investigation.

Lemma 4.0.1 (Stone, [12]). Let K be a compact Hausdorff space and U be a sublattice

of CRpKq such that, for any f P CRpKq, for any two points x, y P K and for any positive

number ε, there exists a function fxy P U such that |fpxq´fxypxq| ă ε, |fpyq´fxypyq| ă ε.

Then f P U .

Proof. It remains to prove that there exists h P U such that }f ´ h}8 ă ε.

Fix x P K and define Gy “ tz : |fpzq ´ fxypzq| ă εu. By hypothesis x, y P Gy and hence
Ť

yPK Gy “ K. The compactness of K ensures the existence of points y1, . . . , yn such that
Ťn
i“1Gyi “ K. Define gx “ maxtfxy1 , . . . , fxynu. Choose any z P K and get Gyi such that

z P Gyi , then gxpzq ě fxyipzq ą fpzq ´ ε.

On the other hand fxypxq ă fpxq` ε for all y implies gxpxq ă fpxq` ε. We now continue

a similar argument for gx. Let Hx “ tz P K : gxpzq ă fpzq ` εu, then x P Hx and hence

there exist x1, x2, . . . , xn such that K “
Ťn
i“1Hxi . Let hpxq “ mintgx1 , . . . , gxnu.

Since for any z P K there exists Hxk such that z P Hxk , hence hpzq ď gxkpzq ă fpzq ` ε.

On the other hand, the fact that gxpzq ą fpzq ´ ε for all z and all x implies that

hpzq ą fpzq ´ ε for all z. Thus we have |hpzq ´ fpzq| ă ε, for all z P K. This completes

the proof.

35
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4.1 A new setup: Boundary measure

We begin this Section with the following important fact.

Proposition 4.1.1. For a compact convex set D of a lctvs E, SpDq´SpDq is uniformly

dense in CRpDq.

Proof. First observe that SpDq ´ SpDq forms a lattice in CRpDq. In other words for

any f, g P SpDq ´ SpDq, f _ g, f ^ g P SpDq ´ SpDq. In fact, for i “ 1, 2, fi, gi P

SpDq, pf1 ´ g1q _ pf2 ´ g2q “ pf1 ` g2q _ pf2 ` g1q ´ pg1 ` g2q and pf1 ´ g1q ^ pf2 ´ g2q “

1
2
rpf1`f2q´pg2`g1q´|pf1`g2q´pf2`g1q|s. The last identity follows from the fact that,

for any two reals a, b a^ b “ 1
2
pa` b´|a´ b|q. Clearly pf1`f2q´pg2`g1q P SpDq´SpDq

and both pf1`g2q´pf2`g1q, pf2`g1q´pf1`g2q P SpDq´SpDq. Now for any function h,

|hpxq| “ maxthpxq,´hpxqu, hence |pf1` g2q´ pf2` g1q| P SpDq´SpDq; being a subspace

pf1 ´ g1q ^ pf2 ´ g2q P SpDq ´ SpDq.

Also the subspace SpDq ´ SpDq satisfies the condition in Lemma 4.0.1, which is in fact

a direct consequence of ARpDq Ď SpDq. Hence SpDq ´ SpDq is uniformly dense in

CRpDq.

We now turn our attention to the non-metrizable version of Choquet’s theorem. Before

proceeding, we need to define few notions.

SpDq is a cone in CRpDq. So, define an ordering ă on M`pDq, the set of all non-negative

regular Borel measures on D, by µ ă ν if and only if µpfq ď νpfq, for all f P SpDq.

Clearly, ă is reflexive and transitive.

Now, we prove that ă is antisymmetric. Let µ, ν P M`pDq such that µ ă ν and ν ă µ.

This implies for all f, h P SpDq,

µpfq ď νpfq and νphq ď µphq

Thus, for all g P SpDq,

µp´gq ď νp´gq

Hence, for all f, g P SpDq,

µpf ´ gq ď νpf ´ gq

Similarly, we get for all h, p P SpDq,

νph´ pq ď µph´ pq
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Therefore, for all f P SpDq´SpDq, µpfq “ νpfq. By our earlier observation, SpDq´SpDq

is dense in CRpDq and hence, µ “ ν on CRpDq.

Proposition 4.1.2. paq Let µ, λ PM`pDq. If µ ă λ, then rpµq “ rpλq.

pbq If µ PM`pDq represents x P D, then δx ă µ.

Proof. paq. Let rpµq “ x and rpλq “ y. Suppose x ‰ y. Then there exists f P X˚ Ă SpDq

such that fpxq ą fpyq, without loss of generality( otherwise we will consider ´f). Now,

fpxq “ µpfq and fpyq “ λpfq. Thus, µpfq ą λpfq which is a contradiction since µ ă λ.

Therefore, rpµq “ rpλq.

pbq. Let f P SpDq. Then, ´f is concave. Hence, zp´fq “ ´f . Since x “ rpµq, we have,

p´fqpxq “ infthpxq : h P ApDq, h ě p´fqu

“ inftµphq : h P ApDq, h ě p´fqu

ě µp´fq

(4.1)

This implies, µpfq ě fpxq. Hence, µpfq ě δxpfq. This is true for any f P SpDq. Hence,

δx ă µ.

Remark 4.1.3. We can give an intuitive justification for the definition of µ ă λ as

follows:

Figure 4.1

If D is a polygon and x P D, first write x as the resultant of points on the two faces (as

shown in Figure 4.1) and then write these points as the resultants of the vertices of the

polygon. Finally, we obtain x as a resultant of the vertices txiju. Roughly speaking, we

made x more and more diffused such that the points of support approach the extreme

elements.
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Thus, µpfq ď λpfq, for f P SpDq, should mean that the mass of λ is more concentrated

in the neighbourhood of extreme points than that of µ. This leads to the hope that, in

this ordering, a measure is maximal that is completely diffused when it is concentrated

on the extreme points.

Lemma 4.1.4. If µ P M`pDq, then there exists a maximal measure λ P M`pDq such

that µ ă λ.

Proof. Let F “ tλ P M`pDq : µ ă λu. Then, F is a partially ordered set w.r.t. the

ordering ă. It is enough to show that F has a maximal element in F since if ν PM`pDq

such that λ ă ν, then µ ă ν and hence ν P F and this implies ν “ λ. Consider Z to be

a chain in F . We now regard Z as a net in the obvious way (denoted by the elements of

Z themselves) and clearly, using proposition 4.1.2 paq, Z Ă tλ PM`pDq : λp1q “ µp1qu.

Now, the set tλ P M`pDq : λp1q “ µp1qu “ µp1qPpDq is w˚-compact in CRpDq
˚. Thus,

there exists µ0 P M`pDq and a subnet tµαuα of Z which converges to µ0 in the w˚

topology. If λ1 P Z , then by definition of subnet, λ1 ă µα eventually and hence λ1 ă µ0,

which implies that µ0 is an upper bound for Z . Futhermore, since µ ă µ0, we have

µ0 P Z . By Zorn’s lemma, F contains a maximal element.

We now state here a technical result. Let Š or ŠpDq denote the collection of lsc convex

functions on D.

Lemma 4.1.5. Let D be a compact convex set of a lctvs X. Let f P ŠpDq. Then, for

every x P D, fpxq “ suptapxq : a P ARpDq, a ă fu.

Proof. Let f P ŠpDq. Consider M “ tpy, αq : y P D,α ě fpyqu Ă X ˆ R. Let tpyβ, αβqu

be a net in M converging to py, αq. Thus, yβ Ñ y and αβ Ñ α, which implies fpyβq Ñ α.

Since f is lsc function, fpyq ď lim infβ fpyβq ď lim infβ α “ α. This implies py, αq P M .

Hence, M is closed in X ˆR. Let py1, α1q, py2, α2q PM and λ P p0, 1q. Since D is convex,

λy1 ` p1´ λqy2 P D. Also,

λα1 ` p1´ λqα2 ě λfpy1q ` p1´ λqfpy2q ě fpλy1 ` p1´ λqy2q.

This implies λpy1, α1q ` p1´ λqpy2, α2q PM . Hence, M is convex.

Let x P D be fixed. Clearly, fpxq ě suptapxq : a P ARpDq, a ă fu. Let ε ă fpxq be

arbitrary. We shall show that there exists a P ARpDq such that a ă f and ε ă apxq.

Case 1: fpxq ă 8. By Hahn Banach separation theorem, there exists a closed hyper-

plane H in X ˆ R which strictly separates M from the point px, εq. Here H Ă X ˆ R
is graph of an affine function say a : X Ñ R (Note: H cannot be of the form H1 ˆ R,

where H1 is a hyperplane in X as H separates px, εq from px, fpxqq. The open half spaces
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associated with H are tpy, αq : α ą apyqu and tpy, αq : α ă apyqu. By assumptions, one

of these contains px, εq and other all of M . Since ε ă fpxq, we get ε ă apxq and a ă f .

Also, a is continuous on D, since a´1pt0uq is closed as a´1pt0uq ˆ t0u “ H X pX ˆ t0uq.

Case 2: fpxq “ 8. Let δ ą 0 be an arbitrary number such that ε ă δ ă 8 and define

N “ convppx, δq YMq. We now claim that px, εq R N . Define the sets A “ tpy, αq : y P

D,α ě δu and B “ tpy, αq : y P D, fpyq ď α ď δu.

Claim: convppx, δq YMq Ă AY convppx, δq YBq

Proof of the claim: Let
řn
i“1 δipyi, αiq`βpx, δq P convppx, δqYMq, where

řn
i“1 δi`

β “ 1. Since D is convex,
řn
i“1 δiyi ` βx P D. Suppose

řn
i“1 δipyi, αiq ` βpx, δq R

convppx, δq Y Bq. This implies that pyi, αiq R B and hence fpyiq ą αi or δ ă αi, for

every i “ 1, 2, .... Since pyi, αiq P M , we have δ ă αi, for every i “ 1, 2, ... Thus,
řn
i“1 δiαi ` βδ ą

řn
i“1 δiδ ` βδ “ δ. This implies

řn
i“1 δipyi, αiq ` βpx, δq P A. This

completes the proof.

Therefore, N Ă AY convppx, δq YBq “ AY convppx, δq YBq, since B is closed subset of

D ˆ rm, δs, where m “ inftfpyq : y P Du which implies it is compact and also, convex

hull of finite union of compact sets is compact. Clearly, px, εq R AY convppx, δq YBq and

so px, εq R N . Now, we apply the same argument as in Case 1 to N .

Remark 4.1.6. In order to prove the next lemma, we need Dini’s lemma for a net of

functions which states as follows:

Let D be a compact subset of a lctvs X. Let tfαu be an increasing net of real valued

continuous functions where for each α, fα is continuous on D. Assume that tfαu converges

pointwise to a continuous function f : D Ñ R. Then, tfαu converges to f uniformly on

D.

Lemma 4.1.7. ŠpDq consists of all pointwise limits of increasing nets of functions of the

form a1 _ a2 _ ... _ an, where for all i “ 1, 2, ..., n, ai P ARpDq. Similarly, SpDq consists

of all uniform limits of increasing nets of above such functions.

Proof. Let x P D be arbitrary. By previous lemma,

fpxq “ suptapxq : a P ARpDq, a ă fu.

This implies there exists a sequence tanu, where an P ARpDq and an ă f such that

fpxq “ supntanpxqu. Define gn “ a1 _ ..._ an then gn ď gn`1. Hence,

fpxq “ suptanpxq : an P ARpDq, an ă fu “ lim
nÑ8

gnpxq.
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Since x P D is arbitrary, f is pointwise limit of tgnu.

Let f P SpDq. Now, SpDq Ă ŠpDq and hence f is pointwise limit of increasing nets of

functions of the form a1 _ a2 _ ..._ an, where for all i “ 1, 2, ..., n, ai P ApDq. By Dini’s

lemma, we get that f is uniform limit of above such functions.

Remark 4.1.8. Let a1, a2 P ApDq, λ P p0, 1q and x, y P D. Consider,

pa1 _ a2qpλx` p1´ λqyq “ maxta1pλx` p1´ λqyq, a2pλx` p1´ λqyqu

ď maxtλa1pxq ` p1´ λqa2pyq, λa2pxq ` p1´ λqa2pyqu

ď λmaxta1pxq, a2pxqu ` p1´ λqmaxta1pyq, a2pyqu

“ λpa1 _ a2qpxq ` p1´ λqpa1 _ a2qpyq.

(4.2)

Thus, a1 _ a2 P SpDq. Therefore, by induction, we can conclude that, for any n P N,

a1 _ ..._ an P SpDq, where for all i “ 1, 2, ..., n, ai P ApDq.

Proposition 4.1.9. Let µ, ν PM`pDq. Then, the following are equivalent:

paq µ ă ν.

pbq For any f P CRpDq, µpf̌q ď νpfq.

pcq For any f P CRpDq, νpfq ď µpf̂q.

Proof. First we prove (i) implies (ii). Assume µ ă ν. We know that f̌ P ŠpDq. Hence,

by above Lemma 4.1.7, there exists an increasing sequence say pgnq such that gn Ñ f̌ ,

where each gn “ a1 _ ..._ an, for some ai P ApDq, for all i “ 1, 2, ..., n. Now, by Remark

4.1.8, for each n P N, gn P SpDq. Since µ ă ν, µpgnq ď νpgnq. Also,

µpf̌q “ lim
nÑ8

µpgnq and νpf̌q “ lim
nÑ8

νpgnq.

Hence, µpf̌q ď νpf̌q. Now, since νpf̌q ď νpfq, we get µpf̌q ď νpfq.

We prove (ii) implies (i). Assume for each f P CRpDq, µpf̌q ď νpfq. Let f P SpDq. Then,

f “ f̌ . This implies µpfq “ µpf̌q ď νpfq and hence, for every f P SpDq, µpfq ď νpfq.

Therefore, µ ă ν.

We now prove (ii) implies (iii). Assume for each f P CRpDq, µpf̌q ď νpfq. Hence,

µp|´fq ď νp´fq. For each x P D, consider,

|´fpxq “ suptgpxq : g ď ´f, g P SpDqu

“ suptgpxq : ´g ě f,´g P SpDqu

“ ´ inft´gpxq : ´g ě f,´g P SpDqu

“ ´f̂pxq.

(4.3)
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This implies µp|´fq “ µp´f̂q “ ´µpf̂q. Hence, ´µpf̂q ď νp´fq, which implies µpf̂q ě

νpfq. Thus, for each f P CRpDq, νpfq ď µpf̂q.

Finally, we prove (iii) implies (ii). Assume for each f P CRpDq, νpfq ď µpf̂q. Hence,

νp´fq ď µpx´fq. For each x P D, consider,

x´fpxq “ inftgpxq : g ě ´f, g P SpDqu

“ inftgpxq : ´g ď f,´g P ´SpDqu

“ ´ supt´gpxq : ´g ď f,´g P SpDqu

“ ´ qfpxq.

(4.4)

This implies µpx´fq “ µp´f̌q “ ´µpf̌q. Hence, ´µpf̌q ě νp´fq, which implies µpf̌q ď

νpfq. Thus, for each f P CRpDq, µpf̌q ď νpfq.

We will now prove one of the main tools used in this theory.

Proposition 4.1.10. Let f P CRpDq and µ P PpDq. Then, there exists ν P PpDq such

that µ ă ν and νpfq “ µpf̂q.

Proof. Let µ P PpDq. Define for every g P CRpDq, Φpgq “ µpĝq. Then, for any g, h P

CRpDq,

Φpg ` hq “ µpzg ` hq ď µpĝ ` ĥq “ µpĝq ` µpĥq “ Φpgq ` Φphq.

Note that the second inequality is due to the fact that the map g ÞÑ ĝ is sublinear. This

implies Φ is sublinear functional on CRpDq. Let f P CRpDq. Consider the subspace

Y “ tαf : α P Ru Ă CRpDq. Define the map ν0 on Y as ν0pαfq “ αµpf̂q, for all α P R.

Clearly, ν0 is linear.

Let α ě 0. Then, ν0pαfq “ αµpf̂q “ µpxαfq “ Φpαfq. Let α ă 0. Then, write α “ ´β,

for some β ą 0. Now,

0 “ µp0q “ µp {βf ´ βfq ď µpxβfq ` µpz´βfq.

That is, ´µpxβfq ď µpz´βfq. Hence,

ν0pαfq “ ´βµpf̂q “ ´µpxβfq ď µpz´βfq “ µpxαfq “ Φpαfq.

Therefore, by Hahn Banach theorem, there exists a linear functional ν on CRpDq which

extends ν0 with ν ď Φ. Hence, νpfq “ µpf̂q and for each g P CRpDq, νpgq ď Φpgq “ µpĝq.

Hence, by proposition 4.1.9, µ ă ν.
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Now, it remains to show that ν P PpDq. We have, νp1q ď Φp1q “ µp1̂q “ µp1q “ 1 and

since µ ă ν, 1 “ µp1q ď νp1q. This implies νp1q “ 1. Hence, ν P PpDq. This completes

the proof.

Our ground work for the Choquet Theorem for non metrizable case is complete. Before

going to the main result we prove a very useful characterization of extreme points. We

need the following Proposition in this context.

Proposition 4.1.11. Let K be a compact Hausdorff space such that CRpKq is separable.

Let f be an upper semi continuous function on K, then there exists a sequence pgnq Ď

CRpKq such that gn ě gn`1 and limn gnptq “ fptq, for all t.

Proof. Case 1: When f ą 0.

