COMMUTATIVE ALGEBRA

MOHD SHAHVEZ ALAM

under the supervision of
Dr. Pradipto Banarjee

A thesis submitted to
Indian Institute of Technology, Hyderabad
In Partial Fulfillment of the Requirement for The Degree of Master of Science in Mathematics

Department of Mathematics Indian Institute of Technology, Hyderabad Telangana-502285

May 2019

DECLARATION

This thesis entitled COMMUTATIVE ALGEBRA submitted by me to the Indian Institute of Technology, Hyderabad for the award of the degree in Master of Science in Mathematics contains a literature survey of the work done by some authors in this area. The work presented in this thesis has been carried out under the supervision of Dr. Pradipto Banarjee, Department of Mathematics, Indian Institute of Technology, Hyderabad, Telangana.

I hereby declare that, to the best of my knowledge, the work included in this thesis has been taken from the books, "An introduction to commutative algebra" by Atiyah Mac Donald, and "Jmaes Milne Notes". No new results have been created in this thesis. The definitions, notations and results in Commutative algebra are learnt from the above mentioned sources and are presented here. I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be a cause for disciplinary action by the Institute and can also evoke penal action from the sources that have thus not been propely cited, or from whom proper permission has not been taken when needed.
(Signature)

Shahves

(Mohd Shahvez Alan)
MAIFMSCST 11009
(Roll No.)

Approval Sheet

This Thesis entitled Commutative Algebra by Mohd Shahvez Alam is approved for the degree in Master of Science from IIT Hyderabad.

(Dr. Pradipto Banarjee) Adviser
Dept. of Mathematics
IITH

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude to my supervisor, Dr. Pradipto Banarjee, for his constant encouragement, co-operation and invaluable guidance throughout this project. Due to his motivation and expert guidance, I was able to understand the concepts in a nice manner. I am thankful to Dr. Balasubramaniam Jayaram, Head of the Department during my M.Sc. Programme, for being understanding and supporting.

I thank the teachers of the department for imparting in me the knowledge and understanding of mathematics. Without their kind efforts I would not have reached this stage.

I would also like to extend my gratitude to my family and friends for helping me in every possible way and encouraging me during this Programme. Above all, I thank, The Almighty, for all his blessings.

Mohd Shahvez Alam

Abstract

The main aim of this project is to learn a branch of Mathematics that studies commutative rings with unity. The central notion in commutative algebra is that of prime ideal. This provides common generalization of primes of airthmetics and points of geometry. The geometric notion of concentrating attention near a point has as its algebraic analogue the important process localizing a ring at prime ideal, therefore result about lacalization can be thought in term of geometry.

Contents

Preface i
1 Rings And Algebra 3
1.1 Introduction 3
1.2 Radical 5
1.3 Contraction and extension ideals 7
2 Noetherian Rings 9
3 Rings of fraction 15
3.1 Localization 17
4 Modules of fractions 21
5 Integral Extentions 25
5.1 Prime ideal in an integral extention 28
5.2 Going Up Going Down Thereom 31
5.3 Noether Normalization Thereom 34
6 Tensor Products 37
6.1 Axiomatic definition of tensor products 37
6.2 Constructive definition of tensor product 39
6.3 Universal mapping property of tensor product 41
6.4 Tensor product on modules 43
6.5 Properties of Tensor products 44
6.6 Questions 48
6.7 Primary Decompositions 50
6.8 Discrete Valuation rings 54
6.9 Topologies and completions 56

Contents

Chapter 1

Rings And Algebra

1.1 Introduction

In this course, we shall consider ring to be commutative and with unity.
Definition 1.1.1. Algebra
Let A be any ring.An A-algebra is a ring B together with a homomorphism $\phi: A \rightarrow B$

Example 1.1.2. Let A be any non zero ring then $f: \mathbb{Z} \rightarrow A$ defined by $f(n)=n .1_{A}$ is a ring homomorphism so A become a \mathbb{Z}-algebra

An A-subalgebra C of B is a subring C of B together with homomorphism $\phi: A \rightarrow B$
Let B be an A-algebra with a homomorphism $\phi: A \rightarrow B$ and let S be subset of B.The intersection of all A subalgebras of B.It is denoted by $A[S]$ and called the A subalgebra generated by S.If $B=A[S]$ then S is called a set of algebra generators of B, and $A[S]$ is the smallest subring of B containing S.If $B=A[S]$ for a finite set S then B is called finitely generated A-algebra

Let $b \in B$. The subalgebra $A[b]$ generated by the singleton $\{b\}$ consists precisely of all polynomial expression in b with coefficients in A,i.e.elements of the form $\sum_{i=0}^{\infty} a_{i} x^{i}$ with n a non-negative integer and $a_{i} \in A$ for every i.

Definition 1.1.3. : Prime Ideal

$A n$ ideal P in A is prime if $P \neq A$ and $a b \in P \Rightarrow a \in P$ or $b \in P$

Definition 1.1.4. Maximal Ideal

An ideal M in A is maximal if $M \neq A$ and if there an ideal J of such that $M \subseteq J \subseteq A \Rightarrow M=J$ or $J=A$

Definition 1.1.5. Multiplcative Subset

A set S is said be multiplicative subset if $1 \in S, a, b \in S \Rightarrow a b \in S$
for example,the following are multiplicative subsets.
The multiplicative set $\langle f\rangle$ generated by an element f of A, the complimrnt of a prime ideal is also an example of multiplicative set

Theorem 1.1.6. Every proper ideal in a ring A is contained in some maximal ideal.

Proof. Proof is by using Zorne's Lemma, Let $F=\{J \mid J$ is an ideal in A with $I \subseteq J \neq A\}$.
Clearly $I \in F \Rightarrow F \neq \phi$
Let $J_{1}, J_{2} \Rightarrow F$ and define $J_{1} \leq J_{2} \Leftrightarrow J_{1} \subseteq J_{2}$ then (F, \leq) is a poset. Let C be a chain in F and define
$T_{0}=\bigcup_{T \in C} T$ and $T \leq T_{0} \forall T \in C$.So T_{0} is an upper bound for C and T_{0} is an ideal in A containing I and also we note that T_{0} can not be equal to A therefore $T_{0} \in F$ and T_{0} is a upper bound for C. Now using Zorn's lemma there exist a maximal element say M in F and now it is easy to show M is maximal ideal in A by using maximality of M in F

Proposition 1.1.7. Let S be a subset of a ring A and I be an ideal of A disjoint from S. Then the set of ideals in A containing I and disjoint from S contain a maximal element and if S is multiplicative then every such maximal element is prime

Proof. : The set F of ideals of A containing I disjoint from S is non empty because it contains I.Now by previous theorem we define $T_{0}=\bigcup_{T \in C} T$ where C is a chain in F and $T_{0} \in F$ otherwise some element of S lies in T_{0} and hence in hence in T for some T which is a contradiction to the defination of F then by Zorn's lemma F has maximal element

Now assume S is multplicative subset of A and let M be maximal element in F Let $\mathrm{bb} / \in M$ and if $\mathrm{b} \notin M$ then $M \subset M+(b)$
$\Rightarrow M+(b) \notin F$, therefore S contains an element of $M+(b)$ say, $\mathrm{f}=\mathrm{c}+\mathrm{ab}$ where $\mathrm{c} \in M, \mathrm{a} \in A$ similarly if $\mathrm{b} / \notin M$ then S contain an element $\mathrm{f} /=\mathrm{c} /+\mathrm{a} / \mathrm{b}$, where $\mathrm{c} \quad \in M, \mathrm{a} \backslash A$
Now we have $\mathrm{ff} /=\mathrm{cc} /+\mathrm{abc} /+\mathrm{a} / \mathrm{b} / \mathrm{c}+\mathrm{aba} / \mathrm{b} / \in M$ which contradicts to $\mathrm{ff} / \in S$. Hence M is prime ideal in A

1.2 Radical

Let A be a ring and I be an ideal of A then radical of I is $\left\{f \in A: f^{r} \in I\right.$, some $\left.r \in \mathbb{N}\right\}$

Remark 1.2.1. Prime ideals are radical
Proposition 1.2.2. Let I be an ideal in a ring A then,
(a) The radical of I is an ideal
(b) $\operatorname{rad}(\operatorname{rad}(I))=\operatorname{rad}(I)$

Proof. First part is easy i shall prove second one.Let $a \in \operatorname{rad}(I)$ then $a^{r} \in I$
$\Rightarrow\left(a^{r}\right)^{s} \in I$ for some $\mathrm{r}, \mathrm{s} \in \mathbb{N}$
$\Rightarrow a^{r} \in \operatorname{rad}(I)$
$\Rightarrow \mathrm{a} \in \mathrm{rad}(\operatorname{rad}(I))$
Conversely,let $\mathrm{a} \in \operatorname{rad}(\operatorname{rad}(I))$ then $a^{r} \in \operatorname{rad}(I)$
$\Rightarrow\left(a^{r}\right)^{s} \in I$ and so $a^{t} \in I$ for some $\mathrm{t} \in \mathbb{N}$ which means $\mathrm{a} \in \operatorname{rad}(I)$
Remark 1.2.3. If I and J be two radical then $I \cap J$ is also a radical but $I+J$ need not be an radical,for example let $I=\left(X^{2}-Y\right)$ and $J=\left(X^{2}+Y\right)$ both are prime ideals in $\mathbb{K}[X, Y]$ then $I+J=\left(X^{2}, Y\right)$ which is not radical because it contains X^{2} but not X

Proposition 1.2.4. The radical of an ideal I is equal to the intersection of prime ideals containing it.In perticular,the nilradical of a ring A is equal the intersection of the prime ideals of A

Proof. Claim: $\operatorname{rad}(I)=\bigcap P$, where $I \subseteq P$.If $I=A$ then there is no prime ideal and set of all prime ideal is \emptyset and then intersection over empty set is full ring then we are done.Let $I \subseteq A$ then $\operatorname{rad}(I) \cap P$ where $I \subseteq P$ because prime ideals are radical and $\operatorname{rad}(I)$ is the smallest ideal containg I

Conversely,let $\mathrm{f} \notin \operatorname{rad}(I)$ and let $S=\left\{1, \mathrm{f}, f^{2} \ldots \ldots.\right\}$ be multiplicative set and we know $\operatorname{rad}(I)$ is an ideal that contain I and $\operatorname{rad}(I) \cap S=\phi$ and then by prop1 \exists a prime ideal say P disjoint from S, therefore $f \notin P$ and hence f does not belong to the intersection of prime ideals.Hence we are done

Definition 1.2.5. The Jacobson radical J of a ring is the intersection of the maximal ideals of the ring
$J(A)=\bigcap\{m \mid m$ is maximal ideal in A$\}$
A ring is local if it has exactly one maximal ideal,for such a ring,the Jacobson radical is m

Proposition 1.2.6. An element c of A is in the jacobson radical of A if and only if 1-ac is a unit for all $a \in A$

Proof. : We prove the contrapositive, \exists a maximal ideal M such that $c \notin M$ iff $\exists a \in A$ such that $1-a c$ is not a unit.Let $1-a c$ is not a unit then $(1-a c) \subset M$ and $1-a c \in(1-a c)$ then $c \notin M$ otherwise,
$1=1-a c+a c \in M$
$\Rightarrow 1 \in M$ that is not possible
Conversely, let $c \notin M$ then $M \subset M+(c)$
$\Rightarrow M+(c)=A$,since M is maximal ideal,therefore $1=m+a c, m \in M, a \in A$
$\Rightarrow 1-a c \in M$
$\Rightarrow 1-a c$ is not a unit

Theorem 1.2.7. Prime Avoidance

Let $P_{1}, P_{2}, \ldots, P_{r}, r \geq 1$ be ideals in A such that P_{i} are prime ideals for $i \geq 3$.If an ideal I is not contained any of P_{i} then I is not contained in the union of P_{i}

Proof. :I shall prove it by induction on r. The idea is to find an element in I but not in any of P_{i} 's
For $r=1$ nothing to prove.Next suppose $r \geq 2$ and for each i choose

$$
z_{i} \in I \backslash \bigcup P_{j} \text { where } i \neq j
$$

Where the set on right is nonempty by inductive hypothesis. We can assume $z_{i} \in P_{i}$ for all i, otherwise , if some z_{i} does not lie in P_{i}, then $z_{i} \in I \backslash \bigcup P_{i}$ for all $i=1,2, . ., r$.

Now put

$$
z=z_{1} \ldots z_{r-1}+z_{r}
$$

Then z in I but not in any of P_{i} 's.If z is in any of P_{i} for some $i \leq r-1$ then $z_{r} \in P_{i}$ which contradict to $z_{r} \in P_{r}$.Now suppose z is in P_{r}. Then $z_{1} \ldots z_{r-1}$ is in P_{r}
If r is 2 , we are done.If $r \geq 3$, then, since P_{r} is a prime ideal,some $z_{i}, i \leq r-1$ is in P_{r}, a contradiction so our assumption $z_{i} \in P_{i}$ for all i is wrong. So we are done.

1.3 Contraction and extension ideals

Let $\phi: A \rightarrow B$ be a ring homomorphism. For an ideal b of $B, \phi^{-1}(b)$ is an ideal in A called the contraction of b to A and denoted by b^{c}, and for an ideal a of A the ideal in B generated by $\phi(a)$ is called the extension of a to B and denoted by a^{e}, when ϕ is surjective then $\phi(a)$ is an ideal in B and when A is subring of B then $b^{c}=b \cap A$

Properties of contraction and extension of ideals

Let $a, a \prime$ be ideals of A and $b, b \prime$ be ideals of B then
$(a+a \prime)^{e}=a^{e}+a^{\prime},(a a \prime)^{e}=a^{e} a^{e},(b \cap b \prime)^{c}=b^{c} \cap b^{c}, \operatorname{rad}\left(b^{c}\right)=\operatorname{rad}(b)^{c}$

Theorem 1.3.1. Correspondence Theorem
Let $f: A \rightarrow B$ be a ring homomorphism then
(1) for any ideal I of A we have $I \subseteq I^{e c}$ and $I^{e c e}=I^{e}$. For any ideal J of B we have $J^{c e} \subseteq J$ and $J^{c}=J^{c e c}$
(2) There is a bijection between contracted ideals in A and extended ideals in B

Proof. Let $r \in I$ then $f(r) \in I^{e}$ so $r \in I^{e c}$. The ideal $J^{c e}$ generated by $f\left(J^{c}\right)$.If $r \in J^{c}$ then $f(r) \in J$,so the ideal generated by $f\left(J^{c}\right)$ is contained in the ideal J.Since $I \subseteq I^{e c}$ we get $I^{e} \subseteq I^{e c e}$ and since $I^{e c e} \subseteq I^{e}$, we conclude that $I^{e c e}=I^{e}$, similarly we can prove $J^{c e c}=J^{c}$
(2) Let C denote the set of contracted ideal in A and E denote the set of extented ideals in B and every in C is of the form J^{c} for some ideal J of B and every ideal of E is of the form I^{e} for some ideal I of A.Since $I^{e c e}=I^{e}$ and $J^{c e c}=J^{c}$.Now the map $\varphi: C \rightarrow E$ given by $\varphi(I)=I^{e}$ is clearly bijective with the given condition above

Remark 1.3.2. If J is a prime ideal of B then J^{c} is a prime ideal A but if I is prime idel of A then I^{e} need not be prime ideal for example take identity map $\mathbb{Z} \rightarrow \mathbb{Q}$ then for any p prime $p \mathbb{Z}$ is ideal of \mathbb{Z} but $(p \mathbb{Z})^{e}=\mathbb{Q}$ which is not prime in \mathbb{Q}

Theorem 1.3.3. Chinese Remainder Theorem Let A be a ring and $I_{1}, I_{2}, \ldots, I_{k}$ be ideals of A such that I_{i} and I_{j} are coprime for $i \neq j$ then,

$$
A / I_{1} \cap I_{2} \cap \ldots \cap I_{k} \cong A / I_{1} \times \ldots \ldots \times A / I_{k}
$$

Proof. I shall prove it for $k=2$,one can show for finitely many such ideals Define a map $\phi ; A / I J \rightarrow A / I \times A / J$ by
$\phi(x+I J)=(x+I, x+J), \phi$ is well define since $I J$ is an ideal of A and let

$$
x+I J=y+I J
$$

$x-y \in I J=I \cap J$, since I, J are co prime
$\Rightarrow x+I=y+J, x+J=y+J$ therefore, ϕ is well define
ϕ is one one clearly,for onto let $(x+I, y+J) \in A / I \times A / J$
Now we want to find $\alpha \in A$ such that $\phi(\alpha+I J)=(x+I, y+J)$ Since I, J co prime therefore $1=a+b, a \in I, b \in J$, now define $\alpha=a y+b x$ then we have

$$
\begin{aligned}
\phi(\alpha+I J) & =(\alpha+I, \alpha+J) \\
& =(b x+I, a y+J) \\
& =(x+I, y+J)
\end{aligned}
$$

therefore ϕ is onto, and also clearly homomorphim so we are done

Chapter 2

Noetherian Rings

Proposition 2.0.1. T.F.A.E on a ring A
(a) Every ideal in A is finitely generated
(b) Every ascending chain of ideals $I_{1} \subset I_{2} \subset \ldots$. eventually become constant
(c) Every non empty set of ideals in A has a maximal element

