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ABSTRACT

The main aim of this project is to learn a branch of Mathematics that
studies abstract algebraic structures by representating their elements as lin-
ear transformations of vector spaces. This branch is known as Representation
Theory. A representation makes an abstract algebraic object more concrete
by describing its elements by matrices and the algebraic operations in terms
of matrix addition and matix multiplication. The most prominent is the rep-
resentation theory of groups which is discussed in this thesis.

In representation of groups, elements of group are represented by invert-
ible elements in such a way that the group operation is matrix multiplication.
If say, R is a representation of a group G on vector space V, then V is called
as the representation space for G. There are two ways to describe a repre-
sentation. First idea is to use action. That is, representation of a group G
on a vector space V is a map φ : G×V → V with property that φg : V → V
defined as v 7−→ φ(g, v) is linear over the field F. Further, if φ(g, v) = g.v
then the properties of a group action hold for any elements g1, g2 ∈ G and
v ∈ V . The second way to define a representation focuses on map φ defined
as φ(g) : V → V to be a homomorphism. This approach is more concise and
hence is being used in this project.

Moreover, the irreducible representations play an important role in Rep-
resentation theory since every finite dimensional representation is a direct
sum of irreducible representations which is an important result known as
Maschke’s theorem in this theory. This theory has some extremely useful
fundamental results. One of them is Schur’s lemma which says that if we
have two irreducible representations φ and ψ of a finite group G on vector
spaces V and W respectively and T, a linear transformation from V to W
that commutes with action of group, then T is either invertible or is zero.
This lemma is named after Issai Schur who used it to prove Schur’s Orthog-
onality Relations and develop the basics of Representation theory of finite
groups. Schur’s lemma admits generalizations to Lie groups and Lie Algebras
but this part is not mentioned in this thesis.
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Further, the Dimension theorem is proved here which states that degree
of any irreducible representation of a group divides the order of that group.
Then, using this theorem, again the most fundamental result of group theory
known as the Burnside’s lemma is proved using Representation theory. It
states that no finite abelian group of order paqb where p, q are primes and
a,b are non negative, is simple. Apart from these results, the permutation
representations, regular representations and fourier analysis of finite groups
have also been discussed here in this project.
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Motivation
In the mathematical field of representation theory, group representations

describe abstract groups in terms of linear transformations of vector spaces.
In particular, they can be used to represent group elements as matrices so
that the group operation can be represented by matrix multiplication.

Representations of groups are important because they allow many the-
oretical problems to be reduced to problems in linear algebra which is well
understood. They are also important in physics because , for example, they
describe how the symmetry group of physical system affects the solutions of
equations describing that system. The term ’representation of a group’ is
also used in a more general sense to mean any description of a group as a
group of transfomations of some mathematical object. Or we can say that,
a representation means a homomorphism from the group to automorphism
group of an object.If this object is a vector space , we have a linear repre-
sentation.

This thesis is divided into five chapters. Chapter one consists of the
definitions , notations, some fundamental results of Representation theory,
the irreducible representations, Schur’s lemma and ends up with a short in-
troduction to Tensor products. Chapter two consists of the Orthogonality
Relations, Characters, class functions, the Regular representation and Rep-
resentation of finite abelian groups. Chapter three contains some results of
fourier analysis on finite groups. Chapter four describes the most fundamen-
tal result in Representation Theory, The Burnside’s theorem. It uses some
results from field theory to prove this theorem. Chapter five talks about
the group actions and the permutation representations ending up with the
introduction and some representation related results of Centralizer Algebra
and the Gelfand Pair.

iii
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Chapter 1

Introduction to Representation

1.1 Definition and Unitarity

Let V be a finite dimensional vector space. Let Hom(V) be the set of linear
maps ’A’ from ’V’ to ’V’. For a pair of vectors,V and W, let Hom(V,W) be
the space of linear maps from V to W. GL(V) ⊂ Hom(V) are those maps
A which are invertible. GL is known as the general group under composition
with group identity I, the identity matrix. If V is a real or complex vector
space , GL(V) is precisely the set of continuous automorphisms(since any
bounded linear operator is continuous) of V as a group under addition.

Definition 1.1.1. A group representation is a homomorphism of G to GL(V)
for some ’V’. The dimension of ’V’ is called the degree of representation.

Example 1.1.2. Following are some well known group representations.

1. Trivial Representation: φ:G→ C∗ given by φ(g)=1 ∀ g ∈ G.

2. φ : Z/nZ→ C∗ given by

φ([m]) = exp(2πim/n)

is also a representation .

Definition 1.1.3. Let φ : G → GL(V ) and ψ : G → GL(V ) be two rep-
resentations of a finite group G on vector spaces V and W respectively.Then
they are said to be equivalent if there exists an isomorphism T :V→ W such
that ψg = TφgT

−1∀ g ∈ G, that is, ψgT = Tφg, ∀ g ∈ G.

1



2 1.1. Definition and Unitarity

Remark 1.1.4. The map T is called the intertwining map for φg and ψg.

Example 1.1.5. Define φ : Z/nZ→ GL2(C) by,

φ([m]) =

cos
(

2πim

n

)
−sin

(
2πim

n

)
sin

(
2πim

n

)
cos

(
2πim

n

)
 .

This matrix is known as the matrix of rotation by angle
2πim

n
and define

ψ : Z/nZ→ GL2(C) by,

ψ([m]) =

exp
(

2πim

n

)
0

0 exp

(
−2πim

n

)
 .

Now, let

A =

(
i −i
1 1

)
then,

A−1 =
1

2i

(
1 i
−1 i

)
so, A−1φ([m])A =

1

2i

(
1 i
−1 i

)cos
(

2πim

n

)
−sin

(
2πim

n

)
sin

(
2πim

n

)
cos

(
2πim

n

)
(i −i1 1

)

=
1

2i

 exp

(
2πim

n

)
iexp

(
2πim

n

)
−exp

(
−2πim

n

)
iexp

(
2πim

n

)
(i −i1 1

)

=
1

2i

2iexp

(
2πim

n

)
0

0 2iexp

(
−2πim

n

)


= ψ([m]).
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Note 1.1.6. We consider complex vector spaces V∼= Cn. An inner product
on V is a map 〈., .〉:V×V→ C such that,

1. 〈v, .〉 is linear, ∀ fixed v.

2. 〈w, v〉 = 〈v, w〉 .

3. 〈v, v〉 ≥ 0 , with equality if and only if v=0.

Definition 1.1.7. A unitary operator is a surjective bounded operator on a
Hilbert space preserving inner product. Or we can say that, A Unitary Op-
erator is a bounded linear operator U : H → H on a Hilbert space H that
satisfies UU∗ = U∗U = I where I : H→ H is the identity operator.

Theorem 1.1.8. Let U : G → GL(V ) be a representation of a finite group
G. Then , V has an inner product 〈., .〉 in which each U(g) is unitary i.e.,
〈U(g)v, U(g)w〉 = 〈v, w〉 ∀v, w ∈ V, g ∈ G.
Proof. Let 〈, 〉0 be an inner product on V.

Define 〈v, w〉= 1

O(G)

∑
g∈G〈U(g)v, U(g)w〉0.

We need to show that 〈v, w〉 defined above is an inner product.

1. 〈v, v〉 ≥ 0 ∀v ∈ V.

2. By definition 〈v, v〉 = 0 if and only if we have the following.

〈v, v〉 = 0 if and only if
1

O(G)

∑
g∈G

〈U(g)v, U(g)w〉0 = 0

if and only if 〈U(g)v, U(g)w〉0 = 0

if and only if U(g)v = 0 if and only if v=0.

3. We have,

〈w, v〉 =
1

O(G)

∑
g∈G

〈U(g)v, U(g)w〉0

=
1

O(G)

∑
g∈G

〈U(g)v, U(g)w〉0

=〈v, w〉.
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4. We have,

〈u+ v, w〉 =
1

O(G)

∑
g∈G

〈U(g)u+ U(g)v, U(g)w〉0

=
1

O(G)

∑
g∈G

[〈U(g)u, U(g)w〉0 + 〈U(g)v, U(g)w〉0]

=
1

O(G)

∑
g∈G

〈U(g)u, U(g)w〉0 +
1

O(G)

∑
g∈G

〈U(g)v, U(g)w〉0

= 〈u,w〉+ 〈v, w〉.

Hence , 〈., .〉 is an inner product on V.
Moreover,

〈U(h)v, U(h)w〉 =
1

O(G)

∑
g∈G

〈U(g)U(h)v, U(g)U(h)w〉0

=
1

O(G)

∑
g∈G

〈U(gh)v, U(gh)w〉0 (since, U is homomorphism)

=
1

O(G)

∑
g∈G

〈U(g)v, U(g)w〉0

= 〈v, w〉.

since, for each fixed h, g 7−→ gh is a bijection, so as g runs through G , so
does gh.

Example 1.1.9. Let G=Z. Let a ∈ C∗be fixed and U : G → GL(C) be
defined by

U(n) = an.

If |a| 6= 1, U is not unitary in the only inner product that C supports as,
〈U(n)x, U(n)y〉 = 〈anx, any〉 = |an|2〈x, y〉 6= 〈x, y〉 if |a| 6= 1.

Therefore, it implies that each U(g) has eigenvalues ω with

|ω| = 1.

(since, gn for some n⇒ U(g)n = I⇒ ωn = 1 that is, eigen values are roots
of unity).
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Note 1.1.10. 1. Hilbert Space is a real or complex inner product space
that is also a complete metric space with respect to the distance function
induced by the inner product.

2. Unitary Representation of a group G is a linear representation π of G
on a complex Hilbert space V such that π(g) is a unitary operator ∀ g
∈ G.

Definition 1.1.11. Let V be a finite dimensional complex space with inner
product (hilbert space). U(V) , the unitary operators on V is a group( under
composition).

A unitary representation of a finite group G is a homomorphism of G to
U(V) (when we say representation, we mean unitary representa-
tion).

Note 1.1.12. One way of rephrasing Thm 2.2 is:
If U : G → GL(V ) ; V is a hilbert space and G is finite, then there is a

T ∈ GL(V ) such that TU(g)T−1 is unitary.

Definition 1.1.13. Let U : G → U(X), V : G → U(Y ) be two representa-
tions of same group G, where, U(X) and U(Y ) are unitary operators on X
and Y respectively.
We say that U and V are unitarily equivalent ⇔ there exist a unitary W :
X → Y such that V (g) = WU(g)W−1 ∀g ∈ G.

Note 1.1.14. We classify the representations upto equivalence.

Definition 1.1.15. A symmetric n×n real matrix M is said to be positive
definite if zTMz is strictly positive ∀ non zero column vector z of n real
numbers.

Or

an n×n hermitian matrix M is said to be positive definite if the scalar z∗Mz
is strictly positive ∀ non zero column vector z of n complex numbers.

Note 1.1.16. 1) z∗Mz is automatically real since, M is hermitian.
2) Entries on main diagonal of any hermitian matrix are real.

Definition 1.1.17. A matrix M is called positive semi definite if zTMz or
z∗Mz are positive or zero.
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Definition 1.1.18 (Polar Decomposition of a matrix:). Right polar
decomposition of a matrix A is, A=UP , where , A ∈ Cm×n;m >= n ,
U ∈ Cm×n with orthonormal columns and P ∈ Cn×n is positive definite.

Left polar decomposition of a matrix A is, A=PU , where ,A ∈ Cn×m;m >=
n, U ∈ Cn×m with orthonormal columns and P ∈ Cn×n is positive definite.

Remark 1.1.19. If T=W|T | is a polar decomposition of T then, W is the
partial isometry and |T | is positive semi definite.
A partial isometry is a linear map between Hilbert spaces such that it is an
isometry on the orthogonal complement of kernel.
If the kernel is {0}, then , in that case, partial isometry is unitary.

Theorem 1.1.20. Let U, V be unitary representations of G on X and Y
respectively. Suppose, there exists an invertible map T : X → Y such that
U(g) = T−1V (g)T, ∀g ∈ G. Then, ∃ a unitary map W : X → Y such that
U(g) = WV (g)W−1,∀g ∈ G.

Proof. Since U(g) is a unitary operator,

U(g)U(g)∗ = U(g)∗U(g) = I.

This implies,

U(g∗) = U(g)−1 = U(g−1)

(since, U is a homomorphism).
Now , given that, ∃ an invertible map T : X → Y such that

U(g) = T−1V (g)T.

Taking adjoint and using U(g)∗ = U(g−1), and replacing g by g−1 , we get,

U(g)∗ = T ∗V (g)∗(T−1)∗

i.e., U(g)−1 = T ∗V (g)−1(T ∗)−1

i.e., U(g−1) = T ∗V (g)−1(T ∗)−1

i.e., U(g) = T ∗V (g)(T ∗)−1
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(since, true for all g , in general)

i.e., V (g) = (T ∗)−1U(g)T ∗

i.e., V (g) = TU(g)T−1.

Now,

T ∗TU(g)(T ∗T )−1 = T ∗TU(g)(T−1(T ∗)−1)

= T ∗(TU(g)T−1)(T ∗)−1

= T ∗U(g)(T ∗)−1

= U(g).

This implies, U(g)−1(T ∗T )U(g) = T ∗T. Now, by uniqueness of square root,

U(g)−1|T |U(g) = |T |.

Let T = W |T | be the polar decomposition of T, where W is unitary from X
to Y. Since, |T | is invertible,

WU(g)W−1 = T |T |−1U(g)|T |T−1

= TU(g)T−1

= V (g).

Hence proved.

Note 1.1.21. In above theorem, T is an invertible linear map (automor-
phism) ⇒ KerT = {0} , hence, W is unitary.

Example 1.1.22. Standard Representation of Sn Define φ : Sn →
GLn(C) on standard basis by

φσ(ei) = eσ(i).

For instance,
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when n=3, φ(1 2) =

0 1 0
1 0 0
0 0 1

 and φ(1 2 3) =

0 0 1
1 0 0
0 1 0


φσ(e1 + e2 + ....+ en) = eσ(1) + eσ(2) + ....+ eσ(n) = e1 + e2 + ...+ en.

Thus, C(e1 + e2 + ...+ en) is invariant under φσ with σ ∈ Sn.

1.2 Irreducibility and Complete Reduction

Definition 1.2.1. Let X and Y be vector spaces. Their Direct sum X ⊕ Y
is defined as the cartesian product X × Y with coordinatewise operation.

For example, (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) .

Note: If X and Y are Hilbert spaces , so is X ⊕ Y , with inner poduct as
follows:

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉X + 〈y1, y2〉Y .
Definition 1.2.2. If A ∈ Hom(X), B ∈ Hom(Y ) then , A⊕B ∈ Hom(X⊕
Y ) by:

(A⊕B)(x, y) = (Ax,By).

Also, (A⊕B)(C ⊕D) = (AC ⊕BD). And if, A ∈ U(X), B ∈ U(Y ) , then,

A⊕B ∈ U(X ⊕ Y ).

Verification I:

We need to show that A ⊕ B ∈ Hom(X ⊕ Y ) if A ∈ Hom(X) and B ∈
Hom(Y ) . That means to show A⊕B : X ⊕ Y → X ⊕ Y is linear. That is,
we show, A⊕B(αx+ y) = α(A⊕B)(x) + (A⊕B)(y).

Consider , (A⊕B)(αx+ y) ; x, y ∈ X ⊕ Y .
Let x = (x1, x2), y = (y1, y2).

(A⊕B)((αx1, αx2) + (y1, y2) = (A⊕B)(αx1 + y1, αx2 + y2)

= (A(αx1 + y1), B(αx2 + y2))

= (α(Ax1, Bx2) + (Ay1, By2))

= α(A⊕B)(x) + (A⊕B)(y).
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Hence A⊕B is linear.
Verification II:

We need to show A ∈ U(X), B ∈ U(Y )⇒ A⊕ B ∈ U(X ⊕ Y ). That means
to show A⊕B is a unitary operator. That is, we show 〈(A⊕B)(x1, y1), (A⊕
B)(x2, y2)〉 = 〈(x1, y1), (x2, y2)〉.