Fix x0 P K aribitrarily and let α ą fpx0q. Let U “ tt P K : fptq ă αu, then U Ď K is

open and x0 P U . By Urysohn’s lemma there exists g P CRpKq such that gpU cq “ t0u

and gpx0q “ α. Thus fpx0q “ infthpx0q : h P CRpKq, h ą fu.

Consider the subset C in CRpKq consisting of all positive functions h where h ą f , as

CRpKq is separable, C is also separable. Let ppnq
8
n“1 Ď C be a dense subset of C. Then,

fpx0q “ infthpx0q : h P CRpKq, h ą fu

“ inf
n
tpnpx0qu.

Define gn “ min1ďiďn pi, then pgnq Ď CRpKq, gn ě gn`1 and finally, fpx0q “ infn pnpx0q “

limn gnpx0q. Since x0 P K is arbitrary we are through.

Case 2: When f ‰ 0.

Then f “ f` ´ f´, where f` “ maxtf, 0u and f´ “ maxt´f, 0u.

For any real scalar r with f`px0q ă r, it is clear fpx0q ă r and hence there exists an open

V containing x0 such that V Ď tt P K : fptq ă ru Ď tt P K : f`ptq ă ru. On the other

hand if f´px0q ą r then ´fpx0q ą r, which is a lower semi continuous, hence there exists

an open W containing x0 such that W Ď tt P K : ´fptq ą ru Ď tt P K : f´ptq ą ru.

Hence there exist sequences pgnq, phnq Ď CRpKq such that gn Ó f
` and hn Ò f

´. Finally,

gn ´ hn Ó f , this completes the proof.

Theorem 4.1.12. Let x be a point in compact convex set D. Then, the following

statements are equivalent.

paq x P extpDq.
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pbq fpxq “ f̂pxq, for each f P CRpDq.

pcq fpxq “ f̂pxq, for each usc real function f : D Ñ r´8,8q.

One may replace f̂ by f̌ in pbq and in pcq usc by lsc.

Proof. We prove paq ñ pbq. Let x P extpDq. Then, δx is the unique probability measure

which represents x. Let f P CRpDq. By proposition 4.1.10, there exists ν P PpDq such

that δx ă ν and νpfq “ δxpf̂q. This implies δx “ ν and hence, δxpfq “ δxpf̂q. Therefore,

fpxq “ f̂pxq.

Now, we prove pbq ñ paq. Assume for each f P CRpDq, fpxq “ f̂pxq. We know, x “ rpδxq.

Let δx ă µ. Hence, by proposition 4.1.9, for each f P CRpDq,

µpfq ď δxpf̂q “ f̂pxq “ fpxq “ δxpfq.

This implies for all f P SpDq, µpfq ď δxpfq. Hence, µ ă δx. Therefore, µ “ δx. Thus, δx

is the unique probability measure which represents x. This implies x P extpDq.

Clearly, pcq ñ pbq since CRpDq is contained in the set of all usc real valued functions on

D. It remains to prove pbq ñ pcq. Assume for each f P CRpDq, fpxq “ f̂pxq. Let f be

a bounded usc real function on D. Then, by Proposition 4.1.11 there exists a decreasing

net fα Ă CRpDq such that fpxq “ infα fαpxq “ infα f̂αpxq, using pbq. Also, infα f̂α is an

usc and concave function. Hence f is usc and concave. Therefore, by property 3.1.9 pdq,

f “ f̂ . This completes the proof.

We next prove an important characterisation of maximal measures.

Theorem 4.1.13 (Mokobodzki Theorem). Let µ P M`pDq. Then, the following state-

ments are equivalent.

paq µ is maximal in M`pDq w.r.t. ordering ă defined as above.

pbq µpf̂q “ µpfq, for each f P CRpDq.

pcq µpf̂q “ µpfq, for each f P SpDq.

One may replace f̂ by f̌ in pbq and in pcq SpDq by ´SpDq.

Proof. We prove paq implies pbq. Let f P CRpDq. Then, by proposition 4.1.10 exists

ν P PpDq such that µ ă ν and νpfq “ µpf̂q. Since µ is maximal measure, ν “ µ and so

µpfq “ µpf̂q. Now, pbq implies pcq is obvious. We prove pcq implies paq. Let ν P M`pDq

such that µ ă ν.Let f P SpDq, then f “ f̌ . By proposition 4.1.9, it follows,

µpfq “ µpf̌q ď νpfq ď µpf̂q “ µpfq.
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This implies µ “ ν on SpDq. Since SpDq ´ SpDq is uniformly dense in CRpDq we have

µ “ ν on CRpDq.

Definition 4.1.14. A measure µ on a compact convex set D is said to be a boundary

measure if |µ|, the total variation measure associated with µ, satisfies one of the three

equivalent conditions of Mokobodzki Theorem 4.1.13

For each f P CRpDq, we define the following set,

Bf “ tx P D : fpxq “ f̂pxqu.

Clearly,

Bf “

8
č

n“1

"

x P D : f̂pxq ´ fpxq ă
1

n

*

and it follows that Bf is a Gδ set.

Note that from the characterisation of extreme points given in proposition 4.1.11, it

follows that,

extpDq “
č

fPCRpDq

Bf .

It is clear from statement pbq of Mokobodzki’s theorem that µ is a boundary measure if

and only if |µ|pDzBf q “ 0, for all f P CRpDq. Since on a metrizable compact convex set D,

there exists a strictly convex continuous function f and hence extpDq “ Bf and thus µ is

a boundary measure on a metrizable compact convex set if and only if |µ|pDzextpDqq “ 0.

We need one more result before establishing Choquet’s theorem for non-metrizable com-

pact convex sets.

Lemma 4.1.15. Let D be a compact convex subset of a lctvs X. Let f “ lim supn fn

where tfnu is a bounded above sequence from ŠpDq. If fpxq ď α on extpDq, then fpxq ď α

on D.

Proof. Let x P D be arbitrary. By Lemma 4.1.5, there exists a sequence tanu from ARpXq

such that an ď fn and fnpxq ă anpxq `
1
n
, for n “ 1, 2, ... Define Φ : X Ñ R8 “

ś8

n“1 R
as y ÞÑ tanpyqu. Φ is continuous on X, since for any open set U of R8, Φ´1pUq is

intersection of inverse images of open sets of R under some finite numer of an. Also,

Φ is affine function on E as for each n “ 1.2..., an is affine on E since ARpDq is set

of all real valued continuous affine functions on E which are restricted to D. Φ maps

D onto a metrizable compact convex set say D1. Since Φ is continuous affine function

and D is compact, ΦpDq is compact and convex. Now, since for each n “ 1, 2, ..., an is

real valued continuous affine function, anpDq is a closed interval say ran, bns. Therefore,

D1 “
ś8

n“1ran, bns Ă `8. Hence, D1 is metrizable.
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For every n “ 1, 2, ..., denote the nth canonical projection in R8 as pn. Then, pn is

continuous linear functional on R8 and pn ˝ Φ “ an, for n “ 1, 2, ....

We now claim that

lim sup
n
pnpy

1
q ď α

for all y1 P extpD1q. We first prove that DXΦ´1pty1uq is closed face of D. DXΦ´1pty1uq

is closed since it is intersection of two closed sets in X. Let y, z P D and λ P p0, 1q

such that λy ` p1 ´ λqz P D X Φ´1pty1u. Then, Φpλy ` p1 ´ λqzq “ y1. This implies

λΦpyq`p1´λqΦpzq “ y1. Since y1 P extpDq, Φpyq “ y1 and Φpzq “ y1, hence proving that

D X Φ´1pty1uq is a face of D. Now, by Krein Milman theorem, extpD X Φ´1pty1uqq ‰ φ.

Let y P extpDXΦ´1pty1uqq. Also extpDXΦ´1pty1uqq Ă extpDq. Therefore, y1 “ Φpyq and

so by hypothesis, we get

lim sup
n
pnpy

1
q “ lim sup

n
pnpΦpyqq “ lim sup

n
anpyq ď fpyq ď α.

By the metrizable version of Choquet’s theorem, there exists µ PM`pD1q which represents

the point x1 “ Φpxq P D1 and for which µpD1zextpD1qq “ 0.

The sequence tpnu is bounded above on D1 since tanu is bounded above on D. Hence, by

Fatou’s lemma for superior limits,

fpxq “ lim sup
n
fnpxq

“ lim sup
n
anpxq

“ lim sup
n
pnpx

1
q

“ lim sup
n

ż

extpD1q

pndµ

ď

ż

extpD1q

lim sup
n
pndµ

ď α.

(4.5)

Hence, fpxq ď α on D.

Theorem 4.1.16 (Choquet-Bishop-deLeeuw). If µ is a boundary measure on D, then

|µ|pCq “ 0, for every Baire set C disjoint from extpDq.

Proof. We know that if λ ě 0 is a regular Borel measure, then for any Baire set B,

λpBq “ suptλpCq : C Ă B,C is a compact Gδ setu. Hence, it suffices to assume that C
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is a Gδ compact set disjoint from extpDq. Let

C “
8
č

n“1

Un

where Un are open sets. By Urysohn’s lemma, there exists a bounded sequence tfnu from

CRpDq such that fnpxq “ 1, for x P C, for each n P N and limn fnpxq “ 0, for x P DzC,

that is, limn fn “ χC . Clearly, |µ|pfnq ě |µ|pCq, for n P N. Now, since for each n P N,

f̌n ď fn, for each x P extpDq,

lim sup
nÑ8

f̌n ď 0.

Consequently, by Fatou’s lemma and Mokobodzki theorem,

0 ď |µpCq|

ď lim sup
nÑ8

|µ|pfnq

“ lim sup
nÑ8

|µ|pf̌nq

ď |µ|plim sup
nÑ8

f̌nq

ď 0.

(4.6)

Hence, |µ|pCq “ 0.

4.1.1 Dual of ARpDq

We claim that, pARpDqq
˚
– tµ P MpDq : |µ| is maximal u. In fact if F P pARpDqq

˚ then

extend F to CpDq˚ by Hahn-Banach Theorem. Then F̃ P CpDq˚ is a signed measure say

µ on D, µ “ µ` ´ µ´. Clearly the positive measures µ`, µ´ are dominated by maximal

measures say ν1, ν2 with same resultants, by proposition 4.1.2. Hence ν1´ν2 is a boundary

measure on D and for every a P ARpDq, µpaq “ νpaq. F ÞÑ ν is an isometric isomorphism.

4.2 Some applications

We present two non-trivial results which are interesting applications of Choquet-Bishop-

deLeeuw theorem.

Theorem 4.2.1 (Rainwater). Let E be a normed linear space and suppose that x, xn,

for n “ 1, 2, ... are elements of E. Then, the sequence pxnq converges to x weakly if and

only if pxnq is bounded and limn fpxnq “ fpxq, for all f P extpUq, where U is closed unit

ball of E˚
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Proof. Let J : E Ñ E˚˚ be defined as for each f P E˚, Jpxqpfq “ fpxq, which is a

linear isometry. Assume that pxnq converges to x in E weakly. Then for each f P E˚,

tJpxnqpfq : n P Nu is bounded and hence by uniform bounded principle, tJpxnq : n P Nu
is bounded in norm. Since J is an isometry, pxnq is bounded in norm.

We now prove the converse. Assume that pxnq is bounded, that is, pJpxnqq is bounded in

norm and also for all f P extpUq,

fpxnq “ Jpxnqpfq Ñ Jpxqpfq “ fpxq.

Let g be an arbitrary element of U . It suffices to show that Jpxnqpgq Ñ Jpxqpgq. In the

weak˚ topology on E˚, by Banach Alaoglu theorem, U is compact and also, it is convex.

Hence, there exists µ P PpUq such that g “ rpµq, support of µ is contained in extpDq

and also for every weak˚ continuous affine function Φ on U ,

Φpgq “

ż

U

Φdµ.

In particular, for each n P N,

Jpxnqpgq “ gpxnq “

ż

U

Jpxnqdµ “

ż

extpUq

Jpxnqdµ

and

Jpxqpgq “ gpxq “

ż

U

Jpxqdµ “

ż

extpUq

Jpxqdµ.

Furthermore, by assumption, Jpxnq converges to Jpxq on U a.e. rµs. Hence, by dominated

convergence theorem,
ş

extpUq
Jpxnq Ñ

ş

extpUq
Jpxq.

This implies gpxnq Ñ gpxq.

The second application deals with arbitrary Banach spaces. It is clear that if K is a w˚-

compact, convex, norm separable subset of E˚, for a real Banach space E, then extpKq

is also norm separable and hence it is natural to ask what are the remaining points in K,

not in convpextpKqq.

Theorem 4.2.2 (Haydon). Let E be a real Banach space and K be a weak˚ compact

convex subset of E˚ such that extpKq is norm separable. Then K is the norm closed

convex hull of its extreme points(and hence is itself norm separable).

Proof. Let M “ supt}f} : f P Ku. Let ε ą 0 and tfnu be a norm dense subset of extpKq.

For each n P N, let Bn be the intersection of K and the closed ball of radius ε
3

centered at

fn. Since K is weak˚ compact and by Banach Alaoglu theorem, the closed ball of radius
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ε
3

centered at fn is also weak˚ compact, both the sets are weak˚ closed and hence their

intersection is weak˚ compact, as it is contained in K. Also, this intersection is convex

and
ď

n

Bn Ą extpKq.

Let f P K. Then, there exists µ P PpKq such that µ is maximal and rpµq “ f . Since
Ť

nBn is a weak˚ Fσ set, µp
Ť

nBnq “ µpextpKqq “ 1. Let n P N and D
def
“

Ť

nBn. Then,

µpDq ą 1´ ε
3M

. Then, µ can be decomposed into µ “ λµ1 ` p1´ λqµ2, where λ “ µpDq

and µ1, µ2 are probability measures on K defined as follows:

λµ1 “ µ|D and p1´ λqpµ2q “ µ|KzD.

Note that if λ “ 1 then µ2 is an arbitrary probability measure on K. Then,

f “ rpµq “ λrpµ1q ` p1´ λqrpµ2q.

Since rpµ2q P K,

}f ´ rpµ1q} “ p1´ λq}rpµ2q} ă
ε

3M
.M “

ε

3
.

Since µ1 is a probability measure supported on D,

rpµ1q P convppBiq
n
i“1q “ convppBiq

n
i“1q.

Hence, there exists gi P Bi and λi ě 0 with
řn
i“1 λi “ 1, for 1 ď i ď n such that

rpµ1q “

n
ÿ

i“1

λigi.

Let h “
řn
i“1 λifi. Then, h P convpextpKqq. Also,

}rpµ1q ´ h} “ }
n
ÿ

i“1

λigi ´
n
ÿ

i“1

λifi} ď
n
ÿ

i“1

pλi}gi ´ fi}q ă 1.
ε

3
.

Consequently,

}f ´ h} ď }f ´ rpµ1q} ` p1´ λq}rpµ2q} ` }rpµ2q ´ h} ă
ε

3
`
ε

3
`
ε

3
“ ε.

This implies h P convpextpKqq. Therefore, convpextpKqq is norm dense in K.

We give two examples, one where the assumption in the above Theorem is true and the

other where it is not true.



49 Chapter 4 Choquet’s theorem for non metrizable compact convex sets

Example 4.2.3. Let K “ B`1 , then extpKq “ t˘en : n ě 1u. It is obvious that

B`1 “ conv}.}pextpKqq.

Example 4.2.4. Let K “ BMr0,1s. Let λ be the Lebesgue measure on r0, 1s and it is clear

that λ R conv}.}pextpKqq. Since (by Mazur’s Theorem) conv}.}pextpKqq “ convwpextpKqq,

it remains to prove that λ R convwpextpKqq. In fact for any finitely many points ptiq
n
i“1 Ă

K there exists a continuous f P Cr0, 1s such that
ş

r0,1s
fdλ “ 1 but fptiq “ 0, 1 ď i ď n.

Our next result ensures that a net convergence is always possible to any point in K with

a very special restriction. Let us recall Remark 4.1.3 and the figure therein. The point x

is the resultant of finitely many measures, where the maximal measure is supported only

on the extreme points of K.

Proposition 4.2.5. Let E be a lctvs and X be a compact convex subset of E. If

µ P PpXq, then there exists a net pµiq P PpXq with each µi discrete( Spµiq is discrete),

rpµiq “ rpµq and µi
w˚
ÝÝÑ µ.

Proof. Let U0 be a finite covering of X by closed convex neighbourhoods and let tgku Ă

CRpXq be a finite subordinate partition of unity, that is, U0 “ pU1, ..., Unq with X “

U1 Y ...Y Un; supppgkq Ă Uk, for each k “ 1, 2, ..., n and 1 “
řn
i“1 gk. Define

dνk “

#

gk
µpgkq

dµ if µpgkq ‰ 0

0 otherwise
(4.7)

Then, νk P PpXq. Let rpνkq “ xk. Define

µU “
ÿ

k

µpgkqδxk .

Clearly, µU P PpXq, since

n
ÿ

k“1

µpgkq “
n
ÿ

k“1

ż

X

gkdµ “

ż

X

n
ÿ

k“1

gk “ 1.

Let P be the set of all finite partitions of X with closed convex subsets of X. Define the

partial ordering ă where for U ,V P P , if U ă V then U Ă V , that is, V is a refinement

of U . Then, pP,ăq is a directed set and U ÞÑ µU is a net. If supppgkq Ă U P U0, then
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xk P U since Spνkq Ă supppgkq Ă U . If l P E˚, then

µU plq “
n
ÿ

k“1

µpgkqδxkplq

“

n
ÿ

k“1

µpgkqlpxkq

“

n
ÿ

k“1

µpgkqνxkplq

“

n
ÿ

k“1

µpgkq
1

µpgkq

ż

X

lgkdµ

“

n
ÿ

k“1

µplgkq

“ µplq.