Proof. $(a) \Rightarrow(b)$ Let $I_{1} \subsetneq I_{2} \subsetneq \ldots \ldots .$. be ascending chain of ideals of A.Now set $I=\bigcup_{i=1}^{\infty} I_{i}$, then I is an ideal of A therefore I is finitely generated say $I=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ then $\exists m$ such that $x_{i} \in I_{m}$ for all i so x_{i} in $I \Rightarrow x_{i} \in I_{m}$ then we are done
$(b) \Rightarrow(c)$
Let $F=\left\{I_{i}, i \in \wedge\right\}$ be a non empty family of non empty family of ideals of A.Pick any index i_{1} and look at $I_{i_{1}}$ if this is maximal in F then we are done.If not then choose $i_{2} \in \wedge$ such that $I_{i_{1}} \subsetneq I_{i_{2}}$ if this one is maximal then we are done if not repeat this process after finite stage it stop surely
$(c) \Rightarrow(a)$ Let I be an ideal of A.Consider the family of F of all finitely generted ideals of I then $F \neq \phi$ since $(0) \in F$, then F has maximal element say $I_{0}=\left(x_{1}, \ldots ., x_{n}\right)$.If $I \neq I_{0}$ then pick $x \in \mathrm{I}$ but not in I_{0} then $I_{1}=I_{0}+(x)$ $\Rightarrow I_{1} \in F$ which is a contraction since I_{0} is max so we are done

Definition 2.0.2. A ring A is said to be noetherian if it is satisfies the above equivalent condition

Proposition 2.0.3. Let A be a ring. The following conditions on an A module M are equivalent
(a) Every submodule of M is finitely generated
(b) Every ascending chain of submodules $M_{1} \subsetneq M_{2} \subsetneq \ldots$. eventually become constant
(c) every non empty set of submodules of M has A maximal element

Proof. Essentially same as the prop 2.0.1
Theorem 2.0.4. Hilbert Basis Theorem If A is Noetherian, then $A[x]$ is Noetherian

Proof. Let I be an ideal of $A[x]$. We shall show I is finitely generated.Choose a sequence $f_{1}, f_{2}, \ldots \subsetneq I$ as follows,let f_{1} be non zero element of least degree in I.For $i \geq 1$, if $\left(f_{1}, \ldots ., f_{i}\right) \neq I$ then choose f_{i+1} to be an element of least degree amomg those in I but not in $\left(f_{1}, \ldots ., f_{i}\right)$ otherwise if $I=\left(f_{1}, \ldots ., f_{i}\right)$ then we are done.
Let a_{j} be the leading coefficient of f_{j}, since A is noetherian then ideal $J=\left(a_{1}, a_{2}, \ldots.\right)$ is finitely generated,so $J=\left(x_{1}, \ldots, x_{m}\right)$ and again J can be written $J=\left(a_{1}, \ldots, a_{m}\right)$.Now we claim $I=\left(f_{1}, \ldots ., f_{m}\right)$
Otherwise, consider $f_{m+1} \cdot a_{m+1} \in J$, so we can write $a_{m+1}=\sum_{j=1}^{m} u_{j} a_{j}$ for some $u_{j} \in A$.Define

$$
g=\sum_{j=1}^{m} u_{j} f_{j} x^{\operatorname{def}_{m+1}-\operatorname{deg} f_{j}} \in\left(f_{1}, \ldots, f_{m}\right)
$$

and notice that this is of the same degree as f_{m+1}, with the same initial term. The difference $f_{m+1}-g$ is in I but not $\left(f_{1}, \ldots, f_{m}\right)$, and has degree less than that of f_{m+1}. But f_{m+1} was something of minimal degree with this property,so we have contradiction

Remark 2.0.5. Converse of the above theorem is also true and result also true for finitely many variables

Example of Noetherian rings

Any field , PID, finite ring, \mathbb{Z} and the ring $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ is not noetherian because we have non terminating ascending chain

Subring of noetherian need not be noetherian

Take above infinite variable ring which is a subring of its field of fraction and field of fraction of a ring is noetherian

Lemma 2.0.6. Nakayama's Lemma Let A be a ring and I be an ideal in A.Let M be an A - module and assume that I is contained in all maximal ideal of A and M is also finitely generated then
(a) If $M=I M$ then $M=0$ (b) If N is a submodule of M such that $M=N+I M$ then $M=N$

Proof. Suppse M is non zero,choose a minimal gener ating set $x_{1}, x_{2}, \ldots, x_{n}$ for M.Now $x_{1 \in} \in M$ so $x_{1} \in I M$ therefore , $x_{1}=a_{1} m_{1}+\ldots+a_{n} m_{n}$, $a_{i} \in I, m_{i} \in M$
now each m_{i} can be written in form of x_{i}
$\Rightarrow\left(1-a_{1}\right) x_{1}=a_{2} x_{2}+\ldots+a_{n} x_{n}$, but $\left(1-a_{1}\right)$ is unit in A therefore x_{1} is a linear combination of remaining x_{i} which contradict minimality of generating set for M.Hence M is zero module
(b) Since N is submodule of M then M / N makes sense then we note

$$
\begin{gathered}
I(M / N)=\left\{\sum_{i=1}^{n} a_{i}\left(m_{i}+N\right) \mid a_{i} \in I, m_{i} \in M\right\} \\
=(I M+N) / N \\
=M / N
\end{gathered}
$$

then by part one

$$
\begin{aligned}
& M / N=0 \\
& \Rightarrow M=N
\end{aligned}
$$

Note 2.0.7. Let A be a local ring with maximal ideal m.Let $K=A / m$ be the residue field of A. Let M be finitely generated A - module then $m \subseteq$ Ann ($M / m M)$

Now we note that $M / m M$ is a vector space over K where scalar multiplication is define as follows
$A / m \times M / m M \rightarrow M / m M$
$(x+m, y+m M) \mapsto x y+m M$ and this is well define can be proved by using $m \subseteq \operatorname{Ann}(M / m M)$

Proposition 2.0.8. Let A be local ring with maximal ideal m and residue field $K=A / m$. And let M be finitely generated module over A the action of A on $M / m M$ factor through K and elements $a_{1}, a_{2}, \ldots, a_{n}$ of M generate it as an A module iff the elements $a_{1}+m M, \ldots, a_{n}+m M$ spanM $/ m M$ as a vector space over K

Proof. If $a_{1}, . ., a_{n}$ generates M then their images generate the vector space $M / m M$
Conversely,suppose that $a_{1}+m M, \ldots, a_{n}+m M$ span $M / m M$ and let N be a submodule of M then the composite map $N \rightarrow M \rightarrow M / m M$ is onto and so $M=N+m M$ then by lemma $M=N$

Proposition 2.0.9. Let A be noetherian local ring with maximal ideal m. Elements a_{1}, \ldots, a_{n} of m generate m as an ideal if and only if $a_{1}+m^{2}, \ldots, a_{n}+$ m^{2} generate m / m^{2} as a vector space over A / m. In particular, the minimum number of generators for the maximal ideal is equal to the dimension of the vector space m / m^{2}.

Proof. Because A is noetherian so m is finitely generated then apply previous proposition for $M=m$ we are done

Definition 2.0.10. Let A be a noetherian ring.
(a) The height ht (p) of a prime ideal p in A is the greatest length d of a chain of distinct prime ideals $p=p_{d} \supseteq \ldots . . \supseteq p_{0}$
(b) The (krull) dimension of A is $\sup \{h t(p) \mid p \subset A, p$ is prime ideal $\}$

Example 2.0.11. The hight of a non-zero prime ideal in PID is one because $(0)=p_{0} \subsetneq(x)=p_{1}$, so such a ring has krull dim one unless it is not field

Note 2.0.12. It is sometimes convenient to define the Krull dimension of the zero ring to be -1
Let A be an integral domain then $\operatorname{dim}(A)=0$ iff (0) is maximal ideal of A iff A is field

Proposition 2.0.13. Every set of generators for a finitely generated ideal contains a finite generating set.

Proof. Let $S=\left\{S_{1}, S_{2}, \ldots \ldots.\right\}$ be a set of generators for an ideal I and suppose that I is generated by a finite set $\left\{a_{1}, \ldots, a_{n}\right\}$. Each a_{i} lies in the ideal generated by a finite subset S_{i} of S , and so I is generated by a finite subset $\cup S_{i}$ of S. Since the set $\left\{a_{1}, \ldots ., a_{n}\right\} \subseteq \cup S_{i}$

Theorem 2.0.14. Krull Intersection Theorem Let I be an ideal in a noetherian ring A. If I is contained in all maximal ideals of A, then $\bigcap_{n \geq} I^{n}=(0)$

Proof. We shall show that, for every I in a noetherian ring A
$\bigcap_{n \geq 1} I^{n}=I \bigcap_{n \geq 1} I^{n}$
Since A is noetherian ,let $a_{1}, a_{2}, \ldots, a_{r}$ generate I and
$I^{n}=\left\{g\left(a_{1}, \ldots, a_{r}\right) \mid g \in A\left[x_{1}, \ldots x_{r}\right], g\right.$ is homogeneous of degree $\left.n\right\}$
Let S_{m} denote the set of homogeneous polynomials f of such that $f\left(a_{1}, \ldots, a_{r}\right) \in$ $\bigcap_{n \geq 1} I^{n}$ and let J be an ideal in $A\left[x_{1}, . ., x_{r}\right]$ generated by the set $\bigcup_{m \geq 1} S_{m}$. Since $A\left[x_{1}, \ldots, x_{r}\right]$ is noetherian so J is finitely generated and generated by the srt $\left\{f_{1}, \ldots, f_{s}\right\}$ of elements of $\bigcup_{m \geq 1} S_{m}$.Let $d_{i}=\operatorname{deg} f_{i}$ and $d=\max d_{i}$

Let $b \in \bigcap_{n \geq 1} I^{n}$ then $b \in I^{d+1}$, and so $b=f\left(a_{1}, \ldots, a_{r}\right)$ for some homogeneous polynomial f of degree $d+1$ therefore by definition $f \in S_{d+1} \subseteq J$ so $f=g_{1} f_{1}+\ldots .+g_{s} f_{s}$ for some $g_{i} \in A\left[x_{1}, \ldots, x_{n}\right]$
As f and the f_{i} are homogeneous, we can omit from each g_{i} all terms not of degree $\operatorname{deg} f-\operatorname{deg} f_{i}$, since these terms cancel out. In other words, we can choose the g_{i} to be homogeneous of degree $\operatorname{deg} f-\operatorname{deg} f_{i}=d+1-d_{i}>0$, in perticular the constant term of g_{i} is zero and so $g_{i}\left(a_{1}, \ldots, a_{r}\right) \in I$.Now $b=f\left(a_{1}, \ldots, a_{r}\right)=\sum_{i} g_{i}\left(a_{1}, . ., a_{r}\right) f_{i}\left(a_{a}, \ldots, a_{r}\right) \in I \bigcap I^{n}$ and this complete the our requirement

Chapter 3

Rings of fraction

Let S be a multiplicative subset of a ring A. Define a relation \equiv on $A \times S$ as follows, for $a, b \in A, s, t \in S$

$$
(a, s) \equiv(b, t)
$$

iff $\exists u \in S$ such that $(a t-b s) u=0$
This is an equivalence relation
Write a / s for the equivalence class containing (a, s) and define addition and multiplication of equivalence classes according to the rules

$$
\begin{aligned}
& a / s+b / t=(a t+b s) / s t \\
& (a / s) \cdot(b / t)=(a b / s t)
\end{aligned}
$$

The operations addition and multiplication defined above are well define.Now first we shall prove multiplication is well define
Let $\left(a_{1}, s_{1}\right) \equiv\left(a_{2}, s_{2}\right)$ and $\left(b_{1}, t_{1}\right) \equiv\left(b_{2}, t_{2}\right)$ then for some $u, v \in S$ we have $\left(a_{1} s_{2}-a_{2} s_{1}\right) u=0$ and $\left(b_{1} t_{2}-b_{2} t_{1}\right) v=0$
Want to show $\left(a_{1} b_{1}, s_{1} t_{1}\right) \equiv\left(a_{2} b_{2}, s_{2} t_{2}\right)$

$$
\begin{aligned}
{\left[\left(a_{1} b_{1}\right)\left(s_{2} t_{2}\right)-\left(a_{2} b_{2}\right)\left(s_{1} t_{1}\right)\right] u v } & =\left(a_{1} s_{2}-a_{2} s_{1}\right) u b_{1} t_{2} v+\left(b_{1} t_{2}-b_{2} t_{1}\right) v a_{2} s u \\
& =0+0=0
\end{aligned}
$$

Similarly we can show addition is also well define
Now we define a set $S^{-1} A=\{a / s: a \in A, s \in S\}$ and this is ring with the
operation defined above with identity $1=s / s, \forall s \in S$.We call $S^{-1} A$ the ring of fractions of A with respect to S
If A is an integral domain and $S=A \backslash\{0\}$ then $S^{-1} A$ is the familiar field of fractions of A

Let $f: A \rightarrow S^{-1} A$, where $f(x)=x / 1$ then clearly f is a ring homomorphism
Observation if A is an integral domain and S any multiplicatively closed subset not containing 0 then f is injective.
proof Suppose A is an integral domain, $0 \notin S \subseteq A$, and S multiplicatively closed. Let $x_{1}, x_{2} \in A$ such that $x_{1} / 1=x_{2} / 1$, then $\left(x_{1}, 1\right) \equiv\left(x_{2}, 1\right)$,so

$$
\left(x_{1}-x_{2}\right) u=0
$$

for some $u \in S$

$$
\Rightarrow x_{1}-x_{2}=0
$$

, since A is an integral domain and $u \neq 0$ thus f is injective

$$
S^{-1} A \text { has following universal property }
$$

Theorem 3.0.1. Let $g: A \rightarrow B$ be a ring homomorphism such that $g(s)$ is a unit in B for each $s \in S$.
Then there is a unique homomorphism h such that this diagrame

commutes
Proof. Define $h: S^{-1} A \rightarrow B$ by

$$
h(a / s)=g(a) g(s)^{-1}
$$

where $a \in A, s \in S$. Now i will show h is well define Suppose $a / s=a \iota / s \prime$, then

$$
(a s \prime-a \prime s) t=0
$$

for some $t \in S$ thus
$0=g(0)=g((a s \prime-a \prime s) t)$

$$
0=[g(a) g(s \prime)-g(a \prime) g(s)] g(t)
$$

and $g(t)$ is unit in B, then

$$
g(a) g(s \prime)-g(a \prime) g(s)=0
$$

and since $g(s), g(s t)$ are unit in B and this prove that h is well define map also we note as g is ring homomorphism so is h
Further if $a \in A$ then
$(h \circ f)(a)=h(a / 1)=g(a) g(1)^{-1}=g(a)$ so that the diagrame

commutes
Suppose also that $h \prime: S^{-1} A \rightarrow B$ is a ring homomorphism such that this diagrame

commutes and for all $s \in S, g(s)$ is unit in B, then
$h \prime(a / s)=h \prime(a / 1 \cdot 1 / s)=h \prime(a / 1) h \prime(1 / s)$. But $1 / s$ is unit in $S^{-1} A$ with inverse $s / 1$, so that $h \prime(1 / s)$ is a unit in B and $h \prime(1 / s)=[h \prime(s / 1)]^{-1}$
Hence
$h \prime(a / s)=h \prime(a / 1)[h \prime(s / 1)]^{-1}=g(a) g(s)^{-1}=h(a / s)$ and this proves h is unique with this property

3.1 Localization

Let P be a prime ideal of A, and put $S=A \backslash P$ which is multiplicatively closed, form $A_{P}=S^{-1} A$ and put $M=\left\{a / s \in A_{P}: a \in P\right\}$
Claim A_{P} is a local ring with unique maximal ideal M. The process of passing from A to A_{P} is called localization at P. e.g. If $A=\mathbb{Z}$ and $P=p \mathbb{Z}$
where p is a prime integer, then localization at P produces $A_{P}=\{a / b$: $a, b \in \mathbb{Z}, p \nmid b\}$
Proof of claim We first prove $\forall b \in A, \forall t \in S, b / t \in M \Rightarrow b \in P$
Suppose
$b / t=a / s$ where $b \in A, a \in P$ and $s, t \in S$. Then $(a t-b s) u=0$ for some $u \in S$

