Krishna Kumar, S and Ghosh, Sourav and Martha, Surendra Kumar
(2017)
Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries.
Ionics, 23 (7).
pp. 1655-1662.
ISSN 0947-7047
Full text not available from this repository.
(
Request a copy)
Abstract
Mg-doped-LMR-NMC (Li1.2Ni0.15-xMgxMn0.55Co0.1 O2) is synthesized by combustion method followed by fluorine doping by solid-state synthesis. In this approach, we substituted the Ni2+ by Mg2+ in varying mole percentages (x = 0.02, 0.05, 0.08) and partly oxygen by fluorine (LiF: LMR-NMC = 1:50 wt%). The synergistic effect of both magnesium and fluorine substitution on electrochemical performance of LMR-NMC is studied by electrochemical impedance spectroscopy and galvanostatic-charge-discharge cycling. Mg-F-doped LMR-NMC (Mg 0.02 mol) composite cathodes shows excellent discharge capacity of ~300 mAh g−1 at C/20 rate whereas pristine LMR-NMC shows the initial capacity around 250 mAh g−1 in the voltage range between 2.5 and 4.7 V. Mg-F-doped LMR-NMC shows lesser Ohmic and charge transfer resistance, cycles well, and delivers a stable high capacity of ~280 mAh g−1 at C/10 rate. The voltage decay which is the major issue of LMR-NMC is minimized in Mg-F-doped LMR-NMC compared to pristine LMR-NMC.
Actions (login required)
|
View Item |