(4.8)

This implies rpµU q “ rpµq.

Let f P CRpXq and ε ą 0. Choose a covering U0 such that for all U P U , for each

x, y P U , |fpxq ´ fpyq| ă ε. Then,

|µU pfq ´ µpfq| ď
n
ÿ

k“1

|µpgkqfpxkq ´ µpgkfq|

ď

n
ÿ

k“1

|µppgkqpfpxkq ´ fqq|

ď

n
ÿ

k“1

µpgkq}f ´ fpxkq}supppgkq

ă

n
ÿ

k“1

εµpgkq

“ ε.

(4.9)

This implies µU
w˚
ÝÝÑ µ.

We will now give a proof of Stone Weierstrass theorem using Krein Milman and Choquet

theorems.

Lemma 4.2.6. Let T be a compact Hausdorff space and A be a subalgebra of CpT q

with K “ tµ P A K : }µ} ď 1u. If µ P extpKq and f is a real valued function in A such

that 0 ă f ă 1, then f is constant on Spµq.

Proof. If µ “ 0, Spµq “ φ, then the assertion is trivially true. If µ ‰ 0, then }µ} “ 1.

Define regular complex Borel measure ν and λ by ν “ fdµ and λ “ p1´ fqdµ. Since A
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is an algebra, it follows that ν, λ P A K. Also, ν and λ are non-zero because 0 ă f ă 1.

Now,

µ “ }ν}
ν

}ν}
` }λ}

λ

}λ}

is a convex combination of elements of K as

}ν} ` }λ} “

ż

T

fd|µ| `

ż

T

p1´ fqd|µ| “ |µ|pT q “ }µ} “ 1.

µ being an extreme point, we must have µ “ ν
}ν}

and so ν “ }ν}µ. Hence, for every Borel

set E,

νpEq “

ż

E

fdµ “

ż

E

}ν}dµ.

This implies fptq “ }ν} a.e. rµs. Since f is continuous, fptq “ }ν} on Spµq.

Theorem 4.2.7 (Stone Weierstrass theorem). Let T be a compact Hausdorff space and

A be a closed (that is supremum closed) subalgebra of CpT q with the property that

paq the constant functions are in A .

pbq A separates the points of T .

pcq if f P A , then f P A .

Then, A “ CpT q.

Proof. Let K “ tµ P A K : }µ} ď 1u. Then, K ‰ φ(in fact K “ A KXCpT q˚). Also, K is

convex and weak˚ compact (as it is the intersection of a weak˚ closed convex set with the

weak˚ compact set CpT q˚). Hence, by Krien-Milman theorem, there exists µ P extpKq.

Suppose Spµq contains two distinct points s and t. From the properties of A , it follows

that A contains a real valued function f such that 0 ă f ă 1 and fpsq ‰ fptq. But this

is impossible by the previous lemma. Hence, µ “ αδt, for some α P C and t P K and for

every f P A ,
ż

T

fdµ “ αfptq.

But µ P A K, so αfptq “ 0, for f P A . Since 1 P A , this means α “ 0 and hence µ “ 0,

which shows that the only extreme point of K must be the zero measure and hence, by

Krein-Milman theorem, K “ t0u and A K “ t0u. Then, Hahn Banach theorem implies

that A “ CpT q, as A is closed by assumption.
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Choquet Simplex and its

Characterizations

In this chapter, we will investigate the characterisations of a simplex as given by Choquet-

Meyer. Let E be a real lctvs. Let P be a cone in E. Then we know that P induces a

translation invariant partial ordering on E: x ă y if and only if y ´ x P P . Examples of

cone are M`pKq, where K is a compact Hausdorff space, the set of all positive operators

on a Hilbert space H, etc.

Example 5.0.1. Let K be a compact Hausdorff space. Consider M`pKq which is the

set of all non-negative regular Borel measures on K. We know that M`pKq is a cone.

We now claim that M`pKq forms a lattice with the ordering, say ă, induced by M`pKq

as a cone. Let λ, µ P M`pKq. Given any Borel set A Ă K, pλ ` µqpAq “ 0 implies

λpAq ` µpAq “ 0 and hence λpAq “ µpAq “ 0. This implies that λ and µ are absolutely

continuous with respect to λ ` µ and hence have Radon-Nikodym derivatives say f and

g respectively. Let h “ minpf, gq, which is defined a.e. λ ` µ. We claim that λ ^ µ “

hdpλ ` µq. Now, λ ´ hdpλ ` µq “ pf ´ hqdpλ ` µq P M`pKq, since f ě minpf, gq.

Similarly, µ ´ hdpλ ` µq P M`pKq. Let ν P M`pKq such that ν ă λ and ν ă µ.

Hence, λ ´ ν, µ ´ ν P M`pKq. Given any Borel set A Ă K, pλ ` µqpAq “ 0 implies

λpAq “ µpAq “ 0. Now, pλ´νqpAq “ ´νpAq, which is possible only if νpAq “ 0. It follows

that ν is absolutely continuous with respect to λ ` µ and hence have Radon-Nikodym

derivative say s. We have, therefore, pf ´ sqdpλ ` µq, pg ´ sqdpλ ` µq P M`pKq. Since

pf´sq ě 0 and pg´sq ě 0, it follows that ph´sq ě 0 and hence ph´sqdpλ`µq PM`pKq.

Therefore ν ă hdpλ` µq. This proves that M`pKq is a lattice.

Let 0 ‰ µ P M`pKq. Then clearly µ{}µ} P PpKq. Also, 0 R PpKq and PpKq is

contained in the hyperplane tµ PMpKq : µp1q “ 1u, which does not contain 0. It follows

that PpKq is a base of M`pKq. Therefore, by Remark D.1.4 paq, M`pKqXp´M`pKqq “

52
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t0u. By Remark D.1.5 pcq, we also get that M`pKq´M`pKq is a lattice. Now by Jordan

measure decomposition, we have MpKq “ M`pKq ´M`pKq. This example serves as a

motivation for the definition of a simplex which is as follows.

Definition 5.0.2 (Simplex). Let D be a compact convex subset of a lctvs E, which is

contained in a hyperplane H which misses origin. Then D is said to be a simplex if rD´ rD

is a lattice in E, where rD is the cone generated by D.

Theorem 5.0.3 (Choquet-Meyer Theorem). Let X be a non-empty compact convex set

in a lctvs E such that X is contained in a hyperplane which does not contain zero. Then

the following are equivalent:

piq X is a simplex in E.

piiq For any f P CRpXq such that f is convex, f̂ is affine on X.

piiiq If µ is maximal measure on X with resultant x P X and f P CRpXq, where f is

convex, then f̂pxq “ µpfq.

pivq For each continuous convex functions f, g P CRpXq, zf ` g “ f̂ ` ĝ.

pvq Each x P X is represented by a unique maximal measure on X.

Proof. piq implies piiq: Assume X is a simplex in E. This implies there exists a hyperplane

H “ tx P E : Lpxq “ ru, for some L P E˚, r ą 0 such that 0 R H, X Ă H and rX is a

lattice. Let f P CRpXq be a convex function on X. We know that f̂ is concave on X. It

remains to prove that f̂ is convex. Let x1, x2 P X and α1, α2 ą 0 with α1 ` α2 “ 1. Let

z “ α1x1 ` α2x2. Now, from proposition 3.1.9 and 4.2.5,

f̂pzq “ suptµpfq : µ P PpXq, rpµq “ zu “ suptµpfq : µ is discrete, rpµq “ zu.

Let us assume that µ is a discrete probability measure and rpµq “ z. Then there exists

finite sequences pyjqjPJ and pβjqjPJ , with βj ě 0, for each j P J , in X such that
ř

jPJ βj “ 1

and µ “
ř

jPJ βjδyj . Since for every g P E˚

gpzq “ µpgq “
ÿ

jPJ

βjgpyjq,

we get

z “ α1x1 ` α2x2 “
ÿ

jPJ

βjyj.

Since rX is a lattice, there exists tzij : i “ 1, 2; j P Ju Ă X such that for each i “ 1, 2,

αixi “
ř

jPJ z
1

ij and for each j P J , βjyj “
ř2
i“1 z

1

ij, where for each i, j, there exists γij ě 0

and zij P X such that z
1

ij “ γijzij. Therefore, for each i “ 1, 2, xi “ α´1
i

ř

jPJ γijzij. Since
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xi, zij P X Ă H, Lpxiq “ r “ Lpzijq. Thus,

r “ Lpxiq “ α´1
i

ÿ

jPJ

γijLpzijq “ α´1
i

ÿ

jPJ

γijr.

This implies 1 “
ř

jPJ α
´1
i γij. Therefore, xi is a convex combination of elements in X.

Define for i “ 1, 2, µi “ α´1
i

ř

jPJ γijδzij . Then rpµiq “ xi. Thus, f̂pxiq ě µipfq “
ř

jPJ α
´1
i γijfpzijq. Also, µpfq “

ř

jPJ βjfpyjq. For each j P J ,

fpyjq “ fpβ´1
j z

1

1j ` β
´1
j z

1

2jq

“ fpβ´1
j γ1jz1j ` β

´1
j γ2jz2jq

ď β´1
j γ1jfpz1jq ` β

´1
j γ2jfpz2jq.

(5.1)

Therefore, we have

ÿ

jPJ

βjfpyjq ď
ÿ

jPJ

γijfpz1jq ` γ2jfpz2jq

“

˜

ÿ

jPJ

γijfpz1jq

¸

`

˜

ÿ

jPJ

γ2jfpz2jq

¸

“ α1µ1pfq ` α2µ2pfq.

(5.2)

This implies

µpfq ď α1µ1pfq ` α2µ2pfq “ α1fpx1q ` α2fpx2q.

Thus f̂pzq ď α1fpx1q ` α2fpx2q ď α1f̂px1q ` α2f̂px2q. This implies f̂ is convex.

piiq implies piiiq: Suppose µ is a maximal measure such that rpµq “ x, for some x P X and

f P CRpXq is a convex function on X. Then by piiq, f̂ is affine. Then by the assumption

that rpµq “ x and by Mokobodzki Theorem 4.1.13 we get,

f̂pxq “ µpf̂q “ µpfq.

piiiq implies pivq: Let x P X. Then there exists a maximal measure say µ on X and by

proposition 4.1.2, rpµq “ x. Let f, g P CRpXq such that f, g are convex. Then by piiiq,

zf ` gpxq “ µpf ` gq “ µpfq ` µpgq “ f̂pxq ` ĝpxq.

Therefore, for each x P X, zf ` gpxq “ f̂pxq ` ĝpxq.

pivq implies pvq: Let x P X. We know that S :“ SpXq is a cone in CRpXq and S ´ S

is a subspace of CRpXq. Define Λ : S ´ S Ñ R as Λpf ´ gq “ f̂pxq ´ ĝpxq. Let



55 Chapter 5 Choquet Simplex and its Characterizations

f1 ´ g1, f2 ´ g2 P S ´ S and α P R. Then by assuming pivq, we get,

Λppf1 ´ g1q ` pf2 ´ g2qq “ Λppf1 ` f2q ´ pg1 ` g2qq

“ {f1 ` f2 ´ {g1 ` g2

“ f̂1 ` f̂2 ´ ĝ1 ´ ĝ2

“ pf̂1 ´ ĝ1q ` pf̂2 ´ ĝ2q

“ Λpf1 ´ g1q ` Λpf2 ´ g2q.

(5.3)

If α ě 0, then clearly, Λpαpf1 ´ g1qq “ αΛpf1 ´ g1q. Now, if α ă 0, then

Λpαpf1 ´ g1qq “ Λpp´αqg1 ´ p´αqf1q

“ {p´αg1qpxq ´ {p´αf1qpxq

“ ´αpĝ1pxq ´ f̂1pxqq

“ αpf̂1pxq ´ ĝ1pxqq,

(5.4)

since S ´ S is a subspace. Therefore, this proves that Λ is linear on S ´ S. Now the set

T “ tµ P PpXq : rpµq “ xu is w˚-compact in PpXq, since we know that the function

r : PpXq Ñ X defined by rpµq “ x is w˚-continuous. Therefore, f̂pxq “ suptµpfq : µ P

T u “ µ0pfq, for some µ0 P T . Also, ĝpxq ě µ0pgq. This implies

f̂pxq ´ ĝpxq ď µ0pf ´ gq ď }µ0}}f ´ g} “ }f ´ g}8.

Similarly, we can get

ĝpxq ´ f̂pxq ď }f ´ g}8.

Hence

|f̂pxq ´ ĝpxq| ď }f ´ g}8,

which implies }Λ} ď 1. Since 1 P S ´ S and Λp1q “ 1, }Λ} “ 1. Therefore, Λ is

continuous linear functional on S´S. Since S´S is uniformly dense subspace in CRpXq,

Λ has a unique extension to CRpXq. By Riesz Representation theorem, there exists a

unique µx P MpXq such that for each h P CRpXq, Λphq “ µxphq, }Λ} “ 1 “ }µx} and

µxp1q “ Λp1q “ 1. This implies µx P PpXq. Also, rpµxq “ x. Let f P SpXq. Then

µxpfq “ Λpfq “ f̂pxq “ suptνpfq : ν P PpXq; rpνq “ xu.

Let ν PM`pXq such that µx ă ν. This implies rpµxq “ rpνq. Hence,

f̂pxq “ µxpfq ď νpfq ď f̂pxq.

This implies for each f P SpXq, µxpfq “ νpfq. It follows that for f, g P SpXq, then
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µxpf ´ gq “ νpf ´ gq. Again since S ´ S is dense in CRpXq, for each f P CRpXq,

µxpfq “ νpfq. This implies µx “ ν. Hence µx is a maximal measure representing x.

Suppose λ is another maximal probability measure such that rpλq “ x. For each f P S,

µxpfq “ f̂pxq ě λpfq. This implies λ ă µx. Since λ is maximal, λ “ µx. This proves the

uniqueness of such a maximal measure.

To prove pvq implies piq, we need the following lemmas.

Definition 5.0.4 (Hereditary subcone). Let P1, P2 be two cones in a lctvs E such that

P1 Ă P2. Then P1 is said to be Hereditary subcone of P2 if for x P P1, y P P2 such that

y ă x (where ă is the ordering induced by P2), then y P P1.

Lemma 5.0.5. Let P1 be a hereditary subcone of cone P2. If P2 is a lattice, then P1 is

a lattice.

Proof. We assume that P1 and P2 are cones with vertex 0. Let ă1 and ă2 be the orderings

induced by P1 and P2 respectively. Let x, y P P1 Ă P2. Since P2 is a lattice, x ^ y P P2.

Since x ^ y ă2 x, x ^ y P P1. Let z P P1 Ă P2 such that z ă1 x, z ă1 y. This implies

z ă2 x^y. Since 0 ă2 z, x^y´z ă2 x^y. This implies x^y´z P P1. Hence z ă1 x^y.

This completes the proof.

Remark 5.0.6. Let P1 be a hereditary subcone of cone P2. Let x, y P P1. If x ă2 y,

then x ă1 y.

Lemma 5.0.7. Let X be a compact convex subset of a lctvs E. Let M be the set of all

maximal positive measures on X. Then M is a hereditary subcone of M`pXq ( which is

a cone with vertex 0), PpXq is a base of M and PpXq is a simplex.

Proof. Clearly, M Ă M`pXq. Let λ P M and r ą 0. Let µ P M`pXq such that rλ ă µ.

This implies for each f P S, rλpfq ď µpfq. Since λ is maximal measure on X, it follows

that λ “ µ{r and hence rλ “ µ. This proves that M is a cone. In order to prove that M

is convex, it suffices to show that for each λ, µ P M , λ ` µ P M . Let λ, µ P M . Using

Mokobodzki Theorem, for each f P CRpXq,

pλ` µqpf̂q “ λpf̂q ` µpf̂q “ λpfq ` µpfq “ pλ` µqpfq.

Thus by Mokobodzki theorem, λ ` µ P M . Now, 0 R tµ P MpXq : µp1q “ 1u is a w˚-

closed hyperplane in MpXq and

PpXq “ tµ PMpXq : µp1q “ 1u XM .

This implies PpXq is a base for M . It remains to prove that M is a hereditary subcone

of M`pXq. Let λ P M and µ P M`pXq such that µ ĺ λ (where ĺ is the ordering
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induced by M`pXq). Let µ1 P M such that µ ă µ1. This implies for each f P SpXq,

µpfq ď µ1pfq. µ ĺ λ implies λ ´ µ P M`pXq. Now, λ “ µ ` pλ ´ µq ĺ µ1 ` pλ ´ µq.

Since λ P M , λ “ µ1 ` λ ´ µ which implies µ1 “ µ. Therefore, µ P M . Hence, M is a

hereditary subcone of M`pXq.

We will now prove pvq implies piq. The function r : PpXq Ñ X defined by rpµq “ x is

w˚-continuous. By assumption pvq, r´1 : X Ñ PpXq is one-one and onto map. Also,

r´1 is affine function. Therefore, PpXq and X are affinely homeomorphic. By Lemma

5.0.7, PpXq is a simplex. We can continuously extend r to ČPpXq. Let us denote the

extension also as r for simplicity. Then r is one-one and rpČPpXqq “ rX. Let tx1, sx2 P rX.

