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ABSTRACT

The main aim of this project is to learn a branch of Mathematics that
studies vector spaces endowed with some kind of limit-related structure (e.g.
inner product, norm, topology, etc.) and the linear functions defined on these
spaces and respecting these structures in a suitable sense.

Specifically we will learn vector space with some topology on it (called
topological vector space). A topological vector space (also called a linear
topological space) is one of the basic structures investigated in functional
analysis. A topological vector space is a vector space (an algebraic structure)
which is also a topological space, thereby admitting a notion of continuity.
More specifically, its topological space has a uniform topological structure,
allowing a notion of uniform convergence.

In chapter 1 we will learn some Separation properties in TVS (Topologi-
cal Vector Space) in the sense that two disjoint closed and compact sets can
be separate by finding suitable disjoint neighborhoods. And when TVS is
metrizable in the sense that is there any metric which is compatible with
vector topology having some condition on TVS. And we will learn relation
between Seminorms and Local Convexity. Finally we will conclude that there
are some T'VS which are not normed spaces.

In chapter 2, we will learn some definitions like Banach space, dual of
Spaces, convex (affine) set and convex (affine) hull of sets, algebraic relative
interior, algebraic closure of set, and radial boundary etc. Then Separation
properties on convex sets in the sense that there exists a hyperplane (linear
functional) that separates two disjoint compact convex and closed convex
sets.

In chapter 3, we will see Banach- Steinhaus theorem, open mapping the-
orem and closed graph theorem. Banach—Steinhaus theorem In its basic
form, it asserts that for a family of continuous linear operators (and thus
bounded operators) whose domain is a TVS (secound category), pointwise
boundedness is equivalent to uniform boundedness in vector topology.

In chapter 4, we will learn notion of Weak and Weak* topology. And



most important theorems Banach-Alaoglu theorem and Krien-Milman theo-
rem which have many application. Krein—Milman theorem is a proposi-
tion about convex sets in topological vector spaces. Let X be a locally convex
topological vector space and let K be a compact convex subset of X. Then,
the theorem states that K is the closed convex hull of its extreme points.
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Chapter 1

Topological Vector Space

1.1 Introduction

Definition 1.1.1. Topological Vector Space : Suppose T is a topology
on a vector space X such that

(a) every point of X is a closed set, and

(b) the vector space operations are continuous with respect to T.
Then X s said to be Topological Vector Space.

Note 1.1.2. To say that addition is continuous means, by definition, that
the mapping

(z,y) = x+y

of the cartesian product X x X into X is continuous: If x; € X fori=1,2
and if V' is a neighborhood of x1 + x4, there should exist neighborhoods V; of
x; such that

Vi+VoCV.

Simalarly, the assumption that scalar multiplication is continuous means that
the mapping

(o,z) = ax

of KxX into X 1is continuous : If v € X, a is scalar, and V' is a neighborhood
of ax, then for some r > 0 and some neighborhood W of x we have W C V
whenever |f —a| < r.



2 1.1. Introduction

Definition 1.1.3. A subset E of a topological vector space is said to be
bounded if for every neighborhood V' of 0 in X corresponds a number s > 0
such that E C tV for everyt > s.

Definition 1.1.4. Invariance : Let X be a topological vector space. Asso-
ciate to each a € X and to each scalar X\ # 0 the translation operator T, and
the multiplication operator My by the formulas

To(x)=a+z, Mx)= (zeX).
Proposition 1.1.5. T, and M, are homeomorphisms of X onto X.

Definition 1.1.6. A local base of a topological vector space X is a collection
A of neighborhoods of 0 such that every neighborhood of 0 contains a member
of . The open sets of X are then precisely those that are unions of translates
of members of A.

Note 1.1.7. In the vector space context, the term local base will always
mean a local base at 0.

Definition 1.1.8. A metric d on a vector space X will be called invariant
of

d(z + 2,y + 2) = d(z,y)
for all x,y, z in X.

Types of topological vector spaces: In the following definitions, X
always denotes a topological vector space, with topology 7.

(a) X is locally convex if there is a local base Z whose members are
convex.

(b) X is locally bounded if 0 has a bounded neighborhood.

¢) X is locally compact if 0 has a neighborhood whose closure is compact.

)

(c)

(d) X is metrizable if 7 is compatible with some metric d.
)

(e) X is an F-space if its topology 7 is induced by a complete invariant
metric d.

(f) X is a Frechet space if X is a locally convex F-space.