Consider , 〈(A⊕B)(x1, y1), (A⊕B)(x2, y2)〉
= 〈(Ax1, By1), (Ax2, By2)〉
= 〈Ax1, Ax2〉+ 〈By1, By2〉

(since, X ⊕ Y is a hilbert space , inner product can be defined like this)

= 〈x1, x2〉+ 〈y1, y2〉
= 〈(x1, y1), (x2, y2)〉.

Hence, A⊕B is a unitary operator on X ⊕ Y .

Definition 1.2.3. If U and V are representations of G on X and Y, respec-
tively, then, U ⊕ V defined as,

(U ⊕ V )(g) = U(g)⊕ V (g)

is a representation of G, also known as Diresct sum representation.

Verification I:

We need to show that (U ⊕ V )(g) = U(g) ⊕ v(g) is also representation
of G ; where, U and V are representations of G on X and Y respectively.
That is, to show U ⊕ V is a homomorphism from G to U(X ⊕ Y ) or to show
U ⊕ V (g1g2) = U ⊕ V (g1)U ⊕ V (g2).

U ⊕ V (g1g2)(x, y) = (U(g1g2)⊕ V (g1g2))(x, y)

= (U(g1g2)(x), V (g1g2)(y))

= (U(g1)U(g2)(x), V (g1)V (g2)(y)).

and

U ⊕ V (g1)U ⊕ V (g2)(x, y) = U ⊕ V (g1)((U(g2)⊕ V (g2)(x, y))

= U ⊕ V (g1)(U(g2)(x), V (g2)(y))

= U(g1)⊕ V (g1)(U(g2)(x), V (g2)(y))

= (U(g1)U(g2)x, V (g1)V (g2)y)

= U ⊕ V (g1g2)(x, y); ∀(x, y) ∈ X ⊕ Y.
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Hence , U ⊕ V (g1g2) = U ⊕ V (g1)U ⊕ V (g2) ; ∀ g1, g2 ∈ G. Therefore U ⊕ V
is a homomorphism. This shows that it is a representation of G on X ⊕ Y .

Definition 1.2.4. Let U be a representation of G on X. A subspace Y ⊂ X
is called invariant if ∀g ∈ G and y ∈ Y , U(g)y ∈ Y.

Theorem 1.2.5. If Y is an invariant subspace , so is

Y ⊥ = {x ∈ X|〈x, y〉 = 0,∀y ∈ Y }.

U � Y and U � Y ⊥ define representations U1 and U2 and U is equivalent to
U1 ⊕ U2.

Conversely, (y, 0) is an invariant subspace for any direct sum representa-
tion U1 ⊕ U2.

Proof. First , note that , U : G→ U(X) is a representation of G on Hilbert
space X.

Let x ∈ Y ⊥, y ∈ Y, g ∈ G. Then,

〈U(g)x, y〉 = 〈x, U∗(g)(y)〉
= 〈x, U(g−1)y〉
= 0

since, U(g−1)y ∈ Y . Thus, U(g)x ∈ Y ⊥ so, Y ⊥ is invariant. This implies
that in Y ⊕ Y ⊥ block decomposition of X,

U(g)=

(
U1(g) 0

0 U2(g)

)
That means, U ∼= U1 ⊕ U2.

Conversely, let U = U1 ⊕ U2. Then ∀g ∈ G,

U(g)((y, 0)) = (U1 ⊕ U2)(y, 0)

= (U1(g)⊕ U2(g))((y, 0))

= (U1(g)(y), U2(g)(0))

= (y1, 0) ∈ (y, 0).

Hence (y, 0) is an invariant subspace.
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Note 1.2.6. In general, Y ⊂ X (invariant), may not have a complementary
subspace that is invariant , if U is not unitary and G is infinite ( if G is
finite, U is equivalent to unitary).

Example 1.2.7. The non unitary representation of R,

U(x) =

(
1 x
0 1

)

has an invariant subspace {
(
α
0

)
} but no complementary subspace

since, say if U : R → GL(R2) then given U(x) is not unitary representation
as,(

1 x
0 1

) (
1 0
x 1

)
=

1 + x2 x
x 1


6=
(

1 0
0 1

)
.

Hence, U is not unitary. And,

{(
α
0

)}
is an invariant subspace since,

∀x ∈ R,

U(x)

(
α
0

)
=

(
1 x
0 1

) (
α
0

)
=

(
α
0

)
Now, let it has a complementary subspace say,

(
0
β

)
then, U(x)

(
0
β

)
=

(
1 x
0 1

) (
0
β

)
=

(
xβ
β

)
= β

(
x
1

)
/∈
{(

0
β

)
: β ∈ Y ⊥

}
.

This shows that, (0, β) is not invariant.

Definition 1.2.8. A unitary representation U of G on X is called irreducible
if and only if the only invariant subspaces of U are {0} and X.

The theorem proved earlier implies that,

Corollary 1.2.1. U is an irrep (we will use this for ’irreducible representa-
tion) if and only if it cannot be written as a direct sum of non trivial (that
is, not zero dimensional) representations.
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Proof. Let U is an irrep of G on X.Then the only invariant subspaces of X
are {0} and X. That means there does not exist any proper subspace of X
invariant under U. Hence U cannot be written as direct sum of non trivial
representations.

Conversely, let U cannot be written as direct sum of non trivial represen-
tations. Then we need to show that U is an irreducible representation.

Let if possible, U is a reducible representation. Then there exist U1 , U2

corresponding to invariant subspaces Y and Y’ of X such that U1 and U2 are
representations of G on Y and Y’ respectively and hence U ∼= U1⊕U2 where,
U1 and U2 are non trivial representations which is a contradiction. Hence U
is irrep of G on X.

Example 1.2.9. Orthogonal group O(n) of orthogonal matrices under mul-
tiplication has an irrep on Rn.

Example 1.2.10. The representation φ : S3 → GL2C is irreducible.

Proof. We know that dim(C2) = 2. Suppose it is not irreducible. Then,
there exists a non zero proper invariant subspace . Now, any non zero proper
S3 invariant subspace is one dimensional. Let v ∈ W then, W = Cv. Let
σ ∈ S3 then, φσ(v) = λv for some λ ∈ C.

So, v must be an eigen vector for all φσ with σ ∈ S3.
Claim: φ(1 2) and φ(1 2 3) do not have a commom eigen vector.

On computing, we get φ(1 2) has eigen values 1 and -1 , with

V−1 = Ce1 and V1 = C
(
−1
2

)
. Now, e1 is not an eigen vector of φ(1 2 3) as

φ(1 2 3)

(
1
0

)
=

(
−1
1

)
. Also, φ(1 2 3)

(
−1
2

)
=

(
−1
−1

)
So, (-1, 2) is not an eigen vector of φ(1 2 3). This implies, φ(1 2) and φ(1 2 3)
have no eigen vector in common. Hence φ is irreducible.

Theorem 1.2.11. Any representation can be written as a direct sum of ir-
reps.

Proof. We prove this by induction on deg(U). We know that deg(U)=dim(X).
If deg(U)=1, U is irrep (since , any 1-dimensional representation is irre-
ducible).

Let the result is true ∀ representations of deg < d.
Let deg(U)=d. If U is irreducible, we are done. If not,
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U = U1 ⊕ U2, where, deg(U1) < d , deg(U2) < d. Thus by induction, each
Ui is direct sum of irreducible representations. That is, U is direct sum of
irreps. Therefore any U can be written as U1 ⊕U2⊕....⊕Uk where Ui is irrep
∀ i=1,2,...k.

Definition 1.2.12. A representation φ : G→ GL(V ) is said to be completely
reducible if V = V1 ⊕ V2 ⊕ ... ⊕ Vn where, Vi are G-invariant subspaces and
φ|Vi is irreducible for all i=1,2..n.

It is equivalent to saying that φ is completely reducible if φ ∼ φ1 ⊕ φ2 ⊕
...⊕ φn where φi are irreducible representations.

Definition 1.2.13. A representation φ is decomposable if V = V1⊕V2 where
V1, V2 are non zero G-invariant subspaces. Otherwise, V is called indecom-
posable.

Definition 1.2.14. Ĝ , known as the dual object , is the set of equivalence
classes of irreps, each class consisting of unitarily equivalent irreps.

An explicit matrix realization of each α ∈ Ĝ,is D
(α)
ij (g) that is a d(α)× d(α)

matrix , where d(α) is the degree of irrep in α.

1.3 The Group Algebra and the Regular Rep-

resentations

Let G be a finite group. Consider, S = {
∑

g∈G agδg ; δg is a symbol , ag ∈ C}.
Then, S is a complex vector space of dimension O(G) (i.e., order of group).

Verification :
We neeed to show that S is a vector space. Let x , y ∈ S. Then x =

∑
g∈G agδg

and y =
∑

g∈G bgδg

1) x+ y =
∑

g∈G agδg +
∑

g∈G bgδg =
∑

g∈G(ag + bg)δg ;

where, ag + bg ∈ C (since C is a vector space).
This implies ,

∑
g∈G(ag + bg)δg ∈ S.

2) αx = α
∑

g∈G agδg =
∑

g∈G αagδg ∈ S. since, αag ∈ C and C is a vec-
tor space.
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So, αx ∈ S. Hence, S is a vector space.

Now , since , ag ∈ C and dim(S) = O(G), (since, summation is over g ∈
G) S is a complex vector space of dim = O(G).

Note 1.3.1. We consider the sequence {ag}g∈G as a function so we write it
as a(g).

Now , we define a product , inherited from the group product for the
vector space S such that,

δgδh = δgh (*)

,∀ g ∈ G.

Therefore (
∑

g agδg)(
∑

g bhδh) =
∑

g,hinG agbhδgh.

Now, By change of variables (i.e., let gh=x,h=y ⇒ g = xy−1)
we get,

=
∑
x

(∑
y

a(xy−1)b(y)δx

)
.

Definition 1.3.2. Let G be a finite group. The complex vector space A (G)
of functions on G is called the group algebra when we are given the product
called CONVOLUTION as follows,

(a ∗ b)(x) =
∑
y

a(xy−1)b(y); a, b ∈ A

where support of each function is finite and the conjugate,

a∗(g) = (a(g−1)).

Remark 1.3.3. (a ∗ b)∗ = b∗ ∗ a∗.
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Verification:

(a ∗ b)∗(x) = (a ∗ b)(x−1)

= (a ∗ b)(h) =
∑
g

a(hg−1)b(g)

=
∑
y

a(y)b(y−1h) (hg−1 = y ⇒ g = y−1h)

=
∑
y

b(y−1h)a(y)

=
∑
y

b(y−1h)a(y)

=
∑
y

b∗(h−1y)a∗(y−1)

=
∑
y

b∗(xy)a∗(y−1)

=
∑
y−1

b∗(xy−1)a∗(y)

= b∗ ∗ a∗.

Let δg be the function defined as,

δg(x) =

{
1 : x = g

0 : x 6= g

then, a =
∑
agδg.

Verification of the statement (*) written above :

δg(x) =

{
1 : x = g

0 : x 6= g

δh(x) =

{
1 : x = h

0 : x 6= h

δgh(x) =

{
1 : x = gh

0 : x 6= gh
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δgδh(x) =
∑

y δg(xy
−1)δh(y)

=

{
1 : xh−1 = g

0 : xh−1 6= g

( when, xy−1 = g , y=h )

=

{
1 : x = gh

0 : x 6= gh

= δgh(x),∀x ∈ G.

⇒ δgδh = δgh.
There is one more property that δg has. That is,

δg∗ = δg−1 .

Verification:

δg∗(x) = δg(x−1)

=

{
1 : x−1 = g

0 : x−1 6= g

=

{
1 : x = g−1

0 : x 6= g−1

= δg−1(x),∀x ∈ G.

Hence,

δg∗ = δg−1 .

Now, one might wonder, why did we choose such an adjoint. So, following
theorem is the reason for the same.
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Theorem 1.3.4. Let G be a finite group. Let U be a representation of G on
a Hilbert space X.
Define for a ∈ A (G) ,

UA (a) =
∑

a(g)U(g). (1)

Then UA obeys,
(i) UA (a+ b) = UA (a) + UA (b)
(ii) UA (a ∗ b) = UA (a)UA (b)
(iii) UA (a∗) = UA (a)∗

(iv) UA (δe) = I ; where, e is the identity of the group G.

Conversely, if UA obeys all the above four conditions then, ∃ a unitary rep-
resentation U of G obeying (1).

Proof. Forward Part:
We have to show, UA obeys all four properties.
(i)First,

UA (a+ b) =
∑

(a+ b)(g)U(g)

=
∑

(a(g) + b(g))U(g)

=
∑

a(g)U(g) +
∑

b(g)U(g)

= UA (a) + UA (b).
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(ii)Second,

UA (a ∗ b) =
∑

(a ∗ b)(g)U(g)

=
∑
g

(∑
h

a(gh−1)b(h)

)
U(g)

=
∑
h

(∑
g

a(gh−1)U(g)

)
b(h)

=
∑
h

(∑
x

a(x)U(xh)

)
b(h) (gh−1 = x⇒ h = x−1g)

=
∑
h

(∑
x

a(x)U(x)

)
(U(h)b(h))

=
∑
h

(∑
x

a(x)U(x)

)
(b(h)U(h))

=
∑
x

a(x)U(x)
∑
h

b(h)U(h)

= UA (a)UA (b).

(iii) Third,

UA (a∗) =
∑

a∗(g)U(g)

=
∑

a(g−1)U(g)

=
∑
g−1∈G

a(g)U(g−1)

=
∑

a(g)U(g)∗

=
∑

(a(g)U(g))∗

=

(∑
a(g)U(g)

)∗
= UA (a)∗.
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(iv)Fourth,

UA (δe) =
∑

δe(g)U(g)

= U(e)(ifg = e)

= I(since, U is a homomorphism).

Converse Part:
If UA obeys all four properties then,
define,

U(g) = UA (δg)

then, (1) holds .

Now, since, δg ∗ δh = δgh, Property (ii) implies,

U(g)U(h) = UA (δg)UA (δh) = UA (δg ∗ δh) = UA (δgh) = U(gh).

And , since, δg∗ = δg−1 , Property (iii) implies,

U(g)∗ = UA (δg)
∗ = UA (δ∗g) = UA (δ−1

g ) = U(g−1).

Hence, we have,
U(g)U(g)∗ = U(g)U(g∗) = U(gg∗) = UA (δgg∗) = UA (δg ∗ δg∗) = UA (δg ∗
δg−1) = UA (δgg−1) = UA (δe) = I.

And, also,
U(g)∗U(g) = U(g∗g) = UA (δg∗g) = UA (δg∗∗δg) = UA (δg−1∗δg) = UA (δg−1g) =
UA (δe) = I.

Hence U is unitary.

A map UA obeying (i) to (iv) all properties , is called a *-representation
of Algebra A (G) .
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Hence, we can conclude that there is one one correspondence between repre-
sentation of G and *-representation of A (G).

The obvious representation of A (G) is on itself by the following multipli-
cation:

We define, LA : A → U(A (G)) as,

LA (a)b = a ∗ b.

Now , we need to define an inner product on A (G) so that LA (a) becomes
a *-representation.
We can take usual inner product for the same , as

〈f, g〉 =
1

O(G)

∑
x∈G

f(x)g(x).

Now, we check that LA is a *-representation .
For that , we need to prove that,

〈h, f ∗ g〉 = 〈f ∗ ∗ h, g〉 (**)

∀ f , g, h ∈ A (G)

Consider, L : G → U(G). If, (L(x)f)(y) = f(x−1y) then, LA is the in-
duced map on A ,
(since, (δx ∗ f)(y) =

∑
z δx(yz

−1)f(z) = f(x−1y) by letting yz−1 = x ) Then,
Lxδy = δxy.

Verification:

Lxδy(z) = δy(x
−1z) =

{
1 z = x−1y

0 otherwise
= δxy(z)

Hence, Lxδy = δxy. So, Lx is unitary ,

Verification:

We have to show that 〈Lxf, Lxg〉 = 〈f, g〉.