This implies tr´1px1q^ sr
´1px2q P

ČPpXq and hence rptr´1px1q^ sr
´1px2qq P rX. We now

claim that tx1 ^ sx2 “ rptr´1px1q ^ sr
´1px2qq. Consider

r´1
ptx1 ´ rptr

´1
px1q ^ sr

´1
px2qqq “ tr´1

px1q ´ tr
´1
px1q ^ sr

´1
px2q P

ČPpXq.

Therefore,

tx1 ´ rptr
´1
px1q ^ sr

´1
px2qq P rpČPpXqq “ rX.

Similarly, we can prove that,

tx2 ´ rptr
´1
px1q ^ sr

´1
px2qq P rX.

Let w P rX such that w ĺ tx1 and w ĺ sx2. Note that the ordering ĺ on rX is induced

by r and ČPpXq. Then

r´1
pwq ă r´1

ptx1q “ tr´1
px1q and r´1

pwq ă r´1
psx2q “ sr´1

px2q.

Therefore

r´1
pwq ă tr´1

px1q ^ sr
´1
px2q.

and hence

w ĺ rptr´1
px1q ^ sr

´1
px2qq.

This proves that rX is a lattice.

We conclude this chapter with a proof that the definition of simplex coincides with the

usual one for finite dimensional spaces.

Result 5.0.8. Let X be a non-empty compact convex set in a lctvs E such that X is

contained in a hyperplane which does not contain zero. Suppose rX ´ rX is of dimension

n. X is the convex hull of n linearly independent vectors of E if and only if X has exactly

n extreme points.
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Proof. Assume X “ convptxiu
n
i“1q, where txiu

n
i“1 is a linearly independent set in E.

By the converse of Krein-Milman Theorem, extpXq Ă txiu
n
i“1. Suppose without loss of

generality, xn R extpXq. This implies there exists αi ą 0, for each 1 ď i ď n ´ 1, with
řn´1
i“1 αi “ 1 such that xn “

řn´1
i“1 αixi. This is a contradiction to our assumption that

txiu
n
i“1 is linearly independent. Hence, X has exactly n extreme points.

Conversely, assume X has exactly n extreme points in E say x1, x2, . . . , xn. Therefore,

X “ convptxiu
n
i“1q. Suppose txiu

n
i“1 is not linearly independent set. Without loss of

generality, let txiu
m
i“1 be linearly independent set where 1 ď m ă n. This implies rX ´ rX

is a linear span of txiu
m
i“1, which is a contradiction to the fact that dimension of rX ´ rX

is n. This implies that txiu
n
i“1 is linearly independent set in E.

Figure 5.1

Example 5.0.9. Consider a triangle X in R2 as shown in the above figure. We embed X

as X ˆ t1u in the hyperplane R2 ˆ t1u. Clearly, it follows that rX forms a lattice. Hence,

X is a simplex. Also, observe that X is the convex hull of its three linearly independent

vertices. This example leads us to the following characterization of a simplex in finite

dimensional spaces.

Theorem 5.0.10. Let X be a non-empty compact convex set in a lctvs E such that X

is contained in a hyperplane which does not contain zero. Suppose rX´ rX is of dimension

n. Then X is a simplex if and only if X is a convex hull of n linearly independent vectors

of E, equivalently X has exactly n extreme points.
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Proof. Assume that X is a simplex. Since X is a compact convex subset of E, X “

convpextpXqq. X cannot have less than n extreme points, otherwise rX ´ rX will be

a span of less than n vectors which is a contradiction to the fact that rX ´ rX is of

dimension n. Suppose X has n` 1 extreme points say y1, y2, . . . , yn`1. Then there exists

αi, 1 ď i ď n` 1, atleast one of αi is non-zero, such that

n`1
ÿ

i“1

αiyi “ 0.

Consider the sets N “ tα : α “ αi, for some i such that αi ă 0u and P “ tα :

α “ αi for some i such that αi ě 0u. Let α “
ř

αiPP
αi ą 0. Otherwise if α “ 0,

fp
řn`1
i“1 αiyiq “ 0, for a f P p rX ´ rXq˚ such that fpyiq “ 1, for each 1 ď i ď n ` 1. This

implies
n`1
ÿ

i“1

αifpyiq “
n`1
ÿ

i“1

αi “ 0.

Now the above sum can be written as

0 “ α `
ÿ

αiPN

αi “ 0`
ÿ

αiPN

αi “
ÿ

αiPN

αi ă 0,

which is a contradiction. Also, α “ ´
ř

αiPN
αi ą 0. Let x “

ř

αiPP
α´1αiyi, where

ř

αiPP
α´1αi “ 1. Also, x “

ř

αiPN
p´α´1qαiyi, where

ř

αiPN
p´α´1qαi “ 1. Therefore,

x “ r

˜

ÿ

αiPP

α´1αiδyi

¸

“ r

˜

ÿ

αiPN

p´α´1
qαiδyi

¸

.

This implies x has two distinct representing measures which is a contradiction since every

point of the simplex X is represented by a unique maximal measure on X. Therefore X

has exactly n extreme points.

Conversely, letX have exactly n extreme points say x1, x2, . . . , xn. ThenX “ convptxiu
n
i“1q.

Also, txiu
n
i“1 is a linearly independent set of vectors in E. Otherwise, without loss of gen-

erality, we can remove vectors from the set txiu
n
i“1 such that txiu

m
i“1, where 1 ď m ă n is

linearly independent set. Now, rX´ rX is a linear span of txiu
m
i“1, which is a contradiction

to the fact that dimension of rX ´ rX is n. Let E1 “ rX ´ rX and txiu
n
i“1 forms a basis of

E1. Choose f1, f2, . . . , fn P E
˚ such that fipxjq “ δij, for each 1 ď j ď n and 1 ď i ď n.

Define T : E1 Ñ Rn as Tx “ pf1pxq, f2pxq, . . . , fnpxqq. Clearly, T is linear and continuous

on E1. Consider Tx “ 0. This implies fipxq “ 0, for each 1 ď i ď n. Now, x “
řn
i“1 αixi,

for some αi P R, for each 1 ď i ď n. Hence, fipxq “ αi “ 0, for each i. Therefore, x “ 0.

This proves that T is one-one. Let pα1, α2, . . . , αnq P Rn. Then x “
řn
i“1 αixi P E1. Ev-

idently, Tx “ pα1, α2, . . . , αnq, which proves that T is onto. Let teiu
n
i“1 be the standard
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basis of Rn. Then Txi “ ei, for each 1 ď i ď n. Therefore, TX “ convpteiu
n
i“1q which

is a compact convex subset of Rn. Hence, ĄTX “ tpα1, α2, . . . , αnq : αi ě 0, 1 ď i ď nu

and is clearly a lattice in Rn. Therefore, TX is a simplex. It follows that X itself is a

simplex.



Chapter 6

Choquet Boundary

6.1 Definitions and basic properties

Let K be a compact Hausdorff space and CCpKq denote the space of all complex valued

continuous functions on K with the supremum norm. Let us recall some basic facts about

any complex Banach space E. The dual of pE˚, w˚q is E itself, with each x P E defining

a continuous linear functional f ÞÑ fpxq on E˚.

Definition 6.1.1 (State space). Let M be a linear subspace(not necessarily closed) of

CRpKq( or of CCpKq) such that 1 P M . Then the state space of M , denoted by KpMq,

is defined as KpMq “ tL PM˚ : Lp1q “ 1, }L} “ 1u.

Consider pM˚, w˚q. Then clearly KpMq is non-empty( since for any t P K, δt P KpMq)

and convex set. Also, KpMq is a w˚-closed subset of the w˚-compact unit ball of

M˚(by Banach Alaoglu theorem) and hence KpMq is w˚-compact set. When M “

CRpKq, KpMq “ PpKq. Then by Krein-Milman theorem, we know that PpKq “

convw
˚

pextpPpKqqq. In order to use the results in previous chapters, it is necessary to

know the description of extreme points of KpMq.

We shall now define a map φ from K into KpMq as k ÞÑ δk, where δkpfq “ fpkq, for all

f P M . Let kα Ñ k be any net in K. Then for any f P M , fpkαq Ñ fpkq, which implies

that δkα
w˚
ÝÝÑ δk. Hence, φ is continuous map from K into pKpMq, w˚q.

IfM separates points ofK, then φ is one-one and hence φ is a homeomorphism, embedding

K as a compact subset of KpMq. If L P KpMq and µ is a measure on K such that for

every f PM , Lpfq “ µpfq, then µ can be carried to a measure µ
1

on KpMq in the obvious

way: µ
1

“ µ ˝ φ´1. Since the dual of pM˚, w˚q is M itself, it follows that µ
1

represents L.

61
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Lemma 6.1. Let M be a subspace of CRpKq( or of CCpKq) such that 1 P M . Then

KpMq “ convw
˚

pφpKqq.

Proof. Clearly, convw
˚

pφpKqq Ă KpMq. Suppose there exists L P KpMq such that

L R convw
˚

pφpKqq. Then by Hahn Banach separation theorem, there exists f P M such

that,

supRefpφpKqq “ suptRefpyq : y P Ku ă RepLpfqq ď }Ref}}L} “ }Ref} p1q.

Now, by adding a large positive constant M to both sides of the above inequality such

that g “ f `M ě 0, we get

}Repgq} “ suptRepgqpyq : y P Ku ă }Repgq},

which is a contradiction.

Definition 6.1.2 (Choquet Boundary). Let M be a linear subspace of CRpKq( or of

CCpKq) such that 1 P M . Then the Choquet boundary of M , denoted by BpMq, is

defined as BpMq “ tk P K : φpkq P extpKpMqqu.

Remark 6.1.3. Let L P KpMq. L is an extreme point of KpMq if and only if L “ φpyq,

for some y P BpMq.

Proof. Now, by previous lemma, KpMq “ convw
˚

pφpKqq. Hence, by partial converse of

Krein-Milman theorem, extpKpMqq Ă φpKq. Assume L “ φpyq, for some y P BpMq,

then by definition of BpMq, L is an extreme point of KpMq.

Let us look at the following characterization of BpMq in terms of measures on K for

subspaces M that separates points of K.

Theorem 6.1.4. Let M be a subspace of CRpKq( or of CCpKq) which separates points

of K and contains the constant functions. Then k P BpMq if and only if µ “ δk is the

only probability measure on K such that fpkq “
ş

K
fdµ, for all f PM .

Proof. Assume that k P BpMq and suppose µ is a measure on K such that fpkq “
ş

K
fdµ,

for all f PM . Hence, we can carry µ to a measure µ
1

on KpMq such that µ
1

|φpKq “ µ˝φ´1.

Since φpkq P extpKpMqq, δφpkq is the only probability measure that represents φpkq. Using

the fact that the dual of pM˚, w˚q is M itself, from the above relation, for all f PM , we

get the following

δkpfq “

ż

K

fdµ “

ż

KpMq

fdµ
1

“ µ
1

pfq.
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This implies

µ ˝ φ´1
“ µ

1

“ δφpkq “ δk ˝ φ
´1.

Since φ is a homeomorphism, µ “ δk.

Conversely, suppose k R BpMq. This implies φpkq R extpKpMqq. Thus, there exists

two distinct measures µ1 and µ2 on K which represent φpkq such that for every f P M ,

φpkqpfq “ µ1pfq
2
`

µ2pfq
2

. Let µ “ µ1
2
`

µ2
2

. By assumption, µ “ δk. Since µ1 and µ2 are

distinct, µ1 ‰ δk implies µ1ptkuq ă 1. Hence µptkuq ă 1. Therefore µ ‰ δk, which is a

contradiction. This implies k P BpMq.

The above theorem tells us that when M “ CRpKq or CCpKq, BpMq “ K. An example

where BpMq ‰ K can be constructed as follows:

Consider K “ r0, 1s and let M “ tf P CRpKq : f
`

1
2

˘

“
fp0q

2
`

fp1q
2
u. Then BpMq “

Kz
 

1
2

(

. Clearly, from the definition of M , for each f PM ,

δ 1
2
pfq “

δ0pfq ` δ1pfq

2
.

This implies δ 1
2
R extpKpMqq and hence 1

2
R BpMq. Let x P Kz

 

1
2

(

. Suppose there exists

a probability measure µ on K such that for each f P M , fpxq “
ş

K
fdµ. In order to

show that µ “ δx, it is enough to show that µpKztxuq “ 0 Now, we can choose a function

g PM such that for any y ‰ x, |gpyq| ă |gpxq| “ }g}8. Consider

}g}8 “ |gpxq| ď

ż

K

|g|dµ “

ż

txu

|g|dµ`

ż

txuc
|g|dµ ď }g}8µptxuq `

ż

txuc
|g|dµ.

If µpKztxuq ą 0, then the above inequality will become,

}g}8 ă }g}8µptxuq `

ż

txuc
|g|dµ ă }g}8µptxuq ` }g}8µpKztxuq “ }g}8,

which is a contradiction and hence µpKztxuq “ 0. Therefore, BpMq “ Kz
 

1
2

(

.

Definition 6.1.5 (Boundary and S̆ilov Boundary for M). Let M be a subspace of CRpKq

or of CCpKq and that 1 PM . A subset B of K is said to be a boundary for M if for each

f P M , there exists y P B such that |fpyq| “ }f}8. The smallest closed boundary for

M (i.e. it is the closed boundary which is contained in every other closed boundary) is

called the S̆ilov boundary for M .

Proposition 6.1.6. Let M be a subspace of CRpKq(or of CCpKq) with 1 P M . Then

BpMq is a boundary for M .
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Proof. Let f P M . Since the dual of pM˚, w˚q is M itself, f attains its supremum on

KpMq Y ´KpMq. Let L0 P KpMq Y ´KpMq such that

L0pfq “ sup fpKpMq Y ´KpMqq.

Suppose L0 P KpMq. Then the set F “ tL P KpMq : Lpfq “ L0pfqu is a non-empty w˚-

compact convex subset of KpMq and also clearly, a face of KpMq. Therefore, extpF q Ă

extpKpMqq Ă φpKq. Let k P K such that φpkq P extpF q. This implies φpkqpfq “ L0pfq “

}f}8 and hence fpkq “ }f}8( since sup fpKpMqq “ sup fpφpKqq). If L0 P ´KpMq, we

do a similar argument as above and get the required conclusion by considering F “ tL P

KpMq : Lpfq “ ´L0pfqu, a non-empty w˚-compact convex face of KpMq.

Proposition 6.1.7. Let M be a subspace of CRpKq(or of CCpKq) which contains constant

functions and separates points of K. Then the closure of BpMq is the S̆ilov boundary of

M .

Proof. By previous proposition, BpMq is a boundary for M . Hence, BpMq is a closed

boundary forM . LetB be any closed boundary forM . It suffices to show thatBpMq Ă B.

Suppose there exists y P BpMqzB. Since y R B, there exists a neighbourhood U of y

such that y P U Ă KzB. If we show that there exists f P M such that sup |fpKzUq| ă

sup |fpUq|, then we get a contradiction to the fact that B is a boundary for M . Now

δy P extpKpMqq and φpUq is a weak˚ neighbourhood of δy in φpKq. By definition of weak˚

topology and the fact that the dual of pM˚, w˚q is M itself, there exists g1, g2, . . . , gn PM

such that

δy P
n
č

i“1

ptL PM˚ : |Lpgiq ´ gipyq| ă εu X φpKqq Ă φpUq.

Now

n
č

i“1

ptL PM˚ : |Lpgiq ´ gipyq| ă εu X φpKqq “
n
č

i“1

tδz P φpKq : |gipzq ´ gipyq| ă εu.

Let for any 1 ď i ď n, fi “ gi ´ gipyq PM . It follows that,

n
č

i“1

tδz P φpKq : |gipzq ´ gipyq| ă εu

“

n
č

i“1

tδz P φpKq : |fipzq| ă εu

“

n
č

i“1

ptδz P φpKq : fipzq ă εu X tδz P φpKq : ´fipzq ă εuq

Ď

n
č

i“1

tδz P φpKq : fipzq ă εu.

(6.1)
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Therefore,

δy P
n
č

i“1

tδz P φpKq : fipzq ă εu Ă φpUq.

For each i “ 1, 2, . . . , n, let Ki “ tL PM
˚ : Lpfiq ě εu XKpMq. Then Ki is w˚-compact

convex sets for each i “ 1, 2, . . . , n. Let J “ convp
Ťn
i“1Kiq, which is also a w˚-compact

convex subset of KpMq. Now δy R J . By Hahn Banach separation theorem, there exists

f PM such that

sup fpJq ă δypfq “ fpyq.

Since

φpKqzφpUq Ă
n
ď

i“1

Ki Ă J,

we have

sup fpφpKqzφpUqq ă fpyq.

This implies

sup fpKzUq ă fpyq ď sup fpUq.

Now there exists a large C ą 0 such that g “ f ` C ě 0. It follows from the above

inequality that

sup |gpKzUq| ă sup |gpUq|.

Therefore the closure of BpMq is the S̆ilov boundary for M .

We will now show that every non-empty compact convex subset of a lctvs is of the form

KpMq, for a suitable K and M .

Proposition 6.1.8. If X is a compact convex subset of a lctvs E, then there exists a

separating subspace M of CRpXq with 1 PM such that X is affinely homeomorphic with

KpMq.

Proof. Let M be set of those functions in CRpXq of the form g “ f ` r, for some f P E˚

and r P R. Then, M separates points of X, since E˚ separates points of X and clearly

1 P M . Define φ from X to KpMq as we had earlier. Let α, β P R such that α ` β “ 1

and x, y P X. Then for each f PM ,

φpαx` βyqpfq “ fpαx` βyq “ αfpxq ` βfpyq “ αφpxqpfq ` βφpyqpfq.