So , $(a t-b s) \in S$ since P is prime, $0 \in P$ and $u \notin P$. Hence $b s=a t-(a t-b s) \in P$. But $s \notin P$, so $b \in P$, and above sub claim is proved. By subclaim, certainly $1=1 / 1 \notin M$, (since $1 \notin P)$ so $M \neq A_{P}$ and M is ideal of A_{P}
Now if $b \in A, t \in S$ and $b / t \notin M$, then, by definition of $M, b \notin P$, so $b \in S$, yielding $t / b \in A_{P}$, where b / t is a unit of A_{P}, therefore M is the set of all unit of A_{P} so M is maximal ideal so A_{P} is local ring

Example 3.1.1. $S^{-1} A$ is the zero ring iff $0 \in S$
Solution $: \Leftarrow$ If $0 \in S$ then, for all $a, b \in A, s, t \in S$

$$
a / s=b / t
$$

since $(a t-b s) 0=0$,so that all elements of $S^{-1} A$ are equal
\Rightarrow If $S^{-1} A$ contains only one element then $(0,1) \equiv(1,1)$ so that $0=(0 \cdot 1-1 \cdot 1) t=-t$ for some $t \in S$ so that $0=t \in S$

Proposition 3.1.2. For an ideal I of $A, S^{-1} I$ is a proper ideal of $S^{-1} A \Leftrightarrow$ $I \cap S=\phi$.Further if P is a prime ideal of A with $P \cap S=\phi$ then
(1) For $a \in A, s \in S$ we have $a / s \in S^{-1} P \Leftrightarrow a \in P$
(2) $S^{-1} P$ is a prime ideal of $S^{-1} A$

Proof. If $s \in I \cap S$ then $1=s / s \in S^{-1} I$, so $S^{-1} I$ is not proper ideal, so

$$
I \cap S=\phi
$$

Conversely,suppose that $S^{-1} I$ is not proper ideal of $S^{-1} A$ then $1 \in S^{-1} I$ so $1 / 1=a / s$ with $a \in I, s \in S$

$$
\Rightarrow a t=s t
$$

for some $t \in S$. Also at $\in I$ since I is an ideal ,therefore $s t \in I \cap S \neq \phi$ (1) If P is prime ideal disjoint from S and if $a / s \in S^{-1} P$ then $a / s=p / u$ for some $p \in P, u \in S$ therefore, $a \cdot u \cdot t=s \cdot p \cdot t \in P$ for some $u, s, t \in S$ but $u t \notin P$

$$
\Rightarrow a \in P
$$

since P is a prime ideal
(2) Let $(a / s)(b / t) \in S^{-1} P$

$$
\Rightarrow a b / s t \in S^{-1} P
$$

then by previous part $a b \in P$ so either $a \in P$ or $b \in P$
\Rightarrow either $a / s \in S^{-1} P$ or $b / t \in S^{-1} P$.Hence $S^{-1} P$ is prime ideal
Example 3.1.3. Every ideal of $S^{-1} A$ is of the form $S^{-1} I$ for some ideal I of A
Let J be an ideal of $S^{-1} A$. Put $I=\{x \in A: x / 1 \in J\}$. Claim $J=S^{-1} I$
If $a / s \in J$ then $a / 1=s / 1 \cdot a / s \in J$ so $a \in I$ implies $a / s \in S^{-1} I$.
Conversely, $a / s \in S^{-1} I$ then $a \in I$ so $a / 1 \in J$ therefore $(1 / s)(a / 1)=a / s \in$ J

Theorem 3.1.4. The map $P \mapsto S^{-1} P$ is bijective from the set of prime ideals of A and disjoint from S onto the set of all prime ideals of $S^{-1} A$

Proof. If P is prime then $S^{-1} P$ is prime. Let P, Q be prime ideals of A disjoint from S. If $P \subseteq Q$ then $S^{-1} P \subseteq S^{-1} Q$
Conversely, suppose $S^{-1} P \subseteq S^{-1} Q$ then for $p \in P$ we have $p / 1 \in S^{-1} P$

$$
\begin{gathered}
\Rightarrow p / 1 \in S^{-1} Q \\
\Rightarrow p \in Q
\end{gathered}
$$

Hence $P \subseteq Q$.This proves that $P \subseteq Q \Leftrightarrow S^{-1} P \subseteq S^{-1} Q$.Consequently $P=Q \Leftrightarrow S^{-1} P=S^{-1} Q$, therefore the given map is injective.
Let P be prime ideal of $S^{-1} A$ then $P=S^{-1} P_{1}$ for some ideal P_{1} of A and P_{1} is prime since $S^{-1} P_{1}$ is prime then we are done

Proposition 3.1.5. Let S be a multiplicative subset of the ring A, and consider extension $I \mapsto I^{e}=S^{-1} I$ and contraction $I \mapsto I^{c}$ of ideals with respect to the homomorphism $\phi: A \rightarrow S^{-1} A$. Then
$I^{c e}=I$ for all ideals of $S^{-1} A$ and $P^{e c}=P$, if P is a prime ideal of A and disjoint from S

Proof. Let I be an ideal in $S^{-1} A$ then $I^{c e} \subseteq I$. Now $b \in I$ then $b=a / s, a \in$ $A, s \in S$

So $a / 1=s(a / s) \in I$ this implies $a \in I^{c}$. Hence $b \in I^{c e}$
Now let P be prime ideal of A then $P \subseteq P^{e c}$. Let $a \in P^{e c}$ so that $a / 1=a \prime / s$ for some $a \iota \in P, s \in S$. Then $(a s-a \prime) t=0$ for some $t \in S$ and therefore ast $\in P$ implies $a \in P$ since st $\notin P$ and P is prime and this complete the proof

Chapter 4

Modules of fractions

Let A be a ring, S a multiplicatively closed subset of A, and M be an A-module.
Define a relation \equiv on $M \times S=\{(m, s) \mid m \in M, s \in S\}$ by, for $m, m \prime \in$ $M, s, s ı \in$

$$
(m, s) \equiv(m \prime, s \prime)
$$

iff $\exists t \in S, t(s m \prime-s \prime m)=0$
If $m \in M$ and $s \in S$ then write $m / s=$ equivalence class of (m, s) and put

$$
S^{-1} M=\{m / s: m \in M, s \in S\}
$$

Define addition and scalar multiplication on $S^{-1} M$ by, for $m, m \prime \in M, s, s \prime \in$ $S, a \in A, t \in S$
$(m / s)+(m \prime / s \prime)=(s m \prime+m s \prime) / s s^{\prime}$
$(a / t)(m / s)=a m / t s$
And $S^{-1} M$ is an $S^{-1} A$-module, referred to as the module of fractions with respect to S

Since the mapping $a \mapsto a / 1$ is a ring homomorphism from $A \rightarrow S^{-1} A$, by restriction of scalars we have
$S^{-1} M$ is an A-module with scalar multiplication $(\forall a \in A, m \in M, s \in S$)
$a \cdot(\mathrm{~m} / \mathrm{s})=(a / 1)(\mathrm{m} / \mathrm{s})=a \mathrm{~m} / \mathrm{s}$

Notation

Let M be an A-module. (1) Write $M_{P}=S^{-1} M$ if $S=A \backslash P$ where P is a prime ideal of A

Think S^{-1} as an "operator" which manufactures $S^{-1} A$-modules from A-modules.
Also S^{-1} "operates" on module homomorphisms. Let $u: M \rightarrow N$ be an A-module homomorphism.
Define, $S^{-1} u: S^{-1} M \rightarrow S^{-1} N$ by

$$
m / s \rightarrow u(m) / s, m \in M, s \in S
$$

$S^{-1} u$ is well define as u is an A module homomorphism .Now we observe S^{-1} preserve addition and multiplication

$$
\begin{gathered}
\left(S^{-1} u\right)\left(m_{1} / s_{1}+m_{2} / s_{2}\right)=\left(S^{-1} u\right)\left(\left(m_{1} s_{2}+m_{2} s_{1}\right) / s_{1} s_{2}\right) \\
=u\left(m_{1} s_{2}+m_{2} s_{1}\right) / s_{1} s_{2} \\
=\left[s_{2} u\left(m_{1}\right)+s_{1} u\left(m_{2}\right)\right] / s_{1} s_{2} \\
=u\left(m_{1}\right) / s_{1}+u\left(m_{2}\right) / s_{2}
\end{gathered}
$$

Similarly we can show S^{-1} preserve scalar multiplicatation Hence $S^{-1} u$ is $S^{-1} A$ module homomorphism (and also, by restriction of scalars, an A-module homomorphism).

Further if $M_{1} \xrightarrow{u} M_{2} \xrightarrow{v} M_{3}$ are A-module homomorphisms, then, for all $x \in M_{1}, s \in S$ $\left[S^{-1}(v \circ u)\right](x / s)=(v \circ u)(x) / s=v(u(x)) / s$

$$
=\left(S^{-1} v\right)\left(S^{-1} u\right)(x / s)
$$

$$
=\left[\left(S^{-1} v\right) \circ\left(S^{-1} u\right)(x / s), \text { which shows } S^{-1}(v \circ u)=\left(S^{-1} v\right) \circ\left(s^{-1} u\right)\right.
$$

Theorem 4.0.1. Suppose $M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2}$ be exact sequence of A - modules at M. Then

$$
S^{-1} M_{1} \xrightarrow{S^{-1} f} S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M_{2}
$$

is exact sequence of $S^{-1} A$ modules at $S^{-1} M$

Proof. Since the given sequence is exact so we have $g \circ f=0$ the zero homomorphism,therefore
$\left(S^{-1} g \circ S^{-1} f\right)=S^{-1}(g \circ f)=S^{-1}(0)=0$, which proves
$\operatorname{Im}\left(S^{-1} f\right) \subseteq \operatorname{ker}\left(S^{-1} g\right)$. Suppose $m / s \in \operatorname{ker}\left(S^{-1} g\right)$, so $g(m) / s$ is the zero of $S^{-1} M_{2}$. Hence $(g(m), s) \equiv(0,1)$, so $0=t g(m)=g(t m)$, for some $t \in S$, yielding $t m \in \operatorname{kerg}=\operatorname{Imf}$.

Hence,$t m=f(m \prime)$ for some $m \prime \in M_{1}$, and $\left(S^{-1} f\right)(m \prime / s t)$ $=f(m ı) / s t=t m / t s=m / s$, proving $m / s \in \operatorname{Im}\left(S^{-1} f\right)$.
Thus $\operatorname{ker}\left(S^{-1} g\right) \supseteq \operatorname{Im}\left(S^{-1} f\right)$, completing the proof exactness at $S^{-1} M$
Example 4.0.2. Let M be an A-module. For $h \in A$, let $M_{h}=S_{h}^{-1} M$ where $S_{h}=\left\{1, h, h^{2}, \ldots.\right\}$. Then every element of M_{h} can be written in the form $m / h^{r}, m \in M, r \in \mathbb{N}$ and $m / h^{r}=m \prime / h^{r \prime}$ if and only if $h^{N}\left(m h^{r \prime}-m \prime h^{r}\right)=0$ for some $N \in \mathbb{N}$
Proposition 4.0.3. Let M be a finitely generated A-module. If $S^{-1} M=0$, then there exists an $h \in S$ such that $M_{h}=0$.

Proof. $S^{-1} M=0$ means that, for each $x \in M$, there exists an $s_{x} \in S$ such that $s_{x} x=0$. Let $x_{1}, \ldots ., x_{n}$ generate M. Then define $h=s_{x_{1}} \ldots . . s_{x_{n}}$ in S and observe $h M=0$ by using M is finitely generated. Now let $a / s \in M_{h}$ then $a / s=h a / h s=0$, therefore $M_{h}=0$

Proposition 4.0.4. Let M be an A module then the canonical map

$$
M \rightarrow \prod\left\{M_{m}: m \text { is maximal ideal in } A\right\}
$$

is injective
Proof. Let $x \in M$ map to zero in all M_{m} then we shall show x is zero.
Here $M_{m}=S_{m}^{-1} M, S_{m}=A \backslash m$
Let $I=\operatorname{Ann}(x)=\{a \in A: a x=0\}$ is an ideal of A.
Because x maps to zero in all M_{m} so $\exists s \in S_{m}$ such that $s x=0, s \notin m, s \in A$ $\Rightarrow s \in I$ but $s \notin m$ and therefore I is not contained in m and this is true for all m so I is equal to A itself
$\Rightarrow 1 \in \operatorname{Ann}(x)$, therefore $x=1 \cdot x=0$ so given map is injective
Proposition 4.0.5. Let A - module $M=0$ if $M_{m}=0$ for all maximal ideal m

Proof. Let $x \in M$ and $I=\operatorname{Ann}(x)=\{a \in A: a x=0\}$, then I is an ideal of A, since $M_{m}=0$ for all m so $\exists s \in A \backslash m$ such that $s x=0$, doing same as previous proposition we get $x=0$

Chapter 5

Integral Extentions

Let A be a subring of B.An element b of B is said be integral over A if it is a root of a non zero monic polynomial with coefficients in A it means it satisfies the equaton
$b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0, a_{i} \in A$. Such an equation is called an integral equation of b over A

Proposition 5.0.1. For an element b of B, T.F.A.E
(1) b is integral over A
(2) $A[b]$ is finitely generated as an A module
(3) There exist a subring C of B containing $A[b]$ such that C is finitely generated as an A module
(4) There exist a finitely generated A submodule M of B such that $b M \subseteq M$ and $\operatorname{ann}_{B}(M)=0$

Proof. (1) \Rightarrow (2) Let $b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0, a_{i} \in A$ be an integral equation of b over A. Let M be an A - submodule of $A[b]$ generated by $1, b, b^{2}, \ldots ., b^{n-1}$. We claim that $b^{r} \in M$ for every $r \geq 0$.This is clear for $r \leq n-1$. If $r \geq n$ then multiplying the integral equation by b^{r-n} we get $b^{r}=-\left(a_{1} b^{r-1}+a_{2} b^{r-2}+. .+a_{n} b^{r-n}\right) \in M$
Therefore $b^{r} \in M$ for all non-negative and thus $M=A[b]$. Thus $A[b]$ is finitely generated as an A module

$$
(2) \Rightarrow(3) \text { Take } C=A[b]
$$

(3) \Rightarrow (4) Take $M=C$, and M has the property $b M \subseteq M$ since $y \in b M$ implies $y=b m \in M$ for some $m \in M$, and note that $1 \in C$ implies that $a n n_{B}(C)=0$
(4) $\Rightarrow(1)$. Let M be an A module in B with a finite set of generators $\left\{e_{1}, \ldots, e_{r}\right\}$ such that $b M \subseteq M$ and $\operatorname{ann}_{B}(M)=0$ then for all $1 \leq i \leq r$ $b e_{i}=\sum_{j=1}^{r} a_{i j} e_{j}$ for some $a_{i j} \in A$, and we can rewrite these equation as $\sum_{j=1}^{r}\left(b \delta_{i j}-a_{i j}\right) e_{j}=0$ where $\delta_{i j}$ is Kronecker delta and put $d=\operatorname{det}\left(b \delta_{i j}-a_{i j}\right)$ then using cramer rule we get integral equation for b over A

Corollary 5.0.2. Let $b_{1}, \ldots, b_{r} \in B$ be integral over A. Then $A\left[b_{1}, \ldots ., b_{r}\right]$ is finitely generated as an A-module

Proof. For $r=1$, we are done by previous proposition .Inductively assume that $B^{\prime}=A\left[b_{1}, \ldots, b_{r-1}\right]$ is finitely generated as an A-module .Since b_{r} is integral over A, it also integral over B^{\prime}. Now $B^{\prime}\left[b_{r}\right]$ is finitely generated as a B^{\prime} module by the case $r=1$. Now if x_{1}, \ldots, x_{m} are A-module generators of B^{\prime} and $y_{1}, . ., y_{n}$ are B^{\prime}-module generators of $B^{\prime}\left[b_{r}\right]$ then the set $\left\{x_{i} y_{j}\right.$: $1 \leq i \leq m, 1 \leq j \leq n\}$ generators of $B^{\prime}\left[b_{r}\right]$ as an A-module

Corollary 5.0.3. The set A^{\prime} of elements of B which are integral over A is a subring of B containing A

Proof. Clearly $A \subseteq A^{\prime}$. If $b_{1}, b_{2} \in A^{\prime}$ then by previous corollary $A\left[b_{1}, b_{2}\right]$ is finitely generated as an A-module. Since $b_{1}+b_{2}$ and $b_{1} \cdot b_{2} \in A\left[b_{1}, b_{2}\right]$ then by first proposition both are integral over A

Note 5.0.4. The subring A^{\prime} defined above is called the integral closure of A in B. We say B is integral over A if $A^{\prime}=B$, and that A is integrally closed in B if $A^{\prime}=A$

Proposition 5.0.5. Let $A \subseteq B \subseteq C$ be integral extentions. If C is integral over B and B is integral over A then C is integral over A

