Micro-kinetic modeling of NH₃ decomposition on Ni and its application to solid-oxide fuel cells

Srinivas Appari^a, Vinod M. Janardhanan^{a,1}, Sreenivas Jayanti^a, Steffen Tischer^b, Olaf Deutschmann^b

^aIndian Institute of Technology Hyderabad, Yeddumailaram 502 205, India ^bKarlsruhe Institute of Technology, Engesserstr.20, D-76131 Karlsruhe, Germany

Abstract

This paper presents a detailed surface reaction mechanism for the decomposition of NH₃ to H₂ and N₂ on Ni surface. The mechanism for the decomposition of NH₃ to H₂ and N₂ on Ni surface. anism is validated for temperatures ranging from 700 to 1500 K and pressures from 5.3 Pa to 100 kPa. The activation energies for various elementary steps are calculated using unity bond index-quadratic exponential potential (UBI-QEP) method. Sensitivity analysis is carried out to study the influence of various kinetic parameters on reaction rates. The NH₃ decomposition mechanism is used to simulate SOFC button cell operating on NH₃ fuel.

Key words:

NH₃ decomposition, Catalysis, Kinetics, SOFC, Mathematical modelling, Reaction engineering

Introduction

A practical alternative to challenges of H₂ storage for portable and decentralized power generation is to produce it on site from hydrides. Ammonia (NH₃) is considered as a perfect H₂ carrier and has a worldwide distribution infrastructure (Christensen et al., 2006). Recently NH₃ started gaining attention as a source of H2 for fuel cell applications (Kaisare et al., 2009, Li and Hurley, 2007). The major draw back of NH₃ is its toxicity which imposes stringent regulations on its emission. Otherwise NH₃ has the advantageous over alcohols and hydrocarbon fuels that it is CO free, and therefore a good source of H₂ for polymer electrolyte membrane fuel cells (PEMFC). However, it may be used directly in solid-oxide fuel cells (SOFC) without upstream fuel processing (Fuerte et al., 2009). Motivated by application of NH₃ as a fuel for SOFCs and a source of H₂ for PEMFC, this paper presents a detailed kinetic model for the decomposition of NH₃ on Ni.

There are many studies on direct NH₃ solid oxide fuel cells; some of them are on proton conducting systems (SOFC-H) (Ma et al., 2006b,a, Maffei et al., 2006, 2005, 2008, Ni et al., 2008, Zhang and Yang, 2008), and others are on oxygen ion conducting systems (SOFC-O) (Fournier et al., 2006, Fuerte et al., 2009, Ma et al., 2007, Meng et al., 2007). Based on open circuit potential analysis Fuerte et al. concluded that NH₃ oxidation is a two stage process in SOFC; decomposition of NH₃ into H₂ and N₂ and then the electrochemical oxidation of H₂ to H₂O (Fuerte et al., 2009).

Decomposition of NH₃ is a mildly exothermic reaction $(\Delta_R H = 45.9 \text{ kJ/mol})$, and can be achieved catalytically over Pt,

Email address: vj@iith.ac.in (Vinod M. Janardhanan)

Preprint submitted to Elsevier

Pd, Rh, Ni, Ru etc. (Papapolymerou and Bontozoglou, 1997, Löffler and Schmidt, 1976, Choudhary et al., 2001, Zheng et al., 2007). There are many studies on NH₃ decomposition over supported metal catalysts. Choudary et al. systematically studied NH₃ decomposition on Ni, Ir, and Ru catalyst. They found Ni to be less active compared to Ir and Ru. Moreover, their study shows that the catalyst support does play a role in the overall catalytic activity (Choudhary et al., 2001). Most of the NH₃ decomposition studies are carried out at very low pressures. For instance Löffer and Schimidt studied the kinetics of NH₃ decomposition over Pt catalysts and developed a Langmuir-Hinshelwood rate expression which fitted their experimental measurements (Löffler and Schmidt, 1976). However, the experiments were carried out for pressure ranges of 0.01 to 1.25 Torr.

Choudary et al. studied the decomposition of NH₃ on supported metal catalysts at high pressures and temperature and concluded that Ru is a better catalyst compared to Ni and Ir (Choudhary et al., 2001). In another significant work Mc-Cabe studied the kinetics of NH₃ decomposition over Ni wires at high temperatures and low pressures (McCabe, 1983). These two works serves to validate the model developed in this work.

Kinetic model

The mechanism of NH₃ decomposition has been assumed to consists of the following steps

$$H_{2,g} \rightleftharpoons H_{2,s} \rightleftharpoons 2H_s,$$
 (1)

$$N_{2,g} \rightleftharpoons N_{2,s} \rightleftharpoons 2N_s,$$
 (2)

$$NH_{3,g} \rightleftharpoons NH_{3,s},$$
 (3)

February 11, 2011

$$NH_{3,s} \rightleftharpoons NH_{2,s} + H_s,$$
 (4)

$$NH_{2.s} \rightleftharpoons NH_s + H_s,$$
 (5)

$$NH_s \rightleftharpoons N_s + H_s.$$
 (6)

Based on the above mechanism the detailed kinetic model presented here is developed based on unity bond index-quadratic exponential potential (UBI-QEP) method (Shustorovich, 1990). This phenomenological method treats the energetics of atomic and polyatomic adsorbates on transition metal surfaces by using the chemisorption and bond dissociation energies. Therefore, the input data required for the model development are the chemisorption energy and the gas-phase dissociation energy.