This implies φ is affine. Let L P KpMq. Then by Hahn Banach extension theorem, there

exists an extension of L, L̃ P CRpXq
˚ such that }L̃} “ 1. Now, by Riesz Representation

theorem, there exists µ P PpXq such that Lpfq “ µpfq, for each f P M . Then by

Theorem 2.2.2, µ has a unique resultant in X, which implies φpxq “ L. Hence, φpXq “

KpMq.
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We conclude this chapter with a form of the representation theorem which is due to

Bishop-de Leeuw.

Theorem 6.1.9. Let M be a subspace of CRpKq(or of CCpKq) such that it separates

points of K and contains constant functions. If L PM˚, then there exists a real measure

µ on K such that Lpfq “
ş

K
fdµ, for each f P M and µpSq “ 0, for any Baire set S in

K which is disjoint from the Choquet boundary BpMq for M .

Proof. Let L PM˚. By Hahn Banach extension theorem, L can be extended to continuous

linear functional L̃ on CRpKq such that }L̃} “ }L}. By Riesz Representation theorem,

there exists µ P MpKq such that L̃pgq “
ş

K
gdµ, for each g P CRpKq. Now there exists

positive measures on K say µ1 and µ2 such that µ “ µ1 ´ µ2. We can carry these

two measures to measures µ
1

1 and µ
1

2 on KpMq. Therefore, by lemma 4.1.4 there exists

maximal measures ν
1

1, ν
1

2 on KpMq such that µ
1

1 ă ν
1

1 and µ
1

2 ă ν
1

2. By Choquet-Bishop-de

Leeuw theorem 4.1.16, for i “ 1, 2, ν
1

ipSq “ 0, for any Baire set S which is disjoint from

extpKpMqq. Therefore, ν1 “ ν
1

1 ˝ φ and ν2 “ ν
1

2 ˝ φ are measures on K and ν “ ν1 ´ ν2 is

a boundary measure on K such that µ ă ν and νpSq “ 0, for any Baire set S in K which

is disjoint from BpMq “ φ´1pextKpMqq. Also, by proposition 4.1.2, Lpgq “
ş

K
gdν, for

each g PM .

6.2 Choquet Boundary for uniform algebras

Let K be a compact Hausdorff space.

Definition 6.2.1 (Uniform algebra or function algebra). A uniform algebra A of CCpKq

is defined as a uniformly closed subalgebra of CCpKq such that A separates points of K

and contains constant functions.

For a metrizable K, Bishop and de Leeuw prescribe a simple description of the Choquet

boundary for a uniform algebra A i.e it consists precisely of all the peak points for A .

Definition 6.2.2 (Peak point). A point x P K is said to be a peak point for a subalgebra

M of CCpKq if there exists a f PM such that for each y ‰ x, |fpyq| ă |fpxq|.

We will now move to the main theorem of this chapter which is due to Bishop and de

Leeuw. A special case of this theorem will yield the above claim regarding the Choquet

boundary for uniform algebras.

Definition 6.2.3. Let A be a uniform algebra of CCpKq and that y P K. We say that

y satisfies:
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Condition (I) - if for any open neighbourhood U of y and ε ą 0, there exists f P A such

that }f}8 ď 1, |fpyq| ą 1´ ε and |f | ď ε in KzU .

Condition (II) - if whenever S is a Gδ set containing y, there exists f P A such that

|fpyq| “ }f}8 and tx P K : |fpxq| “ }f}8u Ă S.

Theorem 6.2.4 (Bishop-de Leeuw). Let A be a uniform algebra of CCpKq and y P K.

Then the following are equivalent:

piq The point y satisfies Condition (I).

piiq For each open set U containing y, there exists f P A such that |fpyq| “ }f}8

and |f | ă }f}8 in KzU .

piiiq For each x P K with y ‰ x, there exists f P A such that |fpxq| ă |fpyq| “ }f}8.

pivq The point y satisfies Condition (II).

pvq The point y is in the Choquet boundary BpA q for A .

Proof. We prove first piq implies piiq. Suppose y satisfies Condition I and let U be

any open set containing y. We will construct a sequence tgnu in A with the following

properties:

paq }gn`1 ´ gn}8 ď 2´n`1

pbq }gn}8 ď 3p1´ 2´n´1q

pcq gnpyq “ 3p1´ 2nq

pdq |gn`1 ´ gn| ă 2´n´1 in KzU

Suppose, let us assume, that we have the above sequence. Then paq implies that tgnu is

Cauchy in A and since A is complete, there exists f P A such that gn Ñ f uniformly.

pbq implies that }f}8 ď 3 but pcq gives us that fpyq “ 3, hence }f}8 “ 3 “ fpyq. If

x P KzU , then writing f “ gn `
ř8

k“npgk`1 ´ gkq, we get

|fpxq| ď }gn}8 `
8
ÿ

k“n

|gk`1pxq ´ gkpxq| ă 3p1´ 2´n`1
q `

8
ÿ

k“n

2´k´1
ă 3.

We apply induction to contruct the sequence tgnu. Since y P U , by Condition I, there

exists f P A such that }f}8 ď 1, |fpyq| ą 3
4

and |f | ď 1
4

in KzU . Define g1 “
3
2

f
fpyq

.

Since |fpyq| ą 3
4
,

}g1}8 “
3

2
.
}f}8
|fpyq|

ď
3

2
.
4

3
“ 2 ă 3p1´ 2´2

q.

Also

g1pyq “
3

2
.
fpyq

fpyq
“

3

2
“ 3p1´ 2´1

q.
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Therefore g1 satisfies the relevant conditions.

Suppose we have chosen functions g1, g2, . . . , gk to satisfy the above four conditions. Since

gk is continuous at y, there exists a neighbourhood of y say V Ă U such that in V ,

|gk| ă |gkpyq| ` 2´k´2
ă 3p1´ 2´kq ` 2´k´2.

Now again by Condition I, we get another f P A such that }f}8 ď 1,|fpyq| ą 3
4

and

|f | ď 1
4

in KzV . Define h “ p3.2´k´1q
f
fpyq

. Then }h}8 ď p3.2´k´1q4
3
“ 2´k`1, hpyq “

3.2´k´1 and in KzV , |h| ă p3.2´k´1q.1
4
.4
3
“ 2´k´1. Define gk`1 “ gk ` h. Then it follows

easily that gk`1 satisfies paq, pcq and pdq. To check pbq; let x P V , then

|gk`1pxq| ď |gkpxq| ` |hpxq| ď 3p1´ 2´kq ` 2´k´2
` 2´k`1

“ 3p1´ 2´k´2
q

and let x P KzV , then

|gk`1pxq| ď }gk}8 ` |hpxq| ď 3p1´ 2´k´1
q ` 2´k´1

“ 3´ 2k ă 3p1´ 2´k´2
q.

Thus, }gk`1}8 ď 3p1 ´ 2´k´2q. This completes the induction and hence the proof of piq

implies piiq.

piiq implies piiiq is immediate; if x ‰ y, we consider the open set Kztxu which contains

y and piiiq follows easily.

To prove piiiq implies pivq; consider S to be any Gδ set containing y. Let tUnu be a

decreasing sequence of open sets in K such that S “
Ş8

n“1 Un. For each n P N, we will

find fn P A with the properties }fn}8 “ 1 “ fnpyq and |fn| ă 1 in KzUn. Once we have

this function, we define f “
ř8

n“1 2´nfn. Then

|fpyq| “
8
ÿ

n“1

2´nfnpyq “
8
ÿ

n“1

2´n “ 1

and

}f}8 ď
8
ÿ

n“1

2´n}fn}8 “
8
ÿ

n“1

2´n “ 1.

Hence, }f}8 “ 1 “ fpyq. Moreover, if x P K such that |fpxq| “ }f}8 “ 1; suppose

x R Un, for some N P N, then

1 “ |fpxq| ď
8
ÿ

n“1

2´n|fnpxq| ă
8
ÿ

n“1

2´n “ 1,

which is a contradiction. This implies x P S. Hence, f satisfies the properties of Condition

II. Let n P N and x P KzUn. piiiq implies there fx P A such that }fx}8 “ 1 “ |fxpyq|
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and |fx| ă 1 in the neighbourhood Vx of x. Since KzUn is compact, we can choose finite

number fx1 , fx2 , . . . , fxk of such functions for which Vx1 , Vx2 , . . . , Vxk cover KzUn. Define

fn “ k´1
řk
i“1 fxi . Then

}fn}8 ď k´1
k
ÿ

i“1

}fxi} “ k´1
k
ÿ

i“1

1 “ 1

and

fnpyq “ k´1
k
ÿ

i“1

fxipyq “ k´1
k
ÿ

i“1

1 “ 1.

Hence }fn}8 “ 1 “ fnpyq. For x P KzUn, there exists j P t1, 2, . . . , ku such that x P Vxj ,

hence

|fnpxq| ď k´1
k
ÿ

i“1

|fxipxq| ă k´1
k
ÿ

i“1

1 “ 1.

This completes the proof of piiiq implies pivq.

We now prove pivq implies pvq. Suppose y satisfies Condition II. By theorem 6.1.4, it is

enough to show that µ “ δy is the only probability measure on K such that fpyq “ µpfq

for each f P A . Suppose that µ is a measure on K such that fpyq “ µpfq for each f P A .

It suffices to show µpSq “ 1 for each S is a Gδ containing y. Suppose we have this, then

Kztxu is a Gδ set and hence µpKztxuq “ 1, for each x ‰ y. This implies Spµq “ tyu. Let

S be a Gδ set containing y. pivq implies there f P A such that y P tx : fpxq “ }f}8u Ă S;

then

}f}8 “ |fpyq| “ |µpfq| ď

ż

S

|f |dµ`

ż

KzS

|f |dµ ď }f}8µpSq `

ż

KzS

|f |dµ.

If µpKzSq ą 0, then
ş

KzS
|f |dµ ă }f}8µpKzSq, which is a contradiction. This implies

µpKzSq “ 0. Hence, µpSq=1. This completes the proof.

To prove pvq implies piq, we need a simple lemma.

Lemma 6.2.5. If M is a separating subspace CCpKq with 1 P M , then ReM(the space

of real parts of functions in M) is also a separating subspace of CRpKq and BpMq “

BpReMq.

Proof. Let x, y P K be such that x ‰ y. Then there exists f PM such that fpxq ‰ fpyq.

Suppose f “ u` iv. This implies either upxq ‰ upyq or vpxq ‰ vpyq. If upxq ‰ upyq, then

we are done. Otherwise, if PM and ifpxq ‰ ifpyq. This implies

´vpxq ` iupxq ‰ ´vpyq ` iupyq.

Hence ´v P ReM serves our purpose.
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Using theorem 6.1.4 and the fact that for a real measure µ on K, µpRefq “ pRefqpyq,

for each f PM if and only if µpfq “ fpyq, for each f PM , we get BpMq “ BpReMq.

Let us now return to the proof of pvq implies piq. Suppose y P BpA q “ BpReA q and

that U is a open neighbourhood of y and 0 ă ε ă 1. We can choose a function g P CRpKq

such that 0 ď g ď 1 and gpyq “ 1 and g ” 0 in KzU . Let us denote the w˚ compact

convex set KpReA q Ă pReA q˚ by X. By Tietze extension theorem, we can obtain

f P CRpXq such that f “ g ˝ φ on φpKq Ă X. Since φpyq P extpXq, by theorem 4.1.12,
x´fpφpyqq “ p´fqpφpyqq “ ´gpyq “ ´1. By proposition 3.1.5, the space of continuous

functions on X is isomorphic to the uniform closure of ReA and hence

x´fpyq “ infthpyq : h P ReA , h ě ´fu

“ ´ supt´hpyq : ´h P A ,´h ď fu

“ 1.

(6.2)

It follows that there exists h0 P ReA such that h0 ď f and h0pyq ą
logpδ´1q

log δ
, where δ “ 1{ε.

Define h “ plog δqph0 ´ 1q, then h P A and there exists k P ReA such that h ` ik P A .

Since A is closed in CCpKq, f0 “ eh`ik P A . Now |f0| “ eh. Since h0 ď g ď 1, it implies

h0 ´ 1 ď 0 and hence h ď 0. Therefore eh ď 1 i.e. |f0| ď 1. Since

plog δqph0pyq ´ 1q ą plog δq

ˆ

logpδ ´ 1q

log δ
´ 1

˙

“ logp1´ εq,

therefore

|f0pyq| “ eplog δqph0pyq´1q
ą elogp1´εq

“ 1´ ε.

In KzU , g ” 0 and hence h0 ď 0 and plog δqph0 ´ 1q ď ´ log δ “ log ε. This implies

|f0| “ eplog δqph0pyq´1q ď elog ε “ ε in KzU .

Corollary 6.2.6. If K is metrizable compact Hausdorff space and A is a function algebra

in CCpKq, then the Choquet boundary BpA q coincides with the set of peak points for

A .

Proof. Since K is metrizable, tyu is a Gδ for all y P K. From the above theorem, assertion

pivq implies that y is a peak point for A . Hence, pivq implies pvq proves the required.

Example 6.2.7. This example is the motivation for the term boundary. Let D “ tz P
C : |z| ď 1u and consider the disk algebra ApDq “ tf P CCpDq : f is analytic in Du. We

claim that the Choquet boundary for ApDq coincides with its S̆ilov boundary and these

equal the boundary T “ tz P C : |z| “ 1u of D. Let z0 P C such that |z0| “ 1. Define

fpzq “ z ` z0, for all z P D. Clearly, f P ApDq. Now |fpz0q| “ 2. For any z P T,

|fpzq| “ |z ` z0| ă 2, since T is strictly convex and for any z P C with |z| ă 1, clearly
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|fpzq| ă 2. This implies z0 is a peak point for ApDq. Also, it follows from the maximum

modulus principle for analytic functions that no point in D can be a peak point for ApDq.
Since D is metrizable, by above corollary, the claim is proved.

Example 6.2.8. This is another example for the case when Choquet and S̆ilov boundaries

are different. Let M “ tf P ApDq : fp0q “ fp1qu, a closed subalgebra of ApDq. It

follows from the Maximum Modulus Principle that the Choquet boundary BpMq does

not contain 1, as BpMq and the set of peak points are same for this case. We claim that

BpMq “ Tzt1u. It remains to prove that for any z0 P Tzt1u, z0 is a peak point for M .

Let us recall the Condition (I) in Definition 6.2.3. Now choose ε ą 0 and a neighborhood

U of z0 in T.

Case 1: When |z0 ´ 1| ě 1.

Get f P ApDq such that |fpz0q| ą 1´ ε
2

and |f ||Ucă ε
2
.

Case 2: When |z0 ´ 1| ă 1.

Get f P ApDq such that |fpz0q| ą 1´ ε
2
|z0 ´ 1| and |f ||Uc ă

ε
2
|z0 ´ 1|.

Now define gpzq “ zpz´1q
|z0´1|

.fpzq. Clearly g PM and |gpz0q| ą 1´ ε, |g||Uc ă ε.

This shows z0 is a peak point for M and hence BpMq “ Tzt1u.

Remark 6.2.9. piq It is not generally true that the peak points and the Choquet

boundary coincide(in the metrizable case) for linear subspaces M of CCpKq which

are not algebras.

piiq One inclusion does hold; in the above Bishop-deLeeuw theorem, the proof of

piiiq implies pivq and pivq implies pvq did not use the fact that A is an algebra. For

any separating linear subspace, every peak point is in the Choquet boundary.

Figure 6.1

Now consider the following example:
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Example 6.2.10. Let K be the subset of the plane consisting of the convex hull of two

disjoint circles(figure 6.1) and let M be the complex-valued affine functions on K. Let

the four tangent points be p, q, r, s, denote the open arcs
"
pr and

"
qs as S1 and S2 and

denote the smaller circle as D1 and the bigger circle as D2.

Let x0 be any point on the open line segment joining p and q. Then there exists distinct

points y and z on the line segment such that x0 “
y`z

2
. For any f PM , fpx0q “

fpyq`fpzq
2

;

this implies fpx0q “
ş

K
fdp δy`δz

2
q, but δx0 ‰

δy`δz
2

. Hence, x0 R BpMq and hence is not a

peak point for M .

Consider any z0 P S1 Y S2 and the tangent line say ax ` by “ c for some a, b, c P R to

the point z0 as shown in the above figure. Then K Ă tx ` iy P C : ax ` by ď cu and

g : C Ñ R defined as gpx ` iyq “ ax ` by is a real linear functional. Without loss of

generality assume that c ą 0. Hence, g̃pzq “ gpzq ´ igpizq, is a complex linear functional.

Now supzPK |g̃pzq| “ supzPK |gpzq|. Hence the maximum of g̃ is same as that of g. Now

g̃pz0q “ |g̃pz0q|e
iθ, ie. e´iθg̃pz0q “ |g̃pz0q| ě |gpz0q| “ supK gpzq “ c. Consider the linear

functional e´iθg̃pzq, which is affine on K and |e´iθg̃pzq| “ |g̃pzq| ď c. Hence, z0 is a peak

point for M .

Now suppose p is not in the Choquet boundary for M . This implies δp R extpKpMqq.

Therefore there exists z1, z2 P S1YS2 such that δp “
δz1`δz2

2
. This implies p “ z1`z2

2
which

is a contradiction since p lies on the boundary of the circle. This implies p is in BpMq.

Similarly, the remaining tangent points also lie in the Choquet boundary for M .