Proof. Let $c \in C$ and let $c^{n}+b_{1} c_{n-1}+\ldots . .+b_{n}=0$ be an integral equation of c over B. Let $B^{\prime}=A\left[b_{1}, \ldots, b_{n}\right]$. Then c is integral over B^{\prime} then $B^{\prime}[c]$ is finitely generated as an B^{\prime} module by one of the above result. Therefore
$B^{\prime}[c]$ is finitely generated as an A-module by using B is integral over A, and so c is integral A

Proposition 5.0.6. Let A be an integral domain with field of fractions F, and let E be a field containing F. If $x \in E$ is algebraic over F then there exist a non zero $d \in A$ such that $d \cdot x$ is integral over A

Proof. Since x is algebraic over F we have

$$
x^{n}+a_{1} x^{n-1}+\ldots .+a_{n}=0
$$

where $a_{i} \in F$. Now using common dinominator, $a_{i}=b_{i} / d, \forall i, 1 \leq i \leq n$.So $b_{i}=d a_{i} \in A, \forall i$. Now

$$
d^{n} x^{n}+a_{1} d^{n} x^{n-1}+\ldots .+a_{n} d^{n}=0
$$

this implies

$$
(d x)^{n}+a_{1} d_{1}(d x)^{n-1}+\ldots+a_{n} d^{n}=0
$$

where $a_{1} d_{1}, . ., a_{n} d^{n} \in A$. So $d . x$ is integral over A

Definition 5.0.7. An integral domain A is said be integrally closed or normal if it is equal to its integral closure in its field of fraction F it mean if $x \in F, x$ is integral over A implies $x \in A$

Proposition 5.0.8. Every unique factorization domain is integrally closed.
Proof. Let A be UFD. An element of the field of fractions of A not in A can be written a / b with $a, b \in A$ and b divisible by some prime element p not dividing A, then

$$
(a / b)^{n}+a_{1}(a / b)^{n-1}+\ldots+a_{m}=0
$$

where $a_{i} \in A$

$$
\Rightarrow a_{1} b a^{n-1}+\ldots+a_{m} b^{n}=-a^{n}
$$

then p divides every term in LHS and hence a^{n} but p does not divide a so we got a contradiction

Proposition 5.0.9. Let $A \subseteq B$ be rings, and let A^{\prime} be the integral closure of A in B. For every multiplicative subset S of $A, S^{-1} A^{\prime}$ is the integral closure of $S^{-1} A$ in $S^{-1} B$

Proof. Let $b / s \in S^{-1} A^{\prime}$ with $b \in A^{\prime}$ and $s \in S$, then
$b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0$ then,b / s is integral over $S^{-1} A$ this implies that $S^{-1} A^{\prime}$ is contained in closure of $S^{-1} A$
Conversely let $b / s, b \in B, s \in S$ be integral over $S^{-1} A$ then
$(b / s)^{n}+a_{1} / s_{1}(b / s)^{n-1}+\ldots .+a_{n} / s_{n}=0$. Now multiplying $s^{n} s_{1}^{n} \ldots . . s_{n}^{n}$ and observe that $s_{1} s_{2} \ldots . s_{n} b \in A^{\prime}$ and therefore
$b / s=\left(s_{1} s_{2} \ldots s_{n} b\right) /\left(s_{1} s_{2} \ldots s_{n} s\right) \in S^{-1} A^{\prime}$

Corollary 5.0.10. $A \subseteq B$ be rings and S a multiplicative subset of A. If A is integrally closed in B, then $S^{-1} A$ is integrally closed in $S^{-1} B$.

Proof. A is integrally closed in B implies $A^{\prime}=A$ then by proposition $S^{-1} A^{\prime}=S^{-1} A$

5.1 Prime ideal in an integral extention

Proposition 5.1.1. Let B be an integral domain and the extension $A \subseteq B$ is integral. Then
(1) If I is non zero ideal of B then $A \cap I \neq \phi$
(2) An element $a \in A$ is a unit of $A \Leftrightarrow$ it is a unit in B
(3) A is field $\Leftrightarrow B$ is field

Proof. (1) Let $0 \neq b \in I$ and let $b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0$ be an itegral equation of b over A.Then choose n to be the least such that $a_{n} \neq 0$ and we see $a_{n} \in I$ this implies $a_{n} \in A \cap I$ since $a_{n} \in A$
(2) Suppose a is a unit in B. Let $b=a^{-1} \in B$ and $b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0$ where $a_{i} \in A,\left(a^{-1}\right)^{n}+a_{1}\left(a^{-1}\right)^{n-1}+\ldots .+a_{n}=0$. Now multiplying this equation by a^{n-1} and see $a^{-1} \in A$ and this implies a is a init of A
Converse is trivally hold
(3) If B is a field then from (2) A is field

Conversely, suppose A is a field. Let be a non zero element of B and let $b^{n}+a_{1} b^{n-1}+\ldots .+a_{n}=0$ be integral equation of b where $a_{i} \in A$. Now
assume $a_{n} \neq 0$ and we have
$b\left(b^{n-1}+a_{1} b^{n-2}+\ldots .+a_{n-1}\right)=-1 a_{n}$
$a_{n}^{-1} b\left(b^{n-1}+a_{1} b^{n-2}+\ldots+a_{n-1}\right)=-1$ since A is field and b is unit so B is field

Proposition 5.1.2. Let $A \subseteq B$ be an integral extention and let P, Q be prime ideals of B then
(1) P is maximal ideal of $B \Leftrightarrow A \cap P$ is maximal ideal of A
(2) If $P \subseteq Q$ and $A \cap P=A \cap Q$ then $P=Q$

Proof. Put $p=A \cap P$ and define a map $\phi: A / p \rightarrow B / P$ by

$$
\phi(a+p)=a+P
$$

then ϕ is well define and one-one

$$
\begin{gathered}
\text { Ker } \phi=\{a+p: a+P=P\} \\
=\{a+p: a \in P\} \\
=\{a+A \cap P: a \in P\} \\
=A \cap P=p
\end{gathered}
$$

And B / P is integral over A / p
Now P is maximal $\Leftrightarrow B / P$ is field $\Leftrightarrow A / p$ is field
$\Leftrightarrow p$ is maximal ideal of A
(2) Consider the commutative diagram

where $S=A \backslash p$ and $S \cap P=\phi$. Suppose $p=A \cap P=A \cap Q$ then $S^{-1} p=S^{-1} A \cap S^{-1} P=S^{-1} A \cap S^{-1} Q$ and A_{p} is local ring so $S^{-1} p=p A_{p}$ is unique maximal ideal of $S^{-1} A$ and since $S^{-1} B$ is integral over $S^{-1} A$ by first part $S^{-1} P$ is maximal ideal of $S^{-1} B$ and $S^{-1} P \subseteq S^{-1} Q \Rightarrow S^{-1} P=S^{-1} Q$ Now take an element in Q and not hard to see this element belong to P and thus $P=Q$

Theorem 5.1.3. Let $A \subseteq B$ be rings and B is integral over A and if $p \in \operatorname{spec}(A)$ then $\exists q \in \operatorname{spec}(B)$ such that $q \cap A=p$

Proof. Consider the commutative diagram

Here A_{p} is local ring . Let M be a maximal ideal in $S^{-1} B$, then $M \cap A_{p}$ is maximal ideal in A_{p} and A_{p} has unique maximal ideal so $M \cap A_{p}=p A_{p}$ Now define $\alpha^{-1}(M)=q$ and

$$
\begin{aligned}
f_{p}^{-1}(M) & =\left\{a / s \in A_{p}: a / s \in M\right\} \\
& =M \cap A_{p}=p A_{p}
\end{aligned}
$$

Now calculate $\beta^{-1}\left(p A_{p}\right)=\left\{x \in A: \beta(x) \in p A_{p}\right\}$

$$
\begin{gathered}
=\left\{x \in A: x / 1 \in p A_{p}\right\} \\
=\{x \in A: x \in p\} \\
=A \cap p=p
\end{gathered}
$$

And

$$
\begin{gathered}
f^{-1}(q)=\{x \in A: f(x) \in q\} \\
=\{x \in A: x \in q\} \\
=A \cap q
\end{gathered}
$$

Now by the commutative diagram we have

$$
\begin{aligned}
f^{-1}\left(\alpha^{-1}(M)\right) & =\beta^{-1}\left(f_{p}^{-1}(M)\right) \\
\Rightarrow f^{-1}(q) & =\beta^{-1}\left(p A_{p}\right) \\
\Rightarrow A & \cap q=p
\end{aligned}
$$

and we are done since q is prime and satisfied the required condition

Remark 5.1.4. Thus result is true for integral extention but neet not be true for general rings

Example 5.1.5. Let $f: \mathbb{Z} \rightarrow \mathbb{Q}$ defined by $f(x)=x$ and let $I=2 \mathbb{Z}$ then $I^{e}=\mathbb{Q}$ and $\left(I^{e}\right)^{c}=\mathbb{Z} \neq I$

5.2 Going Up Going Down Thereom

Theorem 5.2.1. Going up theorem
Let $A \subseteq B$ be an integral extension . Let $p_{1} \subseteq p_{2} \subseteq \ldots \subseteq p_{n}$ be a chain of prime ideals of A and $q_{1} \subseteq q_{2} \subseteq \ldots \subseteq q_{m}$ be chain of prime ideals in B $m<n$ such that $q_{i} \cap A=p_{i}$ then there exists $q_{m+1}, \ldots, q_{n} \in \operatorname{spec}(B)$ such that $q_{i} \cap A=p_{i}$

Proof. Consider the commutative diagram

Let $n=2, m=1, q_{1} \in \operatorname{spec}(B)$ such that $q_{1} \cap A=p_{1}$ already we know $A / p_{1} \subseteq B / q_{1}$ is an integral extension and $p_{2} / p_{1} \in \operatorname{spec}\left(A / p_{1}\right)$ therefore \exists a prime ideal $q_{2} / q_{1} \in \operatorname{spec}\left(B / q_{1}\right)$ such that $g^{-1}\left(q_{2} / q_{1}\right)=p_{2} / p_{1}$, by previous theorem

And by commutativity of diagram we have

$$
\begin{gathered}
f^{-1}\left(\phi^{-1}\left(q_{2} / q_{1}\right)\right)=\psi^{-1}\left(g^{-1}\left(q_{2} / q_{1}\right)\right) \\
\Rightarrow f^{-1}\left(q_{2}\right)=\psi^{-1}\left(p_{2} / p_{1}\right) \\
\Rightarrow q_{2} \cap A=p_{2}
\end{gathered}
$$

Here p_{2} / p_{1} is prime ideal one can check by taking element or one famous charactrisation for checking prime ideal .And now inductively we are done

Lemma 5.2.2. Let M be a finitely generated A module and I be an ideal of A and $\phi: M \rightarrow M$ be an A module homomorphism such that $\phi(M) \subseteq I M$ then $\exists a_{1}, \ldots . . a_{n} \in I$ such that $\phi^{n}+a_{1} \phi^{n-1}+\ldots \ldots+a_{n-1} \phi+a_{n}=0$

Proof. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a generating set for M.
Let $\phi\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}$ where $a_{i j} \in I$. Now we write this another form

$$
\sum_{j=1}^{n}\left(\phi \delta_{i j}-a_{i j}\right) x_{j}=0
$$

where $\delta_{i j}$ is kronecker delta. Now consider $\phi \delta_{i j}-a_{i j} \in A^{\prime}[\phi]$ where $A^{\prime}[\phi]$ is the subring of $\operatorname{End}_{A}(M)$ containing $A^{\prime}=\left\{\right.$ image of A in $\left.E n d_{A}(M)\right\}$ and ϕ where

$$
A^{\prime}[\phi]=\left\{\sum_{i=0}^{n} a_{i} \phi^{i}: n \in \mathbb{N}, a_{i} \in A\right\}
$$

where,$\left(a_{i}: M \rightarrow M, a_{i}(x)=a_{i} x\right)$ and note that $A^{\prime}[\phi]$ is a commutative subring of $E n d_{A}(M)$. Consider the matrix $B=\left(\phi \delta_{i j}-a_{i j}\right) \in M_{n}\left(A^{\prime}[\phi]\right)$ Let $b_{i k}$ denote the cofactor of B. Now

$$
\sum_{j=1}^{n}\left(\phi \delta_{i j}-a_{i j}\right) x_{j}=0
$$

Take cofactor, $\sum_{i} b_{i j}\left(\sum_{j=1}^{n}\left(\phi \delta_{i j}-a_{i j}\right)\right)\left(x_{j}\right)=0$

$$
\Rightarrow \operatorname{det}(B)\left(x_{j}\right)=0, \forall j
$$

$\Rightarrow \operatorname{Det}(B)$ is zero map as an element of $A^{\prime}[\phi]$
$\Rightarrow \operatorname{det}(B)=\phi^{n}+a_{1} \phi^{n-1}+\ldots \ldots+a_{n-1} \phi+a_{n}=0$, where $a_{i} \in I$

Proposition 5.2.3. Let $A \subseteq B$ be rings and I be an ideal of A and C be the ingral closure be the integral closure of A in B. Then the set of all elements in B which are integral over I is the radical of $I C=I^{e}$

Proof. Let $x \in C$ be integral over I then we have $x^{n}+a_{1} x^{n-1}+\ldots . .+a_{n}=0$ where $a_{i} \in I$
$x^{n} \in I^{e}=I C$ so $x \in \operatorname{rad}\left(I^{e}\right)$
Conversely, let $x \in \operatorname{rad}\left(I^{e}\right)$ implies that $x^{n} \in I^{e}$ for some $n \in \mathbb{N}$ So $x^{n}=\sum_{i=1}^{m} b_{i} x_{i}$, where $b_{i} \in C, x_{i} \in I$

Consider the ring $M=A\left[b_{1}, \ldots, b_{n}\right]$, and this is finitely generated A module and $x^{n} M \subseteq I M$ and consider the map $\phi_{x^{n}} ; M \rightarrow M$ by,
$\phi_{x^{n}}(m)=x^{n} m$ and $\phi_{x^{n}}(M) \subseteq I M$, therefore by lemma $\exists a_{1}, \ldots, a_{r} \in I$
such that $\left(\phi_{x^{n}}\right)^{r}+a_{1}\left(\phi_{x^{n}}\right)^{r-1}+\ldots \ldots .+a_{r}=0$

$$
x^{n r}+a_{1} x^{n(r-1)}+\ldots .+a_{r}=0
$$

and this implies x is integral over I

Proposition 5.2.4. Let $A \subseteq B$ be integral domain and A is integrally closed. Let $b \in B$ be integral over an ideal $I \subseteq A$. Then b is algebraic over field of fraction of A say K and its minimal poynomial has coefficients in $\operatorname{rad}(I)$ except foe leading coefficient 1

Proof. Clearly b is algebraic over K. Let $f(X)$ be the minimal polynomial of b over K. Let $x_{1}, \ldots x_{n}$ be roots of $f(X)$ in some field F containing K
Then $f(X)=\prod_{i=1}^{n}\left(X-x_{i}\right)$, moreover x_{i} are all integral over I implies all polynomial in $x_{1}, \ldots x_{n}$ are integral over I it means the coefficients $a_{i}^{\prime} s$ are all integral over I, therefore they are all in K and integral over A, Hence $a_{i} \in A$ implies $a_{i} \in \operatorname{rad}(I)$

Theorem 5.2.5. Going Down Let A be an integrally closed domain and $A \subseteq B$ be an integral extension . Let $p_{1} \subseteq p_{2}$ be two prime ideals of A and q_{2} be prime ideal of B such that $q_{2} \cap A=p_{2}$ then there exist a prime ideal of q_{1} contained in q_{2} such that $q_{1} \cap A=p_{1}$

Proof. We need to show that $p_{1} B_{q_{2}} \cap A=p_{1}$. Let $x / s \in p_{1} B_{q_{2}}$ Then $x \in p_{1} B$ so $x \sum_{i=1}^{n} b_{i} x_{i}$ for some $b_{i} \in B, x_{i} \in p_{1}$
Let $A^{\prime}=A\left[b_{1}, \ldots, b_{n}\right]$. Consider the multiplication map $\phi_{x}: A^{\prime} \rightarrow A^{\prime}$ sending ($a \mapsto a x$) where $a \in A^{\prime}$ and $\phi_{x}\left(A^{\prime}\right)=x A^{\prime} \subseteq p_{1} A^{\prime}$, therefore ny lemma $\exists a_{1}, \ldots, a_{n} \in p_{1}$ such that $x^{n}+a_{1} x^{n-1}+\ldots .+a^{n}=0$ and this implies x is integral over p_{1}