Closed shell molecules such as NH_3 establishes a weak bonding with the metal atom and for such cases the chemisorption energy is calculated according to Eq. 7 (Shustorovich and Bell, 2001)

$$Q_{\rm AB} = \frac{Q_{\rm 0A}^2}{(Q_{\rm 0A}/n) + D_{\rm AB}}. (7)$$

Here Q_{0A} corresponds to the maximum M-A two center bond energy (Shustorovich, 1990). For an ad-atom in an n-fold site the maximum two center bond energy is given by

$$Q_{\rm A} = Q_{0\rm A}(2 - 1/n),\tag{8}$$

where n is the number of nearest metal atoms. For strongly bonded radicals such as NH and NH $_2$ the chemisorption energy is calculated according to

$$Q_{\rm AB} = \frac{Q_{\rm A}^2}{Q_{\rm A} + D_{\rm AB}}.\tag{9}$$

Based on Eq. 7 we determined the chemisorption energy of NH_3 on Ni to be 18 kcal/mol, which is in good agreement with experimental (20 kcal/mol) and Ab initio calculation (17-19 kcal/mol) reported respectively by Klauber et al. and Chattopadhyay et al. (Klauber et al., 1985, Chattopadhyay et al., 1990). The calculated chemisorption energy for NH_3 and NH_3 is given in Table 1.

The mechanism of NH_3 decomposition involves the adsorption of NH_3 from the gas-phase on to the Ni surface (Eq. 3) and the subsequent hydrogen abstraction steps given by Eqs. 4, 5, and 6. The hydrogen and nitrogen atoms recombine to form gas-phase hydrogen and nitrogen (Eqs. 1 and 2).

Once the chemisorption and dissociation energies of all chemical species are known the activation energy barriers for various adsorption, desorption, and recombination steps can be evaluated from general thermodynamic relationships. However, in the following treatment, we assign sticking coefficient for adsorption reactions. The sticking coefficient for NH $_3$ is taken from McCabe (McCabe, 1983). For recombination of chemisorbed A_s and B_s to chemisorbed A_s or for the associative desorption of chemisorbed A_s and B_s to A_s and A_s to A_s the activation

barriers $\Delta E_{A-B,s}^*$ and $\Delta E_{A-B,g}^*$ may be same or different depending on the sign of gasphase dissociation barrier (Shustorovich, 1990). i.e,

$$\Delta E_{A-B,s}^* = \Delta E_{A-B,g}^* = Q_A + Q_B - D_{AB} + \Delta E_{AB,g}^*$$
 (10)
if $\Delta E_{AB,g}^* > 0$,

and

$$\Delta E_{A-B,g}^* = \Delta E_{A-B,s}^* - \Delta E_{AB,g}^* = Q_A + Q_B - D_{AB}$$
 if $\Delta E_{AB,g}^* > 0$. (11)

The gasphase dissociation barrier $\Delta E_{AB,g}^{\ast}$ can be evaluated according to

$$\Delta E_{AB,g}^* = 1/2 \left(D_{AB} + \frac{Q_A Q_B}{Q_A + Q_B} - Q_{AB} - Q_A - Q_B \right) \quad (12)$$

The detailed surface reaction mechanism developed here consists of two parts. The first part deals with the catalytic decomposition of NH₃, which has 12 reactions among three gas-phase species and five surface adsorbed species. In the second part additional reactions for H₂ oxidation is considered so that the mechanism can be used for direct NH₃ SOFC as well. The reactions in the second part are taken from Janardhanan and Deutschmann (Janardhanan and Deutschmann, 2006). The complete mechanism is listed in Table 2. Reactions R1 to R12 are steps for the decomposition of NH₃ on Ni surface and reactions from R13 to R22 are for hydrogen oxidation on Ni. One needs to consider all the reactions for direct NH₃ SOFC, while reactions from R1 to R12 are sufficient to study NH₃ decomposition on Ni. There are slight variations in the rate parameters for R13 to R22 as reported against Janardhanan et al. (Janardhanan and Deutschmann, 2006). These slight variations are made to ensure that the entire mechanism is thermodynamically consistent. The thermodynamic consistency is explained in the following section.

The net molar production rate \dot{s}_k of a gaseous or surface adsorbed species due to heterogeneous reaction is given by

$$\dot{s}_k = \sum_{i=1}^{R_s} \nu_{ki} k_{fi} \prod_{k=1}^{N_g + N_s} [X_k]^{\nu_{ki}}.$$
 (13)

Here R_s is the number of surface reactions, N_g and N_s respectively represents the number of gasphase species and surface species, $[X_k]$ is the concentration of species k, k_{fi} is the forward rate constant for reaction i, and v_{ki} is the difference in stoichiometric coefficient for species k between the products and reactants in reaction i.