Suppose p is a peak point for M . Then we will get f P M such that |fpxq| ă |fppq|,

for x P Kztpu. Now fppq “ |fppq|eiθ, define hpzq “ Repe´iθfpzqq, then |hpzq| ď |fpzq|,

for all z P C and hppq “ |fppq| “ supK |fpzq|. That is h is a real linear functional on

C which attains its supremum over a smooth surface K at p. It shows that h must be

the tangent to the surface. Hence h must coincide with the line segment pq. That is

|fppq| “ hppq “ hpqq ď |fpqq| ă |fppq|, a contradiction. Hence such an f does not exist.

Therefore, p is not a peak point for M .

Therefore, we get that BpMq is precisely S1YS2Ytp, q, r, su and p, q, r, s are not the peak

points for M . Observe that in this example, the peak points are dense in BpMq. This

is true in general and is a corollary to the following classical result concerning Banach

spaces.

Definition 6.2.11 (Smooth point). Let E be a Banach space and S denote the unit

sphere of E. A point x P S is said to be a smooth point of the unit sphere of E if there

exists unique f P E˚ such that fpxq “ 1 “ }f}8.

Let us recall the smoothness in a normed linear space. See Appendix A.
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Proposition 6.2.12 (S. Mazur). Let E be a separable real(or complex) Banach space

and let S “ tx P E : }x} “ 1u denote the unit sphere of E. Then the smooth points of S

form a dense Gδ subset of S.

Proof. Let us denote the set of smooth points of S by smS. We know that the dual of

E as a real space is isometrically isomorphic to the dual of E, where E is considered as

a real space and hence in the case of a complex space, we will consider it as a real space

and smS is unchanged. We will show that smS is a countable intersection of dense open

subsets of S; since S is a complete metric space, the Baire category theorem wil give the

desired conclusion.

Let txnu be a dense sequence in S. Let m,n P N. Define Dmn “ tx P S : whenever f, g P

E˚ satisfy }f} “ fpxq “ 1 “ gpxq “ }g}, fpxnq ´ gpxnq ă m´1u. We first prove that

smS “
Ş

m,nPNDmn. Clearly, smS Ă
Ş

m,nPNDmn. Let x R smS. Then there exists

two distinct f, g P E˚ such that }f} “ fpxq “ 1 “ gpxq “ }g}. Since f ‰ g, for some

large enough n,m P N, fpxnq ´ gpxnq ě m´1. This implies x R Dmn. This proves

smS “
Ş

m,nPNDmn.

Next we prove SzDmn is closed in S. Suppose that pykq Ă SzDmn and yk Ñ y. For each

k P N, choose functions fk, gk P E
˚ such that }fk} “ fkpykq “ 1 “ gkpykq “ }gk} and

fkpxnq ´ gkpxnq ě m´1. By Banach Alaoglu theorem, there exists convergent subnets of

tfku and tgku say tfαu and tgαu respectively such that fα
w˚
ÝÝÑ f and gα

w˚
ÝÝÑ g. Clearly,

fpxnq ´ gpxnq ě m´1. Given ε ą 0, for all α greater than(w.r.t the ordering) some α0,

|fpyq ´ 1| ď |fpyq ´ fαpyq| ` |fαpyq ´ fαpyαq| ă |fpyq ´ fαpyq| ` }fα}}y ´ yα} ă ε.

This implies fpyq “ 1. Similarly, we can prove gpyq “ 1. Since w˚ convergence implies

norm convergence and |}fα} ´ }f}| ď }fα ´ f}, we get }f} “ 1 “ }g}. This implies

y P SzDmn. Hence SzDmn is closed in S.

It remains to show that each set Dmn is dense in S. Suppose not; then for some m,n P N,

we can choose y P S and δ ą 0 such that }x ´ y} ă δ and }x} “ 1 imply x R Dmn.

Let y1 “ y. Then choose f1, g1 P E
˚ such that f1py1q “ }f1} “ 1 “ }g1} “ g1py1q and

f1pxnq ě m´1 ` g1pxnq. We will proceed by induction to define a sequence tyku in S and

corresponding functionals fk, gk P E
˚ such that }y1 ´ yk} ă p1 ´ 2´kqδ, }fk} “ fkpykq “

1 “ gkpykq “ }gk} and fkpxnq ě km´1 ` g1pxnq. Since fkpxnq ď 1, this implies for each

k P N, 1 ě km´1 ` g1pxnq, which gives us a contradiction. Suppose we have chosen yk

which has the above properties. We define yk`1 “ yk ` αxn{}yk ` αxn}, where α ą 0 is

chosen to be small enough so that }yk ´ yk`1} ă 2´k´1δ. Clearly }yk`1} “ 1. Also

}y1 ´ yk`1} ă p1´ 2´kqδ ` }yk ´ yk`1} ă p1´ 2´k´1
qδ ă δ.
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It follows that yk`1 R Dmn. Therefore there exists fk`1, gk`1 P E
˚ such that }fk`1} “

fk`1pyk`1q “ 1 “ }gk`1} “ gk`1pyk`1q and fk`1pxnq ě m´1 ` gk`1pxnq. Now

1 “ }yk`1} ě fkpyk`1q “ r1` αfkpxnqs{}yk ` αxn}.

Since gk`1pyk`1q “ 1 ě gk`1pykq, we have

}yk ` αxn} “ gk`1pyk ` αxnq ď 1` αgk`1pxnq.

Combining the above facts we get the following,

fk`1pxnq ě m´1
` gk`1pxnq ě m´1

` fkpxnq ě pk ` 1qm´1
` g1pxnq.

This completes the proof.

Corollary 6.2.13. Suppose K is a compact metrizable space and M is a uniformly closed

separating subspace of CCpKq(or of CRpKq) which contains the constant functions. Then

the peak points for M are dense in the Choquet boundary for M .

Proof. Let P be the set of y P K such that there exists a smooth point f of the unit

sphere of M such that fpyq “ }f}8. Let y P P . Then there exists a smooth point

f of the unit sphere of M such that fpyq “ }f}8. Suppose fpxq “ fpyq, for some

x ‰ y. Then we have δxpfq “ δypfq “ 1 “ }f}8, which is a contradiction to the

fact that f is a smooth point of the unit sphere of M . This implies every point of

P is a peak point for M . Now P will be dense in BpMq if φpP q is a w˚ dense in

extpKpMqq. Suppose KpMq is the w˚-closed convex hull of φpP q. Then by the partial

converse of Krein-Milman theorem, extpKpMqq Ă φpP q
w˚

which implies BpMq Ă P and

hence the claim. Suppose KpMq is not the w˚-closed convex hull of φpP q then there

exists L P KpMqzconvw
˚

pφpP qq. Then by Hahn Banach theorem, there exists g P M

with }g} “ 1 such that pRe gqpLq ą suppRe gqpP q. By above theorem, the smooth points

are uniformly dense in the unit sphere of M and hence there would exist a smooth point

f satisfying the above same inequality. Then we get

}f}8 ě Lpfq ą suppfqpP q “ }f}8,

which is a contradiction. This completes the proof.
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6.3 Choquet Boundary and approximation theory

Many of the classical approximation theory can be formulated in terms of convergence of

a sequence of linear operators to the identity operator. To illustrate this, let us consider

the Bernstein polynomials. For each n P N, define the operator Bn on Cr0, 1s. For

f P Cr0, 1s,

Bnf “
n
ÿ

k“0

ˆ

n

k

˙

f

ˆ

k

n

˙

xkp1´ xqn´k, x P r0, 1s.

Bernstein proved that Bnf converges uniformly to f , which gives a constructive proof of

the Weierstrass approximation theorem. Now note that for each n P N. whenever f ě 0,

Bnf ě 0 which implies Bn is a positive operator on Cr0, 1s, for each n P N. Observing

this fact, P. Korovkin proved the following interesting result.

Theorem 6.3.1 (Korovkin). Suppose that pTnqnPN is a sequence of positive operators

from Cr0, 1s into itself with the property that pTnfq converges uniformly to f for the

three functions fpxq “ xk, for k “ 0, 1, 2. Then pTnfq converges uniformly to f for every

f P Cr0, 1s.

A new proof through inequalities of the above Theorem can be found in [13].

We mention two sets of positive linear operators on CRr0, 1s which approximate identity.

A routine verification ensures that these two sets of operators satisfy the stated conditions

in Theorem 6.3.1.

Example 6.3.2. paq The Bernstein operators: pBnq
8
n“1 where Bn : CRr0, 1s Ñ

CRr0, 1s be defined by Bnpfq “
řn
k“0

`

n
k

˘

fp k
n
qxkp1 ´ xqn´k. A routine verification

of the Binomial Theorem guarantees that pBnfq converges to f uniformly on r0, 1s

where f “ 1, x, x2.

pbq The operators induced by the Schauder basis of CRr0, 1s: Define a sequence

psnq
8
n“0 Ă CRr0, 1s as follows: For each n P N, there exists m P N such that

2m´1 ă n ď 2m, then define-

snptq “

$

’

&

’

%

2m
`

t´ 2n´2
2m

´ 1
˘

if 2n´2
2m

´ 1 ď t ď 2n´1
2m

´ 1

p1´ 2mq
`

t´
`

2n´1
2m

´ 1
˘˘

if 2n´1
2m

´ 1 ď t ď 2n
2m
´ 1

0 otherwise

(6.3)

The sequence psnq are called Schauder basis of CRr0, 1s. For f P Cr0, 1s, define

another sequence ppnq
8
n“0 as follows:

p0 “ fp0qs0

p1 “ p0 ` pfp1q ´ p0p1qqs1

p2 “ p1 ` pfp1{2q ´ p1p1{2qqs2
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p3 “ p2 ` pfp1{4q ´ p2p1{4qqs3

p4 “ p3 ` pfp3{4q ´ p3p3{4qqs4 and so on.

Hence for each n ě 0, there exists α1, α2, . . . , αn P R such that pn “
řn
i“0 αisi.

Define Pn : Cr0, 1s Ñ Cr0, 1s as for each f P Cr0, 1s, Pnf “ pn. Clearly each Pn is a

positive operator on Cr0, 1s. It is easy to verify that pPnfq converges to f uniformly

on r0, 1s when f “ 1, x, x2.

Definition 6.3.3 (Korovkin set). Let K be a compact Hausdorff space. Let M be

a subset of CRpKq such that for any countable family of positive operators pTnqnPN,

whenever for each g PM , Tng Ñ g( i.e. Tng converges to g uniformly), we have Tnf Ñ f ,

for each f P CRpKq. Then M is said to be Korovkin set of CRpKq.

Remark 6.3.4. Let M Ă CRpKq. M is a Korovkin set of CRpKq if and only if the linear

span of M is a Korovkin set of CRpKq.

Remark 6.3.5. Let K “ r0, 1s. Let x0 be an arbitrary point in r0, 1s. Now, by Korovkin’s

theorem and earlier remark, M “ spant1, x, x2u is a Korovkin set of Cr0, 1s. Consider

fpxq “ 1 ´ px ´ x0q
2, for all x P r0, 1s. Clearly f P M and attains its supremum only at

x0 and hence x0 is a peak point for M . This implies BpMq “ r0, 1s. This leads us to the

main theorem of this Chapter.

Theorem 6.3.6 (Šaškin). Let K be a metrizable compact space and M be a linear

subspace of CRpKq which contains 1 and separates points of K. Then M is a Korovkin

set of CRpKq if and only if the Choquet boundary BpMq for M is all of K.

Proof. Assume that M is a Korovkin set of CRpKq. To prove BpMq “ K, using Theo-

rem 6.1.4, it is enough to prove that for any t P K, µ “ δt is the only probability measure

on K such that µpgq “ gptq, for all g PM . Let t P K and µ be a probability measure on K

such that µpgq “ gptq, for all g PM . Since K is metrizable space, we can choose a decreas-

ing sequence of open sets pUnqnPN such that
Ş

nPN Un “ ttu. By Urysohn’s lemma, for each

n P N, there exists gn P CRpKq such that 0 ď gn ď 1, gnptq “ 1 and gn “ 0 in U c
n. For each

n P N, define Tn as Tnf “ µpfqgn ` p1´ gnqf , for each f P CRpKq. Clearly Tn is a linear

operator on CRpKq and Tnp1q “ 1. Since µ is a probability measure on K and 0 ď gn ď 1,

whenever f ě 0, Tnf ě 0, which implies Tn is a positive operator on CRpKq. Also }Tnf} ď

}µ}}f}8}gn}8`p1`}gn}8q}f}8 ď }f}8`2}f}8 “ 3}f}8, which implies }Tn} ď 3. Hence,

Tn is a linear bounded operator on CRpKq, for each n P N. Let g P M and ε ą 0, then

there exists N P N such that |gptq ´ gpyq| ă ε, for all y P UN . This is because g P CRpKq

and hence there exists N P N such that t P UN Ă g´1ppgptq´ ε, gptq` εqq. Let x P K, then

for all n ą N , |Tngpxq´gpxq| “ |µpgq´gpxq||gnpxq| “ |gptq´gpxq||gnpxq|. Now if x P UN ,

then |Tngpxq ´ gpxq| “ |gptq ´ gpxq||gnpxq| ă ε and if x R UN , |Tngpxq ´ gpxq| “ 0. This

implies for each g P M , }Tng ´ g}8 Ñ 0 as n Ñ 8. Since M is Korovkin set of CRpKq,

for each f P CRpKq, }Tnf ´ f}8 Ñ 0 as n Ñ 8. This implies Tnfptq Ñ fptq as n Ñ 8.
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Now, for each n P N, Tnfptq “ µpfq. Hence µpfq “ fptq, for all f P CRpKq. This implies

µ “ δt.

Conversely, let tTnunPN be a family of positive operators on CRpKq such that for each

g P M , Tng Ñ g as n Ñ 8. Let f P CRpKq. In order to show that }Tnf ´ f}8 Ñ

0, it suffices to show that every subsequence of t}Tnf ´ f}8u itself has a subsequence

which converges to 0. For simplicity of notation, assume that t}Tnf ´ f}8u is the initial

subsequence and for each n P N, choose xn P K such that }Tnf´f}8 “ |Tnfpxnq´fpxnq|.

Since K is compact, by taking a further subsequence, we can assume that xn Ñ x, for

some x P K. For each n P N, define Ln : CRpKq Ñ R as Lnpgq “ Tngpxnq. Clearly

Ln is a linear functional on CRpKq and also |Lnpgq| ď }Tn}}g}8, which implies Ln is

bounded. Also whenever g ě 0, since Tn is a positive operator on CRpKq, Lnpgq ě 0.

Hence, Ln PM
`pKq. As 1 PM , |Tn1pxnq ´ 1pxnq| ď }Tnp1q ´ 1}8 Ñ 0. Hence, Ln1 Ñ 1.

Without loss of generality assume that Ln1 ą 0, for all n P N. For any f P CRpKq such

that }f}8 ď 1, 1 ´ f ě 0 and hence Ln1 ě Lnf . This implies } Ln
Ln1
} ď 1. Therefore,

µn “
Ln
Ln1

P PpKq. Since K is metrizable, CRpKq is separable. This implies pBMpKq, w
˚q

and hence pPpKq, w˚q is metrizable compact space. Therefore tµnu has a convergent

subsequence say µnk Ñ µ, for some µ P PpKq. Let g PM . Then

|Tnkgpxnkq´gpxq| ď |Tnkgpxnkq´gpxnkq|`|gpxnkq´gpxq| ď }Tnkg´g}8`|gpxnkq´gpxq| Ñ 0,

since }Tnkg ´ g}8 Ñ 0, by assumption and |gpxnkq ´ gpxq| Ñ 0 because g P CRpKq and

xn Ñ x. Therefore we get that |Lnkg ´ gpxq| Ñ 0. Now, consider

|µnkpgq ´ gpxq| “

ˇ

ˇ

ˇ

ˇ

Lnkg

Lnk1
´ gpxq

ˇ

ˇ

ˇ

ˇ

“

ˆ

1

Lnk1

˙

|Lnkg ´ gpxq| `

ˇ

ˇ

ˇ

ˇ

gpxq

Lnk1
´ gpxq

ˇ

ˇ

ˇ

ˇ

.

As k Ñ 8, |Lnkg ´ gpxq| Ñ 0 and Lnk1 Ñ 1, hence |µnkpgq ´ gpxq| Ñ 0, which implies

µnkpgq Ñ gpxq but µnkpgq Ñ µpgq. Therefore, µpgq “ gpxq, for all g P M . Since

x P BpMq “ K, µ “ δx, i.e.
Lnk
Lnk1

w˚
ÝÝÑ δx. Consider

}Tnkf ´ f}8 ď |Tnkfpxnkq ´ fpxq| ` |fpxq ´ fpxnkq|

ă Lnk1

ˇ

ˇ

ˇ

ˇ

Tnkfpxnkq

Lnk1
´ fpxq

ˇ

ˇ

ˇ

ˇ

` |Lnk1.fpxq ´ fpxq| ` |fpxq ´ fpxnkq|.
(6.4)

As k Ñ 8,
Lnkf

Lnk1
Ñ fpxq and Lnk1 Ñ 1, }Tnkf ´ f} Ñ 0. This completes the proof.
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Convexity and Smoothness

A.1 Convexity in a topological vector space

Definition A.1.1. (Extreme points)

paq Let K be a compact convex subset of a topological vector space (tvs for short)

E. A point x P K is said to be an extreme point of K if there does not exist y, z P K

such that x “ λy ` p1´ λqz, for some λ P p0, 1q.

pbq A normed linear space X is said to be strictly convex if for every x P SX , x is an

extreme point of BX .