1.2 Separation properties

Lemma 1.2.1. : If W is a neighborhood of 0 in X, then there is a neighbor-
hood U which is symmetric (in the sense that U = —U) and which satisfies
U+UCW.

Proof. Since 0+0 = 0 and addition is continuous, there exist neighborhoods
Vi, Vo € N such that
Vi, Vo CW.

Set
U=Vin(=Vi)nVn(=V).

U is symmetric; it is an intersection of four open sets that contain zero, hence
it is a non-empty neighborhood of zero. Since U C V; and U C Vj it follows
that

U+UcCW.

Note 1.2.2. Similarly we can prove U +U +U +U C W.

Theorem 1.2.3. Suppose K and C' are subsets of a topological vector space
X, K is compact, C s closed, and K " C = ¢. Then 0 has a neighborhood
V' such that

(K+V)N(C+V)=¢.

Proof. If K = ¢, then K +V = ¢ and the conclusion of the theorem is
obvious. We therefore assume that K # ¢ and consider a point x € K.
Since C'is closed, since x is not in C, and since the topology of X is invariant
under translations, the preceding proposition shows that 0 has a symmetric
neighborhood V,, such that x+V,+V,+V, does not intersect C', the symmetry
of V. shows then that

(x+Vo+ V)N (C+V,) = 6.

Since K is compact, there are finitely many points xq, zs, ..., z, in K such
that

KC(r+Vy)U---U(z,+ V).



4 1.2. Separation properties

Put V=V, n---NV, . Then

n

K+Vc|J@i+ Ve, +V) cJ@i + Vi, + V2),

i=1 i=1
and no term in this last union intersects C + V. O]

Theorem 1.2.4. If % is a local base for a topological vector space X, then
every member of % contains the closure of some member of 4.

Proof. Let U € A. Let K = {0} (compact) and C' = U (closed).
Implies there exists a V' € N7¥™", such that
VU +V)=o.
It follows that
VcUue+Vv)ycu.
By the definition of a local base there exists a neighborhood W € £ s.t.
WcvcUs+V)cU.

Since (U¢ + V)¢ is closed,

WcU+V)cuU.

O
Proposition 1.2.5. : Fvery topological vector space is a Hausdorff space.

Theorem 1.2.6. : Let X be a topological vector space.

(a) If AC X then A= (A+V), where V runs through all neighborhoods
of 0.

(b) If AC X and B C X then A+ B C A+ B.
(c) If Y is a subspace of X, so is Y.
(d) If C is a convex subset of X, so is C and C°.

(e) If B is a balanced subset of X, so is B; if also 0 € BY then B° is
balanced.

(f) If E is a bounded subset of X, so is E.



Theorem 1.2.7. : In a topological vector space X,

(a) every neighborhood of 0 contains a balanced neighborhood of 0, and

(b) every convex neighborhood of 0 contains a balanced convex neighborhood

of 0.
Corolloary 1.2.8. :

(a) Every topological vector space has a balanced local base.
(b) Every locally convez space has a balanced convex local base.

Theorem 1.2.9. : Suppose V' is a neighborhood of 0 in a topological vector
space X .

(a) If0<r; <ry<... andr, — oo, then
X:UrnV.
i=1

(b) Every compact subset K of X is bounded.

(c) Ifay > ay > ... and a, — 0 asn — oo, and if V' is bounded, then the

collection
{a,V :n=1,2,3, ...}

is a local base for X.
Proof. :

(a) Let x € X and consider the sequence x/r,. This sequence converge to
zero by the continuity of the scalar multiplication. Thus, for sufficiently
large n,

x/rp €Vie xer,V.

(b) Let K C X be compact. We need to prove that it is bounded, namely,
that for every V € N,

K C tV for sufficiently large t.



6 1.3. Linear Mapping

Let V € Nj be given, implies 3 W € NP s.t. W C V. We have

o0

K C U(nW)

=1

Since K is compact, there are integers ny < ny < --- < ng such that
KcnWu---Un,W =n,W.

The equality holds because W is balanced. If t > ng, it follows that
K CctW CtV.

(¢) Let U be a neighborhood of 0 in X. If V is bounded, there exists s > 0
such that V' C tU, V t > s. If n is so large that sa,, < 1, it follows that
V C (1/a,)U. Hence U actually contains all but finitely many of the
sets a,, V.