Based on mean field approximation the forward rate constant is expressed in the Arrhenius form as

$$k_{fi} = A_i T^{\beta} \exp\left(-\frac{E_{ai}}{RT}\right) \prod_{k=1}^{K_s} \theta_k^{\mu_{ki}} \exp\left(-\frac{\epsilon_{ki} \theta_k}{RT}\right)$$
 (14)

Here A_i is the pre-exponential factor and E_{ai} is the activation energy, μ is the order dependency, θ is the surface coverage, β

is the temperature exponent, R the gas constant, T the temperature, and ϵ is the coverage dependent activation energy.

Thermodynamic consistency

The equilibrium of a chemical reaction

$$\sum_{k} v'_{ki} A_k \rightleftharpoons \sum_{k} v''_{ki} A_k, \tag{15}$$

is completely defined by the thermodynamic properties of the participating species. Expressed in terms of the equilibrium constant K_{pi} , the equilibrium activities a_k^{eq} obey the equation

$$K_{pi} = \prod_{k} \left(a_k^{\text{eq}} \right)^{v_{ki}} = \exp\left(-\frac{\Delta_i G^0}{RT} \right). \tag{16}$$

Here R is the gas constant and T is the absolute temperature. The change of free enthalpy ΔG^0 at normal pressure p^0 is given

$$\Delta_i G^0 = \sum_k \nu_{ik} G_k^0(T). \tag{17}$$

When the heat capacity is expressed as a forth order polynomial function of temperature T, then the standard free enthalpies can be expressed in terms of seven coefficients, $a_{0,i} \dots a_{6,i}$ as

$$G_k^0 = a_{0,k} + a_{1,k}T + a_{2,k}T^2 + a_{3,k}T^3 + a_{4,k}T^4 + a_{5,k}T^5 + a_{6,k}T \ln T$$
(18)

In order to predict the correct equilibrium, the rate coefficients for forward and the reverse reaction must obey the equation

$$\frac{k_{fi}}{k_{ri}} = K_{pi} \prod_{k} (c_k^0)^{\mathsf{v}_{ki}} \tag{19}$$

 c_k^0 are the reference concentrations at normal pressure, i.e, $c_k^0=p^0/RT$ for gas-phase species and $c_k^0=\Gamma/\sigma_k$ for surface species; here Γ is the total surface site density and σ_k are the site occupancy number for species k. However, one problem in setting up a reaction mechanism is the difficulty to define the thermo-chemistry data for intermediate species. Therefore, when the thermo-chemistry data for the intermediate species are unknown Eq. 19 can not be used to calculate the reverse reaction rate constants. The forward and reverse reaction rates are then defined separately with their own rate laws. Nevertheless, these rates cannot be chosen independently.

Assuming an initial guess for the rate parameters of a surface reaction mechanism, the rate coefficient for the forward and reverse reactions may be adjusted separately to make the entire mechanism thermodynamically consistent. Suppose that the thermodynamic data for species $1 \dots N_u$ out of N species are unknown. For each pair of a reversible reactions we can calculate the equilibrium constant according to Eq. 19 and, logarithm of Eq. 16 yields change of free enthalpy. Separation of the known and unknown variables in Eq. 17 leads to

$$\Delta_i G^0 = \sum_{k=1}^{N_u} \nu_{ki} \tilde{G}_k^0(T) + \sum_{k=1+N_u}^{N} \nu_{ki} G_k^0(T), \tag{20}$$

which is a linear equation system for the unknown free enthalpies G_k^0 . Since most species are involved in more than one reaction, this system is usually over-determined. Equation 18 for several temperatures T_i gives a system of linear equations in the unknown coefficients $\tilde{a_{l,k}}$:

$$\sum_{k=1}^{N_{\rm u}} \sum_{l=0}^{6} v_{ki} t_{lj} \tilde{a_{l,j}} = g_{ij}, \tag{21}$$

here

$$g_{ij} = \Delta_i G^0(T_j) - \sum_{k=N,+1}^{N} \nu_{ki} G_k^0(T_j)$$
 (22)

and

$$t_{lj} = \begin{cases} T_j^l & \text{if } l < 6 \\ T_j \ln T_j & \text{if } l = 6 \end{cases}$$
 (23)

An optimal set of parameters $\tilde{a_{l,k}}$ is determined by a weighted least-square approximation. The weights can be chosen individually for each pair of reactions according to a sensitivity analysis of the reaction mechanism. This guarantees that the equilibrium of crucial reaction steps will be shifted less then others after the adjustment.

The newly adjusted polynomial coefficients are then used $G_k^0 = a_{0.k} + a_{1.k}T + a_{2.k}T^2 + a_{3.k}T^3 + a_{4.k}T^4 + a_{5.k}T^5 + a_{6.k}T \ln T$ (18) to calculate the change of free enthalpy for each reaction (Eq. 20), the equilibrium constant, and the rate coefficient for the reverse reaction. In case the reverse reaction shall be expressed in terms of Arrhenius coefficients, another least square approximation using the rate constants at the discrete temperatures, T_i is performed.

> Since we prefer to write surface reaction mechanisms as pairs of irreversible reactions, this procedure has to be repeated during mechanism development after modification of rate coefficients belonging to any of these pairs. The difference between this method and the scheme proposed by Mhadeshwar et al. (Mhadeshwar et al., 2003) is that there is no need for the user to select a linearly independent set of reactions. Instead of distinguishing reactions between linear base and linear combinations, all reactions are treated equally by solving the same linear problem using a least-square fit.