21

〈Lxf, Lxg〉 =
1

O(G)

∑
z∈G

Lxf(z)Lxg(z)

=
1

O(G)

∑
z∈G

f(x−1z)g(x−1z)

=
1

O(G)

∑
xy∈G

f(y)g(y)

=
1

O(G)

∑
y∈G

f(y)g(y)

= 〈f, g〉.

Now, let g(z) ∈ A (G). Then,

g(z) =
∑
y∈G

a(y)δy(z)

for any g ∈ A .
Hence, we can conclude that, (

√
O(G)δy)y∈G is a basis.

Lx is unitarily equivalent to ,

〈h, f ∗ g〉 = 〈f ∗ ∗ h, g〉.

Theorem 1.3.5. (Lxf(y)) ≡ f(x−1y) on A (G) with inner product ,

〈f, g〉 =
1

O(G)

∑
x∈G

f(x)g(x)

is a unitary representation of G. It is called left regular representation.

Similarly, RA (f)g = g ∗ f ∗, the right multiplication, is also a representa-
tion of A induced by,

(Rxf)(y) = f(yx)

known as the Right regular representation.

The consequence of existence of this ’L’ is the following corollary.
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Corollary 1.3.1. The functions Dα
ij separate points that is, for any x , y ∈

G with x 6= y,∃ a function f of the form:

f =
n∑
k=1

CkijD
αk
ikjk

such that, f(x)=1 , f(y)=0

Proof. Consider, f(z) = O(G)〈δx, L(z)δe〉 ,
then,

f(x) = O(G)〈δx, L(x)δe〉

= O(G)
1

O(G)

∑
y∈G

δx(y)Lxδe(y)

=
∑
y∈G

δx(y)δe(x
−1y)

= 1.( if y= x )

f(y) = O(G)〈δx, L(y)δe〉

= O(G)
1

O(G)

∑
z∈G

δx(z)L(y)δe(z)

=
∑
z∈G

δx(z)δe(y
−1z)

= 0.

Now, L : G→ U(A (G)) as,
z 7−→ Lz

where,
Lz : A (G)→ A (G)

We know that,
Ĝ = {α : α is irreducible unitary representation of G }

Let αk ∈ Ĝ

αk : G→ U(Hαk)
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as,
z 7−→ αk(z)

is a representation , where, αk(z) : Hαk → Hαk and dim(Hαk) = tαk
So, the associated matrix is, (

Dαk
ij (z)

)
tαk×tαk

therefore , ⊕nk=1αk(z) : ⊕nk=1Hαk → ⊕nk=1Hαk

Now , let
H = ⊕nk=1Hαk

and,
α(z) = ⊕nk=1αk(z)

so, we get,
α(z) : G→ U(H)

defined as,
z 7−→ α(z)

Now, L : G→ U(A (G)) is again a representation of G.
But since, L is a representation, it is unitarily equivalent to a direct sum of
irreducibles.

So, given L and α are unitarily equivalent representations of G on A (G)
and H respectively. Therefore, there exists U : A (G)→ H such that,

UL(z)U−1 = α(z).

So, ∀ z ∈ G ,
L(z) = U−1α(z)U , ∀z ∈ G.

That is, L(z) = U−1

(
⊕nk=1 αk(z)

)
U , ∀z ∈ G or, L(z) = ⊕nk=1U

−1αk(z)U .

Hence L(z) = ⊕nk=1U
∗αk(z)U.

Therefore,
(
L(z)

)
x,y

=
∑

k,i,jM
(αk)
xi D

(αj)
ij (z)Myj

(αk)

for some numbers , M
(αk)
xi .

Hence, this yields,

f =
n∑
k=1

CkijD
(αk)
ikjk .
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This completes the proof.

Remark 1.3.6. (1) A *-representation of A (G) on a Hilbert space X is
called irreducible iff it leaves no non trivial subspace invariant.
(2) UA is an irreducible representation of A (G) iff U is an irreducible rep-
resentation of G.

1.4 Schur’s Lemma

Theorem 1.4.1. First form:
Let UA be an irreducible representation of A (G) on X.Let A ∈ Hom(X) obeys

AUA (f) = UA (f)A (1)

∀ f ∈ A (G).
(equivalently , AU(x)=U(x)A ∀ x ∈ G)
Then, A=cI for some constant c.

Proof. Replacing f by f ∗ and taking adjoints, we see that ,

A∗UA (f) = UA (f)A∗

Thus, (1) holds if A is replaced by B =
1

2
(A+ A∗) or C =

1

2i
(A− A∗).

We note that, A = B + iC. So, if B, C are constants , so is A.
Hence, it suffices to prove the theorem with A = A∗.

Let λ be an eigen value of A and let (A− λ)u = 0.
Then,

(A− λ)UA (f)u = UA (f)(A− λ)u = 0

Thus,
{u|(A− λ)u = 0} is an invariant subspace.
Since,λ is an eigen value, space is not {0}. So, it must be X.

Therefore, A = λI where λ is the constant. Hence proved.

Theorem 1.4.2. Second Form:
Let U, V be two irreps of a finite group G on spaces X and Y respectively.
Let T:X → Y such that,

TU(x) = V (x)T (2)
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∀ x ∈ G.
Then , either, T=0 or U,V are unitarily equivalent and T is unique upto
constant.

Proof. Replacing x by x−1 and taking adjoints to see that

T ∗V (x) = U(x)T ∗

Thus,

(T ∗T )U(x) = U(x)(T ∗T )

and,
(TT ∗)V (x) = V (x)(TT ∗)

Thus, by previous theorem, T ∗T = cI and TT ∗ = cI. Either, c=0 ⇒ T = 0
or else ,W = c−1/2T is unitary
and

WU(x) = U(x)W

so, U, V are unitarily equivalent.
If they are unitarily equivalent and both T and S obey (2), then, TS∗ =

c1I by same argument. So, T = TS∗Sc−1
s = c1c

−1
s S.

For general representations U and V, a map T obeying (2) , is called an
intertwining map for U, V.

Corollary 1.4.1. Let G be an abelian group.Then, every irrep has degree 1.

Proof. Let U be an irrep of G on X. By Schur’s lemma (first form), each U(x)
is a constant multiple of identity. Thus, every subspace of X is invariant. This
is consistent with irreducible only if dim(X)=1.

1.5 Tensor Products

Let X and Y be finite dimensional Hilbert spaces . Then the tensor product
X⊗Y is defined as the vector space of bi-antilinear maps with a certain inner
product. Let B∈ X⊗Y .Then, B is a map from X×Y → C such that,
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B(u,αv+βw)=αB(u, v) + βB(u,w)∀u ∈ X, v, w ∈ Y α, β ∈ C

B(αu+βv,w)=αB(u,w) + βB(v, w)∀u, v ∈ X,w ∈ Y α, β ∈ C

Now , we show that X ⊗ Y is a vector space.
Let A,B ∈ X ⊗ Y .Then, A:X×Y → C and B:X×Y → C
A(u,αv+βw)=αA(u, v) + βA(u,w).
A(αu+βv,w)=αA(u,w) + βA(v, w).
B(u,αv+βw)=αB(u, v) + βB(u,w).
B(αu+βv,w)=αB(u,w) + βB(v, w).

Now, Consider, A+B(u,α v+ β w).
A+B(u,α v+ β w) =A(u,αv+βw)+B(u,αv+βw)=αA(u, v)+βA(u,w)+αB(u, v)+
βB(u,w)=α(A(u,v)+B(u,v))+β(A(u,w)+B(u,w))=α(A+B)(u,v)+β(A+B)(u,w).

Hence A+B ∈ X ⊗ Y.

Now, consider,
aA(u,αv+βw)=a(αA(u,v)+βA(u,w))=αaA(u,v)+βaA(u,w).

Hence aA ∈ X⊗Y. So,X⊗Y is a vector space.

Let u∈X , v∈Y.Then, define u⊗v ∈ X⊗Y by

(u⊗ v)(w, z) = 〈w, u〉〈z, v〉.

Then, (u,v) 7−→ (u⊗v) is a bilinear map of X×Y into X⊗Y. Also, u⊗v spans
X⊗Y.

Note 1.5.1. Loosely speaking, a bilinear map satisfies:
B(x+y,z)=B(x,z)+B(y,z) that is, additivity in first coordinate.
B(x,y+z)=B(x,y)+B(x,z) that is, additivity in second coordinate.
B(cx,y)=cB(x,y)=B(x,cy) that is, preserves scalar multiplication in each co-
ordinate.

Example 1.5.2. Examples of bilinear maps:
1. Matrix multiplication is a bilinear map:

M(m,n)×M(n, p)→M(m, p).



27

2. Let V be a vector space over R carrying an inner product.Then the inner
product is a bilinear map V × V → F.

Now, getting back to the tensor products, if we have two finite dimensional
Hilbert spaces X and Y and given that {ei}ni=1 is a basis for X and {fj}mj=1

is a basis for Y, then {ei ⊗ fj}i = 1, j = 1n,m is a basis for X ⊗ Y.
To prove this, we just need to show that {ei⊗fj}i = 1, j = 1n,m is linearly

independent since we already know that it spans the space X ⊗ Y.So, let us
consider, ∑

i,j

αi,j(ei ⊗ fj) = 0

This implies that,∑
i,j

αi,j(ei ⊗ fj)(x, y) = 0,∀x ∈ X, y ∈ Y

i.e., ∑
i,j

αi,j〈x, ei〉〈y, fj〉 = 0.

We need to show that αi,j = 0,∀i, j.Suppose this is not true.Then, choose

x ∈ X and y ∈ Y such that 〈x, ei〉 6= 0 if x ∈ (span{ej})⊥ where j 6= i and,

〈y, fi〉 6= 0 if y ∈ (span{fj})⊥ where j 6= i. Then, for this choice of x and y,∑
i,j

αi,j〈x, ei〉〈y, fj〉 6= 0

which is a contradiction.
Hence, αi,j=0. Thus, the set is linearly independent.Therefore, {ei⊗fj}i = 1, j = 1n,m

is a basis for X ⊗ Y.
So, now we can conclude that, dim(X ⊗ Y)=dim(X)dim(Y). We can give

a unique inner product to X ⊗ Y in which,

〈u⊗ Y,B〉 = B(u, v)

where B ∈ X ⊗ Y . This inner product is such that if {ei} and {fj} are
orthonormal bases for X and Y respectively then, ei ⊗ fj is an orthonormal
basis for X ⊗ Y.

Now, suppose that A ∈ Hom(X) and B ∈ Hom(Y) then, A ⊗ B ∈ Hom(X
⊗ Y) is defined as

(A⊗B)(C)(u, v) = C(A ∗ u,B ∗ v)
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where C ∈ X ⊗ Y, u ∈ X, v ∈ Y so that,

(A⊗B)(u⊗ v) = Au⊗Bv.

Now, we move further to define what is called the Tensor Product
Representation. Given W and V to be two representations of a group G
on spaces X and Y respectively, we define W ⊗ V to be a representation of
G on X ⊗ Y by,

(W ⊗ V )(x) = W (x)⊗ V (x)

known as the tensor product representation. In general, if Wα and V β are
irreps, Wα ⊗ V β is not irrep but a direct sum of irreducibles

⊕
γ∈Ĝ n

γ
αβU

(γ)

given for α, β ∈ Ĝ that is,

Wα ⊗ V β ∼=
⊕
γ∈Ĝ

nγαβU
(γ).

Here, nγαβ are called Clebsch-Gordan integers representing the noumber

of times U (γ) appears in the direct sum.
Moreover,

Dα
ij(x)Dβ

kl(x) =
∑
m,p,q

Cαβm
ij;kl;pqD

γm
pq (x)

where Dij is the matrix realization for the irreducible representations, Cαβm
ij;kl;pq

are the constants and sum is over m=1,2,...M and for each m, there is asso-
ciated some γm ∈ Ĝ and p,q=1,2,...,dγm .



Chapter 2

Orthogonality Relations

2.1 Morphisms

Definition 2.1.1. Let φ : G → GL(V ) and ψ : G → GL(W ) be repre-
sentations. A morphism from φ to ψ is a linear map T:V→ W such that
Tφg = ψgT, ∀g ∈ G.

The set of all morphisms from φ to ψ is denoted by HomG(φ, ψ) and
HomG(φ, ψ) ⊂ Hom(V,W ).

Remark 2.1.2. 1. If T ∈ HomG(φ, ψ) is invertible, then φ ≡ ψ and T is
isomorphism.

2. T : V → V belongs to HomG(φ, φ) iff Tφg = φgT,∀g ∈ G that is, T
commutes with φ(g). Therefore, in particular, I : V → V is always an
element of HomG(φ, φ).

2.2 The Orthogonality Relations

Let G be a finite group. Consider φ : G→ GLn(C) to be a representation.
Let φg=(φij(g)) where (φij(g)) ∈ C, ∀1 ≤ i, j ≤ n. That is, there exist n2

functions φij : G → C assosciated to degree n representation φ. Whenever
φ is irreducible and unitary, then functions of the form φij : G→ C form an
orthogonal basis for CG.

29
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Proposition 2.2.1. Suppose we have two representations φ : G → GL(V )
and ψ : G → GL(W ) and T : V → W is a linear transformation. Then,the
following statements hold:

(a). T#=
1

O(G)

∑
g∈G ψg−1Tφg belongs to HomG(φ, ψ).

(b). If T ∈ HomG(φ, ψ) then, T# = T .
(c). P : Hom(V,W ) → Hom(φ, ψ) defined by P (T ) = T# is an onto linear
map.

Proof. To prove statement (a), consider,

T#φh =
1

O(G)

∑
g∈G

ψg−1Tφgφh

=
1

O(G)

∑
g∈G

ψg−1Tφgh.

Suppose gh=x. Then, g−1 = hx−1.Therefore, our expression becomes,

T#φh =
1

O(G)

∑
x∈G

ψhx−1Tφx

= ψh
1

O(G)

∑
ψx−1Tφx

= ψhT
#.

Hence, T# ∈ HomG(φ, ψ).
Next, to prove (b), if T ∈ HomG(φ, ψ), then

T# =
1

O(G)

∑
g∈G

ψg−1Tφg

=
1

O(G)

∑
g∈G

ψg−1ψgT

=
1

O(G)

∑
g∈G

T =
1

O(G)
O(G)T

= T.
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Now, we prove (c),
Consider,

P : Hom(V,W )→ HomG(φ, ψ) defined as

P (c1T1 + c2T2) = (c1T1 + c2T2)#

(c1T1 + c2T2)# =
1

O(G)

∑
g∈G

ψg−1(c1T1 + c2T2)φg

= c1
1

O(G)

∑
g∈G

ψg−1T1φg + c2
1

O(G)

∑
g∈G

ψg−1T2φg

= c1T
# + c2T

#
2

= c1P (T1) + c2P (T2).

Hence, the map P is linear. Now, we know from (b) that, if T ∈ HomG(φ, ψ), T# =
P (T ) = T. Thus, it is onto .

Before moving further, let us restate the Schur’s Lemma:
Let φ and ψ be irreps of G and T ∈ HomG(φ, ψ). Then either T is invertible
or T=0.Consequently,
(a). If φ 6∼ ψ then, HomG(φ, ψ) = 0.
(b). If φ = ψ then, T = λI, where λ ∈ C.

Proposition 2.2.2. Let φ : G → GL(V ) and ψ : G → GL(W ) be irreps of
G and let T : V → W be linear. Then,
(a). If φ 6∼ ψ then, T# = 0.

(b). If φ ∼ ψ then, T# =
Trace(T )I

degφ
.

Proof. Let φ 6∼ ψ. Then, HomG(φ, ψ) = 0 by Schur’s lemma since if that
is not the case then there exists 0 6= T ∈ HomG(φ, ψ) invertible and hence
φ ∼ ψ that is a contradiction.So, T# = 0 since T# ∈ HomG(φ, ψ). Next,we
suppose φ = ψ . Then, by Schur’s lemma, T# = λI for some λ ∈ C. Now, as
T# : V → V (since,φ = ψ) we have, Trace(T#) = Trace(λI) = λTrace(I) =

λdimV = λdegφ. Hence, λ =
Trace(λI)

degφ
=
Trace(T#)

degφ
. Now, we compute

the trace.Note that,
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(We use ’Tr’ for Trace for convenience).