A.1.1 Characterizations

Proposition A.1.2. Let K be a closed, bounded and convex subset of a tvs X. Then

the following are equivalent.

paq x P K is an extreme point.

pbq Kztxu is convex set in X.

pcq there does not exist y, z P Kztxu such that x “ y`z
2

.

A.1.2 Extreme set(or Face)

Definition A.1.3. (Extreme set) Let X be a tvs, K Ď X be a compact convex subset

and F Ď K be closed and convex. F is said to be an extreme set or face of K if for every

x, y P K, λx` p1´ λqy P X, for some λ P p0, 1q would imply x, y P K.

78
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Remark A.1.4. paq If Y is a subspace of a normed linear space X and y˚ P SY ˚ ,

then HBpy˚q “ tx˚ P SX˚ : x˚|Y “ y˚u is an extreme subset of BX˚ .

pbq If F is an extreme subset of BX and x P F is an extreme point of F , then x is

an extreme point of BX .

A.2 Smoothness in a Normed Linear Space

Let us recall the following definition of differentiability in Rn.

Definition A.2.1. Let f : Rn Ñ Rm and x0 P Rn be nonzero. f is said to be differentiable

at x0 if there exists a linear T : Rn Ñ Rm such that fpx0 ` yq “ fpx0q ` T pyq ` εpyq,

where y P Rn and }εpyq}
}y}

Ñ 0 as }y} Ñ 0.

The linear map T is called the derivative of f at x0 and is denoted by f 1px0q. Let us

recall that a norm function on a finite dimensional vector space can be considered as a

continuous convex function and the smoothness of this function at a non-zero x0 can be

interpreted as the existence of a unique tangent plane passing through the point x0 at

the level surface tx P Rn : }x} “ }x0}u.

The following result motivates us to define the notion of differentiability in a normed

space X.

Proposition A.2.2. Let f : Rn Ñ R be defined as fpxq “ }x} and x0 P Rnzt0u. f is

differentiable at x0 if and only if there exists a unique linear functional Λ : Rn Ñ R such

that Λpx0q “ }x0} and }Λ} “ 1.

Proof. Suppose f is differentiable at x0. We know that f
1

px0q is a linear map on Rn. We

will show that f
1

px0qpx0q “ }x0} and }f
1

px0q} “ 1. We know that

fpx0 ` yq “ fpx0q ` f
1

px0qpyq ` εpyq,

where εpyq P R such that |εpyq|
}y}

Ñ 0 as }y} Ñ 0. Now choose y “ tx0 for t ą 0, then as

tŒ 0, }y} Ñ 0. Hence,

fpx0 ` tx0q “ fpx0q ` f
1

px0qptx0q ` εptx0q,

that is,

}px0p1` tq} “ }px0q} ` tf
1

px0qpx0q ` εptx0q.
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Simplifying the above equation we get,

}x0} ´ f
1

px0qpx0q “
εptx0q

t
“
εptx0q

}tx0}
}x0}.

Therefore,
ˇ

ˇ}x0} ´ f
1

px0qpx0q
ˇ

ˇ “
|εptx0q|
}tx0}

.}x0} Ñ 0 as t Ñ 0. This implies f
1

px0qpx0q “

}x0}.

Now for any y P Rn and t ą 0, }x0 ` ty} “ }x0} ` tf
1

px0qpyq ` εptyq. Then by triangle

inequality,

}x0} ` t}y} ě }x0} ` tf
1

px0qpyq ` εptyq.

Thus,

t}y} ě tf
1

px0qpyq ` εptyq,

that is,

}y} ě f
1

px0qpyq `
εptyq

}ty}
}y} “ f

1

px0qpyq `
|εptyq|

}ty}
}y}.

Since |εptyq|
}ty}

can be made arbitrarily small, we have }y} ě f
1

px0qpyq. Hence, }f
1

px0q} ď 1

and also we proved f
1

px0qpx0q “ }x0}, which implies }f
1

px0q} “ 1.

Conversely, assume that there exists a unique linear functional Λ on Rn such that Λpx0q “

}x0} and }Λ} “ 1. We will show that for every y P Rn, limtÑ0
}x0`ty}´}x0}

t
exists. Since }.}

is a convex function, both

lim
tÑ0`

}x0 ` ty} ´ }x0}

t
and lim

sÑ0´

}x0 ` sy} ´ }x0}

s
exist.

Also, define for every y P Rn,

ppyq “ lim
tÑ0`

}x0 ` ty} ´ }x0}

t
ě lim

sÑ0´

}x0 ` sy} ´ }x0}

s
“ qpyq.

We now claim that p : Rn Ñ R and q : Rn Ñ R are sublinear and superlinear functionals

respectively. Let y1, y2 P Rn and α ą 0. Then we have,

ppy1 ` y2q “ lim
tÑ0`

}x0 ` tpy1 ` y2q} ´ }x0}

t

“ lim
tÑ0`

}2x0 ` 2tpy1 ` y2q} ´ }2x0}

2t

ď lim
tÑ0`

}x0 ` 2ty1} ´ }x0}

2t
` lim

tÑ0`

}x0 ` 2ty2} ´ }x0}

2t

“ ppy1q ` ppy2q.

(A.1)
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and

ppαy1q “ lim
tÑ0`

}x0 ` tpαy1q} ´ }x0}

t

“ lim
sÑ0`

αp}x0 ` sy1} ´ }x0}q

s

“ αppy1q.

(A.2)

Hence, p is a sublinear functional on Rn. Now, clearly, pp´yq “ ´qpyq, for any y P Rn

and hence q is superlinear functional on Rn.

Let y P Rn. Now for any ppyq ě t ě qpyq, we can define Φ : spantyu Ñ R as Φpαyq “ tα.

Then, clearly Φ is linear functional on spantyu. Now whenever α ě 0, Φpαyq ď ppαyq,

for any y P Rn. For any y P Rn, Φp´yq “ ´t ă ´qpyq “ pp´yq and hence whenever

α ă 0, Φpαyq ď ppαyq. This implies Φ is a linear functional on spantyu dominated by the

sublinear functional p. Therefore by Hahn Banach theorem, Φ can be extended to Rn,

which is also dominated by p. Since ppx0q “ }x0} “ qpx0q, Φpx0q “ }x0}. Now for some

y P Rn, suppose ppyq ą t1 ‰ t2 ą qpyq, then there exists two distinct linear functionals

on spantyu and finally by Hahn Banach theorem, two distinct linear functionals on Rn,

which contradicts the uniqueness of the given Λ.

Definition A.2.3. A normed linear space X is said to be smooth at x0 P Rn if there

exists unique x˚ P SX˚ such that x˚px0q “ }x0}.

Remark A.2.4. paq Let X be a normed linear space and f : X Ñ R be a convex

function. If the partial derivatives exist in all direction y P SX at x0 then f is

differentiable at x0.

pbq Many other notions of differentiability are also available in the literature. The

notion defined in Definition A.2.3 is called Gâteaux differentiability. The other

notions like Fréchet differentiability, Uniformly Gâteaux differentiability, Uniformly

Fréchet differentiability, etc are all strengthenings of Definition A.2.3. All these

notions are equivalent under the assumption that the unit sphere is norm-compact.
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Weak and Weak* Topologies

Definition B.0.1. Let E be any tvs over a field F. Let Σ “ pfiqiPI be a collection of

linear functionals on E. For any finite sub-collection pfijq
n
j“1 of Σ and ε ą 0, let

W pfi1 , fi2 , ..., fin , εq :“
n
č

j“1

tx P E : |fijpxq| ă εu.

Then, the collection,

B “ tW pfi1 , fi2 , ..., fin , εq : pfijq
n
j“1 Ă Σ and ε ą 0u

forms a basis of E.

For any x0 P E, one can define the neighbourhood system at x0 as follows,

tW pfi1 , fi2 , . . . , fin , εq ` x0 : W pfi1 , fi2 , . . . , fin , εq P Bu.

Then there exists a unique topology τ on E for which B is a neighborhood base of 0 and

τ is the smallest such topology on E such that the functionals in Σ are continuous.

Suppose X is a normed linear space. With these notations defined above, the topology

defined on X˚˚ is said to be weak˚ topology if Σ “ X˚ and E “ X˚˚ and is denoted

by σpX˚˚, X˚q. The corresponding subspace topology on X viz. σpX˚˚, X˚q|X is called

the weak topology on X. If there is no chance of confusion, we denote the topology

σpX˚˚, X˚q on X˚˚ by pX˚˚, w˚q and σpX˚˚, X˚q|X by pX,wq.
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B.1 Basic Properties

Proposition B.1.1. Let pX, ||.||q be an infinite dimensional NLS. Then, the weak topol-

ogy on X is not first countable.

Proof. Suppose pX,wq is first countable. Let f P X˚. Consider,

0 P tx P X : |fpxq| ă εu P w.

Since X is first countable, there exists f1, f2, ..., fn P X
˚ such that

W pf1, f2, ..., fn, εq Ď tx P X : |fpxq| ă εu.

This implies that,

n
č

i“1

tx P X : |fipxq| ă εu Ď tx P X : |fpxq| ă εu. (B.1)

Claim :
Şn
i“1 kerpfiq Ď kerpfq.

Let x P
Şn
i“1 kerpfiq. Since f 1is are linear functionals on X, for any n P N, nx P

Şn
i“1 kerpfiq. This implies that nx P

Şn
i“1tx P X : |fipxq| ă εu. Hence, from (B.1),

nx P tx P X : |fpxq| ă εu. Thus, for all n P N, |fpnxq| ă ε. This implies for all n P N,

|fpxq| ă ε
n
. Therefore, fpxq “ 0. This implies that x P kerpfq.

Claim : There exists α1, α2, ..., αn P F such that f “
řn
i“1 αifi.

Define ψ : X Ñ Fn as ψpxq “ pf1pxq, f2pxq, ..., fnpxqq. Clearly, ψ is a linear map, since

f1, f2, ..., fn are linear functionals on X. Hence, ψpXq is a subspace of Fn. Now, define

ρ : ψpXq Ñ F as ρppf1pxq, f2pxq, ..., fnpxqqq “ fpxq.

Then, clearly, ρ is well-defined and a linear functional on Fn, since from above claim
Şn
i“1 kerpfiq Ď kerpfq.

Since ψpXq is a subspace of Fn, ρ can be extended linearly to Fn. Let the extension

be rρ : Fn Ñ F. This implies that there exists α1, α2, ..., αn P F such that for any

px1, x2, ..., xnq P Fn,

rρppx1, x2, ..., xnqq “
n
ÿ

i“1

αixi.

Thus, for any x P X,

ρppf1pxq, f2pxq, ..., fnpxqqq “ rρppf1pxq, f2pxq, ..., fnpxqqq “
n
ÿ

i“1

αifipxq.
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Hence, by definition of ρ, for any x P X, fpxq “
řn
i“1 αifipxq. Hence the claim follows.

Therefore, the above claims are true for any f P X˚. This implies that we will get a

collection of linear functionals such that pfiqiPN.

Let Zn “ spantfi : i “ 1, 2, ..., nu Ď X˚. Since each Zn is a proper subspace of X˚, each

Zn is closed in X˚ and hence, intpZnq “ φ. Also, X˚ “
Ť8

n“1 Zn. However, this is a

contradiction to the Baire Category theorem, since X˚ is complete.

Hence, our assumption was wrong. This implies that the weak topology on X is not first

countable.

Remark B.1.2. piq If X is an infinite dimensional NLS, then neither σpX˚˚, X˚q

nor σpX˚˚, X˚q|X are first countable.

piiq If X is infinite dimensional then both }.} : pX˚˚, σpX˚˚, X˚qq Ñ R and }.} :

pX, σpX˚˚, X˚q|Xq Ñ R are lower semi continuous.

piiiq With these notations defined above, the set of continuous linear functionals

on pX, σpX˚˚, X˚q|Xq is X˚ and the set of continuous linear functionals on

pX˚, σpX˚, Xqq is X.

B.1.1 Banach-Alaoglu Theorem

It is well known in infinite dimensional case that the norm topology cannot allow the

closed unit ball to be compact but the situation can occur in a weaker topology.

Theorem B.1.3. Let pX, ||.||q be any normed linear space over a field F. Then, pBX˚ , w
˚q

is compact, where BX˚ “ tf P X
˚ : ||f || ď 1u.

Proposition B.1.4. Let X be any separable infinite dimensional normed linear space.

Then pBX˚ , w
˚q is metrizable.

Proof. Let pxnq be a countable dense subset of SX . Define d : BX˚ ˆBX˚ Ñ r0,8q such

that

dpx˚, y˚q “
8
ÿ

n“1

2´n
|px˚ ´ y˚qpxnq|

1` |px˚ ´ y˚qpxnq|
.

Clearly, d is well-defined map since the series in RHS is uniformly convergent by Weierstrass-

M test. It is also clear that for any x˚, y˚ P X˚, dpx˚, y˚q ě 0. Let x˚, y˚ P X˚. Then,

dpx˚, y˚q “
8
ÿ

n“1

2´n
|px˚ ´ y˚qpxnq|

1` |px˚ ´ y˚qpxnq|
“

8
ÿ

n“1

2´n
|py˚ ´ x˚qpxnq|

1` |py˚ ´ x˚qpxnq|
“ dpy˚, x˚q.
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Let x˚, y˚, z˚ P X˚ and k P N. We know that pr0,8q, |.|q is a metric space and hence

pr0,8q, |.|
1`|.|

q is also a metric space. Then,

k
ÿ

n“1

2´n
|px˚ ´ y˚qpxnq|

1` |px˚ ´ y˚qpxnq|
ď

k
ÿ

n“1

2´n
|px˚ ´ z˚qpxnq|

1` |px˚ ´ z˚qpxnq|
`

k
ÿ

n“1

2´n
|pz˚ ´ y˚qpxnq|

1` |pz˚ ´ y˚qpxnq|
.

This implies for all k P N,

k
ÿ

n“1

2´n
|px˚ ´ y˚qpxnq|

1` |px˚ ´ y˚qpxnq|
ď dpx˚, z˚q ` dpz˚, y˚q.

Hence,

dpx˚, y˚q ď dpx˚, z˚q ` dpz˚, y˚q.

Therefore, d is a metric.

Now consider the identity map I : pBX˚ , w
˚q Ñ pBX˚ , dq. Let px˚αq be a net in pBX˚ , w

˚q

such that x˚α
w˚
ÝÝÑ x˚0 . Then, for every x P X, x˚αpxq Ñ x˚0pxq in pR, |.|q. In particular, for

any n P N, x˚αpxnq Ñ x˚0pxnq. This implies,

lim
α

|px˚α ´ x
˚
0qpxnq|

1` |px˚α ´ x
˚
0qpxnq|

“ 0.

Therefore, since
ř8

n“1 2´n
|px˚α´x

˚
0 qpxnq|

1`|px˚α´x
˚
0 qpxnq|

is uniformly convergent in r0,8q,

lim
α

8
ÿ

n“1

2´n
|px˚α ´ x

˚
0qpxnq|

1` |px˚α ´ x
˚
0qpxnq|

“

8
ÿ

n“1

2´n lim
α

|px˚α ´ x
˚
0qpxnq|

1` |px˚α ´ x
˚
0qpxnq|

“ 0.

Hence, limα dpx
˚
α, x

˚
0q “ 0. This implies in pBX˚ , dq, Idpx

˚
αq Ñ Idpx˚0q.

Therefore, I is continuous on pBX˚ , w
˚q. Moreover, pBX˚ , w

˚q is compact and pBX˚ , dq

is Hausdorff. As a result, I is homeomorphism. Therefore, pBX˚ , w
˚q is a metrizable

compact convex subset of a non-metrizable lctvs pX˚, w˚q.



Appendix C

On some basic results in Measure

Theory

Let pX, τq be any topological space and M be the Borel σ-algebra over X. Let µ be a

measure on pX,Mq and E PM. Then µ is said to be,

Outer Regular if µpEq “ inftµpUq : U is open and E Ď Uu, @ E.

Inner Regular if µpEq “ suptµpKq : K is compact and K Ď Eu, @ E with µpEq ă 8.

The measure µ is said to be Regular if it is both Inner and Outer Regular. A complex

measure µ on K is said to be Regular if the positive measure |µ| is Regular. Here

|µ|pEq :“ supΓ

ř8

n“1 |µpEnq|,where Γ “ ttEnu
8
n“1 : \8n“1En “ Eu.

Let K be any compact Hausdorff space and MpKq be the space of all regular Borel

Complex measure on K. For any µ P MpKq, define ||µ|| :“ |µ|pKq. Then, pMpKq, ||.||q

forms a normed linear space over C. }µ} is called the total variation norm of µ.

Analogous structure can be obtained if the underlying scalar field is R. MpKq is the

space of all finite Signed measure in this case.

C.1 Riesz Representation Theorem

Let CpKq be the space of all Complex(or Real) valued continuous functions on K. The

underlying scalar field would be understood from the context.

Theorem C.1.1 (Riesz Representation Theorem). Let K be a compact Hausdorff space

and L : pCpKq, ||.||8q Ñ CpRq be a bounded linear functional. Then, there exists a
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unique Complex (Signed) measure µ in pK,Mq such that for all f P CpKq,

Lpfq “

ż

K

fdµ.

Remark C.1.2. paq The association L ÞÑ µ is an isometric isomorphism.

pbq For t P K, the Dirac measure (µ “qδt PMpKq and
ş

K
fdµ “ fptq.

C.2 Probability measure

Definition C.2.1. (Probability measure) Let K be a compact Hausdroff space. A mea-

sure µ PMpKq is called probability measure if µ is a positive measure and ||µ|| “ 1.