Reactor model

A packed bed reactor model is used to validate the reaction mechanism. An isothermal packed bed reactor model is implemented in FORTRAN assuming

- axial diffusion of any quantity is negligible compared to corresponding convective term.
- there are no variations in the transverse direction.

The species transport equation in one dimension is modeled as

$$\frac{d(\rho u Y_k)}{d\tau} = a_v W_k \dot{s_k}. \tag{24}$$

Here a_v is the specific area of the catalyst and W_k is the molecular weight of the species k. Summing the species transport equation over all species N_g leads to the total continuity equation as

$$\frac{d(\rho u)}{dz} = a_v \sum_{k=1}^{N_g} W_i \dot{s}_k. \tag{25}$$

The pressure in the reactor is calculated according to

$$\frac{dp}{dz} = f \frac{\rho u^2}{d_p},\tag{26}$$

and density is calculated from ideal gas equation

$$\rho = \frac{P\bar{M}}{RT}.\tag{27}$$

The friction factor f in Eq. 26 is calculated from Ergun's equation as

$$f = \frac{1 - \epsilon}{2\epsilon^3} \left[1.75 + \frac{150(1 - \epsilon)}{Re} \right],\tag{28}$$

where Re is the Reynolds number and ϵ is the porosity. The packed bed reactor model is a part of DETCHEM software (Deutschmann et al., 2007).

Fuel cell model

A detailed description of the SOFC model used in this work is published elsewhere (Zhu et al., 2005). However, the electrochemistry model is implemented differently. Instead of using the modified Butler-Volmer equation, we implement the Butler-Volmer equation in the conventional form as

$$i = i_a^0 \left[\exp\left(\frac{\alpha_a n_e F \eta_a}{RT}\right) - \exp\left(\frac{(1 - \alpha_a) n_e F \eta_a}{RT}\right) \right],\tag{29}$$

and

$$i = i_c^0 \left[\exp\left(\frac{\alpha_c n_e F \eta_c}{RT}\right) - \exp\left(\frac{(1 - \alpha_c) n_e F \eta_c}{RT}\right) \right]. \tag{30}$$

Here α_a and α_c are respectively the asymmetry factors for anode and cathode side, F is the Faraday constant, R the gas constant, T the temperature, and n_e is the number of electrons transferred. The exchange current densities for the anode side and cathode side i_a^0 and i_c^0 are functions of temperature and concentration. However, in the present work we consider them to be only as a function of temperature. i.e.

$$i_a^0 = k_{\rm H_2} \exp(-E_{\rm H_2}/RT),$$
 (31)

and

$$i_c^0 = k_{\rm O_2} \exp(-E_{\rm O_2}/RT),$$
 (32)

Since the species transport equation considers the porous media transport, concentration losses are not treated explicitly. The activation losses of the anode and cathode sides are related to the cell potential as

$$E_{\text{cell}} = E_{\text{rev}} - \eta_a - \eta_c - \eta_{\text{ohm}}.$$
 (33)

The ohmic overpotential is calculated according to

$$\eta_{\rm ohm} = L_{\rm el}/\sigma_{\rm el},$$
(34)

where L is the length of the electrolyte and σ is the conductivity defined as

$$\sigma_{\rm el} = \sigma_0 T^{-1} \exp\left(-\frac{E_{\rm el}}{RT}\right). \tag{35}$$

Results and discussion

Mechanism validation

Thermodynamic analysis of $NH_3 + O_2$ system shows that at temperatures below 1000 K (typical operating temperature for direct NH₃ SOFC) the amount of NO_x formed is very much negligible. Six gas-phase species namely NH3, O2, H2, H2O, NO, and NO₂ are considered for thermodynamic equilibrium calculations. Figures 1 and 2 shows the map of NO and NO₂ mole fraction as a function of temperature for an initial mixture of O2 and NH3. In these figures as the mole fraction of O2 increases from 0 to 1, the mole fraction of NH3 decreases from 1 to 0. Composition of NO₂ is maximum at 1500 K for O₂:NH₃ ratio of 0.2:0.8. However, for NO the O₂:NH₃ ratio is 0.4:0.6. The experiments performed by Ma et al. also reports the absence of NO at the anode exhaust (Ma et al., 2006b). Furthermore, the partial pressure of oxygen, which results from the dissociative desorption of H₂O in the anode compartment of an SOFC will be much lower than that required for NO_x formation. Therefore, in the present mechanism reaction steps leading to the formation of NO_x are not considered.

Although there are numerous studies on catalytic decomposition of NH_3 , there are no consensus on the rate limiting steps of NH_3 decomposition on different catalysts under different operating conditions (Ni et al., 2009). For model validation purpose we consider the data reported by McCabe and Choudary et al., (McCabe, 1983, Choudhary et al., 2001).