Tr(T#) =
1

O(G)

∑
g∈G

Tr(φg−1Tφg) =
1

O(G)

∑
g∈G

Tr(T ) =
O(G)

O(G)
Tr(T ) = Tr(T ).

Thus, λ =
Tr(T )I

degφ
. Hence proved.

Suppose we have two representations φ : G → GLn(C) and ψ : G →
GLm(C). Then, Hom(V,W ) = Mmn(C). HomG(φ, ψ) ⊆Mmn(C).And thus, P :
Hom(V,W )→ HomG(φ, ψ) defined as P (T ) = T# can be viewed as a linear
transformation P : Mmn(C) → Mmn(C) .Note that, the standard basis for
Mmn(C) is {E11, E12, ..., Emn} , where Eij is the m × n matrix with 1 at ij
position and 0 otherwise.Therefore, aij =

∑
i,j aijEij.

Lemma 2.2.3. Let A ∈Mrm(C) and B ∈Mns(C) and Eki ∈Mmn(C). Then,
(AEkiB)lj = alkbij holds, where A = (aij) and B = (bij).

Proof.

(AEkiB)lj =
∑

(alx(Eki)xybyj) = alkbij

since, all terms in the above sum are zero except when x=k, y=i.

Lemma 2.2.4. Let φ : G → Un(C) and ψ : G → Um(C) be two unitary
representations. Let A = Eki ∈Mmn(C).Then, A#

lj = 〈φij, ψkl〉.

Proof. Since, ψ is unitary, ψg−1 = ψ−1
g = ψ∗g . This implies, ψlk(g

−1) = ψkl(g).

A#
lj =

1

O(G)

∑
g∈G

(φg−1Ekiφg)lj =
1

O(G)

∑
g∈G

ψlk(g
−1)φij(g)

(by lemma done before.) Therefore,

A#
lj =

1

O(G)

∑
g∈G

ψkl(g)φij(g) = 〈φij, ψkl〉.

Hence proved.
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2.3 Schur Orthogonality Relations

Theorem 2.3.1. Let φ : G → Un(C) and ψ : G → Um(C) be inequivalent
irreducible unitary representations. Then,
(a). 〈φij, ψkl〉 = 0.

(b). 〈φij, φkl〉 =

{
1/n ; i = k, j = l
0 ; otherwise.

.

Proof. To prove first part, note that if A = Eki ∈ Mmn(C) then, A#
lj =

〈φij, ψkl〉 = 0 since representations are given to be inequivalent. (We can
conclude this using previous proposition and lemma). Now, if φ = ψ then
again by same proposition and lemma, for A = Eki ∈Mn(C) (since, m=n),

A# =
Tr(Eki)I

n

and

A#
lj = 〈φij, φkl〉

First, j 6= l, then since Ilj = 0, this gives A#
lj = 0 and hence, 〈φij, φkl〉 = 0.

Now, let i 6= k, then Eki has only zeros on diagonal. This gives Tr(Eki) = 0.
Therefore, again,0 = A#

lj = 〈φij, φkl〉. Hence, if we consider the case when
i=k and l=j then Eki has a single 1 on diagonal and all other elements as
zero.Thus, Tr(Eki) = 1 and so, 1

n
= A#

lj = 〈φij, φkl〉.
Hence, proved.

Corollary 2.3.1. For an irreducible unitary representation φ of degree d,
the d2 functions,

{
√
dφij|1 ≤ i, j ≤ d}

form an orthonormal set.

Hence, according to above theorem, the entries of inequivalent unitary
representations of G form an orthogonal set of non zero vectors in A (G), the
group algebra.Therefore, G has atmost O(G) equivalence classes of irreps
. Now, if φ(1), ...., φ(s) are a complete set of representatives of equivalence
classes of irreps of G and di = degφ(i) then, d2

1 + d2
2 + .... + d2

s functions

{
√
dkφ

(k)
ij |1 ≤ i, j ≤ dk} form an orthonormal set of vectors in A (G) and

hence, s ≤ d2
1 + ...+ d2

s ≤ O(G) since di ≥ 1,∀i.
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2.4 Characters and Class functions

Definition 2.4.1. Let φ : G → GL(V ) be a representation. The character
χφ : G → C of φ is defined as χφ(g) = Tr(φg). We call the character of
an irrep as irreducible character. Suppose we have a representation φ : G→
GLn(C) given by φg = (φij(g)) then,

χφ(g) =
n∑
i=1

φii(g).

Remark 2.4.2. For a degree one representation φ : G→ C∗, χφ = φ.

Proposition 2.4.3. Let φ be a representation of G.Then, χφ(1) = degφ.

Proof. Note that, χφ(1) = Tr(φ1) = Tr(I) = dim(V ) = degφ.

Proposition 2.4.4. Equivalent representations have same characters. In
other words, Character depends only on the equivalence class of representa-
tion.

Proof. Suppose φ and ψ are two equivalent representations. Then, there
exists an invertible map T such that, φg = TψgT

−1. Therefore,

χφ(g) = Tr(φg) = Tr(TψgT
−1) = Tr(TT−1ψg) = Tr(ψg) = χψ(g).

(Here, we used the property that Tr(AB)=Tr(BA).

Proposition 2.4.5. Let φ be a representation of G. Then, ∀g, h ∈ G,χφ(g) =
χφ(hgh−1).

Proof.

χφ(hgh−1) = Tr(φhgh−1) = Tr(φhφgφ
−1
h ) = Tr(φhφ

−1
h φg) = Tr(φg) = χφ(g).

Definition 2.4.6. A function f : G→ C is called Class Function if f(g) =
f(hgh−1)∀g, h ∈ G or more precisely, if f is constant on conjugacy classes
of G. The space of class functions is denoted by Z(A (G)) In particular,
characters are class functions.

Note 2.4.7. If f : G → C is a class function and C is the conjugacy class
then, f(C) will denote the constant value that f takes on C.
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Proposition 2.4.8. Z(A (G)) is a subspace of A (G).

Proof. Let f, g ∈ Z(A (G)). Let c1, c2 ∈ C. Then,

(c1f1 + c2f2)(hgh−1) = c1f1(hgh−1) + c2f2(hgh−1)

= c1f1(g) + c2f2(g)

= (c1f1 + c2f2)(g).

Therefore, c1f1 + c2f2 ∈ Z(A (G)) and hence, it is a subspace.

Definition 2.4.9. Cl(G) denotes the set of all conjugacy classes of G. For
C ∈ Cl(G), δC : G→ C is defined as,

δC =

{
1 ; g ∈ C
0 ; g /∈ C.

Proposition 2.4.10. B = {δC |C ∈ Cl(G)} is a basis for Z(A (G)). As a
result, dim(Z(A (G)) = |Cl(G)|.

Proof. Note that each δC is constant on conjugacy classes. Therefore, it is
a class function. First we show that B spans Z(A (G)). Let f ∈ Z(A (G)).
Then, f =

∑
C∈Cl(G) f(C)δC since, f(g) =

∑
f(C)δC(g) = f(C) if g ∈ C

and then, f(C)=f(g). Next, we show linear independence. For that, we show
orthogonality. For C,C ′ ∈ Cl(G),

1

O(G)

∑
g∈G

δC(g)δC′(g) =

{
|C|/|G| ;C = C ′

0 ;C 6= C ′

where
1

O(G)

∑
g∈G δC(g)δC′(g) = 〈δC , δC′〉. This proves the orthogonality

and hence the linear independence. Therefore, B is a basis . Moreover,
|B| = |Cl(G)|= number of conjugacy classes =dim(Z(A (G))).

Theorem 2.4.11. First Orthogonality Relations: Let φ and ψ be two
representations of a finite group G. Then,

〈χφ, χψ〉 =

{
1 ;φ ∼ ψ
0 ;φ 6∼ ψ

In other words, the irreducible characters of G form an orthonormal set of
class functions.
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Proof. Without loss of generality, assume that φ : G→ Un(C) and ψ : G→
Um(C) are unitary (since, every representation is equivalent to a unitary one.)
Now, if φ and ψ are equivalent, then, χφ = χψ. Consider, 〈χφ, χψ〉.

〈χφ, χψ〉 =
1

O(G)

∑
g∈G

χφ(g)χψ(g)

=
1

O(G)

∑
g∈G

n∑
i=1

φii(g)
m∑
j=1

ψjj(g)

=
n∑
i=1

m∑
j=1

1

O(G)

∑
g∈G

φii(g)ψjj(g)

=
n∑
i=1

m∑
j=1

〈φii(g), ψjj(g)〉.

Now, by Schur’s orthogonality Relations, 〈φii(g), ψjj(g)〉 = 0 if φ 6∼ ψ. This
implies, 〈χφ, χψ〉 = 0 if φ 6∼ ψ. If φ ∼ ψ , assume φ = ψ then, by Schur’s
Orthogonality Relation,

〈φii, ψjj〉 =

{
1/n ; i 6= j
0 ; i = j.

Therefore,

〈χφ, χφ〉 =
n∑
i=1

〈φii, φii〉

=
1

n
× n = 1.

Hence, irreducible characters form an orthonormal set of class functions.

Corollary 2.4.1. There are atmost |Cl(G)| equivalence classes of irreps of
G.

Proof. By previous theorem, we know that inequivalent irreps have distinct
characters and form an orthonormal set. Therefore, dim(Z(A (G)) = |Cl(G)|
and the orthonormal sets are linearly independent. Also, we know that, the
cardinality of an orthonormal set is less than or equal to the dimension of
the space . So there exist atmost |Cl(G)| equivalence classes of irreps of G
(if we consider equivalence relation to be conjugation).
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Notation: mV = V ⊕V....⊕V (m-times) and mφ = φ⊕....⊕φ (m-times).
Let φi denote the unitary representation of G and di denotes the respective
degrees.

Definition 2.4.12. If ψ ∼ m1φ1⊕m2φ2⊕ ....⊕msφs then, mi is the multi-
plicity of φi in ψ. If mi > 0 then, φi is irreducible constituent of ψ.

Note that, since the character depends only on the equivalence class so
multiplicity of φi will be same, no matter what the decomposition of ψ is.

Remark 2.4.13. If ψ ∼ m1φ1 ⊕m2φ2 ⊕ .... ⊕msφs then, degψ = m1d1 +
m2d2 + ...+msds.

Lemma 2.4.14. Let φ = ρ⊕ ψ then, χφ = χρ + χψ.

Proof. Proof: Let ρ : G → GLn(C) and ψ : G → GLm(C) then, φ : G →
GLn+m(C) has the block form as,

φg =

(
ρg 0
0 ψg

)
χφ(g) = Tr(φg) = Tr(ρg) + Tr(ψg) = χρ(g) + χψ(g). This shows that,

χφ = χρ + χψ.

Theorem 2.4.15. Let φ1, ..., φs be a complete set of representatives of equiv-
alence classes of irreps of G and let

ρ ∼ m1φ1 ⊕ ....⊕msφs

Then, mi = 〈χρ, χφi〉. Consequently, decomposition of ρ into irreducible
constituents is unique and ρ is determined upto equivalence by its characters.

Proof. We know that χρ = m1χφ1 + ....+msχφs . 〈χρ, χφi〉 = m1〈χφ1 , χφi〉+
....+ms〈χφs , χφi〉 = mi.
So, decomposition of ρ into irreducible constituents is unique and if repre-
sentations are equivalent then characters are same.
Hence we conclude that this theorem helps us to check whether a represen-
tation is irreducible or not.
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Corollary 2.4.2. A representation is irreducible iff 〈χρ, χρ〉 = 1.

Proof. Suppose a representation ρ is not irreducible. Then,

ρ ∼ m1φ1 ⊕ ....⊕msφs.

Note that, χρ = m1χφ1 + ....+msχφs . This implies that,

〈χρ, χρ〉 = 〈m1χφ1 + ....+msχφs ,m1χφ1 + ....+msχφs〉

= m2
1 + m2

2 + ... + m2
s, Therefore, 〈χρ, χρ〉 = 1 iff there exists j such that

mj = 1 and mi = 0 ∀ i 6= j but this is the case only when ρ is irreducible.

Example 2.4.16. Consider ρ : S3 → GL2(C) as

ρ(12) =

(
−1 −1
0 1

)
and ρ(123) =

(
−1 −1
1 0

)
then, χρ(Id) = 2 = degρ, χρ(12) = 0 , and χρ(123) = −1.

〈χρ, χρ〉 =
1

6

∑
g∈G χρ(g)χρ(g) =

1

6
(22 + 3.02 + 2.(−1)2) = 1 .

Hence this representation is irreducible.

Example 2.4.17. Characters of S3 : Trivial character : χ1 : S3 → C∗
defined as , χ1(σ) = 1 ∀ σ ∈ S3. Note that any degree one representation
is equal to its character. Since S3 has three conjugacy classes, this implies
there should exist three inequivalent irreps of S3. Therefore, by proposition
done earlier

∑
d2
i ≤ O(G) which gives 12 + d2 + 22 ≤ 6. In this expression

’2’ represents the degree two irreducible representation of S3 considered in
previous example. This shows that d=1.

So, we can define another degree one representation for S3 as,

χ2(σ) =

{
1 ;σ is even
−1 ; σ is odd.

Character Table: Rows of a character table correspond to the irre-
ducible characters and the columns of a character table correspond to con-
jugacy classes.
Standard Representation of S3 gives,

φ(12) =

0 1 0
1 0 0
0 0 1

 and φ(123) =

0 0 1
1 0 0
0 1 0


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So, for this representation , we have the following character table:

Id (1 2) (1 2 3)

χφ 3 1 0

Similarly, we can form character table for three inequivalent representations
of S3. Consider φ1 to be the trivial representation of S3. Another, consider
φ2 to be the one degree representation whose character is defined as,

χ2(σ) =

{
1 ;σ is even
−1 ; σ is odd

and lastly, consider φ3 as the two degree irreducible representation considered
in the first example. Now the character table is as follows.

Id (1 2) (1 2 3)

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

This shows that χφ = χ1 + χ3. That is, φ ∼ χ1 ⊕ χ3 .
We can also conclude the same by computing the following :

〈χφ, χ1〉 =
1

6
(3 + 3.1 + 2.0) = 1 = m1

Similarly, 〈χφ, χ2〉 =
1

6
(3 + 3.(−1) + 2.0) = 0 = m2

and also, 〈χφ, χ3〉 =
1

6
(0 + 3.0 + 2.0) = 1 = m3.

We can note that columns of character table are pairwise orthogonal as can
be seen in the table drawn above.

2.5 The Regular Representation

Another way of looking at the Regular Representation is the following: We
know that by Cayley’s theorem, every finite group G is isomorphic to some
subgroup of Sn where n is the order of the group G. Hence, we can restrict
the standard representation of Sn that is, φ : G→ GLn(C) to G and get the
representation called the Regular Representation. Suppose we have a finite
set X. Then,

CX = {
∑
x∈X

cxx | cx ∈ C}



40 2.5. The Regular Representation

is the vector space generated with basis X. Note that,
∑

x∈X axx =
∑

x∈X bxx
iff ax = bx∀x ∈ X. Addition here is defined as,∑

axx+
∑

bxx =
∑
x∈X

(ax + bx)x.

Scalar multiplication is defined as,∑
αaxx = α

∑
axx.

The inner product is defined as,〈∑
x∈X

axx,
∑
x∈X

bxx

〉
=
∑
x∈X

axbx.

Definition 2.5.1. Let G be a finite group. The Regular Representation of G
is a homomorphism L : G→ GL(CG) defined by

Lg
∑
h∈G

chh =
∑
h∈G

chgh =
∑
x∈G

cg−1xx

for g ∈ G. ( By using change of variable, letting gh=x) Lg is a linear operator
acting on a linear combination of basis vectors given the action on basis.

Remark 2.5.2. The Regular Representation is never irreducible when G is
non trivial but contains all irreps of G as constituents.

Proposition 2.5.3. The Regular Representation is Unitary Representation
of G.

Proof. Since Lg is linear so for g1, g2 ∈ G, h ∈ G is a basis element of C(G).
Hence,

(Lg1Lg2)(h) = Lg1(g2h) = g1g2h = Lg1g2h

So, L is a homomorphism.