Now suppose $x / s \in p_{1} B_{q_{2}} \cap A, s \in B \backslash q_{2}$, and let $x^{n}+a_{1} x^{n-1}+\ldots .+a^{n}=0$ be the minimal integral equation of x over A
Let $x / s=y \Rightarrow s=x y^{-1} \in \operatorname{frac}(A)=K$. Also $s \in B \Rightarrow s$ is integral over A and now multiplying above equation y^{-n} that gives the equation $s^{n}+\left(a_{1} / y\right) s^{n-1}+\ldots . .+a_{n} / y^{n}=0$, and since above equatin is minimal then this also minimal equation for s
Now as $x \in B$ is integral over p_{1} then we have $x^{n}+a_{1} x^{n-1}+\ldots .+a^{n}=0$ where $a_{i} \in \operatorname{rad}\left(p_{1}\right)=p_{1}$ since p_{1} is prime ideal
Now let $a_{i} / y^{i}=u_{i}$ then $y^{i} u_{i}=a_{i} \in p_{1}$ and since $s \in B$ is integral over A
implies that $u_{i} \in A$ and $y^{i} u_{i} \in p_{1}$
Now if $y \notin p_{1} \Rightarrow u_{i} \in p_{1}, \forall i$ and the equation in s becomes

$$
s^{n}+u_{1} s^{n-1}+\ldots .+u_{n}=0
$$

So $s^{n} \in p_{1} B \subseteq p_{2} B \subseteq q_{2}$ this implies $s \in q_{2}$ a contradiction therefore $y \in p_{1}$ and hence $p_{1} B_{q_{2}} \cap A=p_{1}$ implies p_{1} is contracted ideal

5.3 Noether Normalization Thereom

Lemma 5.3.1. Let $f\left(x_{1}, . ., x_{n}\right) \in K\left[x_{1}, . ., x_{n}\right]$ be a non zero polynomial over an infinte field K. Then there are $\lambda, a_{1}, \ldots, a_{n-1} \in K$ such that the polynomial $\lambda f\left(y_{1}+a_{1} y_{n}, \ldots ., y_{n-1}+a_{n-1} y_{n}, y_{n}\right) \in K\left[y_{1}, \ldots y_{n}\right]$ is monic in y_{n}

Proof. Let f_{d} be the homogeneous partof f of highest degree where d is the degree of f. Since K is infinite we can always find $a_{1}, \ldots, a_{n-1}, 1$ such that $f_{d}\left(a_{1}, \ldots, a_{n-1}, 1\right) \neq 0$
Now let $x_{i}=y_{i}+a_{i} y_{n}, i=1,2, . ., n-1$ and $y_{n}=x_{n}$ and let $\lambda=\left[f_{d}\left(a_{1}, \ldots, a_{n-1}, 1\right)\right]^{-1}$
Now $f\left(x_{1}, . ., x_{n}\right)=f_{d}\left(x_{1}, . ., x_{n}\right)+\ldots+f_{0}\left(x_{1}, . ., x_{n}\right)$ and look at

$$
\begin{gathered}
f_{d}\left(x_{1}, . ., x_{n}\right)=\sum_{k_{1}+. .+k_{n}=d} C_{k_{1} \cdots k_{n}} x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} \\
f_{d}\left(y_{1}+a_{1} y_{n}, \ldots ., y_{n-1}+a_{n-1} y_{n}, y_{n}\right)=\sum_{k_{1}+. .+k_{n}=d} C_{k_{1} \cdots k_{n}}\left(y_{1}+a_{1} y_{n}\right)^{k_{1}} \ldots\left(y_{n-1}+a_{n-1} y_{n}\right)^{k_{n-1}} y_{n}^{k_{n}} \\
=\sum_{k_{1}+. .+k_{n}=d} C_{k_{1} \cdots k_{n}} a_{1}^{k_{1}} \ldots a_{n-1}^{k_{n-1}} 1^{k_{n}} y_{n}^{d}+O\left(y_{n}^{d-1}\right) \\
=f_{d}\left(a_{1}, \ldots, a_{n-1}, 1\right) y_{n}^{d}+O\left(y_{n}^{d-1}\right)
\end{gathered}
$$

And multiply λ we get what we want

Theorem 5.3.2. Let R be finitely generated algebra over an infinite field K with generators $x_{1}, \ldots, x_{n} \in R$. Then there is an injective K algebra homomorphism $\phi: K\left[t_{1}, \ldots, t_{r}\right] \rightarrow R$ from a polynomial ring to R, such that R is integral over $K\left[t_{1}, \ldots, t_{r}\right]$

Proof. Since R is finitely generated implies $R=K\left[x_{1}, \ldots, x_{n}\right]$. WE shall prove this result by induction on n
If $n=1$ then $R=K\left[x_{1}\right]$ and let $x_{1}=t_{1}$ then $K\left[t_{1}\right]=R$ and every ring is integral over itself so we are done. Assume $n>1$, if the generators x_{1}, \ldots, x_{n} are algebraically independent, we choose $t_{i}=x_{i}$ and $r=n$ and we are done

Suppose there an algebraic dependence between the generators it means a non zero polynomial f over K such that $f\left(x_{1}, . ., x_{n}\right)=0$. Let f_{d} be the homogeneous part of the highest degree of f. Then by previous lemma we can find a_{1}, \ldots, a_{n-1} such that $\lambda, a_{1}, \ldots, a_{n-1} \in K$ such that the polynomial $\lambda f\left(y_{1}+a_{1} y_{n}, \ldots ., y_{n-1}+a_{n-1} y_{n}, y_{n}\right) \in$ $K\left[y_{1}, \ldots . y_{n}\right]$ is monic in y_{n}. The new coordinates are given by $y_{i}=x_{i}-$ $a_{i} x_{n}, y_{n}=x_{n}$
$\lambda \lambda f\left(y_{1}+a_{1} y_{n}, \ldots ., y_{n-1}+a_{n-1} y_{n}, y_{n}\right)=\lambda f\left(x_{1}, \ldots, x_{n}\right)=0$

$$
\Rightarrow y_{n}^{d}+O\left(y_{n}^{d-1}\right)=0
$$

This implies y_{n} is integral over $K\left[y_{1}, \ldots y_{n-1}\right]$, and $K\left[y_{1}, \ldots . y_{n}\right]=K\left[x_{1}, \ldots . x_{n}\right]$ by using the relation $x_{i}=y_{i}+a_{i} y_{n}$. Therefore by induction hypothesis there is an injective K algebra homomorphism $\phi: K\left[t_{1}, \ldots, t_{r}\right] \rightarrow K\left[y_{1}, . ., y_{n-1}\right]$ such that $K\left[y_{1}, . ., y_{n-1}\right]$ is integral over $K\left[t_{1}, \ldots, t_{r}\right]$. But y_{n} is integral over $K\left[y_{1}, . ., y_{n-1}\right]$
Now $K\left[t_{1}, \ldots, t_{r}\right] \subseteq K\left[y_{1}, . ., y_{n-1}\right] \subseteq K\left[y_{1}, . ., y_{n}\right]$, and by tower law of integrality $K\left[y_{1}, . ., y_{n-1}\right]$ is integral over $K\left[t_{1}, \ldots, t_{r}\right]$ and thus $K\left[x_{1}, \ldots . x_{n}\right]$ is integral over $K\left[t_{1}, \ldots, t_{r}\right]$

Chapter 6

Tensor Products

6.1 Axiomatic definition of tensor products

In linear algebra we have many types of products. For example,
(1) The scalar product: $V \times \mathbb{F} \rightarrow V$
(2) The dot product $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$
(3) The cross product $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
(4) The matrix product $M_{m \times k} \times M_{k \times n} \rightarrow M_{m \times n}$

Note 6.1.1. Note that the three vector spaces involved aren't necessarily the same. What these examples have in common is that in each case, the product is a bilinear map. The tensor product is just another example of a product like this. If V_{1} and V_{2} are any two vector spaces over a field \mathbb{F}, the tensor product is a bilinear map: $V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ where $V_{1} \otimes V_{2}$ is a vector space over \mathbb{F}.
The tricky part is that in order to define this map, we first need to construct this vector space $V_{1} \otimes V_{2}$ We give two definitions. The first is an axiomatic definition, in which we specify the properties that $V_{1} \otimes V_{2}$ and the bilinear map must have. In some sense, this is all we need to work with tensor products in a practical way. Later we shall show that such a space actually exists, by constructing it.

Definition 6.1.2. Let V_{1}, V_{2} be vector spaces over a field \mathbb{F}. A pair (Y, μ) , where Y is a vector space over \mathbb{F} and $\mu: V_{2} \times V_{2} \rightarrow Y$ is a bilinear map, is called the tensor product of V_{1} and V_{2} if the following condition holds (*)
whenever β_{1} is a basis for V_{1} and β_{2} is basis for V_{2}, then $\mu\left(\beta_{1} \times \beta_{2}\right)=$ $\left\{\mu\left(x_{1}, x_{2}\right): x_{1} \in \beta_{1}, x_{2} \in \beta_{2}\right\}$ is a basis for Y

Notation

We write $V_{1} \otimes V_{2}$ for the vector space Y, and $x_{1} \otimes x_{2}$ for $\mu\left(x_{1}, x_{2}\right)$. The condition (*) does not actually need to be checked for every possible pair of bases β_{1}, β_{2} it is enough to check it for any single pair of basis

Working with tensor products

Let V and W be two vector space over \mathbb{F}. There are two ways to work with the tensor product. One way is to think of the space $V \otimes W$ abstractly, and to use the axioms to manipulate the objects. In this context, the elements of $V \otimes W$ just look like expressions of the form $\sum_{i} a_{i}\left(v_{i} \otimes w_{i}\right)$ where $a_{i} \in \mathbb{F}, v_{i} \in V, w_{i} \in W$

The other way is to actually identify the space $V_{1} \otimes V_{2}$ and the map $V_{1} \times V 2 \rightarrow V_{1} \otimes V_{2}$ with some familiar object. There are many examples in which it is possible to make such an identification naturally. Note, when doing this, it is crucial that we not only specify the vector space we are identifying as $V \otimes V_{2}$, but also the product (bilinear map) that we are using to make the identification

Example 6.1.3. Let $V=\mathbb{R}_{\text {row }}^{2}$ and $W=\mathbb{R}_{\text {col }}^{2}$ then $V \otimes W=M_{2 \times 2}(\mathbb{R})$. Define a map $\mu: \mathbb{R}_{\text {row }}^{2} \times \mathbb{R}_{\text {col }}^{2} \rightarrow \mathbb{R}_{\text {row }}^{2} \otimes \mathbb{R}_{\text {col }}^{2}$ by

$$
\mu(v, w)=v \otimes w=w \cdot v
$$

Then μ is bilinear map and (*) condition holds clearly. Similary we can do for $V=\mathbb{R}_{\text {row }}^{n}$ and $W=\mathbb{R}_{\text {col }}^{n}$ then $V \otimes W=M_{n \times n}(\mathbb{R})$

Example 6.1.4. Let $V=\mathbb{F}[X]$ and $W=\mathbb{F}[Y]$ then $V \otimes W=\mathbb{F}[X, Y]$.
Define a map $\mu: \mathbb{F}[X] \times \mathbb{F}[Y] \rightarrow \mathbb{F}[X] \otimes \mathbb{F}[Y]$ by $\mu(f(X), f(Y)=f(X) \otimes g(Y)=f(X) g(Y)$, then μ is bilinear map easy to see and (*) condition holds easily. Note that this is NOT a commutative product because in general $f(X) \otimes g(Y)=f(X) g(Y) \neq g(X) f(Y)=g(X) \otimes$ $f(Y)$

Example 6.1.5. If V is any vector space over \mathbb{F}, then $V \otimes \mathbb{F}=V$. In this case, \otimes is just scalar multiplication. Both the condition obiviously hold good

Example 6.1.6. Let $V=\mathbb{Q}^{n}(\mathbb{Q})$ and $W=\mathbb{R}(\mathbb{Q})$ then $V \otimes W=\mathbb{Q}^{n} \otimes \mathbb{R}=\mathbb{R}^{n}$ as vector space over \mathbb{Q}. Then define a map $\mu: \mathbb{Q}^{n} \times \mathbb{R} \rightarrow \mathbb{Q}^{n} \otimes \mathbb{R}$ by

$$
\mu(x, y)=x \otimes y=x y
$$

where $x \in \mathbb{Q}^{n}, y \in \mathbb{R}$ and μ is a bilinear map. Now i shall prove condition $(*)$. Let $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ be standard basis of $\mathbb{Q}^{n}(\mathbb{Q})$ and γ be a basis of $\mathbb{R}(\mathbb{Q})$.

First we show that $\mu(\beta \times \gamma)$ spans \mathbb{R}^{n}. Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ where $a_{i} \in \mathbb{R}$

$$
a_{i}=\sum_{j} b_{i j} x_{j}, b_{i j} \in \mathbb{Q}, x_{j} \in \gamma
$$

where j runs over finite set of γ
Now $\left(a_{1}, \ldots, a_{n}\right)=\left(\sum_{j} b_{1 j} x_{j}, \sum_{j} b_{2 j} x_{j}, \ldots, \sum_{j} b_{n j} x_{j}\right)$

$$
\begin{gathered}
=\sum_{j} b_{1 j} e_{1} x_{j}+\ldots \ldots . .+\sum_{j} b_{n j} e_{n} x_{j} \\
=\sum_{i, j} b_{i j} e_{i} x_{j}
\end{gathered}
$$

Next we show $\beta \otimes \gamma$ is linearly independent.Suppose $\sum_{i, j} b_{i j} e_{i} \otimes x_{j}=(0, . ., 0)$

$$
\left(\sum_{j} b_{1 j} x_{j}, \ldots, \sum_{j} b_{n j} x_{j}\right)=(0, \ldots, 0)
$$

$\Rightarrow b_{i, j}=0$. Since x_{j} linearly independent

6.2 Constructive definition of tensor product

To give a construction of the tensor product, we need the notion of a free vector space.

Definition 6.2.1. Let A be a set, and \mathbb{F} be field. The free vector space over \mathbb{F} generated by A is the vector space Free (A) consisting of all formal finite linear combinations of elements of A. Thus, A is always a basis of Free (A)

Note 6.2.2. When the elements of the set A are numbers or vectors, the notation get tricky, because there is a danger of confusing the operations of addition and scalar multiplication and the zero-element in the vector space Free(A), and the operations of addition and multiplication and the zero
element in A and (which are irrelevant in the definition of Free(A)). To help keep these straight in situations where there is a danger of confusion, we'll write \boxplus, and \square when we mean the operation in Free (A). We shall denote zero vector of $\operatorname{Free}(A)$ by $0_{\text {Free (A) }}$

Example 6.2.3. Let $\mathbb{N}=\{0,1,2, \ldots$.$\} and \mathbb{F}=\mathbb{R}$. Then Free (\mathbb{N}) is an infinite dimentional vector space whose elements are of the form $\left(a_{0} \boxtimes 0\right) \boxplus$ $\left(a_{1} \boxtimes 1\right) \ldots . .\left(a_{m} \boxtimes m\right)$ for some $m \in \mathbb{N}, a_{i} \in \mathbb{R}$
Note that the element 0 here is not the zero vector in Free (\mathbb{N}). It's called 0 because it happens to be the zero element in \mathbb{N}, but this is completely irrelevant in the construction of the free vector space. If we wanted we could write this a little differently by putting x^{i} in place of $i \in \mathbb{N}$. In this new notation, the elements Free (\mathbb{N}) would look like $a_{0} x^{0}+\ldots . .+a_{n} x^{n}$
For some some $m \in \mathbb{N}$, in other words elements of the vector space of polynomials in a single variable

Definition 6.2.4. Let V and W be two vector space over \mathbb{F}
Let $P:=F r e e(V \times W)$, the free vector space over \mathbb{F} generated by the set $V \times W$. Let $R \subseteq P$ be the subspace spanned by all vectors of the form $(u+k v, w+l x) \boxplus(-1 \boxminus(u, w)) \boxplus(-k \boxminus(v, w)) \boxplus(-l \boxminus(u, x)) \boxplus(-k l \boxtimes(v, x))$, with $k, l \in \mathbb{F}, u, v \in V, x, w \in W$

Let $\pi: P \rightarrow P / R$ be the quotient and let $\mu: V \times W \rightarrow P / R$ be the map defined by

$$
\mu(v, w)=\pi((v, w))
$$

The pair $(P / R, \mu)$ is the tensor product of V and W and we write $V \otimes W$ for P / R and $v \otimes w$ for $\mu(v, w)$

Note 6.2.5. We need to show that two definitions agree, i.e.. that tensor product as defined in the definition above satisfies the conditions of definition above In particular, we need to show that μ is bilinear, and that the pair $(P / R, \mu)$ satisfies condition ($*$)
We can show the bilinearity immediately. Essentially bilinearity is built into the definition.