Choudary et al. studied the decomposition of NH₃ decomposition on various supported metal catalysts. A 2 cm long packed bed reactor is used for simulating the experiments reported by Choudary et al., (Choudhary et al., 2001). The geometrical parameters of the reactor and the operating conditions are listed in Table 3 and the reactor model itself is presented in one of the previous sections. A comparison between experimentally observed conversion of NH₃ for Ni supported on SiO₂ and the model predictions at 1 atm is shown in Fig. 3. Very good agreement is observed between the model predictions and the measured values. McCabe carried out NH3 decomposition experiments over resistive heated wires at pressures between 5.3 and 133 Pa and temperatures between 700 and 1400 K (McCabe, 1983). A comparison between the experimentally measured rate and the mechanism predicted rate for the decomposition of NH₃ for the data reported by McCabe is shown in Fig. 4. Again very good agreement is observed between the model predictions and the experimental observations at temperatures above 1000 K for all pressures.

Sensitivity analysis

Sensitivity analysis for the NH₃ decomposition part of the mechanism is carried out by changing the pre-exponential factor (A) of each reaction by $\pm 10\%$, while keeping all other operating parameters constant. The scaled sensitivity coefficient (SSC) for NH₃ conversion is defined as (Mantri and Aghalayam, 2007)

$$SSC = \frac{X_{\text{NH}_3} - X_{\text{NH}_3}^0}{X_{\text{NH}_3}^0}.$$
 (36)

Here X_{NH_3} indicates NH₃ conversion for $\pm 10\%$ change in preexponential factors and $X_{\rm NH_3}^0$ indicates the conversions for the pre-exponential factors as noted in Table 2. These sensitivity coefficients are further normalized with respect to the maximum SSC. A plug flow reactor model is used for sensitivity analysis. 100% NH₃ is assumed to enter reactor at a velocity of 10 cm/s and 1 atm pressure. The catalytic area to geometric area factor of 100 is chosen so that ~99% NH3 conversion is obtained for the parameters given in Table 2. The catalytic area to geometric area is a measure of catalyst loading and a higher factor indicates higher catalyst loading (Mladenov et al., 2010). Figure 5 shows the normalized sensitivity coefficient (NSC) for NH₃ conversion. Small values of NSC indicates that particular reaction has no significant effect on NH₃ conversion. It is quite obvious from the figure that the sticking coefficient of N₂ (R3) does not have any influence on NH₃ conversion, where as decreasing H₂ sticking coefficient and increasing NH₃ sticking coefficient has positive effect on NH₃ conversion. Among the sticking reactions, the sticking coefficient of NH₃ has highest influence on NH₃ conversion. Other than sticking reactions, hydrogen abstraction from surface adsorbed NH₃ (R7) and NH₂ (R9) are the most influential reactions. NH₃ conversion is least affected by the rate constants of reactions R10, R11 and R12.

SOFC modeling

Ma et al. have reported performance of a conventional SOFC button cell (Ni-YSZ/YSZ/LSM-YSZ) at different temperatures using H₂ as well as NH₃ fuel (Ma et al., 2007). The micro-kinetic model developed here is used to simulate the experiments and the results are shown in Fig. 6. For carrying out these simulations, we assume H₂ as the only electrochemically active species and the electrochemical model parameters are fixed by reproducing the experimental observation for H₂ fuel, and the same parameters are applied for NH₃ fuel. Figure 6(a) shows the comparison between model predictions and experimental observation for H2 fuel. The model parameters are given in Table. 4. The comparison between the experimental observations and the model predictions for NH3 fuel is shown in Fig. 6(b). Overall, good agreement is observed between the measured values and the model predictions. Under identical conditions the model predicts similar performances for both H₂ and NH₃, which is in very good agreement with experimental observations. NH₃ which enters the anode compartment decomposes into H₂ and N₂, and H₂ further participates in the charge transfer reactions. The comparable performance of NH₃ with H₂ indicates that significant conversion of NH₃ occurs in

the anode and the presence of N_2 as a diluent does not affect the cell performance adversely. This is again confirmed by running the model with 75% H_2 and 25% N_2 , which gave performance curves very close to that of 99% H_2 under identical operating conditions.

A comparison of kinetically predicted limiting current for button cell as a function of specific surface area is shown in Fig. 7. As the surface area increases, the limiting current approaches the equilibrium predictions. The equilibrium prediction is calculated by considering 75% H_2 and 25% N_2 .

The kinetics model can be quite useful when planar or tubular cell calculations are desired. The species molefractions and the current density for a 10 cm long planar cell is shown in Fig. 8. The channel is modeled under isothermal condition of 1023 K with the same membrane electrode assembly parameters as given in table 4. 100% NH_3 is considered to enter the cell at a velocity of 0.1 m/s. NH_3 is fully converted within 2 cm from the cell inlet. Although no H_2 is present in the inlet fuel, H_2 is generated within the porous media by catalytic decomposition of NH_3 . The H_2 thus generated takes part in the electrochemical charge transfer reactions occuring at the anode electrolyte interface. The current density drops along the length of the channel because of H_2 depletion.

Conclusions

We have developed a micro-kinetic model for the decomposition of NH₃ on Ni catalyst. The decomposition mechanism is supplemented with H₂ oxidations reactions reported previously so that the model can be used for direct NH₃ SOFC. Furthermore, the overall mechanism is made thermodynamically consistent in enthalpy as well as in entropy. The decomposition mechanism is validated by comparing against experimental observations over a wide range of temperatures and pressures. The complete mechanism is used to model the direct NH₃ SOFC experiments reported by Ma et al., (Ma et al., 2007). Overall the model predictions are in very good agreement with experimental observations.