Now, 〈
Lg
∑

chh, Lg
∑

khh
〉

=
〈∑

cg−1xx,
∑

kg−1xx
〉

=
∑

cg−1xkg−1x.

Let y = g−1x , we get the expression equal to
∑

y∈G cyky that is further equal
to 〈
∑
cyy,

∑
kyy〉. This shows that Lg is unitary and hence is invertible since

L−1
g = L∗g.
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Proposition 2.5.4. The character of Regular Representation is:

χL(g) =

{
|G| ; g = 1
0 ; g 6= 1.

Proof. Let G = g1, g2, ..., g be a basis for C(G) then, Lggj = ggj where [Lg]
is the matrix with respect to g.
We see that

[Lg]ij =

{
1 ; gi = ggj
0 ; otherwise

=

{
1 ; g = gig

−1
j

0 ; otherwise

In particular,

[Lg]ii =

{
1 ; g = 1
0 ; otherwise

Therefore,

χL(g) = Tr(Lg) =

{
|G| ; g = 1
0 ; g 6= 1

Hence proved.

Theorem 2.5.5. Let L be a regular representation of G. Then, the following
decomposition holds:

L ∼ d1φ1 ⊕ d2φ2 ⊕ ...⊕ dsφs.

Proof. We know that, ψ ∼ m1φ1⊕m2φ2⊕ ....⊕msφs, where mi = 〈χψ, χφi〉.
Here, ψ = L. So,

〈χL, χφi〉 =
1

O(G)

∑
g∈G

χL(g)χi(g)

=
1

O(G)
O(G)× χi(1)

= 1× degφi
= di.

Therefore,
L ∼ d1φ1 ⊕ ...⊕ dsφs.
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Corollary 2.5.1. The formula O(G) = d2
1 + d2

2 + ...+ d2
s holds.

Proof. Since by previous theorem,

L ∼ d1φ1 ⊕ ...⊕ dsφs

This implies that

χL = d1χ1 + ...+ dsχs

and hence,

χL = d1χ1(1) + ...+ dsχs(1) = d2
1 + ...+ d2

s

and we know that χL(1) = O(G) and hence the result.

Theorem 2.5.6. The set B = {
√
dk}φij(k)|1 ≤ k ≤ s, 1 ≤ i, j ≤ dk} is an

orthonormal basis for A (G).

Proof. We know that B is an orthonormal set by Schur’s Orthogonality Re-
lations.
Now, since |B| = d2

1 + ...+ d2
s = |G| = dim(A (G)) as {

√
dφij|1 ≤ i, j ≤ d} is

the set of d2 functions.Hence, this shows that B is an orthonormal basis for
A (G).

Theorem 2.5.7. The set {χ1, χ2, ...., χs} is an orthonormal basis for Z(A (G)).

Proof. We know that the irreducible characters form an orthonormal set of
class functions. Now we need to show that this set forms a basis that is, it
spans Z(A (G)).
Let f ∈ Z(A (G)) . Now , f can be written as

f =
∑
i,j,k

c
(k)
ij φij(k)

for some c
(k)
ij ∈ C ; 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk. Since f is a class function, for
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any x ∈ G , we have

f(x) =
1

O(G)

∑
g∈G

f(g−1xg)

=
1

O(G)

∑
g∈G

∑
i,j,k

c
(k)
ij φ

(k)
ij (g−1xg)

=
∑
i,j,k

ckij

[
1

O(G)

∑
g∈G

φ
(k)

g−1φ
(k)
x φ(k)

g

]
ij

=
∑
i,j,k

c
(k)
ij

[
(φ(k)

x )#

]
ij

=
∑
i,j,k

c
(k)
ij

Tr(φ
(k)
x )

degφ(k)
Iij

=
∑
i,k

c
(k)
ii

1

dk
χk(x).

Therefore, f =
∑

i,k c
(k)
ii

1

dk
χk. This implies, f ∈ span{χ1, ..., χs} and {χ1, ..., χs}

is an orthonormal set. Hence, {χ1, ..., χs} is an orthonormal basis for Z(A (G)).

Corollary 2.5.2. Number of equivalence classes of irreps of G is equal to
the number of conjugacy classes of G.

Proof. Using above theorem, s = dim(Z(A (G))) = |Cl(G)|.

Theorem 2.5.8. A finite group G is abelian iff it has |G| quivalence classes.of
irreps of G.

Proof. A finite group G is abelian iff |G| = |Cl(G)| = number of equivalence
classes of irreps of G.

Example 2.5.9. Irreducible Representations of
Z
nZ

Let ωn = exp 2πi/n. Define χk :
Z
nZ
→ C∗ by,

χk([m]) = ωkmn ; 0 ≤ k ≤ n− 1
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Then, χ0, ..., χn−1 are distinct irreps of
Z
nZ

.

Following is the character table of
Z
nZ

:

[0] [1] [2] [3]

χ1 1 1 1 1
χ2 1 -1 1 -1
χ3 1 i -1 i
χ4 1 -i -1 i

Theorem 2.5.10. Second Orthogonality Relations
Let C , C’ be the conjugacy classes of G and let g ∈ C, h ∈ C ′ then,

s∑
i=1

χi(g)χi(h) =

{
|G|/|C| ;C = C ′

0 ;C 6= C ′

Consequently, columns of character table are orthogonal and hence character
table is invertible.

Proof. Consider δC′ .

δC′(g) =
s∑
i=1

〈δC′ , χi〉χi(g)

=
s∑
i=1

1

O(G)

∑
x∈G

δC′(x)χi(x)χi(g)

=
s∑
i=1

1

O(G)

∑
x∈C′

χi(x)χi(g)

=
|C|
|G|

s∑
i=1

χi(g)χi(h)

(Note that LHS = 1 if g ∈ C ′). So,

s∑
i=1

χi(g)χi(h) =

{
|G|/|C| ;C = C ′

0 ;C 6= C ′
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Therefore, columns of Character table form an orthogonsl set of non zero
vectors and hence are linearly independent. So, Character table is invertible.

2.6 Representation of Finite Abelian Groups

Proposition 2.6.1. Let G1, G2 be abelian groups and suppose ρ1, ...., ρm and
φ1, ..., φn be irreps of G1 and G2 respectively. Let m=|G1| and n=|G2|. Then,
αij : G1 ×G2 → C∗ ; 1 ≤ i ≤ m and 1 ≤ j ≤ n is given by:

αij(g1g2) = ρi(g1)φj(g2)

form complete set of irreps of G1 ×G2 .

Proof. First, we need to check that αij are homomorphisms.

αij(g1, g2)αij(g
′
1, g
′
2) = ρi(g1)φj(g2)ρi(g

′
1)φj(g

′
2)

= ρi(g1g
′
1)φj(g2g

′
2)

= αij(g1g
′
1, g2g

′
2)

= αij((g1, g2)(g′1, g
′
2)).

Next, we check if αij = αkl then i=k and j=l.
Let αij = αkl. Then,

ρi(g) = αij(g, 1) = αkl(g, 1) = ρk(g).

This shows that i=k. Similarly, j=l.
Now, since, G1 × G2 has |G1 × G2| = mn distinct irreps. Therefore, αij are
all of them, where,1 ≤ i ≤ m and 1 ≤ j ≤ n.

Example 2.6.2. Character table of Klein’s Four group K4
∼= Z2×Z2

Character table of Z/2Z:

[0] [1]

χ1 1 1
χ2 1 -1

.
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Now, character table of Z/2Z× Z/2Z using above proposition is :

([0],[0]) ([0],[1]) ([1],[0]) ([1],[1])

α11 1 1 1 1
α12 1 -1 1 -1
α21 1 1 -1 -1
α22 1 -1 -1 1

.



Chapter 3

Fourier Analysis on Groups

3.1 Fourier Analysis on Finite Groups

Definition 3.1.1. A function f : Z→ C is said to be periodic with period n
if f(x)=f(x+n) ∀x ∈ Z.

From the above definition, we can conclude that these functions are in
one-one correspondence with the elements of A (Z/nZ) that is, the functions
f : Z/nZ → C. In other words, these functions are constant o the residue
classes modulo n. Now, as we know from previous chapter that the irreducible
charactersform basis for A (Z/nZ) that is, if f is a function in A (Z/nZ) then,

f = 〈f, χ0〉χ0 + ...+ 〈f, χn−1〉χn−1

where χk([m]) = e2πikm/n.

Definition 3.1.2. Fourier Transform: Let f : Z/nZ → C. Then, the
fourier transform of f is defined by,

f̂ : Z/nZ→ C

as

f̂([m]) = n〈f, χm〉 =
n−1∑
k=0

f([k])e−2πikm/n.

Proposition 3.1.3. The fourier transform is invertible. In simple words,

f =
1

n

n−1∑
k=0

f̂([k])χk.

47
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Proposition 3.1.4. The class functions form the center of A (G).

Proof. First, Let f : G→ C be a class function. Then to show that,

a ∗ f = f ∗ a ∀ a ∈ A (G).

Let a ∈ A (G). Then,

a ∗ f(x) =
∑
y∈G

a(xy−1)f(y) =
∑
y∈G

a(xy−1)f(xyx−1)

since f is a class function. Now, let xy−1 = z. This implies that,

a ∗ f(x) =
∑
z∈G

a(z)f(xz−1) =
∑

f(xz−1)a(z) = f ∗ a(x).

Therefore, a*f = f*a .Now we show the converse part. That is, let f ∈
Z(A (G)) . Then, to show that f is a class function. So, the claim is to prove

f(gh) = f(hg) ∀ g, h ∈ G.

Now

f(gh) =
∑
y∈G

f(gy−1)δh−1(y)

= f ∗ δh−1(g)

= δh−1 ∗ f(g)

=
∑
y∈G

δh−1(gy−1)f(y)

= f(hg)

since, δh−1(gy−1) is non zero iff gy−1 = h−1 that is, y=hg. Now, by claim we
have, f(ghg−1) = f(h) . Hence f is a class function.

3.2 Fourier Analysis o finite abelian groups

Note that if G is abelian then, A (G) = Z(A (G)). That is, A (G) is a
commutative ring.
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Definition 3.2.1. Let G be a finite abelian group. Then, Ĝ is the set of all
irreducible characters χ : G→ C∗ known as the dual group.

Proposition 3.2.2. Let G be a finite abelian group. We define product onĜ
via pointwise multiplication that is, (χ.θ) = χ(g)θ(g). Then, Ĝ is an abelian
group of order |G| with respect to this binary operation.

Proof. Let χ, θ ∈ Ĝ. Then,

χ.θ(g1g2) = χ(g1g2)θ(g1g2)

= χ(g1)χ(g2)θ(g1)θ(g2)

= χ(g1)θ(g1)χ(g2)θ(g2)

= (χ.θ)(g1).(χ.θ)(g2).

This shows that Ĝ is closed under pointwise product. Trivially, this product
is associative and commutative. Identity is, χ1(g) = 1∀g ∈ G. Inverse is,
χ−1(g) = χ(g)−1 = χ(g) since χ is unitary. Trivially, χ.χ−1 = χ1. And hence,
Ĝ is an abelian group. The number of irreducible characters of G is equal to
|G| where G is abelian. Therefore, |Ĝ| = |G|.

Example 3.2.3. Let G = Z/nZ and Ĝ = {χ0, ..., χn−1}. Let χk([m]) =
e2πikm/n. Then, [k]→ χk is a group isomorphism from G→ Ĝ. So, G ∼= Ĝ.

Definition 3.2.4. Fouier Transform: Let f : G→ C be a complex valued
function on a finite abelian group G. Then, the fourier transform f̂ : G→ C
is defined by

f̂(x) = |G|〈f, χ〉 =
∑
g∈G

f(g)χ(g)

where, |G|〈f, χ〉 are the complex numbers called the fourier coefficients of f.

Example 3.2.5. If χ, θ ∈ Ĝ then,

χ̂(θ) = |G|〈χ, θ〉 =

{
|G| ;χ = θ
0 ; otherwise

by orthogonality relations and so, χ̂ = |G|δχ.

Theorem 3.2.6. If f ∈ A (G) then,

f =
1

O(G)

∑
x∈Ĝ

f̂(χ)χ.
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Proof.

f =
∑
x∈Ĝ

〈f, χ〉χ =
1

O(G)

∑
x∈Ĝ

|G|〈f, χ〉χ =
1

O(G)

∑
f̂(χ)χ.

Hence proved.

Proposition 3.2.7. The map T : A (G) → A (Ĝ) given as Tf = f̂ is
invertible linear transformation.

Proof. Let |G| = n. T (c1f1 + c2f2) = ˆc1f1 + c2f2. Now, consider

ˆc1f1 + c2f2(χ) = n〈c1f1 + c2f2, χ〉
= c1n〈f1, χ〉+ c2n〈f2, χ〉
= c1f̂1(χ) + c2f̂2(χ).

This shows that ˆc1f1 + c2f2 = c1f̂! + c2f̂2. Hnece, T is linear. By pre-
vious theorem, T is injective and thus invertible since dim(A (G) = n =
dim(A (Ĝ)).

Theorem 3.2.8. The Fourier Transform satisfies ˆa ∗ b = â∗b̂. Consequently,
kinear map T : A (G)→ A (Ĝ) given by Tf = f̂ provides a ring isomorphism
between (A (G),+, ∗) and (A (Ĝ),+, .).

Proof. We know by previous theorem that T : A (G) → A (Ĝ) is an iso-
morphism of vector spaces. Therefore, it suffices to show that it is a ring
homomorphism. That is, we need to show that, T (a ∗ b) = Ta.Tb. In other
words, we need to show,

ˆa ∗ b = â.b̂.

Let n be the order of G. Consider,

ˆa ∗ b(χ) = n〈a ∗ b, χ〉

= n
1

n

∑
x∈G

(a ∗ b)(x)χ(x)

=
∑
x∈G

χ(x)
∑
y∈G

a(xy−1)b(y)

=
∑
y∈G

b(y)
∑
x∈G

a(xy−1)χ(x).
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Let z = xy−1. Therefore, the expression is now equal to∑
y∈G

b(y)
∑
z∈G

a(z)χ(zy) =
∑
y∈G

b(y)χ(y)
∑
y∈G

b(y)χ(y)

= n〈a, χ〉.n〈b, χ〉
= â.b̂.

Hence proved.

Example 3.2.9. The periodic functions on Z : Let f, g : Z→ C have period
n. Their convolution is defined as,

(f ∗ g)(m) =
n−1∑
k=0

f(m− k)g(k).

The fourier transform is then,

f̂(m) =
n−1∑
k=0

f(k)e−2πikm/n.

Hence, following is the fourier inversion theorem.

f(m) =
1

n

n−1∑
k=0

f̂(k)e2πikm/n.

Now, we have a look at abelian case in a different way.
Suppose G is a finite abelian group with irreducible caracters χ1, χ2, ..., χn.
Then, to each function f : G → C , we associate its vector of fourier coeffi-
cients.
Define T : A (G)→ Cn by

Tf = (n〈f, χ1〉, n〈f, χ2〉, ...., n〈f, χn〉)

= (f̂(χ1), f̂(χ2), ..., f̂(χn)).

This shows that T is injective by fourier inversion theorem because we can
ecover f̂ and hence f from Tf. Also, T is linear and this implies that, T is a
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vector space isomorphism since dim(A (G)) = n.
In fact, T is a ring isomorphism since

T (a ∗ b) = ( ˆa ∗ b(χ1), ..., ˆa ∗ b(χn)) = (â(χ1)b̂(χ1), ..., â(χn)b̂(χn))

= (â(χ1), ..., â(χn))(b̂(χ1), ..., b̂(χn)) = Ta.Tb .

Earlier we saw that ˆa ∗ b = â.b̂. Hence, we can conclude that, If G is a finite
abelian group of order n. Then,

A (G) ∼= Cn

where Cn has structure of direct product of rings where multiplication is
coordinate wise. So, for non abelian groups we must replace C by matrix
rings over C.