If P is the space of all linear combinations of symbols (v, w), then R is the space of all those linear combinations that can be simplified to the zero vector using bilinearity. Thus P / R is the set of all expressions, where two expressions are equal iff one can be simplified to the other using bilinearity

Proposition 6.2.6. The map μ is bilinear $\mu: V \times W \rightarrow P / R$ defined by $\mu(v, w)=\pi((v, w))$

Proof. Aim: $\mu(u+k v, w+l x)=\mu(u, w)+k \mu(v, w)+l \mu(u, x)+k l \mu(v, x)$. We know that $\pi(z)=0_{R}, \forall z \in R$ and this implies
$\pi((u+k v, w+l x) \boxplus(-1 \boxminus(u, w)) \boxplus(-k \boxminus(v, w)) \boxplus(-l \square(u, x)) \boxplus(-k l \square(v, x)))=0$
And so $\mu((u+k v, w+l x)-\mu(u, w)-k \mu(v, w)-l \mu(u, x)-k l \mu(v, x)=0$
Now to prove the condition $(*)$ holds we use the following important lemma from the theory of quotient spaces

Lemma 6.2.7. Suppose V and W are vector spaces over a field \mathbb{F} and $T: V \rightarrow W$ is a linear transformation. Let S be a subspace of V. Then there exists a linear transformation $\bar{T}: V / S \rightarrow W$ such that $\bar{T}(x+S)=T(x)$ for all $x \in V$ if and only if $T(s)=0$ for all $s \in S$. Moreover, if \bar{T} exists it is unique

Proof. Suppose \bar{T} exist then $\bar{T}(x+S)=T(x), \forall X \in V$ then $\forall s \in S$ we have $T(s)=\bar{T}(s+S)=\bar{T}(0)=0$
Conversely, suppose that $T(s)=0, \forall s \in S$. Now define a map $\bar{T}: V / S \rightarrow W$ such that $\bar{T}(x+S)=T(x)$ for all $x \in V$, then \bar{T} is well define and linear and clearly unique

6.3 Universal mapping property of tensor product

Theorem 6.3.1. Let V, W, M be vector spaces over a field \mathbb{F}.Let $V \otimes W=$ P / R be the tensor product, as defined in above definition then For any bilinear map $\phi: V \times W \rightarrow M$,there is a unique linear transformation $\bar{\phi}: V \otimes W \rightarrow M$, such that $\bar{\phi}(v \otimes w)=\phi(v, w)$ for all $v \in V, w \in W$.

Proof. Since $V \times W$ be a basis for P. We can extend any map $\phi: V \times W \rightarrow$ M to a linear map $\psi: P \rightarrow M$ defined by $\psi(v, w)=\phi(v, w), \forall v \in V, w \in W$ Claim : ψ is bilinear $\Leftrightarrow \phi(s)=0, \forall s \in R$. Let $\phi(s)=0, \forall, s \in R$, then $\psi(s)=\phi(s)=0, \forall, s \in R$, then write s in the form of spanning vectors of R and using bilinearity of ϕ we see that ψ is bilinear.
Coversely suppose ψ is bilinear, and we have $\psi(z)=\phi(z), \forall z \in R$. Now calculate $\psi(z)=\psi((u+k v, w+l x) \boxplus(-1 \boxtimes(u, w)) \boxplus(-k \boxminus(v, w)) \boxplus(-l \boxminus$ $(u, x)) \boxplus(-k l \boxminus(v, x))$ and since ψ is bilinear implies $\psi(z)=0, \forall z \in R$ and
so $\phi(z)=0, \forall z \in R$, then by previous lemma there exist unique LINEAR $\operatorname{map} \bar{\phi}: V \otimes W \rightarrow M$ such that $\bar{\phi}((v \otimes w))=\phi(v, w)$ and uniqueness is clear

Theorem 6.3.2. Condition (*) holds for the tensor product as defined in the above definition

Proof. Let β be a basis for V and γ be a basis for W then we must show that $\beta \otimes \gamma$ is a basis of $V \otimes W$. First we show that it spans .Let $z \in P / R$ then $z=x+R, x \in P$ where $x=a_{1}\left(u_{1}, x_{1}\right)+\ldots .+a_{m}\left(u_{m}, x_{m}\right)$ and π is a quotient map such that $\pi(y)=y+R$, and $\mu((v, w))=\pi((v, w))$, then therefore we have

$$
\begin{aligned}
z & =a_{1} \pi\left(u_{1}, x_{1}\right)+\ldots .+a_{m} \pi\left(u_{m}, x_{m}\right) \\
& =a_{1} \mu\left(u_{1}, x_{1}\right)+\ldots .+a_{m} \mu\left(u_{m}, x_{m}\right)
\end{aligned}
$$

where $a_{i} \in \mathbb{F}, u_{i} \in V, x_{i} \in W$. But now $u_{i}=\sum_{j} b_{i j} v_{j}, v_{j} \in \beta$ and $x_{i}=\sum_{k} c_{i k} w_{k}, w_{k} \in \gamma$ and putting these values in z we are done

Next we show linear independence ,suppse $\sum_{i j} d_{i j} \mu\left(v_{i}, w_{j}\right)=0$ where $v_{i} \in \beta, w_{j} \in \gamma$.Let $f_{k} \in V^{*}$ be the linear functional defined by $f_{k}(k)=1$ and $f_{k}(v)=0$ for $v \in \beta \backslash\left\{v_{k}\right\}$
Define a map $F_{k}: V \times W \rightarrow W$ by $F_{k}(v, w)=f_{k}(v) w$, then F_{k} is bilinear map then by universal mapping property there exist a map $\bar{F}_{k}: V \otimes W \rightarrow W$ such that $\bar{F}_{k}(\mu(u, x))=f_{k}(u) x$.
Now apply \bar{F}_{k} to the equation $\sum_{i j} d_{i j} \mu\left(v_{i}, w_{j}\right)=0$, therefore

$$
\begin{gathered}
0=\bar{F}_{k}\left(\sum_{i j} d_{i j} \mu\left(v_{i}, w_{j}\right)\right) \\
=\sum_{i j} d_{i j}\left(\bar{F}_{k}\left(\mu\left(v_{i}, w_{j}\right)\right)\right) \\
=\sum_{i j} d_{i j} f_{k}\left(v_{i}\right) w_{j} \\
=\sum_{j} d_{k j} w_{j}
\end{gathered}
$$

and thus $d_{k j}=0$ since w_{j} are liniearly independent

6.4 Tensor product on modules

Introduction Let R be a commutative ring and M and N be R-modules. We always work with rings having a multiplicative identity and modules are assumed to be unital, $1 \cdot m=m, \forall m \in M$

Theorem 6.4.1. Let M and N be two R-module then tensor product of M and N exists

Proof. Consider $M \times N$ as a set simply and form a free R - module on this set

$$
F_{R}(M \times N):=\oplus_{(m, n) \in M \times N} R \delta_{(m, n)}
$$

The direct sum runs over all pairs of $M \times N$ not just pairs coming from a basis
Let D be the submodule of $F_{R}(M \times N)$ spanned by all elements

$$
\begin{gathered}
\delta\left(m+m^{\prime}, n\right)-\delta(m, n)-\delta\left(m^{\prime}, n\right) \\
\delta\left(m, n+n^{\prime}\right)-\delta(m, n)-\delta\left(m, n^{\prime}\right) \\
\delta(r m, n)-r \delta(m, n) \\
\delta(m, r n)-r \delta(m, n) \\
\delta(r m, n)-\delta(m, r n)
\end{gathered}
$$

Now define $M \otimes N:=F_{R}(M \times N) / D$
We write the $\operatorname{coset} \delta_{(m, n)}+D$ in $M \otimes N$ as $m \otimes n$ and from the definition of D

$$
\delta_{\left(m+m^{\prime}, n\right)} \equiv \delta_{(m, n)}+\delta_{\left(m^{\prime}, n\right)}, \bmod D
$$

Which is same as

$$
\left(m+m^{\prime}\right) \otimes n=m \otimes n+m^{\prime} \otimes n
$$

and also we have

$$
\begin{gathered}
m \otimes\left(n+n^{\prime}\right)=m \otimes n+m \otimes n^{\prime} \\
r m \otimes n=r(m \otimes n)=m \otimes r n
\end{gathered}
$$

Suppose P is an any R - module and $B: M \times N \rightarrow P$ be a bilinear map and then extend it linearly $l: F_{R}(M \times N) \rightarrow P$ by $l\left(\delta_{(m, n)}\right)=B(m, n)$ so the diagram

Where $f(m, n)=\delta_{(m, n)}$ Now we want to show l makes a sense as a function on $M \otimes N$ which means showing Kerl contains D and using bilinearity B and linearity of l we are done. So l induces a linear map
$L: F_{R}(M \times N) / D \rightarrow P$ such that $L\left(\delta_{(m, n)}+D\right)=l\left(\delta_{(m, n)}\right)=B(m, n)$, which means the diagram

commutes it means $L \circ \bar{f}=B$. Since $F_{R}(M \times N) / D=M \otimes N$ and $\delta_{(m, n)}+D=m \otimes n$, the above diagram become

and $L(m \otimes n)=B(m, n)$
And this shows every bilinear B out of $M \times N$ comes from a linear map L out of $M \otimes N$ such that $L(m \otimes n)=B(m, n), \forall m \in M, n \in N$

6.5 Properties of Tensor products

Example 6.5.1. If A is a finite abelian group, then $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$. Since every elementary tensor is 0 as Let $a \in A$ such that $n a=0, n \in \mathbb{Z}^{+}$and $r \otimes a=n(r / n) \otimes a$

$$
\begin{aligned}
& =(r / n) \otimes(n a) \\
& =(r / n) \otimes 0=0
\end{aligned}
$$

NOTE to show that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$ we dont need A to be finite but rather than each element of A has finite order and thus $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}=0$

Example 6.5.2. Let $(m, n)=1$ then $\mathbb{Z} / n \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z}=0$
Theorem 6.5.3. Let $a, b \in \mathbb{Z}^{+}$with $d=\operatorname{gcd}(a, b)$ then $\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z} \cong \mathbb{Z} / d \mathbb{Z}$ as abelian group

Proof. Since 1 spans $\mathbb{Z} / a \mathbb{Z}$ and $\mathbb{Z} / b \mathbb{Z}$ then $1 \otimes 1$ spans $\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z}$. Now $a(1 \otimes 1)=0$ and $b(1 \otimes 1)=0$, the additive order of $1 \otimes 1$ divides a and b and therefore also d so $|\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z}| \leq d$, To show $\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z}$ has size atleast d, we create a \mathbb{Z} bilinear map from $\mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z}$ onto $\mathbb{Z} / d \mathbb{Z}$

Consider a $\operatorname{map} \phi: \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z}$ by

$$
\phi(x, y)=x y
$$

then this is bilinear map and then by using by UMP (universal mapping property) there exist unique \mathbb{Z} linear map $f: \mathbb{Z} / a \mathbb{Z} \otimes \mathbb{Z} / b \mathbb{Z} \rightarrow \mathbb{Z} / d \mathbb{Z}$ such that $f(x \otimes y)=x y$ in perticular $f(x \otimes 1)=x$, so f is onto map then we are done

Theorem 6.5.4. For an ideal I in R and M is an R module then there is unique R - module isomorphism $(R / I) \otimes M \cong M / I M$. In perticular, taking $I=0$ then $R \otimes M \cong M$

Proof. We shall start with a bilinear map $\phi:(R / I) \times M \rightarrow M / I M$ by

$$
\phi(\bar{r}, m)=\overline{r m}
$$

Then ϕ is well define clearly, then by universal mapping property we get a linear map $f:(R / I) \otimes M \rightarrow M / I M$ such that the diagram commutes

it means $f \circ \mu=\phi$ or $f(\bar{r} \otimes m)=\overline{r m}$
To create an inverse map start with a function $\psi: M \rightarrow(R / I) \otimes M$ given by

$$
\psi(m)=\overline{1} \otimes m
$$

Then ψ is linear in m and observe $\psi(i m)=\overline{1} \otimes i m=0$ it means kills $I M$ therefore there exist a linear map $g: M / I M \rightarrow(R / I M) \otimes M$ given by $g(\bar{m})=\overline{1} \otimes m$
To check $f(g(\bar{m}))=\bar{m}$ and $g(f(t))=t$, for all $\bar{m} \in M / I M, t \in(R / I) \otimes M$ first one clear $f(g(\bar{m}))=f(\overline{1} \otimes m)=\bar{m}$ To show $g(f(t))=t$ we shall show all tensor in $R / I \otimes M$ are elementary tensor .
An elementary tensor look like $\bar{r} \otimes m=\overline{1} \otimes r m$, and the sum of tensors $\overline{1} \otimes m_{i}$ is $\overline{1} \otimes \sum_{i}^{n} m_{i}$, thus all tensors look like $\overline{1} \otimes m$ so we have $g(f(\overline{1} \otimes m))=$ $g(\bar{m})=\overline{1} \otimes m$

Theorem 6.5.5. For ideals I and J in R, there is a unique R module isomorphism

$$
R / I \otimes R / J \cong R /(I+J)
$$

Proof. We shall start with a bilinear map $\phi: R / I \times R / J \rightarrow R /(I+J)$ by

$$
\phi(\bar{x}, \bar{y})=\overline{x y}
$$

Then ϕ is well define clearly, then by universal mapping property we get a linear map $f: R / I \otimes R / J \rightarrow R /(I+J)$ such that the diagram commutes

it means $f(\bar{x} \otimes \bar{y})=\overline{x y}$ Now our aim is to create inverse map ,let $h: R \rightarrow$ $R / I \otimes R / J$ by

$$
h(r)=r(\overline{1} \otimes \overline{1})
$$

and $\mathrm{h} h$ is l well define and linear and when $r \in I$ then $r(\overline{1} \otimes \overline{1})=0$ Similarly, when $r \in J$ then $r(\overline{1} \otimes \overline{1})=0$
And note that $I+J \subseteq \operatorname{Ker}(h)$, then we get a linear map

$$
g: R /(I+J) \rightarrow r(\overline{1} \otimes \overline{1})
$$

Defined by $g(\bar{r})=r(\overline{1} \otimes \overline{1})$, And now we can check by like in previous theorem arguement that f and g are inverses to each other

Remark 6.5.6. When f and g are additive functions you can check $f(g(t))=$ t for all tensors t by only checking it on elementary tensors, but it would be wrong to think you have proved injectivity of a linear map $f: M \otimes N \rightarrow P$ by only looking at elementary tensors. That is, if $f(m \otimes n)=0 \Rightarrow m \otimes n=0$, there is no reason to believe $f(t)=0 \Rightarrow t=0, \forall t \in M \otimes N$, since injectivity of a linear map is not an additive identity.

Example 6.5.7. Let $f: \mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C}$ be the R - linear map defined by

$$
f(z \otimes w)=z w
$$

on elemetary tensor. If $f(z \otimes w)=0$ then $z w=0 \Rightarrow z=0$, or, $w=0$
So $z \otimes w=0$, but the map is not injective because , $1 \otimes i-i \otimes 1 \mapsto 0$ but $1 \otimes i-i \otimes 1 \neq 0$, since $1 \otimes i$ and $i \otimes 1$ belong to basis of $\mathbb{C} \otimes \mathbb{C}$

Theorem 6.5.8. Let R be a domain with fraction field K and V be vector space over K then there is an R module isomorphism $K \otimes V \cong V$

Proof. Define a map $\phi: K \times V \rightarrow V$, defined by

$$
\phi(r, x)=r x
$$

then ϕ is R bilinear map, so by universal mapping property there exist a linear map

$$
f: K \otimes V \rightarrow V
$$

Such that $f(x \otimes v)=x v$, on elementary tensor and that says diagram commute

And since $f(1 \otimes v)=v$ implies f is onto
To show f is one one, first we show every tensor in $K \otimes V$ is elementary with 1 in first component

For an elementary tensor

$$
x \otimes v=a / b \otimes v=1 / b \otimes a v=1 / b \otimes(a b / b) v=1 \otimes x v
$$

Notice how we moved $x \in K$ across even though x need not be in R, we used K-scaling in V to create b and $1 / b$ on the right side of \otimes and bring b
across from right to left, which cancels $1 / b$ on the left side of \otimes. This has the efeect of moving $1 / b$ from left to right. Thus all elementary tensors in $K \otimes V$ have the form $1 \otimes v$ for some $v \in V$, so by adding, every tensor is $1 \otimes v$ for some v. Now we can show f has trivial kernel if $f(t)=0$ then, writing $t=1 \otimes v$, we get $v=0$, so $t=1 \otimes 0=0$.

6.6 Questions

Questions
(1) What is $m \otimes n$?
(2) What does it mean to say $m \otimes n=0$?
(3) What does it mean to say $M \otimes N=0$?
(4) What does it mean to say $m_{1} \otimes n_{1}+\ldots . .+m_{k} \otimes n_{k}=m_{1}^{\prime} \otimes n_{1}^{\prime}+$ $\ldots . .+m_{k}^{\prime} \otimes n_{k}^{\prime}$?
(5) Where do tensor products arise outside of mathematics?
(6) Is there a way to picture the tensor product?