]

1.3 Linear Mapping

Definition 1.3.1. : Suppose that X and Y are vector spaces over the same
scalar field. A mapping T : X — Y s said to be linear if

T(ax+py) =aTl(z)+pT(y) YVae,ye X and VY a,p€K.
Linear mappings of X into its scalar field are called linear functionals.

Theorem 1.3.2. : Let X and Y be topological vector spaces. If T : X — Y
is linear and continuous at 0, then T is continuous. In fact, T is uniformly
continuous, in the following sense : To each neighborhood W of 0 in Y cor-
responds a neighborhood V of 0 in X such that

y—zrzeV = Ty—TxeW.

Theorem 1.3.3. : Let T be a linear functional on a topological vector space
X. Assume Tx # 0 for some x € X. Then each of the following four proper-
ties implies the other three :

(a) T is continuous.



(b) The null space N (T') is closed.
(c) N (T) is not dense in X.
(d) T is bounded in some neighborhood V of 0.

Proof. -

e (a) = (b) : Since A (T) =T '({0}) and {0} is a closed subset of the
scalar field K.

e (b) = (c) : By hypothesis, #(T) # X and A (T) is closed.

e (¢) = (d) : Suppose that A4 (T) is not dense in X. That is, its comple-
ment has a non-empty interior. There exists an x € X and a V € N
such that

(@ + V) (T) =¢.

This means that
0¢T(xz+V)

i.e.

VyeV, Ty#—-Tx.
we know that every neighborhood contains a balanced neighborhood,
we may assume that V is balanced.
Implies T(V) is balanced as well.
Balanced set in C are either bounded, in which case we are done,

of equal to the whole of C, which contradicts the requirement that
Ty # —Tx for all y € V.

e (d) = (a) : Suppose that T(V) is bounded for some V' € N i.e., there
exists an M such that

VeeV, |Tx|< M.
Let € > 0 be given. Set W=(¢/M)V. Then for all y € W

€
Ty |< —sup | Tz |[<e,
Ty |< 575w | T

which proves that T is continuous at zero (and hence everywhere).
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]

1.4 Finite Dimensional Spaces

Lemma 1.4.1. : If X is a complex topological vector space and f : C — X
is linear, then f is continuous.

Theorem 1.4.2. : If n is a positive integer and Y is an n-dimensional
subspace of a complex topological vector space X, then

(a) every isomorphism of C" onto Y is a homeomorphism, and
(b) Y is closed.

Theorem 1.4.3. : Fvery locally compact topological vector space X has finite
dimension.

Proof. : Let X be a locally compact topological vector space: it has some
neighborhood V whose closure V' is compact. Being a compact set V is
bounded so is V. Moreover,

B = {V/2" :n € N}

is a local base for X.
Let y € V. Implies y — %V intersects Vie. y €V + %V,
SoVcV+iv=Ul@+3V).
eV
Since V' is compact, it can be covered by finite union:

— 1 1

Let Y = Span{zi,...,z,}. It is a finite dimension subspace of X, hence
closed. Since VCY + %V,

It follows that
Welvilvavily
2 2 4 4

and hence

1 1 1
VCY+§VCY+Y+ZV:Y+ZV.



By same procedure
VY + %V
Which implies,
VC ﬂ (V+ o, v

Since 4 is a local base at zero which implies that V is a subset of every
neighborhood of Y

Vcy=Y.
But we know that
X=|Jnvcy

n=1

which implies that X=Y i.e. X is finite dimensional. O]

Theorem 1.4.4. : If X is a locally bounded topological vector space with the
Heine-Borel property, then X has finite dimension.

1.5 Metrization

Theorem 1.5.1. : If X is a topological vector space with a countable local
base, then there is a metric d on X such that

(a) d is compatible with the topology of X,
(b) the open balls centered at 0 are balanced, and
(c) d is invariant: d(x + z,y + z) = d(x,y) forz, y, z € X.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (a),

(b), (c), and also
(d) all open balls are convex.

Proof. : Without loss of generality we can choose a countable loacl base
whose member are balanced Z = {V,,}, and futhermore,

Virr Va1 + Von + Vi C Vi,
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(If X is locally convex, the local base can be chosen to include convex sets.)
This implies that for all n and k:

Vg1 +Vogo + -+ Vopp C V.