Definition 3.2.10. Define the map

T : A (G)→Md1(C)× ....×Mds(C)

by
Tf = (f̂(φ1), ..., f̂(φs))

where
f̂(φk)ij = n〈f, φ(k)

ij 〉 =
∑
g∈G

f(g)φkij(g).

Here Tf is called the fourier transform of f. Therefore, f̂(φk) =
∑

g∈G f(g)φkg .

Theorem 3.2.11. Fourier Inversion: Let f : G→ C be a complex valued
function on G. Then,

f =
1

n

∑
i,j,k

dkf̂(φk)ijφ
k
ij

where n is the order of G.

Proof. Since {
√
dkφ

k
ij} is an orthonormal basis for A (G) and f ∈ A (G) .

Therefore,

f =
∑
i,j,k

〈f,
√
dkφ

k
ij〉
√
dkφ

k
ij

=
1

n

∑
i,j,k

dkn〈f, φkij〉φkij

=
1

n

∑
i,j,k

dkf̂(φk)ijφ
k
ij.
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Proposition 3.2.12. The map T : A (G) → Md1(C) × .... ×Mds(C) is a
vector space isomorphism.

Proof. First we show that T is linear. That means we need to show that
T (c1f1 + c2f2) = ˆc1f1 + c2f2, that is , to show ˆc1f1 + c2f2(φk) = c1f̂1(φk) +
c2f̂2(φk). Now, for 1 ≤ k ≤ s,

ˆc1f1 + c2f2(φk) =
∑
g∈G

(c1f1 + c2f2)(g)φ
(
gk)

= c1

∑
g∈G

f1(g)φkg + c2

∑
g∈G

f2(g)φkg

= c1f̂1(φk) + c2f̂2(φk).

By fourier inversion theorem, T is injective since

dim(A (G)) = |G| = d2
1 + ...+ d2

s = dim(Md1(C)× ...×Mds(C)).

Therefore, T is isomorphism.

Theorem 3.2.13. Wedderburn theorem The Fourier transform

T : A (G)→Md1(C)× ....×Mds(C)

is an isomorphism of rings.

Proof. We know that T is an isomorphism of vector spaces. So, to show ring
isomorphism we just need to show:

T (a ∗ b) = Ta.Tb

That is, we need to show,

ˆa ∗ b(φk) = â(φk).b̂(φk)for1 ≤ k ≤ s

Consider,

ˆa ∗ b(φk) =
∑
x∈G

(a ∗ b)(x)φkx

=
∑
x∈G

φkx
∑
y∈G

a(xy−1)b(y)

=
∑
y∈G

b(y)
∑
x∈G

a(xy−1)φkx.
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Let z = xy−1 ⇒ x = zy. Therefore,

ˆa ∗ b(φk) =
∑
y∈G

b(y)
∑
z∈G

a(z)φkzy

=
∑
y∈G

b(y)
∑
z∈G

a(z)φkz .φ
k
y

=
∑
z∈G

a(z)φkz
∑
y∈G

b(y)φky

= â(φk).b̂(φk).

Hence it is a ring isomorphism.

Example 3.2.14. Representation theory of Sn can be used to analyse voting.
Here is an example of Diaconis. Suppose in an election, each voter needs to
rank n candidates on a ballot. Let the candidates be {1, 2, ..., n}. Then to each
ballot, we correspond a permutation σ ∈ Sn. For example for n=3, let the
ballot ranks the candidates in 3 1 2 order then the corresponding permutation
is

σ =

(
1 2 3
3 1 2

)
then election corresponds to the function f : Sn → N where f(σ) is the
number of people whose ballot corresponds to the permutation σ.



Chapter 4

Burnside’s theorem

4.1 Number Theory

Definition 4.1.1. Algebraic number: A complex number ’k’ is called al-
gebraic number if it is a root of a polynomial with integer coefficients. The
numbers that are not algebraic are called transcendental.

Example 4.1.2. Consider the polynomial 2z-1. We see that, 1/2 is a root
of this polynomial. So, 1/2 is algebraic number. Similarly, consider z2 to be
another polynomial . Note that

√
2 is a root of this polynomial and hence

is algebraic. On the other hand , π and e are transcendental numbers since
they are not the roots of any polynomial with integer coefficients.

Definition 4.1.3. Algebraic integer: A complex number ’c’ is called an
algebraic integer if it is a root of a monic polynomial with integer coefficients.
In other words, c is an algebraic integer if there exists a polynomial

p(z) = zn + an−1z
n−1 + ...+ a0

where a0, a2, ...., an−1 ∈ Z and p(c)=0.

Example 4.1.4. Following the above definition, we can say that any nth root
of unity is an algebraic integer. Consider the polynomial p(z) = zn − α then
nth root of α is an algebraic integer. Also, the characteristic polynomial of
any square matrix A is a monic polynomial. Hence, each eigen value of the
matrix A is an algebraic integer.

Proposition 4.1.5. A rational number is an algebraic integer iff it is an
integer.

55
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Proof. Let r be a rational number. Then, r=p/q where p, q ∈ Z , q¿0,
gcd(p,q)=1. Let r is an algebraic integer. Then, it is root of a polynomial
with integer coefficients say

zk +k−1 z
l−1 + ....+ a0.

Then,
0 = (p/q)k + ak−1(p/q)k−1 + ...+ a0.

This implies,
0 = pk + nak−1p

k−1 + ....+ a0q
k

or,
mk = −n(ak−1m

k−1 + ....+ a0q
k−1).

So, q|pk. Now, as gcd(p,q)=1. This shows that n has to be 1 or -1.Therefore,
r = p ∈ Z.

Lemma 4.1.6. An element y ∈ C is an algebraic integer iff there exists
y1, y2, ..., yt ∈ C not all zero such that

yyi =
t∑

j=1

aijyj

where aij ∈ Z ∀ 1 ≤ i ≤ t.

Proof. To prove the forward part, first let y be an algebraic integer. Then,
there exists a polynomial p(z) = zn + an−1z

n−1 + ...+ a0 such that y is root
of p(z). Let yi = yi−1 for 1 ≤ i ≤ n. Then, for 1 ≤ i ≤ n− 2 , we have,

yyi = yyi−1 = yi = yi+1

and
yyn = yn+1 = yn = −a0 − ...− an−1y

n−1.

Hence, the forwars part is satisfied. Next, we prove the converse. Let A =
(aij) and Y = [y1, y2, ..., yt]

′ ∈ Ct then, [AY ]i =
∑t

j=1 aijyj = yyi = y[Y ]i.
This implies that AY=yY since Y 6= 0 (by assumption). Hence, y is an eigen
value of t× t integer matrix A. Hence, y is an algebraic integer.

Corollary 4.1.1. The set A of algebraic integers form a subring of C. In
particular, sum and product of algebraic integers is algebraic.
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Proof. Note that if a ∈ A then, −a ∈ A. Let x, x′ ∈ A. We choose
x1, x2, ...xt ∈ Ct (not all zero) and x′1, ..., x

′
t ∈ Ct (not all zero) such that

xxi =
t∑

j=1

aijxj, x
′x′k =

s∑
j=1

bkjy
′
j

then,

(x+ x′)xix
′
k = xxix

′
k + x′x′kxi =

t∑
j=1

aijxjx
′
k +

s∑
j=1

bkjx
′
jxi

which is an integral linear combination of xjx
′
l. This shows that x+ x′ ∈ A

Similarly, xx′xix
′
k = xxix

′x′k is integral combination of xjxl’. So, xx′ ∈ A.
Therefore, A is a sunbring of C.

Note 4.1.7. If k is an algebraic integer then k is also an algebraic integer.

4.2 The Dimension Theorem

Corollary 4.2.1. Let χ be a character of finite group G. Then, χ(g) is an
algebraic integer ∀ g ∈ G.

Proof. Proof: Let φ : G→ GLm(C) be a representation with character χ. Let
n be order of G. Then, gn = 1. This implies φng = I. Now φg is digonalizable
since every representation is equivalent to a unitary representation and φg
has eigen values λ1, λ2, ..., λm which are nth roots of unity. So, eigen values
of φg are algebraic integers. Now, χg = Tr(φg) = λ1 + ...+ λm and set of all
algebraic integers form a ring. Therefore, χg is an algebraic integer.Hence,
we can conclude that χφ(g) is a sum of m nth roots of unity.

Theorem 4.2.1. Let φ be an irrep of finite group G of degree d. Let g ∈ G
and let s be the size of conjugacy class of g. Then, sχφ(g)/d is an algebraic
integer.

Proof. Let C1, C2, ..., Cn be the conjugacy classes of G. Let si = |Ci| and let
χi denote χφ on Ci. We need to show that siχi/d is an algebraic integer for
all i. For that, we consider the operator

Ti =
∑
x∈Ci

φx.
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Our first claim is, Ti =
si
d
χi.I.

The proof of this claim goes as follows. We make use of schur’s lemma to
prove this claim. First, consider φgTiφg−1 .

φgTiφg−1 =
∑
x∈Ci

φgφxφg−1

=
∑
x∈Ci

φgxg−1

=
∑
y∈Ci

φy

= Ti

since Ci is conjugacy class of G. Now, by Schur’s lemma, Ti = λI for some
λ ∈ C. Now,

Tr(λI) = Tr(Ti) =
∑
x∈Ci

Tr(φx) =
∑
x∈Ci

χφ(x) = |Ci|χi = siχi.

Also, we know that, Tr(λI) = dλ. So, we get λ = siχi/d. Hence, the claim.
Our next claim is to show

TiTj =
n∑
k=1

aijkTk for some aijk ∈ Z.

Proof goes as follows:

TiTj =
∑
x∈Ci

φx
∑
y∈Cj

φy =
∑

x∈Ci,y∈Cj

φxy =
∑
g∈G

aijgφg

where aijg ∈ Z is the number of ways to write g=xy with x ∈ Ci and y ∈ Cj.
Now, the subclaim is to show that aijg depends only on conjugacy class of g.
So, to prove subclaim, we start by considering Xg = {(x, y) ∈ Ci × Cj|xy =
g}. From this, we can conclude that aijg = |Xg|. Let g’ be conjugate to g
then we show that number of ways to write g=xy is same as number of ways
of writing g’=xy with x ∈ Ci and y ∈ Cj that is, we show, |Xg| = |Xg′ |. Let
g′ = kgk−1 since, g’ is conjugate to g. Now define the bijection ψ : Xg →
Xg′ by ψ(x, y) = (kxk−1, kyk−1) where kxk−1 ∈ Ci and kyk−1 ∈ Cj and
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kxk−1kyk−1 = kxyk−1 = kgk−1 = g′ that is, (kxk−1, kyk−1) ∈ Xg′ . This
implies that, ψ(x, y) ∈ Xg′ . Hence, ψ has inverse ρ : Xg′ → Xg given by

ρ(x′, y′) = (k−1x′k, k−1y′k)

and hence ψ is a bijection and so, |Xg| = |Xg′|. Therefore, the subclaim is
proved. Now getting back to proof of second claim, let aijk be value of aijg
with g ∈ Ck then,

∑
g∈G

aijgφg =
n∑
k=1

∑
g∈Ck

aijgφg

=
n∑
k=1

aijk
∑
g∈Ck

φg

=
n∑
k=1

aijkTk.

So, the second claim is done. Now, as TiTj =
∑
aijkTk. This implies,

(
si
d
χi)(

si
d
χj) =

n∑
k=1

aijk(
sk
d
χk).

So, siχi/d is an algebraic integer by the equivalent condition for a complex
number to be an algebraic integer stated in the lemma done before.

Theorem 4.2.2. The Dimension Theorem: Let φ be an irrep of G of
degree d. Then, d|O(G).

Proof. By first Orthogonality Relations,

1 = 〈χφ, χφ〉 =
1

O(G)

∑
x∈G

χφ(x)χφ(x).

This implies that,
O(G)

d
=
∑
x∈G

χφ(x)χφ(x)

d
.

Now let C1, C2, ..., Cn be conjugacy classes of G and let χi denote value of
χφ on Ci. Let si = |Ci|.
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|G|
d

=
n∑
i=1

∑
g∈Ci

χφ(g)

d
χφ(g)

=
n∑
i=1

∑
g∈Ci

(
1

d
χi)χi

=
n∑
i=1

(
si
d
χi)χi.

But by previous theorem, we know that siχi/d is an algebraic integer. And
also, χi is an algebraic integer. Now since, algebraic integer forms ring, this
shows that |G|/d is algebraic integer. Thus, it is an integer. So, d|O(G).
Hence proved.

Corollary 4.2.2. Let p be prime and let G be a group of order p2. Then, G
is abelian.

Proof. Let d1, d2, ...dn be degrees of irreps of G. Then, di can be 1, p or p2.
Since trivial representation has degree 1 and

p2 = |G| = d2
1 + ...+ d2

n.

This implies that di = 1 ∀ i. Hence, G is abelian.

Definition 4.2.3. Let G be a group. Let G’ be the commutator subgroup
of G. Then, G’ is generated by all elements of the form g−1h−1gh where
g, h ∈ G. The commutator subgroup of G is a normal suvgroup and G/G’
is abelian and if N ia some other normal subgroup of G such that G/N is
abelian then, G′ ⊆ N .

Lemma 4.2.4. Let G be a finite group. Then, the number of degree one
representations of G divides |G|. More precisely, if G’ is the commutator
subgroup of G, there is a bijection between the degree one representations of
G and the irreps of abelian group G/G’. Hence, G has |G/G′| = [G : G′]
degree one representations.

Proof. Proof: Consider the canonical projection π : G → G/G′ defined by
π(g) = gG′. If ψ : G/G′ → C∗ is an irreducible representation then, ψπ :
G → C∗ is a degree one representation. We need to show that every degree
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one representation is of this form. Let ρ : G→ C∗ be degree one representa-
tion. Then, Imρ ∼= G/Kerρ is abelian. Therefore, G′ ⊆ Kerρ. We define ψ :
G/G′ → C∗ by ψ(gG′) = ρ(g). If we take gG’=hG’ then, h−1g ∈ G′ ⊆ Kerρ
and so, ρ(h−1g) = 1. Thus, ρ(h) = ρ(g). This implies ψ(gG′) = ψ(hG′).
So, this map is well defined. Next, we show map to be homomorphism as
follows. ψ(gG′hG′) = ψ(ghG′) = ρ(gh) = ρ(g)ρ(h) = ψ(gG′)ψ(hG′). Hence,
map is homomorphism. Now, note that ρ(g) = ψπ(g) = ψ(gG′) ∀ g ∈ G..
This shows ρ = ψπ. So, there exists bijection between degree one representa-
tions of G and irreps of abelian group G/G’. Now, irreducible representations
of abelian group G/G’ = |G/G′| = |G|/|G′| = degree one representations.
Hence, proved.

Corollary 4.2.3. Let p and q be primes with p < q and p - q − 1 (or
q 6≡ 1modp). Then, any group G of order pq is abelian.

Proof. Let d1, d2, ..., ds be degrees of irreps of G. Since, di|O(G) and p < q
and pq = |G| = d2

1 + .... + ds2. This implies, di = 1 or p ∀ i. Let n be the
number of degree p representations of G and let m be the number of degree
one representations of G. Then, pq = m + np2 . Now, since by previous
lemma, number of degree one representations of G divides oreder of G. So,
m|O(G). Since, there always exists a trivial representation therefore, m ≥ 1.
Now note that, p|pq that is, p|m+np2 ⇒ m+np2 = kp or m = kp−np2 that
is, m = p(k − np) . Hence, p|m. This shows that m=p or m=pq. Note that
m 6= q since, p - q. If m=p, pq = p + np2 = p(1 + np2) that is, q = 1 + np.
This means, p|q − 1 which is a contradiction. Therefore, m=pq. Hence, all
irreducible representations of G have degree one. So, G is abelian.

4.3 The Burnside’s Theorem

Recall that if we have a group of order n and a representation φ : G →
GLd(C) . Then, χφ(g) is sum of d nth roots of unity.