Answers
(1) $m \otimes n$ is the image of $(m, n) \in M \times N$ under the canonical bilinear map $\otimes: M \times N \rightarrow M \otimes N$ in the definition of tensor product
(2) We have $m \otimes n=0 \Leftrightarrow$ every bilinear map out of $M \times N$ vanishes at (m, n), indeed if $m \otimes n=0$, then for every bilinear map $B: M \times N \rightarrow N$ we have commutative diagram

for some linear map L, so $B(m, n)=L(m \otimes n)=L(0)=0$. Conversely, if every bilinear map out of $M \times N$ sends (m, n) to 0 then the canonical bilinear map $M \otimes N \rightarrow M \times N$ which is a particular example, sends (m, n)
to 0 . Since this bilinear map actually sends (m, n) to $m \otimes n$, we obtain $m \otimes n=0$.
(3) The tensor product $M \otimes N$ is 0 if and only if every bilinear map out of $M \times N$ (to all modules) is identically 0 . First suppose $M \otimes N=0$. Then all elementary tensors $m \otimes n$ are 0 , so $B(m, n)=0$ for any bilinear map out of $M \times N$ by the answer to the second question. Thus B is identically 0 .
Next suppose every bilinear map out of $M \times N$ is identically 0 . Then the canonical bilinear map $M \times N \rightarrow M \otimes N$ which is a particular example, is identically 0 . Since this function sends (m, n) to $m \otimes n$ we have $m \otimes n=0$ for all m and n. Since $M \otimes N$ is additively spanned by all $m \otimes n$, the vanishing of all elementary tensors implies $M \otimes N=0$.
(4) It is based on above two answers
(5) Tensors are used in physics and engineering (stress, elasticity, electromagnetism, metrics, diffusion MRI), where they transform in a multilinear way under a change in coordinates.
(6) There isn't a simple picture of a tensor (even an elementary tensor) analogous to how a vector is an arrow.

Theorem 6.6.1. Let M and N be R-modules with respective spanning sets $\left\{x_{i}\right\}_{i \in I}$ and $\left\{y_{j}\right\} j \in J$. The tensor product $M \otimes N$ is spanned linearly by the elementary tensors $x_{i} \otimes x_{j}$

Proof. An elementary tensor in $M \otimes N$ has the form $m \otimes n$. Write $m=$ $\sum_{i} a_{i} x_{i}$ and $n=\sum_{i} b_{j} y_{j}$, where the $a_{i}{ }^{\prime} s$ and $b_{j} ' s$ are 0 for all but fnitely many i and j. From the bilinearity of \otimes

$$
m \otimes n=\sum_{i} a_{i} x_{i} \otimes \sum_{i} b_{j} y_{j}=\sum_{i j} a_{i} b_{j}\left(x_{i} \otimes y_{j}\right)
$$

is a linear combination of the tensors $x_{i} \otimes y_{j}$.

So every elementary tensor is a linear combination of the particular elementary tensors $x_{i} \otimes y_{j}$. Since every tensor is a sum of elementary tensors, the $x_{i} \otimes y_{j} ' s$ span $M \otimes N$ as an R-module.

6.7 Primary Decompositions

Definition 6.7.1. An ideal in a ring A is primary if $Q \neq A$ and if $x y \in Q \Rightarrow$ either $x \in Q$ or $y^{n} \in Q$ for some $n>0$

Observation: Q is primary iff A / Q is not trivial and every zero-divisor in A / Q is nilpotent

Example 6.7.2. Every prime ideal is primary, contraction of a primary ideal is primary

Proposition 6.7.3. The radical of a primary ideal Q is the smallest prime ideal containing it.

Proof. Let Q be a primary ideal of A.We know that the radical of Q is the intersection of all the prime ideals containing Q.Now it suffices to show that $r(Q)$ is prime, an this is obivious since Q is primary

Remark 6.7.4. Let A be a UFD and let $x \in A$ be prime. Then all powers of $x A$ are primary.

We give an example to show that primary ideals need not be powers of prime ideals.

Example 6.7.5. Let $A=\mathbb{F}[X, Y], Q=\left(X, Y^{2}\right)$, define a map

$$
\phi: A \rightarrow \mathbb{F}[Y] /\left(Y^{2}\right)
$$

by

$$
\phi(p(X, Y))=p(0, Y)+\left(Y^{2}\right)
$$

Then ϕ is an onto ring homomorphism and $\operatorname{Ker} \phi=Q=\left(X, Y^{2}\right)$, then FTH we have $A / Q \cong \mathbb{F}[Y] /\left(Y^{2}\right)$, then by remark $\left(Y^{2}\right)$ is primary ideal of $\mathbb{F}[Y]$ then this shows that Q is primary and further $r(Q)=(X, Y)$ Also we have $r(Q)^{2} \subsetneq Q \subsetneq r(Q)$, thus Q is not a power of its radical. Now our next claim is Q is not a power of prime ideal, first suppose $Q=P^{n}$ for somr prime ideal P and also note that $r(Q)=P$ and $P^{2} \subsetneq P^{n} \subsetneq P$ which is impossible ,thus Q is not a power of prime ideal

We now give an example to show that powers of prime ideals need not be primary.

Example 6.7.6. Let $A=\mathbb{F}[X, Y, Z]$, where \mathbb{F} is a field, and put $I=$ $\left(X Y-Z^{2}\right) A, B=A / I, P=(X+I, Z+I)$.
Claim: P is prime ideal of B but P^{2} is not primary ideal .Idea is B / P is integral domain implies P is prime. Now we shall show that P^{2} is not primary
Observe that $(x+I)(y+I)=x y+I=x y-\left(x y-z^{2}\right)+I=z^{2}+I=$ $(z+I)^{2} \in P^{2}$. Also $P^{2}=\left(x^{2}+I, x z+I, z^{2}+I\right)$.

If P^{2} is primary then $x+I \in P^{2}$ or $y^{k}+I=(y+I)^{k} \in P^{2}$ for some k so that x or $y^{k} \in\left(x^{2}, x z, z^{2}, x y-z^{2}\right)$ which is impossible, by inspecting monomials in $\alpha x^{2}+\beta x z+\gamma z^{2}+\delta\left(x y-z^{2}\right)$ for $\alpha, \beta, \gamma, \delta \in A$.

Proposition 6.7.7. If $Q \triangleleft A$ and $r(Q)$ is maximal, then Q is primary. In particular, all powers of a maximal ideal M are M-primary.

Proof. We have an epimorphism $\phi: A / Q \rightarrow A / r(Q)$ and A / M is field. Claim: Every zero divisors of A / Q is nilpotent.Let if possible $x=a+Q \in$ A / Q is a zero divisor but not nilpotent.Then $x \mapsto \bar{x} \neq 0 \in A / M$, which is not a zero divisor implies x is not a zero divisor contradiction so x is nilpotent so Q is primary. If M is any maximal ideal of A then $r\left(M^{n}\right)=M$ implies M^{n} is primary.

Definition 6.7.8. Let $Q \triangleleft A$ and $x \in A$ then $(Q: x)=\{y \in A: x y \in Q\}$.
Lemma 6.7.9. Let P be prime, Q be P-primary and $x \in A$. Then

1. $x \in Q \Rightarrow(Q: x)=A$
2. $x \notin Q \Rightarrow(Q: x)$ is P-primary
3. $x \notin P \Rightarrow(Q: x)=Q$.

Proof. (1) and (3) are easy.We shall porve (2).We have $Q \subseteq(Q: x)$.And observe $(Q: x) \subseteq P$ and conclude $r(Q: x)=P$.Now suppose $y z \in(Q: x)$ with $y \notin P$ then $x y z \in Q \Rightarrow y(x z) \in Q \Rightarrow x z \in Q \Rightarrow z \in(Q: x)$.So $(Q: x)$ is primary.

Lemma 6.7.10. Let P be a prime ideal and Q_{1}, \ldots, Q_{n} be P-primary ideals. Then $\bigcap_{i=1}^{n} Q_{i}$ is also P-primary.

Proof. By induction we can see easily.
Definition 6.7.11. A primary decomposition of $I \triangleleft A$ is an expression as a finite intersection of primary ideals: $I=\bigcap_{i=1}^{n} Q_{i} \quad(*)$

Primary decomposition above may not exist always
Definition 6.7.12. A decomposition (*) is minimal if

1. $r\left(Q_{1}\right), \ldots, r\left(Q_{n}\right)$ are distinct
2. $Q_{i} \nsupseteq \bigcap_{i \neq j} Q_{j}, \forall, i=1,,, n$

Theorem 6.7.13. First Uniqueness Theorem Let I be a decomposable ideal and let (*) be a minimal primary decomposition. Put $P_{i}=r\left(Q_{i}\right), \forall, i=$ $1, . ., n$,then
$\left\{P_{1}, \ldots, P_{n}\right\}=\{$ Prime ideals $P: P=r(I: x)$ for some $x\}$.
We say that the prime ideals P_{1}, \ldots, P_{n} belong to I or are associated to I. In particular, I is primary iff I has exactly one associated prime ideal. The minimal elements of P_{1}, \ldots, P_{n} with respect to \subseteq are called minimal or isolated prime ideals belonging to I; the nonminimal ones are called embedded prime ideals

The set $\left\{P_{1}, \ldots, P_{n}\right\}$ in the conclusion of the Theorem is independent of the particular minimal decomposition chosen for I

Proof. Consider $(I: x)=\left(\bigcap_{i=1}^{n} Q_{i}: x\right)=\bigcap_{i=1}^{n}\left(Q_{i}: x\right)$

$$
\Rightarrow r(I: x)=\bigcap_{i=1}^{n} r\left(Q_{i}: x\right)
$$

But $r\left(Q_{i}: x\right)=A$, if $x \in Q_{i}$, and P_{i} if $x \notin Q_{i}$ by lemma.So $r(I: x)=$ $\bigcap_{i=1}^{n} P_{i}$, when $x \notin Q_{i}$
If $r(I: x)$ is prime say P then $P=\bigcap_{i=1}^{n} P_{i}$ when $x \notin Q_{i}$, then $P=P_{i}$ for some i and this implies $r(I: x)=P_{i}$.On the other hand,$\forall i$ choose $x_{i} \in Q_{j}, \forall j \neq i$,and so $x_{i} \in \bigcap_{j \neq i} Q_{j}$, therefore $r\left(I: x_{i}\right)=P_{i}$

Note 6.7.14. Primary components need not be unique.
Example 6.7.15. Let $A=\mathbb{F}[X, Y], I=\left(X^{2}, X Y\right)$, then we observe

$$
I=(X) \cap(X, Y)^{2}
$$

and

$$
I=(X) \cap\left(X^{2}, Y\right)
$$

Lemma 6.7.16. Let S be a multiplicatively closed subset of A, P a prime ideal and Q a P-primary ideal. Then

1. $S \cap P \neq \phi \Rightarrow S^{-1} Q=S^{-1} A$
2. $S \cap P=\phi \Rightarrow, S^{-1} Q$ is $S^{-1} P$-primary ideal and $\left(S^{-1} Q\right)^{c}=Q$

Theorem 6.7.17. Primary ideals of A which avoid S are in a one-one correspondence with primary ideals in $S^{-1} A$ under the map $Q \mapsto S^{-1} Q$

Proof. Put $P_{1}=\{$ Primary ideals Q of $A: Q \cap S=\phi\}$ and $P_{2}=$ $\left\{\right.$ Primary ideals of $\left.S^{-1} A\right\}$. Now we define

$$
\begin{gathered}
\phi: P_{1} \rightarrow P_{2}, Q \mapsto S^{-1} Q \\
\psi: P_{2} \rightarrow P_{1}, I \mapsto I^{c}
\end{gathered}
$$

And easy to see both are inverse of each others.

$$
\text { Notation Let } J \triangleleft A \text {, write } S(J)=J^{e c}=\left\{a \in A: a / 1 \in S^{-1} J\right\}
$$

Theorem 6.7.18. If S is a multiplicatively closed subset of A and $I \triangleleft A$ has a minimal primary decomposition $I=\bigcap_{i} Q_{i}$ and we put $P_{i}=r\left(Q_{i}\right), \forall i$. We suppose further that the ideals have been arranged so that, for some m where $1 \leq m \leq n, S \cap P_{i}=\phi, \forall i=1, . ., m$, and $S \cap P_{j} \neq \phi, \forall j=m+1, \ldots ., n$, then we have the following minimal primary decompositions.

$$
S^{-1} I=\bigcap_{i=1}^{m} S^{-1} Q_{i}
$$

and

$$
S(I)=\bigcap_{i=1}^{m} Q_{i}
$$

Notation

Consider a decomposable ideal I and put $L=\{$ prime ideals belonging to $I\}$
. Call a subset N of L isolated if $\forall P \in N, \forall P^{\prime} \in L, P^{\prime} \subseteq P \Rightarrow P^{\prime} \in N$
Theorem 6.7.19. Let I be a decomposable ideal and $P_{1}, . ., P_{n}$ be the prime ideal associated to I.Suppose $m \leq n$ and $N=\left\{P_{1}, \ldots P_{m}\right\}$ is isolated,then for any two minimal primary decompositions $I=\bigcap_{i=1}^{n} Q_{i}=\bigcap_{i=1}^{n} Q_{i}^{\prime}$ where $r\left(Q_{i}\right)=r\left(Q_{i}^{\prime}\right)$, $\forall i$ then we have $\bigcap_{i=1}^{m} Q_{i}=\bigcap_{i=1}^{m} Q_{i}^{\prime}$.

Definition 6.7.20. An ideal I is irreducible if $I=J_{1} \cap J_{2}$, then $I=J_{1}$ or $I=J_{2}$

Lemma 6.7.21. In a Noetherian ring A, every ideal is a finite intersection of irreducible ideals.

Proof. Let S be the set of ideals which are not finite intersections of irreducible ideals. If $S=\phi$, then we are done ; If $S \neq \phi$, then S has a maximal element, I (since R is Noetherian). Then I is not irreducible, therefore $I=J_{1} \cap J_{2}$ with $I \subsetneq J_{1}, J_{2}$. So $J_{1}, J_{2} \notin S$, hence they are finite intersection of irreducible ideals. Since the intersection of two finite intersection of irreducible ideals, I is the intersection of irreducible ideals, i.e., $I \notin S$. This is a contradiction. Hence $S=\phi$.

Lemma 6.7.22. In a Noetherian ring R, all irreducible ideals are primary.

Proof. Let I be an irreducible ideal. Let $x, y \in R$, with $x y \in I$.Define $I_{n}=$ $\left(I: y^{n}\right)$ for $m=1,2,3, . .$, then $I \subseteq I_{1} \subseteq I_{2} \subseteq \ldots$ and sice R is Noetherian $I_{n}=I_{n+1}$ for some n.
Claim: $I=(I+(x)) \cap\left(I+\left(y^{n}\right)\right)$.Let $z \in(I+(x)) \cap\left(I+\left(y^{n}\right)\right.$), and observe that $y z \in I$ and $z \in I$.So $I=(I+(x)) \cap\left(I+\left(y^{n}\right)\right)$ and since I is irreducible then we are done.

Theorem 6.7.23. In a Noetherian ring R, every ideal I has a primary decomposition.

Proof. This follows directly from the previous two lemma.

6.8 Discrete Valuation rings

Definition 6.8.1. Suppose \mathbb{F} is a field .A discrete valuation on \mathbb{F} is a function $v: \mathbb{F}^{*} \rightarrow \mathbb{Z}$ such that

1. v is onto
2. $v(a b)=v(a)+v(b)$
3. $v(a+b) \geq \min (v(a), v(b))$ if $a+b \neq 0$

Proposition 6.8.2. The set $R=\{0\} \cup\{r \in F: v(r) \geq 0\}$, is a ring, which we call the valuation ring of v.

Proof. Observe that $v(1)=0, \Rightarrow 1 \in R$ also $a b \in R$.

Example 6.8.3. The field $\mathbb{C}((t))=\left\{\sum_{n=N}^{\infty} a_{n} t^{n}: N \in \mathbb{Z}, a_{n} \in \mathbb{C}\right\}$,of Laurent series without an essential singularity at $t=0$
Define $v: \mathbb{C}((t)) \rightarrow \mathbb{Z}$ by

$$
v(f(t))=N
$$

Where $f(t)=\sum_{n=N}^{\infty} a_{n} t^{n}$ and we can write $f(t)=a_{N} t^{N} g(t)$ with $a_{N} \neq 0$,$g(t) \in A[[t]]$

Definition 6.8.4. An integral domain A is called a valuation ring if for every element $a \in(\operatorname{Frac} A)^{*}$, we have $a \in a$ or $a^{-1} \in A$

Lemma 6.8.5. For any discrete valuation v on a field \mathbb{F} with valuation ring A, we have $A^{*}=v^{-1}(0)$.

Proof. We have $v\left(x^{-1}\right)=v(x), \forall x \in \mathbb{F}^{*}$ and this implies either $x \in A$ or $x^{-1} \in A$.Now $x \in A$ is invertible in A implies $v(x)=0$. Conversely if $v(x)=0$ then x is invertible in A.