Let D be the set of dyadic rational numbers:

n=1 2n

D:{ZOO e, €{0,1}, ¢, =0 for n> N, NEN}

D is dense in [0,1]. Define the function ¢ : DU {r > 1} — 2% :

sO(T)Z{X r=t

a(mVi+e(r)Vo+... rebD

The sum in this definition is always finite.For example, ¢(1.2) = X and
©(0.75) = V; + V. By property of £,

N- N-
w(ZniNI —) S eV C Vi

Then define the functional f: X — R :

f(z) =inf{r: x € p(r)}
and define
d(x,y) = f(y-x)
Claim 1: fors,r € D

p(r) +¢(s) € @(r +s)
If r+ s> 1 then this is obvious as p(r +s) = X.
Suppose then that r, s € D and r+s € D. The first possibility is that

cn(r) 4 cn(s) = cu(r + s) for all n. This happens if ¢, () and c,(s) are never
both equal to one. Then,
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p(r+s) = sy enlr +8)Va = 2000, cn(n)Va+ 3000 enl(8)Va = o(r) + ().
Otherwise, there exists an n for which
cn(1) + cn(8) # cu(r + 5)
Let N is the smallest n: then
en(r)=cn(s)=0and en(r+s)=1
which implies
o(r) Ca(r)Vi+ -+ enaa(r)Vvor + Vvgr + Vv + -

CalrVi+---+envoa(r)Vor + Vs + Vv
cp(s) g CI(S)‘/l + -+ CN_1(8)VN_1 + VN+1 + VN+1

Implies

o(r)+e(s) Calr+s)Vi+ - +envo1(r+s)Vor + Vvar + Vvar + Vv + Vv
C 01(7’ + 5)‘/1 +-+ CN_1(T + S)VN_1 + Vy
Cop(r+s)

Observation : For all r € D U1, 00):
0 € p(r).
Claim 2 :
if » < ¢ implies ¢(r) C p(t)
For r < t:
p(r) S p(r) + et —r) € @(t).
Claim 3 : For all x, y € X:

fle+y) < flo)+ fly)

Let x, y € X be given. Note that the range of f is [0,1], hence we can limit
ourselves to the case where the right hand side is less than 1. Fix ¢ > 0.
There are r, s € D such that

flx)<r, fly)<sandr+s< f(x)+ f(y) +e.
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Implies x € ¢(r), vy € ¢(s), hence
z+y€e(r)+e(s) Celr+s)
Thus,
fle+y) Sr+s<flx)+fly) +e

true for all € > 0.

Claim 4 :
(a) fz) = f(—2).
(b) f(0) =0.

(c) f(z) >0 for x #0.

Since the ¢(r) are unions of balanced sets they are balanced, from which
follows that f(x) = f(—x).
Since 0 € p(r)for all r € D. f(0) = 0.

Finally, if  # 0 it does no belong to some V,, (by separation) i.e., to some
©(s), and since the {p(r)} form an ordered set, it does not belong to ¢(r)
for all r < s, from which follows that f(x) > 0.

Now finally d is metric:

a) d(z,y) > 0as f(y—x) = 0.

b)d(xz,y) =0 iff fly—x)=0if y—az=0iff y==x.

c) d(z,y) = d(y, z) as f(z) = f(—z).

d)

dz,y) = f(x —y) = flx —2—(y —2))

< fle—2)+ fly—2)
=d(z,2) + d(z,y).

We next want to show that this metric is compatible with the topology.
Consider the d-open balls,

B(0,t) = {z:d(z,0) <t} ={z: f(z) <t} = U o(r).

r<t

Now if ¢ < 5= then B(0,¢) C V,, which proves that the open balls, B(0, 5)

forms a local base.
If the V,, are convex then ¢(r) are convex. O
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Definition 1.5.2. : Cauchy Sequences

(a) Suppose d is a metric on a set X. A sequence {x,} in X is a Cauchy
sequence if to every € > 0 there corresponds an integer N such that
d(xp, ) < € whenever m > N and n > N. If every Cauchy sequence
in X converges to a point of X, then d is said to be a complete metric
on X (say d-cauchy sequence).

(b) Let T be the topology of a topological vector space X.Fix a local base 5B
for . A sequence {z,} in X is then said to be a Cauchy sequence if to
every V.€ A corresponds an N such that x, — x,, € V if n > N and
m > N (say T-cauchy sequence).

Note 1.5.3. Since
d(xp, xm) = d(x, — T,0)  (since d is invariant)

and since the d-balls centered at the origin form a local base for T, we con-
clude,

A sequence x, in X is a d-Cauchy sequence if and only if it is a 7-Cauchy
sequence.