Lemma 4.3.1. Let λ1, λ2, ..., λd be nth roots of unity. Then,

|λ1 + ...+ λd| ≤ d

and equality holds iff all λi’s are equal.
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Proof. Let v,w be two vectors in R2. Then,

‖v + w‖2 = ‖v‖2 + 2〈v, w〉+ ‖w‖2 = ‖v‖2 + 2‖v‖2‖w‖2cosθ + ‖w‖2

where θ is the angle between v and w. Now cosθ = 1 iff θ = 0. That
is,‖v + w‖ ≤ ‖v‖ + ‖w‖ and ‖v + w‖ = ‖v‖ + ‖w‖ iff v = λw or w = λv
for some λ ≥ 0 ( since, cosθ = 1 iff theta = 0 that is, v and w are scalar
multiples of each other). Therefore, by induction,

‖v1 + v2 + ...+ vn‖ ≤ ‖v1‖+ ...+ ‖vn‖

and holds equality iff vi are non negative scalar multiples of a common vector.
If we identify cmplex numbers with vectors in R2 then, we have,

|λ1 + ....+ λd| ≤ |λ1|+ ...+ |λd|

with equality iff λi are non negative scalar multiples of some complex number
z. But |λ1| = .... = |λd| = 1 . This shows that λ1 = λ2 = ... = λd and
|λ1 + ....+ λd| ≤ d.

Let ωn = e2πi/n. Then, Q[ωn] denotes smallest subfield F of C containing
ωn.

Lemma 4.3.2. The field Q[ωn] has dimension φ(n) as a Q-vector space.

Notation: Let Γ = Gal(Q[ωn] : Q) be the Galois group of Q[ωn] over
Q. That is, Γ is the group of all field automorphisms σ : Q[ωn] → Q[ωn]
where Q[ωn] = {f(ωn)|f(x) ∈ Q[x]} such that σ(r) = r ∀ r ∈ Q. Note that
|Γ| = φ(n) since, dimQ[ωn] = φ(n) as a Q-vector space.

Fact: If p(z) is a polynomial with rational coefficients then, Γ permutes
the roots of p in Q[ωn].

Lemma 4.3.3. Let p(z) be a polynomial with rational coefficients and sup-
pose that α ∈ Q[ωn] is a root of p. Then, σ(α) is also root of p ∀ σ ∈ Γ.

Proof. Proof: Consider the polynomial p(z) = akz
k +ak−1z

k−1 + ...+a0 with
ai ∈ Q. Then,

p(σ(α)) = akσ(α)k + ak−1σ(α)k−1 + ....+ a0

= σ(akα
k + ak−1α

k−1 + ...+ a0)

= σ(0)

= 0 since,σ(ai)

= ai ∀ i.
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Corollary 4.3.1. Let α be an nth root of unity. Then, σ(α) is also an nth
root of unity ∀ σ ∈ Γ.

Remark 4.3.4. Γ is isomorphic to Z/nZ∗.

Corollary 4.3.2. Let α ∈ Q[ωn] be an algebraic integer and suppose that
σ ∈ Γ. Then, σ(α) is an algebraic integer.

Proof. Let α be the root of monic polynomial p with integer coefficients.
Then, so is σ(α) by previous lemma.

Theorem 4.3.5. Let α ∈ Q[ωn]. Then, σ(α) = α ∀ α ∈ Γ if and only if
α ∈ Q.

Corollary 4.3.3. Let α ∈ Q[ωn]. Then,
∏

σ∈Γ σ(α) ∈ Q.

Proof: Let τ ∈ Γ, Then,

τ

(∏
σ∈Γ

σ(α)

)
=
∏
σ∈Γ

(τσ(α)) =
∏
ρ∈Γ

ρ(α)

where ρ = τσ. Now, by previous theorem,
∏

σ∈Γ σ(α) ∈ Q.

Theorem 4.3.6. Let G be a group of order n. Let C be conjugacy class
of g ∈ G. Let h be the order of C.Let φ : G → GLd(C) be irreducible
representation of G and gcd(h,d)=1. Then, either, (i) there exists λ ∈ C∗
such that φg = λI ∀ g ∈ C or, (ii) χφ(g) = 0 ∀ g ∈ C

Proof. If φg = λI for some g ∈ C then, φx = λI ∀ x ∈ C since conjugating
a scalar matrix does not change it. So, it suffices to prove that if φg 6=
λI forsome g ∈ C then, χφ(g) = 0. We know that hχ(g)/d is an algebraic
integer and χ(g) is an algebraic integer . Also, gcd(h,d)=1 so there exists
integers k,j such that kh+jd=1.Now,

k

(
hχ(g)

d

)
+ jχ(g) =

χ(g)

d
= α(say)

is an algebraic integer since set of all algebraic integers form a ring.
Now, φg is diagonalizable with eigen values λ1, λ2, ..., λd. And, chi(g) =
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λ1 + λ2 + .... + λd that is, χ(g) is the sum of d nth roots of unity. Now
|λ1 + ...λd| < d since all eigen values are not same as we assumed that

φg 6= λI. Thus, |χ(g)| < d that is, |χ(g)

d
| < 1 that is, |α| < 1. And hence,

|σ(α)| = |σ(
χ(g)

d
)| < 1.

Note that q =
∏

σ∈Γ σ(α) is an algebraic integer since α is an algebraic
integer. It follows that

|q| = |
∏
σ∈Γ

σ(α)| =
∏
σ∈Γ

|σ(α)| < 1.

This shows that q ∈ Q since it is an algebraic integer less than 1. We know
that a rational number is an algebraic integer iff it is an integer. This implies
that q ∈ Z and |q| < 1. Thus, q=0. Therefore, σ(α) = 0 and hence, α = 0.
Finally, we conclude that χ(g) = 0. Hence, proved.

Lemma 4.3.7. Let G be a finite non abelian group. Let C 6= {1} be the
conjugacy class of G such that |C| = pt where p is prime and t ≥ 0. Then,
G is not simple.

Proof. Suppose G is not simple. Then, let φ1, ..., φs be the complete set of
representatives of irreducible representations of G. Let χ1, ..., χs be their cor-
responding charcters and d1, ...ds be their degrees. Without loss of generality,
let φ1 be the trivial representation. Since G is simple, Kerφk = {1} ∀ k > 1
since if Kerφk = G then we have trivial representation. This shows that φk

is one one for all k > 1. Now, G is non abelian and C∗ is abelian. This
implies that dk > 1 ∀ k > 1. Since G is simple and non abelian this shows
that Z(G) = {1}. Hence, t > 0. Let g ∈ C and k > 1. Define

Zk = {x ∈ G |φkx is a scalar matrix}

and
H = {λIdk |λ ∈ C∗}.

Note that H is a subgroup of GLdk(C). In fact, H=Z(G). Hence, H is normal.
Now as Zk is inverse image of H under φk which is a homomorphism, Zk is a
normal subgroup of G. Since,dk > 1 and Zk 6= G, Zk = {1} ∀ k > 1.
Suppose, p - dk then, gcd(p, dk) = 1. That is, χφk(g) = 0. Let L be regular
representation then,

L ≡ d1φ
1 ⊕ ...⊕ dsφs.
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Since, g 6= 1, χL(g) = d1χ1 + ...+ dsχs = 1 +
∑s

k=2 dkχk = 1 +
∑

p|dk dkχk =
1 + pz.

Also, χL(g) = 0. This implies that 1+pz=0. Thus, 1/p=-z where z is
algebraic integer. Hence, we get a contradiction since z has to be an integer.
Therefore, our suppposition was wrong. Thus, G is not simple.

Theorem 4.3.8. Burnside’s theorem: Let G be a group of order paqb

with primes p,q. Then, G is not simple unless it is cyclic of prime order.

Proof. An abelian group is simple iff it is cyclic of prime order. Assume that
G is non abelian. We know that a group of prime power order has non trivial
centres. So, it is not simple. That is, here, in this case, if one of a or b is
zero then, G is not simple. So, let a, b ≥ 1.
By Sylow’s theorem, ther exists a subgroup H of G of order qb. Let 1 6= g ∈
Z(H).

Let NG(g) = {x ∈ G|gx = xg} is the normalizer of g in G.Now, since
g ∈ Z(H), g commutes with every element of H. That is, every element of
H commutes with g. Therefore, every element of H is in NG(g). Hence,
H ⊆ NG(g).

Now pa = [G : H] = [G : NG(g)][NG(g) : H]. This shows that [G :
NG(g)] = pt where t > 0 but |Cl(g)| = conjugacyclassofg = [G : NG(g)] =
pt where t > 0. Hence, G is not simple by previous lemma.
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Chapter 5

Group Actions and the
Permutation Representations

5.1 Group Actions

Definition 5.1.1. An action of a finite group G on a finite set X is a ho-
momorphism σ : G→ SX where SX is the set of all bijections from X to X.
Moreover, |X| is the degree of the action.

Definition 5.1.2. Let the action λ be defined on G itself that is, λ : G→ SG
be an action. Then, λ is called as regular action. And, the permutation
λ̃ : G → GL(CG) is called the Regular Representation of G. We call the
regular representation to be L.

Example 5.1.3. Let G be a group and let λ : G→ SG be an action of G on
G itself defined as, λg(x) = gx. Then, this action is called the Regular action
of G on G.

Definition 5.1.4. The subset Y ⊆ X is called G-invariant if σg(y) ∈ Y ∀ y ∈
Y and g ∈ G.

The set X partitions into disjoint union of minimal G-invariant subsets
called Orbits.

Definition 5.1.5. Orbit: Let σ : G → SX be a group action. The orbit of
x ∈ X under G is the set G.x = {σg(x)|g ∈ G}.

67
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An orbit is a G-invariant subset of X.

Definition 5.1.6. Transitive Action: A group action σ : G→ SX is said
to be transitive if ∀ x, y ∈ X, there exists g ∈ G such that σg(x) = y.

In other words, an action is said to be transitive if there exists one orbit
of G on X.

Example 5.1.7. Let H is a subgroup of G. Then, there exists an action
σ : G→ SG/H by σg(xH) = gxH known as the Coset Action of G. We note
that this coset action is transitive.

Definition 5.1.8. 2-Transitive Action: Let σ : G → SX be action of G
on X. Then it is said to be 2-transitive if for any given two pairs of distinct
elements x, y ∈ X , x′, y′ ∈ X, there exists a group element g such that
σg(x) = x′ and σg(y) = y′.

Note: The property of an action to be 2-transitive is a stronger property
than an action to be transitive.

Example 5.1.9. Let n ≥ 2. Then, the action of the symmteric group Sn is
2-transitive on {i, 2, ...., n}. Consider two pairs of distinct elements say i 6= j

and k 6= l. Now, let X = {1, 2, ..., n}{̃i, j} and Y = {1, 2, ...., n}{̃k, l}. Then,
|X| = n− 2 = |Y |. Now, we choose bijection α : X → Y . Define τ ∈ Sn by

τ(m) =


k ;m = i
l ;m = j
α(m) ; otherwise

Then, τ(i) = k and τ(j) = l. Hence, Sn is 2-transitive.

Definition 5.1.10. Orbital: Let σ : G → SX be a transitive group action.
Define σ2 : G→ SX×X defined by

σ2
g(x, x) = (σg(x1), σg(x2))

An orbit of σ2 is known as the orbital of σ. The number of orbitals gives the
rank of σ.
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Consider the set ∆ = {(x, x) : x ∈ X}. We note that σ2
g(x, x) =

(σg(x), σg(x)). Now, if we consider σ to be transitive then we conclude that
∆ is an orbital of σ called the trivial orbital or the diagonal orbital.

Proposition 5.1.11. Let σ : G→ SX be group action where (|X| ≥ 2) then,
σ is 2-transitive iff σ is transitive and rank(σ) = 2.

Proof. If σ is 2-transitive and x, y ∈ X then we can choose x′ 6= x and y′ 6= y
such that σg(x) = x′ and σg(y) = y′. So, σ is transitive. Next,(X ×X) other
than ∆ or the complement of ∆ in X ×X is the following set.

{(x, y)|x 6= y}

Therefore, ∆{ is an orbital iff for any two pairs x 6= y and x′ 6= y′ of distinct
elements, there exists g ∈ G such that σg(x) = x′ and σg(y) = y′ that is, σ is
2-transitive. Consequently, Rank(σ) = 2 since there are two orbitals, ∆ and
∆{.

Definition 5.1.12. Let σ : G→ SX be a group action. Then, for g ∈ G, we
define,

Fix(g) = {x ∈ X|σg(x) = x}

to be the set of all fixed points with respect to G.

Similarly, Fix2(g) is the set of fixed points with respect to g on X ×X.

Proposition 5.1.13. Let σ : G→ SX be the group action. Then, Fix2(g) =
Fix(g)× Fix(g) and hence, |Fix2(g)| = |Fix(g)|2.

Proof. Let (x, y) ∈ X × X. Then, σ2
g(x, y) = (σg(x), σg(y)). This implies

that (x, y) = σ2
g(x, y) if and only if σg(x) = x and σg(y) = y. We know that,

Fix2(g) = {(x, y)|σg(x) = x, σg(y) = y}

Hence, Fix2(g) = Fix(g)× Fix(g).

Suppose we have an action σ : G → Sn and the standard representation
of Sn, α : Sn → GLn(C) then, the composition α ◦ σ : G→ GLn(C) gives us
the representation of G.
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Definition 5.1.14. Let σ : G → SX be a group action and hence σ̃ : G →
GL(CX) is the representation defined as,

σ̃g

(∑
x∈X

cxx

)
=
∑
x∈X

cxσg(x) =
∑
y∈X

cσg−1 (y)y

This representation ˜sigma is called the permutation representation associated
to σ. In this representation, x is mapped to σg(x) and hence, the degree of
representation σ̃ is equal to the degree of action σ.

Definition 5.1.15. Let λ : G→ SG be the regular action of G. Then,

λ̃ : G→ GL(CG)

is the regular representation of G.

Proposition 5.1.16. Let σ : G → SX be a group action. Then, the repre-
sentation σ̃ : G→ GL(CX) is the permutation representation of G and is a
unitary representation.

Proposition 5.1.17. Let σ : G → SX be a group action. Then, χσ̃(g) =
|Fix(g)|.

Proof. Consider the set X = {x1, x2, ...., xn}. Now, corresponding to this
given action, we will have the representation σ̃ as defined in the proposition.
Hence, [σ̃g] will be the matrix of σ̃ with respect to the basis X. We know
that, σ̃g(xj) = σg(xj) and so,

[σ̃g]ij =

{
1 ; xi = σg(xj)
0 ; otherwise

In particular,

[σ̃g]ii =

{
1 ; xi = σg(xi)
0 ; otherwise

That is,

[σ̃g]ii =

{
1 ; xi ∈ Fix(g)
0 ; otherwise

Hence, χσ̃(g) = tr([σ̃g]) = |Fix(g)|.
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Definition 5.1.18. Fixed Subspace: Let φ : G → GL(V ) be a represen-
tation. Then,

V G = {v ∈ V |φg(v) = v ∀ g ∈ G}

is called as the fixed subspace of V.
We note that V G is the G-invariant subspace.

Note: The subrepresentation φ � V G is equivalent to dimV G copies of the
trivial representation.

Proposition 5.1.19. Let φ : G→ GL(V ) be a representation. Let χ1 be the
trivial character of G. Then, 〈χφ, χ1〉 = dimV G.

Proof. Proof: Let V = m1V1 ⊕ .... ⊕ msVs where V1, V2, ..., Vs are the irre-
ducible G-invariant subspaces of V.

Without loss of Generality, assume that V1 is equivalent to the trivial
representation. Let φi = φ � Vi.

Let v ∈ V . Then, v = v1 + v2 + ....vs with vi ∈ miVi and

φg(v) = (m1φ
1)g(v1) + ....+ (msφ

s)g(vs)

and so, we conclude that,
v ∈ V G iff vi ∈ miV

G
i ∀ 2 ≤ i ≤ s. or we can say that,

V G = m1V1 ⊕m2V
G

2 ⊕ ...⊕msV
G
s

Let i ≥ 2. Since, each Vi is irreducible and not equivalent to the trivial
representation and V G

i is G-invariant, V G
i = 0 and thus, V G = m1V1.