References

Chattopadhyay, A., Yang, H., Whitten, J. L., 1990. Ammonia on Ni(111). J. Phys. Chem. 94 (28), 6379–6383.

Choudhary, T. V., Sivadinarayana, C., Goodman, D. W., 2001. Catalytic ammonia decomposition: CO_x -free hydrogen production for fuel cell applications. Catal. Lett. 72 (3), 197–201.

Christensen, C. H., Johannessen, T., Sorensen, R. Z., Noroskov, J. K., 2006. Towards an ammonia-mediated hydrogen economy? Catal. Today 111, 140– 144.

Deutschmann, O., Tischer, S., Kleditzsch, S., Janardhanan, V. M., Mladenov, N., Minh, H. D., 2007. DETCHEM User manual. URL www.detchem.com

Fournier, G., Cumming, I., Hellgardt, K., Nov. 2006. High performance direct ammonia solid oxide fuel cell. Journal of Power Sources 162 (1), 198–206.

Fuerte, A., Valenzuela, R., Escudero, M., Daza, L., Jul. 2009. Ammonia as efficient fuel for SOFC. Journal of Power Sources 192 (1), 170–174.

Janardhanan, V. M., Deutschmann, O., 2006. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J. Power Sources 162, 1192–1202.

- Kaisare, N. S., Stefanidis, G. D., Vlachos, D. G., 2009. Millisecond Production of Hydrogen from Alternative, High Hydrogen Density Fuels in a Cocurrent Multifunctional Microreactor. Ind. Eng. Chem. Res. 48, 1749–1760.
- Klauber, C., Alvey, M. D., Yates, J. T., J., 1985. NH₃ adsorption on Ni(110) and the production of the NH₂ species by electron irradiation. Surf. Sci. 154, 139–167.
- Li, L., Hurley, J., Jan. 2007. Ammonia-based hydrogen source for fuel cell applications. International Journal of Hydrogen Energy 32 (1), 6–10.
- Löffler, D. G., Schmidt, L. D., 1976. Kinetics of NH₃, decomposition on single crystal planes of Pt *. Surf. Sci. 59 (March), 195–204.
- Ma, Q., Ma, J., Zhou, S., Yan, R., Gao, J., Meng, G., Jan. 2007. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. J. Power Sources 164 (1), 86–89.
- Ma, Q., Peng, R., Lin, Y., Gao, J., Meng, G., Oct. 2006a. A high-performance ammonia-fueled solid oxide fuel cell. J. Power Sources 161 (1), 95–98.
- Ma, Q., Peng, R., Tian, L., Meng, G., Nov. 2006b. Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 8 (11), 1791–1795.
- Maffei, N., Pelletier, L., Charland, J., Mcfarlan, A., Feb. 2005. An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte. J. Power Sources 140 (2), 264–267.
- Maffei, N., Pelletier, L., Charland, J., Mcfarlan, A., Nov. 2006. An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte. J. Power Sources 162 (1), 165–167.
- Maffei, N., Pelletier, L., Mcfarlan, A., Jan. 2008. A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode. J. Power Sources 175 (1), 221–225.
- Mantri, D., Aghalayam, P., 2007. Detailed surface reaction mechanism for reduction of NO by CO. Catal. Today 119, 88–93.
- McCabe, R., Feb. 1983. Kinetics of ammonia decomposition on nickel. J. Catal. 79 (2), 445–450.
- Meng, G., Jiang, C., Ma, J., Ma, Q., Liu, X., Nov. 2007. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J. Power Sources 173 (1), 189–193.
- Mhadeshwar, A. B., Wang, H., Vlachos, D. G., 2003. Thermodynamic Consistency in Microkinetic Development of Surface Reaction Mechanisms. J. Phys. Chem. B 107 (46), 12721–12733.
- Mladenov, N., Koop, J., Tischer, S., Deutschmann, O., 2010. Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chem. Eng. Sci. 65, 812–826.
- Ni, M., Leung, D., Leung, M., Oct. 2008. An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. J. Power Sources 185 (1), 233–240.
- Ni, M., Leung, M. K. H., Leung, D. Y. C., 2009. Ammonia-fed solid oxide fuel cells for power generation. A review. Int. J. Energy Res. 33 (June), 943–959.
- Papapolymerou, G., Bontozoglou, V., 1997. Decomposition of NH₃, on Pd and Ir Comparison with Pt and Rh. J. Mol. Catal. A: Chem. 120, 165–171.
- Shustorovich, E., 1990. The bond-order conservation approach to chemisorption and heterogeneous catalysis: Applications and implications.
- Shustorovich, E., Bell, A. T., 2001. Synthesis and decomposition of ammonia on transition metal surfaces: bond-order-conservation-Morse-potential analysis. Surf. Sci. Lett 259 (1991), L791–L796.
- Zhang, L., Yang, W., Apr. 2008. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte. J. Power Sources 179 (1), 92–95.
- Zheng, W., Zhang, J., Xu, H., Li, W., Aug. 2007. NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and Particle Size Effect. Catal Lett 119 (3-4), 311–318.
- Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., Goodwin, D. G., 2005. Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells. J. Electrochem. Soc. 152, A2427–A2440.