Note 1.5.4. : If dy and dy are invariant metrics on a vector space X which

induce the same topology on X, then

(a) dv and dy have the same cauchy sequence, and
(b) dy is complete iff dy is complete.

Theorem 1.5.5. : Suppose that (X, di) and (Y, d2) are metric spaces, and
(X, dy) is complete. If E is a closed set in X, f: E — Y is continuous,
and

do(f (), f(2") = di(a,2")
forallz', 2" € E, then f(E) is closed.

Theorem 1.5.6. : Suppose Y is a subspace of a topological vector space X,
and Y is an F-space (in the topology inherited from X). Then Y is a closed
subspace of X.

Proof. : Let d be such an invariant metric, and set
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P ={y Y :d(y,0) <1/n}

which are open balls in Y. Let U, € .4 be neighborhood of zero in X s.t.
UpNY = P1n. Let then V,, € NV st Vi C Vo and V, +V, C U,.
Let x€ Y. Define

E,=(x+V,)NnY.
Suppose that y,y2 € E,, then
y1—y2 €Y and yy —yp € V,, + V,, C U, implies y1 — y2 € Bin.

The sets FE, are non-empty and their diameter tends to zero. Since Y is
complete, intersection of the Y-closure of the sets F, contains exactly one
point, which we denote by yo. o is only point, s.t. for every U € A; in X
and every n,

(o +U)N[(x+ Vo) NY] # ¢,

Since open neighborhoods in Y are intersections of open neighborhoods in X
with Y, it follows that for every U € .45 in X and every n

(o +U)N(z+V,)NY # ¢
Take now any neighborhood We .4; in X and define
FV =(@+WnV,)nY.

By the exact same argument the intersection of the Y closure of the sets
FW contains exactly one point. But since F'V' C E, this point has to be .
Thus, there exists a unique point 1, such that for every U, We .4 in X and
every 1,

(Yo+U)N(x+WNV,)NY # ¢.
Since the space is Hausdorff, z = yy € Y ie. Y =Y. n

Theorem 1.5.7. :
(a) If d is a translation-invariant metric on a vector space X then

d(nx,0) < nd(zx,0)

for every x € X and for n=1,2,3,. ..
(b) If z, is a sequence in a metrizable topological vector space X and if
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Tn — 0 as n — oo, then there are positive scalars v, such that vy, — o0
and Ypx, — 0.

1.6 Boundedness and Continuity

Definition 1.6.1. Bounded sets:

The notion of a bounded subset of a Topological vector space X already defined
in Definition 1.1.3. Now notion of boundedness w.r.t, metric d as follows:
If d is a metric on a set X, a set E C X is said to be d-bounded if there is a
number M < oo such that d(z,y) < M for all x and y in E.

Note 1.6.2. If X is a topological vector space with a compatible metric d,
the bounded sets and the d-bounded ones need not be the same, even if d is
moariant.

Example 1.6.3. : If d is a metric such as the one constructed in Theorem
1.5.1

d(z,y) = f(y — )

where f(x) = inf{r:z € o(r)} and

X r>1 . ‘
o(r) = and D is dyadic number
a(rmVi+c(r)Va+... reD

then X is itself d-bounded (with M=1) but X cannot be bounded unless X={0}.

Note 1.6.4. : (1) If X is a normed space and d is the metric induced by the
norm, then the two notions of boundedness coincide ; but if d is replaced by
diy = d/(1 +d) (an invariant metric which induces the same topology) they
do not.

(2) Cauchy sequences are bounded and hence convergent sequences are bounded.
Also closures of bounded sets are bounded.

Example 1.6.5. : E = {nx:n=1,2,3...} then E is not bounded because
there is a neighborhood V of 0 that does not contain x; hence nx is not in
nV ; it follows that no nV contains E.
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Theorem 1.6.6. : The following two properties of a set E in a topological
vector space are equivalent :

(a) E is bounded.

(b) If{x,} is a sequence in E and {a,} is a sequence of scalers s.t. o, — 0
as n — 0o, then a,x, — 0 as n — oo.

Definition 1.6.7. Bounded Linear Transformations : Suppose X and
Y are topological vector spaces and T : X — Y s linear. T is said to be
bounded if T maps bounded sets into bounded sets, i.e., if T(F) is a bounded
subset of Y for every bounded set E C X.