Notation:

paq Let PpKq denotes the set of all probability measures on K.

pbq Let M`pKq denotes the class of all positive measure in pMpKq, ||.||q.

Proposition C.2.2. paq PpKq “ tν PMpKq : ||ν|| “ 1 and
ş

K
1dν “ 1u.

pbq PpKq is a w˚-compact convex subset of MpKq. PpKq is also a face of BMpKq.

pcq For any t P K, the Dirac measure δt is an extreme point of PpKq.

pdq extpBMpKqq “ tαδt : |α| “ 1, t P Ku.

Proof. paq. If ν P PpKq, then nothing to prove.

Conversely, assume
ş

K
1dν “ 1. Let dν “ hd|ν| be the polar decomposition of ν, where h

be a measurable function on K such that |h| ” 1 a.e rνs. This implies
ş

K
1dν “

ş

K
hd|ν|.

Thus,
ż

K

h`d|ν| ´

ż

K

h´d|ν| “ 1.

Now,
ˇ

ˇ

ˇ

ˇ

ż

K

h`d|ν|

ˇ

ˇ

ˇ

ˇ

ď

ż

K

|h`|d|ν| ď

ż

K

1d|ν| “ |ν|pKq “ 1.

Since
ş

K
h`d|ν| ą 0, we have

ş

K
h`d|ν| ď 1. Also,

ş

K
h´d|ν| ě 0. Therefore,

ż

K

hd|ν| “

ż

K

h`d|ν| “ 1 and

ż

K

h´d|ν| “ 0.

This implies h` ” 1 a.e. r|ν|s and h´ ” 0 a.e. r|ν|s. Hence, h “ h` ´ h´ ” 1 a.e. r|ν|s.

This implies ν “ |ν| Hence, ν is a positive measure and ||ν|| “ 1.
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pbq. It follows from paq that PpKq is w˚-compact. Let µ1, µ2 P BMpKq such that λµ1 `

p1 ´ λqµ2 P PpKq, for some λ P p0, 1q. Since ||λµ1 ` p1 ´ λqµ2|| “ 1, it follows that

||µ1s|| “ ||µ2|| “ 1. From result in (a),

λ

ż

K

dµ1 ` p1´ λq

ż

K

dµ2 “ 1.

Now,
ˇ

ˇ

ˇ

ˇ

ż

K

dµ1

ˇ

ˇ

ˇ

ˇ

ď

ż

K

d|µ1| “ |µ1|pKq “ ||µ1|| “ 1.

Similarly, we will get,
ˇ

ˇ

ş

K
dµ2

ˇ

ˇ ď 1. Hence,

ż

K

dµ1 “

ż

K

dµ2 “ 1.

This implies µ1, µ2 P PpKq. Therefore, PpKq is a face of BMpKq.

pcq. Let µ1, µ2 P PpKq such that

δt “
µ1 ` µ2

2
.

Suppose µ1 and µ2 are not Dirac measures. This implies S(µ1) is not singleton. Hence,

we can choose s P Spµ1q such that s ‰ t. Then by Urysohn’s lemma, there exists a

continuous function f : K ÝÑ r0, 1s such that fptq “ 0 and fpsq “ 1. Now, since

s P Spµ1q and fpsq “ 1, µ1pfq “
ş

K
fdµ1 ą 0. Also, since µ2 P PpKq, µ2 is a positive

measure. This implies
ş

K
fdµ2 ě 0. Now, δtpfq “ pµ1pfq ` µ2pfqq{2. Hence,

0 “ fptq “
1

2

ˆ
ż

K

fdµ1 `

ż

K

fdµ2

˙

ą 0.

which is a contradiction. This implies there exists x, y P K such that µ1 “ δx and µ2 “ δy.

Suppose x ‰ t. Now,

δtpttuq “
δxpttuq ` δypttuq

2
.

Hence, δypttuq “ 2, which is a contradiction. Similarly, we will arrive at a contradiction

if y ‰ t. Hence, x “ y “ t. Therefore, µ1 “ δt and µ2 “ δt. Hence, the Dirac measure δt

is an extreme point of PpKq.

As PpKq is a face of BMpKq, we have, extpPpKqq Ď extpBMpKq).

pdq. First we prove that for any α P F such that |α| “ 1 and t P K, µ :“ αδt is an extreme

point of BMpKq. Let B :“ BMpKq. Suppose there exists ν1, ν2 P B such that for some

λ P p0, 1q, µ “ λν1 ` p1´ λqν2. We want to prove that ν1 “ ν2 “ µ.
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Now, ||ν1s|| “ ||ν2|| “ 1. By definition of µ,

δt “ |µ| “ |λν1 ` p1´ λqν2| ď λ|ν1| ` p1´ λq|ν2|.

Now, let ν :“ λ|ν1| ` p1 ´ λq|ν2|. Hence, δt ď ν. In fact, δt “ ν because if E is any

measurable set containing t, then 1 “ δtpEq ď νpEq ď 1. On the other hand, if t is not

in E, then νpEq “ νpKq ´ νpKzEq “ 0. Hence, ν “ δt, that is, δt “ λ|ν1| ` p1 ´ λq|ν2|.

Now, |ν1| and |ν2| are probability measures and δt is extreme point of PpKq (from result

in (c)). Hence, |ν1| “ |ν2| “ δt.

Now, for i “ 1, 2, if E is any measurable set not containing t, then |νipEq| ď |νi|pEq “

δtpEq “ 0. Hence, νipEq “ 0. On the other hand, if E contains t, then νipEq “ νipKq ´

νipKzEq “ νipKq. Therefore, we have νi “ biδt, where bi “ νipKq and |νi|pKq “ |bi|δtpKq

implies |bi| “ 1.

Hence, by our assumption, we get, αδt “ pλb1 ` p1 ´ λqb2qδt, which gives us α “ λb1 `

p1 ´ λqb2. Since |b1| “ |b2| “ 1 and λ P p0, 1q, this implies, α “ b1 “ b2. Hence, we can

conclude that ν1 “ ν2 “ αδt.

Conversely, let µ be any extreme point of BMpKq. It is enough to show that S(µ) is

singleton. Suppose it is not the case. Let x, y P Spµq such that x ‰ y. Then, there exists

open sets U and V such that x P U and y P V and U X V “ φ. By Urysohn’s lemma,

there exists a continuous function f : K ÝÑ r0, 1s such that f |U “ 1 and f |V “ 0.

Consider, fdµ and p1´ fqdµ PMpKq. Let α “ ||fdµ||. Then,

α “

ż

K

|f |d|µ| “

ż

K

fd|µ| ď

ż

K

1d|µ| “ |µ|pKq “ ||µ|| ď 1.

Now, consider, 1´ α “ 1´
ş

K
fdµ “

ş

K
p1´ fqdµ “ ||p1´ fqdµ||. Now,

α “

ż

K

fd|µ| ě

ż

U

fd|µ| “

ż

U

d|µ| “ |µ|pUq ą 0.

Also, 1 ´ α “
ş

K
p1 ´ fqd|µ| ě

ş

V
p1 ´ fqd|µ| “

ş

V
1d|µ| “ |µ|pV q ą 0. Thus, α ă 1.

Hence, 0 ă α ă 1. Therefore, fdµ
α
, p1´fqdµ

α
P BMpKq. Now,

µ “ α

ˆ

fdµ

α

˙

` p1´ αq

ˆ

p1´ fqdµ

α

˙

.

Since µ is an extreme point of BMpKq, we have, µ “
fdµ
α
“

p1´fqdµ
α

. Thus, we get,

αdµ “ fdµ. This implies f ” α ă 1 a.e. rµs. But, f ” 1 on U and |µ|pUq ą 0, which is

not possible. Hence, Spµq is singleton. Thus, µ “ αδt, for some α P F such that |α| “ 1

and t P K.
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Preliminaries on Vector Lattice

Definition D.0.1. paq A vector space V over R is said to be an ordered vector space

if for any x, y, z P V and x ď y imply x ` z ď y ` z. If λ ě 0 then x ď y implies

λx ď λy.

pbq An ordered set pL,ďq is called a lattice if for each pair px, yq P LˆL, there exist

elements x _ y :“ lubtx, yu and x ^ y :“ glbtx, yu exist in L. If, in addition, the

distributive law

px_ yq ^ z “ px^ zq _ py ^ zq (D.1)

is satisfied for all x, y P L, L is called a distributive lattice.

A vector lattice is an ordered vector space which satisfies the condition pbq. It is due to

Birkhoff that the condition D.1 is equivalent to px^ yq _ z “ px_ zq ^ py _ zq.

If pL,ďq is a lattice, the mappings px, yq ÞÑ x_y and px, yq ÞÑ x^y are usually called the

lattice operations. As laws of composition they are idempotent, associative, commutative,

and satisfy x^px_yq “ x as well as x_px^yq “ x. On the other hand it is not difficult

to verify that if a non-void set L is endowed with two laws of composition having these

properties, then x ě y if and only if x _ y “ y defines an ordering under which L is a

lattice in the sense of Definition D.0.1. Recall also that a lattice L is called (countably)

complete if every (countable) subset of L possesses a least upper bound and a greatest

lower bound.

Let L be a lattice, a subset L0 closed under the lattice operations is called a sublattice of

L. L0 is called a (countably) complete sublattice of L if L0 is closed under the formation

of arbitrary (countable) infima and suprema. However, infima or suprema of a sublattice

may not be the same as those of the lattice.
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Example D.0.2. If M is a non-void set and pL,ďq is a lattice. The set LM of all

mappings f : M Ñ L is a lattice under the canonical ordering defined by:f ď g if and

only if fptq ď gptq for all t PM .

Definition D.0.3. Let E be a vector lattice. For all x P E, we define x` :“ x _ 0,

x´ :“ p´xq _ 0, |x| :“ x` p´xq. x`, x´ and |x| are called the positive part, the negative

part, and the modulus (or absolute value,) of x, respectively.

D.1 Basic Properties

Theorem D.1.1. Let E be a vector lattice and x, y P E and λ P R. Then the following

are true.

paq x “ x` ´ x´.

pbq |x| “ x` ` x´.

pcq |λx| “ |λ||x|, |x` y| ď |x| ` |y|.

pdq x` y “ px_ yq ` px^ yq, |x´ y| “ px_ yq ´ px^ yq.

Definition D.1.2 (Base of a cone). Let X be a compact convex subset of a cone P in a

lctvs E. X is said to be a base for the cone P if P “ ttx : t ě 0, x P Xu.

Note D.1.3. If P is a cone with base X, then we denote P as rX.

In the rest of this Section, we will assume that P is a cone with vertex at the origin and a

base X in a lctvs E such that X is contained in some hyperplane H “ tx P E : Lpxq “ ru,

for some L P E˚, r P R, which misses the origin.

More precisely, P “ tαx : x P X,α ě 0u. Note that there is no generality lost in making

this assumption since we may embed E as a hyperplane E ˆ t1u in E ˆ R(with product

topology); the image of Xˆt1u is affinely homeomorphic with X. Due to this assumption,

we have uniqueness as follows: y P P if and only if there exists a unique α ě 0 and x P X

such that y “ αx.

Proposition D.1.4. Let P be a cone in a lctvs E and X be its base.

paq P X p´P q “ t0u

pbq P X p´P q “ t0u if and only if given x, y P E such that x ă y and y ă x implies

x “ y, in other words, ă is antisymmetric.
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Proof. paq Suppose 0 ‰ z P P X p´P q. Then there exists t, s ą 0 and x, y P X such

that z “ tx “ ´sy. This can be written as

t

t` s
x`

s

t` s
y “ 0 P X.

which is a contradiction. Therefore, P X p´P q “ t0u.

pbq Suppose P X p´P q “ t0u. Let x, y P E such that x ă y and y ă x. This implies

y ´ x, x ´ y P P and hence y ´ x P P X p´P q “ t0u, which implies x “ y. Now

suppose ă is antisymmetric. Let z P P X p´P q. This implies z “ tx “ ´sy, for

some t, s ě 0;x, y P X. Hence, tx ` sy “ 0. Now, z ´ 0 “ tx ´ ptx ` syq P P and

0´ z “ ptx` syq ´ sy P P . This implies z ă 0 and 0 ă z and hence z “ 0.

Let us now look at few elementary properties of a lattice.

Proposition D.1.5. .

paq Let pE,ăq be a lattice where ă is the ordering induced by the cone P . Suppose

x, y P E, then ´p´x^´yq is the least upper bound (lub for short) of x and y.

pbq Let P be a cone in a real lctvs E. Then P ´P “ tx´ y : x, y P P u is a subspace

of E.

pcq Let P be a cone in E such that P X p´P q “ t0u. pP,ăq is a lattice w.r.t. the

partial ordering induced by P if and only if P ´ P is a lattice subspace of E.

Proof. paq Clearly, p´x ^ ´yq ă ´x and p´x ^ ´yq ă ´y. This implies ´x ´

p´x ^ ´yq P P , which can be written as ´p´x ^ ´yq ´ x P P . Therefore, x ă

´p´x ^ ´yq. Similarly, y ă ´p´x ^ ´yq. Let z P P such that x ă z and y ă z.

It follows that ´z ă ´x and ´z ă ´y and hence, ´z ă p´x ^ ´yq. This implies

z ´ r´p´x^´yqs “ p´x^´yq ´ p´zq P P and thus ´p´x^´yq ă z. Therefore,

´p´x^´yq is the lub of x and y.

pbq Let x, y P P ´ P . Then there exists x1, x2, y1, y2 P P such that x “ x1 ´ x2

and y “ y1 ´ y2. Now, since x1 ` y1, x2 ` y2 P P , x ` y “ x1 ´ x2 ` y1 ´ y2 “

px1`y1q´px2`y2q P P´P . Let α ě 0. Then αx “ αpx1´x2q “ αx1´αx2 P P´P .

Let α ă 0. Hence, α “ ´β, for some β ą 0. We then have αx “ ´βpx1 ´ x2q “

βx2 ´ βx1 P P ´ P . Therefore, P ´ P is a subspace of E.

pcq Assume P is a lattice. Let x “ x1´x2, y “ y1´y2 P P´P , where x1, x2, y1, y2 P P .

Let z “ px1`y2q_py1`x2q´px2`y2q. Then z´x “ px1`y2q_py1`x2q´px1`y2q P P ,

which implies x ă z. Similarly, y ă z. Let w “ w1 ´ w2 P P ´ P such that x ă w
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and y ă w. Now, x1 ´ x2 ă w1 ´ w2 implies x1 ` w2 ` y2 ă w1 ` x2 ` y2

and y1 ´ y2 ă w1 ´ w2 implies y1 ` w2 ` x2 ă w1 ` y2 ` x2. Then w ´ z “

pw1 ` x2 ` y2q ´ rpw2 ` x1 ` y2q _ pw2 ` y1 ` x2qs P P . Therefore, z ă w. Hence,

z is the lub for x, y in P ´ P . P ´ P is a subspace of E by the earlier remark.

Conversely, P ´t0u Ă P ´P . Since P ´P is a lattice subspace of E, so is P ´t0u.

Hence P is a lattice.

Proposition D.1.6. Let pE,ďq be a lattice, where ď is induced by a cone P . Then,

piq For any a, b, c P E, pa^ bq ` c “ pa` cq ^ pb` cq

piiq For 0 ď a, b, c P E, pa` bq ^ c ď pa^ cq ` pb^ cq.

piiiq If tai : i P Iu and tbj : j P Ju are finite sequences of non-negative elements

of E, and if
ř

iPI ai “
ř

jPJ bj then there exists zij ě 0, pi, jq P I ˆ J such that

ai “
ř

jPJ zij (i P I) and bj “
ř

iPI zij.

Proof. piq. Let a, b, c P E. Then pa ` cq ´ pa ^ b ` cq “ a ´ pa ^ bq P P . Similarly, we

get pb ` cq ´ pa ^ b ` cq P P . Therefore, pa ^ bq ` c ď pa ` cq ^ pb ` cq. We now prove

the other inequality. We know a ě pa ` cq ^ pb ` cq ´ c and b ě pa ` cq ^ pb ` cq ´ c.

Therefore a^ b ě pa` cq ^ pb` cq ´ c. This implies a^ b` c ě pa` cq ^ pb` cq.

piiq. Let a, b, c ě 0. Let u “ pa ` bq ^ c. Since a ě 0, u ď a ` c (a ` c ě c ě u implies

pa` c´ cq` pc´uq P P ). Thus, u ď pa` bq^ pa` cq “ b^ c`a, since u ď a` b and from

piq. Also, u ď c` pb^ cq (since b^ c ě 0). Therefore, u ď rc` pb^ cqs ^ ra` pb^ cqs “

pa^ cq ` pb^ cq. This implies pa` bq ^ c ď pa^ cq ` pb^ cq.

piiiq. We can easily use induction on the number of elements in I and in J and reduce

the proof to the case I “ J “ t1, 2u. Assume a1 ` a2 “ b1 ` b2. Define z11 “ a1 ^ b1 ě 0,

z12 “ a1 ´ z11 ě 0 and z21 “ b1 ´ z11 ě 0. We will now choose z22 ě 0 such that

z22 “ a2 ´ z21 “ b2 ´ z12. We now claim that a2 ´ z21 “ b2 ´ z12, that is, b2 ´ a1 ` z11 “

a2´b1`z11. This is clearly true because of the assumption that a1`a2 “ b1`b2. Clearly,

a1 ě a1 ´ b2 and b1 ě a1 ´ b2. This implies z11 ě a1 ´ b2 and hence b2 ´ a1 ` z11 ě 0.

Therefore, z22 ě 0. This completes the proof.
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