Table 1: Heats of chemisorption and total bond energies in the gas phase (D) and chemisorbed (D+Q) states on Ni(111)

Adsorbate	D	Q	D+Q
Н	-	63	63
N	-	135	135
NH	81	85^{a}	166
NH_2	169	60^{a}	229
NH_3	279	18^{b}	323

All energies are in kcal/mol

Table 2: Detailed kinetic model for NH₃ decomposition for SOFC applications

R No	Reaction	A(cm,mol,s)	β	$E_a{}^a$
<u> </u>	NH ₃ decomposition			
R1	$H_2 + (Ni) + (Ni) \rightarrow H(Ni) + H(Ni)$	0.01 ^b	0	0
R2	$NH_3 + (Ni) \rightarrow NH_3(Ni)$	0.011^{b}	0	0
R3	$N_2 + (Ni) + (Ni) \rightarrow N(Ni) + N(Ni)$	1.000×10^{-06b}	0	0
R4	$H(Ni) + H(Ni) \rightarrow H_2 + (Ni) + (Ni)$	3.315×10^{19}	0	82.21
R5	$NH_3(Ni) \rightarrow NH_3 + (Ni)$	8.210×10^{14}	0	78.63
R6	$N(Ni) + N(Ni) \rightarrow N_2 + (Ni) + (Ni)$	4.442×10^{22}	0	210.84
R7	$NH_3(Ni) + (Ni) \rightarrow NH_2(Ni) + H(Ni)$	5.723×10^{22}	0	78.99
R8	$NH_2(Ni) + H(Ni) \rightarrow NH_3(Ni) + (Ni)$	1.320×10^{24}	0	48.81
R9	$NH_2(Ni) + (Ni) \rightarrow NH(Ni) + H(Ni)$	2.718×10^{22}	0	75.74
R10	$NH(Ni) + H(Ni) \rightarrow NH_2(Ni) + (Ni)$	3.702×10^{19}	0	74.87
R11	$NH(Ni) + (Ni) \rightarrow N(Ni) + H(Ni)$	6.213×10^{19}	0	22.93
R12	$N(Ni) + H(Ni) \rightarrow NH(Ni) + (Ni)$	2.070×10^{19}	0	156.04
	H ₂ oxidationJanardhanan and Deutschmann (2006)			
R13	$O_2 + (Ni) + (Ni) \rightarrow O(Ni) + O(Ni)$	0.01^{b}	0	0
R14	$O(Ni) + O(Ni) \rightarrow O_2 + (Ni) + (Ni)$	3.928×10^{23}	0	473.41
R15	$H_2O + (Ni) \rightarrow H_2O(Ni)$	0.1^{b}	0	0
R16	$H_2O(Ni) \rightarrow (Ni) + H_2O$	4.747×1^{12}	0	62.09
R17	$O(Ni) + H(Ni) \rightarrow OH(Ni) + (Ni)$	5.00×10^{22}	0	97.90
R18	$OH(Ni) + (Ni) \rightarrow O(Ni) + H(Ni)$	1.761×10^{21}	0	36.00
R19	$OH(Ni) + H(Ni) \rightarrow H_2O(Ni) + (Ni)$	3.000×10^{20}	0	42.70
R20	$H_2O(Ni) + (Ni) \rightarrow OH(Ni) + H(Ni)$	2.068×10^{21}	0	91.07
R21	$OH(Ni) + OH(Ni) \rightarrow O(Ni) + H_2O(Ni)$	3.000×10^{21}	0	100.00
R22	$O(Ni) + H_2O(Ni) \rightarrow OH(NI) + OH(Ni)$	5.871×10^{23}	0	210.27

 $^{^{}a}$ Arrhenius parameters for the rate constants written in the form: $k = AT^{\beta} \exp(E/RT)$. The units of A are given in terms of moles, centimeters, and seconds. E is in kJ/mol

Table 3: Packed bed reactor parameters

ruote 3. I uenea oca reactor parameters				
Parameters	value			
Length (cm)	2			
Diameter (mm)	10			
Particle diameter (µm)	20			
Porosity	38%			
Specific area (1/m)	2.8×10^{5}			
Inlet conditions				
Inlet velocity (m/s)	0.1			
NH ₃ mole fraction	1.0			

^acalculated according to Eq. 9

^bcalculated according to Eq. 7

 $^{^{}b}$ Sticking coefficient. Total available surface site density is Γ =2.49×10⁻⁹ mol/cm²

Table 4: SOFC button cell m	nembrane electrode	assembly (N	(IEA) parameters
-----------------------------	--------------------	-------------	------------------

Table 4. COFC houses all manches as desired accombine	(MEA)	
Table 4: SOFC button cell membrane electrode assembly Parameters	value	units
Anode		
Thickness	500	μm
Porosity	45%	
Tortuosity	3.8	
Pore diameter	1.0	μm
Particle diameter	1.0	μm
Specific area	2025×10^3	1/m
Prefactor for exchange current density $(k_{\rm H_2})$	1.87×10^{3}	A/cm ²
Activation energy for exchange current density $(E_{\rm H_2})$	81.6	kJ/mol K
Symmetry factor (α_a)	0.36	
<u>Cathode</u>		
Thickness	8	μm
Porosity	45%	
Tortuosity	3.8	
Pore diameter	1.0	μm
Particle diameter	1.0	μm
Prefactor for exchange current density $(k_{\rm H_2})$	27.7	A/cm ²
Activation energy for exchange current density $(E_{\rm H_2})$	45.3	kJ/mol K
Symmetry factor (α_c)	0.35	
Electrolyte $\sigma_{\rm el} = \sigma_0 T^{-1} \exp(-E_{\rm el}/RT)$		
Thickness	10	μm
Activation energy $(E_{\rm el})$	80	kJ/mol
Pre-factor (σ_0)	3.6×10^5	S/cm