Therefore, dimV G = m1dimV1 and hence, m1 is the dimension of Vg
where m1 is the multiplicity of trivial representation in φ

Proposition 5.1.20. Let σ : G→ SX be a group action. Let O1, O2, ..., Om

be the orbits of G on X and define vi =
∑

x∈Oi x. Then, v1, v2, ..., vm is the

basis for CXG and hence, dimCXG is the number of orbits of G on X.

Proof. We need to show that v1, v2, ....vm is the linearly independent set and
spans CXG. First to show linear independence, we observe that,

σ̃g(vi) =
∑
x∈Oi

σg(x) =
∑
y∈Oi

y = vi
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Form this we conclude that v1, v2, ..., vm belongs to the fixed subspace XG

and hence, v1, v2, ..., vm ∈ CXG Now, since the orbits are disjoint and we
know that if vi =

∑
x∈Oi cix and vj =

∑
x∈Oj cjx are the two formal sums

where ci and cj are the coefficients then

〈vi, vj〉 =
∑

cicj

As here, we have all coefficients in the formal sum to be 1, therefore,

〈vi, vj〉 =

{
|Oi| ; i = j
0 ; i 6= j

which shows that {v1, v2, ...., vm} is an orthogonal set of non zero vectors
and hence linearly independent. Now it remains to prove that this spans
CXG. For this, suppose, v =

∑
x∈X cxx ∈ CXG. We first show that if some

elememt z ∈ G.y then, cy = cz. Let z ∈ G.y then, z = σg(y) then,∑
x∈X

cxx = v = σ̃g(v) =
∑
x∈X

cxσg(x)

Now the coefficient of z in left hand side is cz and the coefficient of z in right
hand side is cy since z = σg(y). Therefore, cz = cy.

This implies that there exist c1, c2, ..., cm ∈ C such that cx = ci ∀ x ∈ Oi.
Thus,

v =
∑
x∈X

cxx =
m∑
i=1

∑
x∈Oi

cxx =
m∑
i=1

ci
∑
x∈Oi

x =
m∑
i=1

civi

Hence, v1, v2, ..., vm spans CXG and hence is the basis for the same.

Corollary 5.1.1. Burnside’s lemma: Let σ : G→ SX be a group action

and let m be the number of orbits of G on X. Then, m =
1

O(G)

∑
g∈G |Fix(g)|

Proof. Let χ1 be the trivial character of G. We know that the multiplicity of
the trivial representation in σ̃, m = 〈χσ̃, χ1〉 = dimV G.

And also, we know that

〈χσ̃, χ1〉 =
1

O(G)

∑
g∈G

χσ̃(g)χ1(g) =
1

O(G)

∑
g∈G

|Fix(g)|

Hence, m =
1

O(G)

∑
g∈G |Fix(g)|.
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Corollary 5.1.2. Let σ : G→ SX be a transitive group acion. Then,

rank(σ) =
1

O(G)

∑
g∈G

|Fix(g)|2 = 〈χσ̃, χσ̃〉

Proof. We know that thr rank of the action σ is equal to the number of orbits
of σ2 on X×X. And, the number of fixed points of g on X×X is |Fix(g)|2.

From the consequence of Burnside’s lemma, we can conclude the first
equality. For the second one,

〈χσ̃, χσ̃〉 =
1

O(G)

∑
g∈G

|Fix(g)||Fix(g)|

=
1

O(G)

∑
g∈G

|Fix(g)|2.

Hence, by this we get the second equality.

Suppose σ : G → SX be a transitive group action. Let v0 =
∑

x∈X x.
Then, we prove that CXG = Cv0.
We know that CXG = {x ∈ X|σg(x) = x} and Cv0 = span{

∑
x∈X x}. Now,

let v ∈ Cv0 that is, v =
∑

x∈X cx. now,

σ̃g(
∑
x∈X

cx) =
∑
x∈X

σg(cx) =
∑
x∈X

cσg(x) =
∑
y∈X

cy = v

since the action is transitive and the representation σ̃ is a unitary represen-
tation.This shows that v ∈ CXG and hence Cv0 ⊆ CXG.

Now, we show the other part. We know that the orbit of x is,

G.x = {σg(x)|g ∈ G}

now, since the action is given to be transitive, we have G.x = X. Hence, by
previous theorem, it follows that v0 is a basis for CXG.

Hence, CXG = Cv0. Now let V0 = Cv⊥0 is a G-invariant subspace.
We define Cv0 to be trace of σ and V0 to be augmentation of σ. Let

σ̃′ be te restiction of σ̃ to V0. Hence, σ̃′ is the augmentation representation
associated to σ.
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As CX = V0 ⊕ Cv0, we have,

χσ̃ = χ′σ̃ + χ1

where χ1 is the trivial character.

Theorem 5.1.21. Let σ : G → SX be a transitive group action. Then, the
augmentation representation σ̃′ is irreducible iff σ is 2-transitive on X.

Proof. We know that σ is 2-transitive iff rank(σ) = 2. Let χ1 be the trivial
character of G. Then,

〈χσ̃′ , χσ̃′〉 = 〈χσ̃ − χ1, χσ̃′ − χ1〉 = 〈χσ̃, χσ̃〉 − 〈χσ̃, χ1〉 − 〈χ1, χσ̃〉+ 〈χ1, χ1〉

Now, since σ is transitive, 〈χσ̃, χ1〉 = 1 and 〈χ1, χσ̃〉 = 1. Also, 〈χ1, χ1〉 = 1.
This implies that,

〈χσ̃′ , χσ̃′〉 = rank(σ)− 1

and so, χσ̃′ is irreducible character iff rank(σ) = 2 that is, iff σ is 2 - transitive
on X.

5.2 The Centralizer Algebra

Some Notations:
Let σ : G→ SX is a transitive group action. Our aim is to study the set

HomG(σ̃, σ̃) which is the set of all morphisms from σ̃ to iself. That is , it is
the set of all invertible maps T such that T σ̃g = σ̃gT .

Let us consider the set, X = {x1, x2, ..., xn}. Let φ : G → GLn(C) be
defined as, φg = [σ̃g]X .

Then, φ ∼ σ̃ and so, HomG(σ̃, σ̃) ≡ HomG(φg, φg).

HomG(φ, φ) = {A ∈Mn(C)|Aφg = φgA ∀ g ∈ G} that is exactly the set

{A ∈Mn(C)|φgAφ−1
g = A ∀ g ∈ G}

We denote HomG(φ, φ) as C(σ) known as the Centralizer algebra of σ.

Proposition 5.2.1. C(σ) is a unital subring of Mn(C).
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Proof. We note that, φgInφ
−1
g = In ∀ g ∈ G. Let A,B ∈ C(σ) then,

φg(A+B)φ−1
g = φgAφ

−1
g + φgBφ

−1
g = A+B ∀ g ∈ G

Similarly, φg(AB)φ−1
g = φgAφ

−1
g φgBφ

−1
g = AB.

This shows that C(σ) is a unital subring of Mn(C).

Next, we show that, dim(C(σ)) = rank(σ). The proof goes as follows.
Let V = Mn(C) and τ : G → GL(V ) by τg(A) = φgAφ

−1
g be a represen-

tation.Then,

V G = {A ∈Mn(C)|φgAφ−1
g = A ∀ g ∈ G} = C(σ)

For the next proposition we retain the same notations described right
now. And also, consider σ2 : G→ SX×x

Proposition 5.2.2. Define a map T : Mn(C)→ C(X ×X) by

T (aij) =
n∑

i,j=1

aij(xi, xj)

Then, T is an equivalence between τ and σ2.

Proof. The defined map T is clearly linear and invertible with the inverse,

n∑
i,j=1

aij(xi, xj) 7−→ (aij)

Let g ∈ G and let A = (aij) ∈Mn(C) and B = (bij) = τgA = φgAφ
−1
g . Next,

we define action γ : G→ Sn as

σg(xi) = xγg(i) for g ∈ G

As,

φ(g)ik =

{
1 ; xi = σg(xk)
0 ; otherwise

and,

φ(g−1)lj =

{
1 ;xl = σg−1(xj)
0 ; otherwise
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we have,

bij

n∑
k=1,l=1

φ(g)ikaklφ(g−1)lj = aγg−1(i),γg−1 (j)

Therefore,

TτgA =
n∑

i,j=1

bij(xi, xj)

=
n∑

i,j=1

aγg−1(i),γg−1 (j)(xi, xj)

=
n∑

i,j=1

akl(σg(xk), σg(xl))

=
n∑

i,j=1

aij(σg(xi), σg(xj))

=
n∑

i,j=1

aijσ
2
g(xi, xj)

= σ̃2
gTA.

Hence, T is an equivalence between τ and σ2.
Now,as our motive was to determine the dimension of C(σ), so, must be

thinking that what can be the basis for C(σ).
Let O be an orbital of σ that is, orbital of σ2.
Define A(O) ∈Mn(C) by

A(O)ij =

{
1 ; (xi, xj) ∈ O
0 ; otherwise.

Following corollary describes the basis for C(σ).

Corollary 5.2.1. Let σ : G→ SX be a transitive group action. Let O1, O2, ..., Or

be the orbitals of σ where r is the rank of σ. Then, the set {A(O1), A(O2), ...., A(Or)}
is a basis for C(σ) and consequently dim(C(σ)) = rank(σ)

Proof. Proof: By the proposition done earlier, we know that,

vk =
∑

(xi,xj)∈)(k)

(xi, xj)
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is a basis for C(X ×X)G.
Clearly, A(Ok) = T−1vk where, T : Mn(C)→ C(X ×X) defined as,

T (aij) =
n∑

i,j=1

aij(xi, xj)

Now, as T is an equivalence from Mn(C) and C(X × X), so it restricts its
equivalence to Mn(C) = C(σ) and C(X ×X).

Therefore, {A(O1), ..., A(Or)} is a basis for C(σ).
Hence, dim(C(σ)) = rank(σ).

5.3 Gelfand Pair

Definition 5.3.1. Let G be a group. Let H be the subgroup of G. Let σ :
G→ SG/H be the coset action. Then, (G,H) is said to be Gelfand Pair if the
centralizer algebra C(σ) is commutative.

Example 5.3.2. Let G be a group. Let H be its subgroup such that H = {1}.
Let λ : G→ SG be the regular action of G and hence, ˜lambda : G→ GL(CG)
is the regular representation of G say, L.

Our claim is C(λ) is isomorphic to L(G).
Let T ∈ C(λ) and define fT : G→ C by,

T.1 =
∑
x∈G

fT (x−1)x

We show that the map ψ : C(λ)→ L(G) defined as,

T 7−→ fT

is an isomorphism.
First, note that, since T ∈ C(λ) that is, T ∈ HomG(L,L) so, LgT = TLg.

Now, for g ∈ G,

Tg = TLg.1 = LgT.1 = Lg
∑
x∈G

fT (x−1)x.
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Therefore, T is determined by fT and hence, this shows that, ψ is one one.
Next, we need to show that ψ is onto.

Let f : G→ C be a function in L(G). Then, we can define T ∈ End(CG)
on the basis as,

Tg = Lg
∑
x∈G

f(x−1)x

Now, if g, y ∈ G then,

TLyg = Tyg = Lyg
∑
x∈G

f(x1)x = LyTg.

So, T ∈ C(λ). Also, T.1 =
∑

x∈G f(x−1)x and so, fT = f . Hence, ψ is onto.
Next, we show that ψ is homomorphism.

Let T1, T2 ∈ C(λ).

T1T2.1 = T1

∑
x∈G

fT2(x
−1)x

=
∑
x∈G

fT2(x
−1)T1Lx1

=
∑
x∈G

fT2(x
−1)Lx

∑
x∈G

fT1(y
−1)y

=
∑
x,y∈G

fT1(y
−1)fT2(x

−1)xy

Let g=xy and u = x−1 then, y−1 = g−1u−1. This shows that,

T1T2.1 =
∑
g∈G

∑
u∈G

fT1(g
−1u−1)fT2(u)g

=
∑
g∈G

fT1 ∗ fT2(g−1)g.

This implies that, fT1T2 = fT1 ∗ fT2.
Hence, ψ is homomorphism. Therefore, we conclude that, ψ is an iso-

morphism.
Now, as a consequence,
(G, {1}) is a Gelfand Pair

⇐⇒ C(λ), the centralizer algebra is commuattive that is,
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⇐⇒ L(G) is commutative.
⇐⇒ L(G) = Z(L(G)).
We know that, dim(Z(L(G))) = |Cl(G)| and dim(L(G)) = |G|.
So, (G, {1}) is a Gelfand Pair.
⇐⇒ |Cl(G)| = |G|.
⇐⇒ G is abelian.

Therefore, (G, {1}) is a Gelfand Pair ⇐⇒ G is abelian.

Note: (G,H) is a Gelfand Pair iff σ̃ is multiplicity free that is, each irre-
ducible constituent of ˜sigma has multiplicity one.

Definition 5.3.3. Let σ : G → SX be a transitive action. Then, to each
orbital O of σ , we can associate its transpose,

OT = {(x1, x2) ∈ X ×X|(x2, x1) ∈ O}

which is also an orbital since the action is transitive.

Definition 5.3.4. O is symmetric orbital if O = OT .

Example 5.3.5. The diagoanl orbital ∆ is symmetric.

Note that, A(OT ) = A(O)T .
Hence, O is symmetric iff the matrix A(O) is symmetric.

Definition 5.3.6. Symmetric Gelfand Pair: Let G be a group and H be
its subgroup with corresponding group action σ : G→ SG/H . Then, (G,H) is
called a symmetric Gelfand Pair if each orbital of σ is symmetric.

Example 5.3.7. Let H be a subgroup of a group G. Let action of G on G/H
is 2-transitive. Then, orbitals are, ∆ and ∆{ in G/H ×G/H. Clearly, each
one of them is symmetric.

Example 5.3.8. Let n ≥ 2. Let N be the set of all 2-element subsets of
{1, 2, ..., n}. Then, Sn acts on N as follows.

Define, τ : Sn → SN by,

τσ({i, j}) = {σ(i), σ(j)}.

Note that this action is clearly transitive since Sn is 2-transitive on {1, 2, ..., n}.
Let H be the stabilizer of {n− 1, n} in Sn.
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So, H is the internal direct product of Sn−2 and S{n−1,n} and hence, H ≡
Sn−2 × S2.

Let us recall the definition of internal direct product.
A group G is the internal product of two subgroups N1, N2 if the following

conditions hold:
(i) N1, N2 are both normal subgroups and,
(ii) N1 ∩N2 = {0} and N1N2 = G.
Equivalently, G is the internal direct product of N1, N2 if every element of
N1 commutes with every element of N2 that is, N1 ⊂ centralizer(N2).

Getting back to the example, we find that the action of Sn on N can be iden-
tified with the action of Sn on Sn/H.
Now, let O be a non trivial orbital then, any element of O is of the form,
({i, j}, {k, l}) where {i, j} 6= {k, l}. Now we have two cases:

Case(i) : If all are distinct, then, the permutaion of Sn , (i k)(j l) takes
this element to ({k, l}, {i, j}) so, O is symmetric.

Case(ii) : Suppose i=k. Then, the permutation (i k)(j l) becomes (j l) which
takes this element to ({i, l}, {i, j}, {i, j}) . Therefore, O is again symmetric
since i=k.

So, (Sn, H) is a Symmetric Gelfand Pair.

Lemma 5.3.9. Let R be a subring of Mn(C) consisting of symmetric matri-
ces. Then R is commutative.

Proof. Let A,B ∈ R. Then, AB ∈ R and hence,

AB = (AB)T = BTAT = BA.

Hence, R is commutative.

Theorem 5.3.10. Let (G,H) be symmetric Gelfand Pair. Then, (G,H) is a
Gelfand Pair.

Proof. Let σ : G → SG/H be an action. Let O1, O2, ..., Or be the orbitals of
σ.

Since, each Oi is symmetric, each A(Oi) is symmetric for i = 1, 2, ..., r.
Since, symmetric matrices form a vector subspace of Mn(C) and

{A(O1), A(O2), ...., A(Or)}
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is a basis for C(σ) (by corollary done before).
This shows that C(σ) consists of symmetric matrices. So, C(σ) is com-

mutative by previous lemma. Hence, (G,H) is a Gelfand Pair.
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