Lemma 6.8.6. A valuation ring a with $\operatorname{Frac}(A)=K$ is a discrete valuation ring iff the quotient group $K^{*} / A^{*} \cong \mathbb{Z}$

Proof. Let A be a valuation ring and $K^{*} / A^{*} \cong \mathbb{Z}$ and $(A-\{0\}) / A^{*} \subseteq K^{*} / A^{*}$ is a submonoid

Lemma 6.8.7. Every valuation ring is normal and local.
Proof. Let A be the valuation ring and $K=\operatorname{Frac}(A)$.Let $f(X)=X^{d+1}+$ $\sum_{i=0}^{d} a_{i} X^{i}$ be monic in $A[X]$. Let $b \in K$ st $f(b)=0$.If $b \in A$ then we are done .If $b^{-1} \in A$, then we have $f(b)=0$ and thus $b^{d+1}=-\sum a_{i} b^{i}$. So $b=-\sum a_{i} b^{i} / b^{d} \in A$
A is local: we shal show that the set $A-A^{*}$ of non units is an ideal .If $a \in A-A^{*}$ and $b \in A$ then clearly $a b \in A-A^{*}$ since otherwise $a^{-1}=$ $b(a b)^{-1} \in A$. Let $a, b \in A-A^{*}$.Suppose WLOG $a / b \in A$. If $a+b \in A^{*}$, then $(a / b+1)(1 / a+b)=(a+b / b) 1 / a+b=1 / b \in A$ contradiction.

Theorem 6.8.8. Let A be a subring of a field \mathbb{F} then ,T.F.A.E

1. A is valuation ring.
2. The set of principal ideals of A is totally order by inclusion.
3. The set of ideal of A is totally order by inclusion.
4. A is local ring and every finitely generated ideal of A is principal.

6.9 Topologies and completions

Definition 6.9.1. Let G be an abelian group then G is said to be topological abelian group if both the maps $G \times G \rightarrow G$ and $G \rightarrow G$ defined by $(x, y) \mapsto$ $x+y$ and $x \mapsto-x$ respectively are continuous.

Lemma 6.9.2. Let H be the intersection of all neighbourhood's of 0 in G. Then

1. $H \leq G$.
2. H is the closure of zero.
3. G / H is Hausdorff.
4. G is Hausdorff $\Leftrightarrow H=0$.

Definition 6.9.3. An inverse system of groups is a sequence of $\{A, \theta\}$ and $\theta_{n+1}: A_{n+1} \rightarrow A_{n}$ where the transition maps $\forall n$ are homomorphisms of groups.

Definition 6.9.4. Let $\{A, \theta\}$ be an inverse system of groups and inverse limit is a subset of $\prod_{i \geq 0} A_{i}$ and define by

$$
\varliminf_{\rightleftarrows}\left\{A_{n}\right\}=\left\{\left(a_{1}, a_{2}, . .\right): \theta_{n+1} a_{n+1}=a_{n}, \forall n \geq 1\right\} \subseteq \prod_{i \geq 0} A_{i}
$$

Proposition 6.9.5. The map $\bar{G} \rightarrow G / G_{n}$ define by

$$
\left\{x_{i}\right\} \mapsto\left(\underset{\longrightarrow}{\lim }\left\{x_{i}+G_{1}\right\}, \underset{\longrightarrow}{\lim }\left\{x_{i}+G_{2}\right\}, \ldots\right)
$$

is an isomorphism.
Proposition 6.9.6. If $\{0\} \rightarrow\left\{A_{n}\right\} \rightarrow\left\{B_{n}\right\} \rightarrow\left\{C_{n}\right\} \rightarrow\{0\}$ is an exact sequence of inverse system and $\left\{A_{n}\right\}$ is a surjective system then

$$
0 \rightarrow \underset{\rightleftarrows}{\lim } A_{n} \rightarrow \underset{\rightleftarrows}{\lim } B_{n} \rightarrow \underset{\rightleftarrows}{\lim } C_{n} \rightarrow 0
$$

is exact.
Let $A=\prod_{i=1}^{\infty}$ and define $d^{A}: A \rightarrow A$, by $d^{A}\left(a_{n}\right)=a_{n}-\theta_{n+1} a_{n+1}$ and $\operatorname{ker}\left(d^{A}\right)=\lim _{n} A_{n}$.Define B, C and d^{B}, d^{C} similarly.The exact sequence of inverse system defines commutative diagram

then by snake lemma and d^{A} is onto we are done.
Corollary 6.9.7. Let $0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0$ be an exact sequence of groups. Let G have the topology defined by the sequence $\left\{G_{n}\right\}$ of subgruops and $G^{\prime}, G^{\prime \prime}$ have induces topology i.e. by the sequences $\left\{G_{n}^{\prime} \cap G_{n}\right\},\left\{f\left(G_{n}\right)\right\}$, then

$$
0 \rightarrow \bar{G}^{\prime} \rightarrow \bar{G} \rightarrow \bar{G}^{\prime \prime} \rightarrow 0
$$

is exact.
Proof. Exactness of given sequence implies that the diagram below is commutative with exact rows

and clearly θ_{n} is surjective $\forall n$ now use here snake lemma and $\operatorname{Ker}\left(\theta_{n+1}\right)=$ G_{n}. We have an exact sequence $0 \rightarrow G_{n}^{\prime} \rightarrow G_{n} \rightarrow G_{n}^{\prime \prime} \rightarrow 0$.Now applying previous proposition we are done.

Corollary 6.9.8. \bar{G}_{n} is a subgroup of \bar{G} and $\bar{G} / \bar{G}_{n} \cong G / G_{n}$.
Proof. Let $G^{\prime}=G_{n}$ and $G^{\prime \prime}=G / G_{n}$, now applying these in previous corollary we get an exact sequence

$$
0 \rightarrow \bar{G}_{n} \rightarrow \bar{G} \rightarrow G / G_{n} \rightarrow 0
$$

So \bar{G}_{n} is a subgroup of \bar{G} and $G^{\prime \prime}$ has discrete topology so $G^{\prime \prime} \cong \bar{G}^{\prime \prime}$ and $\bar{G} / \bar{G}_{n} \cong G / G_{n}$, this complete the proof.

Definition 6.9.9. Let $I \triangleleft A$ be an ideal. Then the completion of A with respect to the I-adic filtration $A \supseteq I \supseteq I^{2} \supseteq \ldots$ is called the I-adic completion of A. It is denoted by \bar{A}

Definition 6.9.10. Let $I \triangleleft A$ be an ideal, M an A-module with filtration $M=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ The filtration is called I-filtration if $I M_{n} \subseteq$ M_{n+1}.

Definition 6.9.11. An I-filtration M on an A-module M is called stable if $\ni N$ such tha $\forall n \geq N, I M_{n}=M_{n+1}$

Definition 6.9.12. A graded ring is a ring A together with abelian subgroups $A_{n} \subseteq A$ such that $A=\oplus_{n \geq 0} A_{n}$, and $A_{n} A_{m} \subseteq A_{n+m}$. The elements of A_{n} in a graded ring A are called homogeneous elements of degree n.

Lemma 6.9.13. If A is a Noetherian ring, $I \triangleleft A$, then the graded ring $A=\oplus_{n \geq 0} I^{n}$ is also Noetherian.

Proof. A being Noetherian implies I is a finitely generated A-module, say by $x_{1}, \ldots x_{n}$. Then the A-algebra map $A\left[X_{1}, . ., X_{n}\right] \rightarrow \oplus_{n \geq 0} I^{n}$ defined by $X_{i} \mapsto x_{i}$ is surjective. It is surjective because x_{1}, \ldots, x_{n} generates I. Since A is Noetherian, Hilbert's Basis Theorem implies $A\left[X_{1}, \ldots, X_{n}\right]$ Noetherian and hence any quotient of $A\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian. Hence we have $\oplus_{n \geq 0} I^{n}$ is Noetherian.

Lemma 6.9.14. Let A be a Noetherian ring, I be an ideal of A, M a finitely generated A-module together with an I-filtration $M=M_{0} \subseteq M_{1} \subseteq \ldots$ Then the filtration M is stable if and only if $\oplus_{n \geq 0} M_{n}$ is a finitely generated $A=$ $\oplus_{n \geq 0} I^{n}$-module.

Proof. Assume M is a stable I-filtration . Then $\ni n, \forall k \geq 0$ such that $I^{k} M_{n}=M n_{n+k}$. This implies $\oplus M_{n}=M_{0} \oplus M 1 \oplus \ldots \oplus M_{n} \oplus I M_{n} \oplus I^{2} M_{n} \oplus .$. is finitely generated by $M_{0} \oplus \ldots \oplus M_{n}$ as A-module. Since A is Noetherian and M is finitely generated implies $M_{i} \subseteq M$ are all finitely generated. Hence $M_{0} \oplus \ldots \oplus M_{n}$ generated by finitely many elements and so $\oplus M_{n}$ is generated by these finitely many elements as A-modules.
Conversely Assume $\oplus M_{n}$ is a finitely generated $A=\oplus I^{n}$ module. Let $P_{K}=M_{0} \oplus . . M_{K} \oplus I M_{K} \oplus I^{2} M_{K} \oplus .$. . Now P_{K} is a graded A-submodule of $\oplus M_{n}$, we have $P_{0} \subseteq P_{1} \subseteq P_{2} \subseteq \ldots \subseteq \oplus M_{n}$ an ascending chain of Asubmodules. Now R is Noetherian implies A is Noetherian by lemma. By assumption $\oplus M_{n}$ is a finitely generated A-module, hence a Noetherian Amodule, so the chain P_{K} has to stop, i.e., $\ni N$ such that $P_{N}=P_{N+1}=\ldots$. But $\cup P_{K}=\oplus M_{n}$ implies $\oplus M=P_{N}$ implies $M_{n}=I^{n-N} M_{N}, \forall n \geq N$ i.e., the filtration is stable.

Lemma 6.9.15. Let A be a Noetherian ring, I be an ideal of A and $M a$ finitely generated A-module with stable I-fultration M. Let N be a submodule of M. Then the filtration $\left\{N \cap M_{n}\right\}$ on N is a stable I-filtration of N

Proof. A Noetherian, I be an ideal of A an ideal, then $A^{\prime}=\oplus_{n \geq 0} I^{n}$ is Noetherian. So M_{n} is a stable I-filtration on M implies $\oplus_{n \geq 0} M_{n}$ is a finitely generated A^{\prime}-module. Now $\oplus M_{n} \cap N \subseteq \oplus M_{n}$ is a A^{\prime}-submodule. Since A^{\prime} is Noetherian and $\oplus M_{n}$ is a finitely generated A^{\prime}-module, the submodule $\oplus M_{n} \cap N$ is also a finitely generated A^{\prime}-module. Hence $M_{n} \cap N$ is a stable I-filtration

Theorem 6.9.16. Let A be a Noetherian ring, $\triangleleft A$. Let $0 \rightarrow M \rightarrow N \rightarrow$ $P \rightarrow 0$ be an exact sequence of finitely generated A-module. Then the sequence of I-adic completions $0 \rightarrow \bar{M} \rightarrow \bar{N} \rightarrow \bar{P} \rightarrow 0$ is exact
$\bar{M}, \bar{N}, \bar{P}$ are the completion of M, N, P with respect to the filtrations $I^{n} M, I^{n} N, I^{n} P$. So we have the exact sequence $\forall n .0 \rightarrow M /\left(M \cap I^{n} N\right) \rightarrow$ $N / I^{n} N \rightarrow P / I^{n} P \rightarrow 0$ Now $M \cap I^{n} N$ is a stable I-filtration (ArtinRees lemma). Hence by Lemma the completion of M with respect to $M \cap I^{n} M$ is the completion \bar{M} of M with respect to $I^{n} M$. Now $M /\left(M \cap I^{n} N\right)$ is a surjective inverse system, so by above equatio we are done.

Lemma 6.9.17. Let A be a Noetherian ring, $I \triangleleft A, M$ a finitely generated A-module . Then $\bar{A} \otimes_{A} M \rightarrow \bar{M}$ defined by $\left\{a_{i}\right\} \otimes x \mapsto\left\{a_{i} x\right\}$ is an isomorphism

Definition 6.9.18. If $I \triangleleft A$, then we set $\operatorname{gr}(A)=\oplus_{n \geq 0} I^{n} / I^{n+1}$. This is a graded ring with multiplication $I^{n} / I^{n+1} \times I^{m} / I^{m+1} \rightarrow I^{n+m} / I^{n+m+1}$ defined by $\left(a+I^{n+1}, b+I^{m+1}\right) \mapsto a b+I^{n+m+1}$ The ring grA is called the associated graded ring of $A \supseteq I \supseteq I^{2} \supseteq \ldots$.

Lemma 6.9.19. Let $A=A_{0} \supseteq A_{1} \supseteq \ldots$ and $B=B_{0} \supseteq B_{1} \supseteq \ldots$ be filtered modules and $f: A \rightarrow B$ a map of filtered modules (that is $\left.f\left(A_{i}\right) \subseteq B_{i}\right)$. Then

1. If $\operatorname{gr}(f): \operatorname{gr}(A) \rightarrow \operatorname{gr}(B)$ is surjective (injective) then $\bar{f}: \bar{A} \rightarrow \bar{B}$ is surjective (injective), where $\operatorname{gr}(A)=\oplus_{i \geq 0} A_{i} / A_{i+1}$

Proof. Since $f: A \rightarrow b$ is a homomorphism of filtered modules, then $\phi\left(M_{n}\right) \subseteq$ N_{n} and consider commutative diagram

By snake lemma and assuming $g r(f)$ is injective (surjective) we are done.

Lemma 6.9.20. Let $I \triangleleft A$ which is I-adically complete. Let M be an A module with an I-filtration $M=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ such that $\bigcap M_{i}=0$. Then if $g r(M)=\oplus_{i \geq 0} M_{i} / M_{i+1}$ is a finitely generated $\operatorname{gr}(A)=\oplus_{i \geq 0} I^{i} / I^{i+1}$ module, then M itself is a finitely generated A-module.

Proof. Choose a finite generating set of $\operatorname{gr}(M)$ over $\operatorname{gr}(R)$ consisting of homogeneous elements y_{1}, \ldots, y_{t} where $\operatorname{deg}\left(y_{i}\right)=n_{i}, i=1, . ., t$.Choosing $x_{i} \in$ $M_{n_{i}}$ with $y_{i}=x_{i}+M_{n_{i+1}}$. Let $F=R \oplus R \oplus \ldots \oplus R,(t$ times $)$. And $F_{n}=\left\{\left(a_{i}\right)\right.$: $\left.a_{i} \in I^{n-n_{i}}, i=1,2, . ., t\right\}$, where $I^{k}=R$ if $k \leqq 0$ and this define a filtration on F and the $\operatorname{map} \phi: F \rightarrow M$ given by $\phi\left[\left(a_{i}\right)\right]=\sum a_{i} x_{i}$ is a homomorphism of filtered R modules, thus associated gradded homomorphism $g f(\phi): \operatorname{gr}(F) \rightarrow$ $\operatorname{gr}(M)$ is surjective as y_{i} generates $\operatorname{gr}(M)$ implies $\bar{\phi}: \bar{F} \rightarrow \bar{M}$ is surjective Consider the commutative diagram

,since R is complete and F is free module of finite rank, f is an isomorphism since intersection of M_{i} is zero, g is injective this implies ϕ is onto as $\bar{\phi}$ is onto so M is finitely generated R module.

Proposition 6.9.21. Let A be nowetherian ring $I \triangleleft A, \bar{A}$ the I-adic completion. Then

$$
I^{n} / I^{n+1} \cong \overline{I^{n}} / I^{-\overline{n+1}}
$$

Theorem 6.9.22. Let A be a Noetherian ring and $I \triangleleft A$. Then its I-adic completion \bar{A} is Noetherian.

Proof. Let M be an \bar{A} ideal.Equip M with the filtration $\left\{M \cap \overline{I^{n}}\right\}$, then $\operatorname{gr}(M)=\oplus_{i \geq 0}\left(M \cap \overline{I^{n}}\right) / M \cap I^{\overline{n+1}}$ is submodule of $\operatorname{gr}(\bar{A})=\oplus_{n \geq 0} \overline{I^{n}} / I^{\overline{n+1}}$. Then
by proposition we have $\operatorname{gr}(\bar{A}) \cong \operatorname{gr}(A)$ and A being noetherian $\Rightarrow \operatorname{gr}(A)$ is notherian hence the submodule $\operatorname{gr}(M)$ is also finitely generated as $\operatorname{gr}(\bar{A})$ module and $\bigcap_{n \geq 0} M \cap \overline{I^{n}} \subseteq \bigcap_{n \geq 0} \overline{I^{n}}=0$ then by previous lemma we are done.

Corollary 6.9.23. If A is noetherian then $A\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is noetherian.
Proof. Since A is noetherian then $A\left[X_{1}, \ldots, X_{n}\right]$ is noetherian and let $I=$ $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ I adic filtration then the polynomial ring has $A\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ completion with this filtration then by theorem we are done.