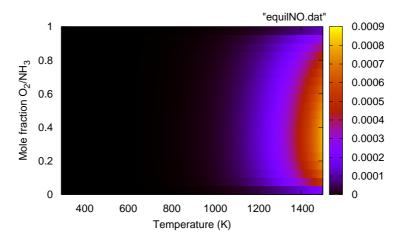


Figure 1: Map of equilibrium composition of NO resulting from a mixture of O_2 and NH_3 . On the y-axis as the mole fraction of O_2 ranges from 0 to 1, the mole fraction of NH_2 ranges from 1 to 0.

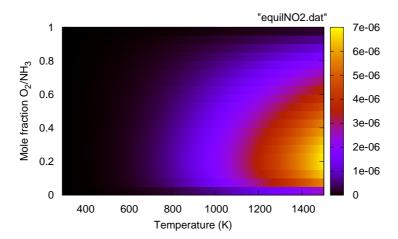


Figure 2: Map of equilibrium composition of NO_2 resulting from a mixture of O_2 and NH_3 . On the y-axis as the mole fraction of O_2 ranges from 0 to 1, the mole fraction of NH_2 ranges from 1 to 0.

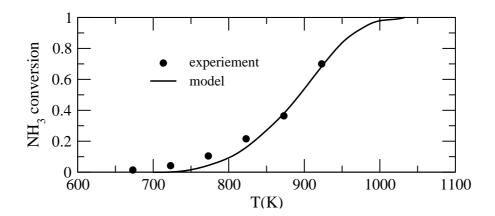


Figure 3: Con

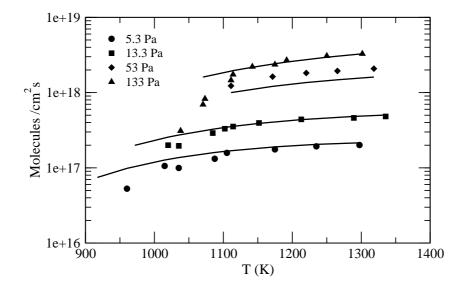


Figure 4: Comparison of e 1983), and the lines stand

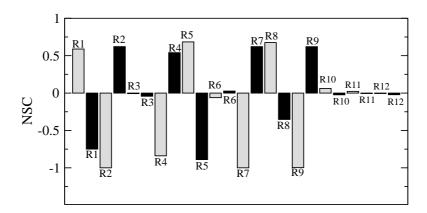
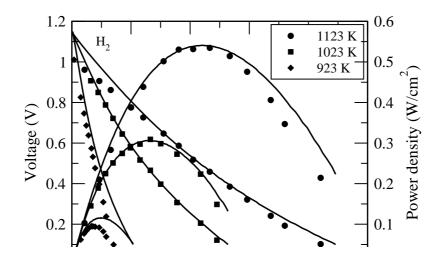



Figure 5: Normalized sensitivity coefficient (NSC) for NH_3 conversion at 1073 K. Black filled boxes indicate a change of +10% in the pre-exponentials or sticking coefficient, and gray filled bars indicate a corresponding -10% change.

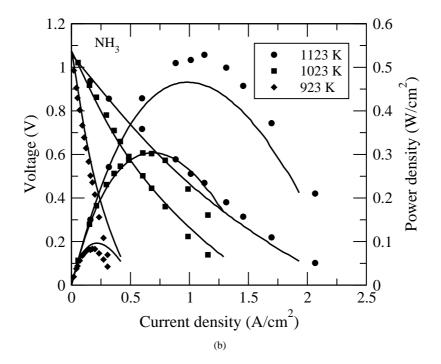


Figure 6: Comparison between experimentally observed performance curves and the model predictions (Ref Ma et al. (2007)). The symbols indicate experimentally measured values and the solid lines represent model predictions. (a) shows the comparison between the model predictions and experimental observations for H_2 (b) shows the comparison between model predictions and experimental observations for NH_3 .

Figure 7: Limiting current predicted by the kinetic model as a function of specific surface area. The horizontal line represents equilibrium

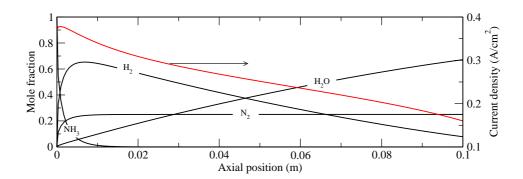


Figure 8: Species profiles in the fuel channel and current density along the length of a 10 cm long planar cell. $100\% \text{ NH}_3$ is considered to enter the fuel channel at 0.1 m/s and air at 5 m/s is in the air channel. The MEA parameters used for this calculation is same as the ones given in Table 4