Theorem 1.6.8. : Suppose X and Y are topological vector spaces and T :
X — Y is linear. Among the following four properties of T, the implications

1) —(2) —6)
holds. If X is metrizable, then also
B) — @) — (1)

so that all four properties are equivalent.

(1) T is continuous.

(2) T is bounded.

(3) If x,, — 0 then {Tx, :n=1,2,3...} is bounded.
(4) If ©,, — 0 then Tx, — 0.

Proof. : (1) — (2). Let T is continuous. Let V € X be bounded. Let
W e AMinY. Since T(0) =0,3U € Ay, T(U) e W.
Because V is bounded there exists an s s.t. for all t > s,

V CtU.

By linearity, for all ¢t > s,
T(V)CTtU)=tT(U) C tW,
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hence T'(V') is bounded, which implies that T is bounded.
(2) = (3). Let T is bounded and let z,, — 0. Since convergent sequences are
bounded,

E={z,|neN}

is bounded,then
T(E) = {T(x,) | n € N}

is bounded.

(3) — (4). Let X is metrizable and let d be a compatible and invariant metric.
Let z,, — 0 and {T'(z,) | n € N} is bounded. As we have metrizability, there
exists a sequence «a,, — 00, s.t. a,x, — 0.Then,

T(xn) = 3-T(anwn).

As T'(apx,) is bounded and by previous theorem 7T'(z,) — 0.
(4) — (1). As we have given space is metrizable implies space is Hausdorff

hence sequential continuity implies T is continuous.
O

1.7 Seminorms and Local Convexity

Definition 1.7.1. A seminorm on a vector space X is a real-valued func-
tion p on X such that

(a) p(z +y) < p(x) +ply) and

(b) plaz) = |a|p(z)

for all z and y in X and all scalers a.

Definition 1.7.2. A family &2 of seminorms on X is said to be separating
if to each x # 0 corresponds at least one p € & with p(x) # 0.

Definition 1.7.3. Consider a convex set A C X called absorbing if for
every x € X lies in tA for some t > 0. Every absorbing set contain 0.

Definition 1.7.4. For convex absorbing sets A we defined the Minkowskz
functional pa by

pa(z) =inf{t >0: 2 € tA} (x € X).

Note that pa(x) < oo for all x € X, since A is absorbing.
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Properties 1.7.5. If A is an absorbing set then

(1) pa(z) >0, Vo € X and p14(0) = 0.

(2) pa(Ax) = Aua(x), VYA>0, VrelX.

(3) Ac{r e X :pa(x) <1}

(4) pa(x) < pa,(x), Vo € X, if Ay C Ay

(5) Moreover, If the set A is convex then {x € X : pa(z) < 1} C A.
Theorem 1.7.6. : Suppose p is a seminorm on a vector space X. Then

(a) p(0) = 0.

(b) Ip(z) —p(y)I< plz —y).

(¢c) p(x) = 0.

(d) {x:p(x) =0} is a subspace of X.

(e) The set B = {x:p(x) < 1} is convex, balanced, absorbing, and p = jip.

Proof. :

(a) p(0) =p(0.z) = 0.p(zx) =0
(b)

p(x) < p(y) +plz —y)
and
p(y) < p(z) +ply —x) = p(x) + p(r —y).

(c) for every x:
0 < [p(z) = p(0)|= [p(2)|< pl2).
(d) If p(x) = p(y) = 0 and «,  are scalers then,

0 < plax + By) < |alp(z) + [Blp(y) = 0.
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(e) If p(z) < 1 then for every |a|< 1, p(ax)
t

la|p(x) < 1, implies B is
balanced. If x,y € B then for every 0 < 1

<

ptz+ (1 —1t)y) <tp(z)+ (1 —t)p(y) <1

hence B is convex. For every z € X and s > p(z), p(z/s) < 1, i.e,
x € sB, so that B is absorbing.

pup(x) =inf{s > 0:z € sB}
=inf{s > 0: p(x/s) < 1}
=inf{s > 0: p(z) < s}.

If p(x) < r then up(x) < rie pp(zr) < p. If pp(x) < r, then there
exists an s < pug(x) s.t. p(x) = sie p < pup(z).

]

Theorem 1.7.7. : Suppose A is a conver absorbing set in vector space X.
Then

(a) pa(x +y) < palr) + paly).
(b) pa(te) =tua(x) if t > 0.
(c) pa is seminorm if A is balanced.

(d) If B={x: pa(x) <1} and C = {X : pa(x) < 1}, then BC AC C
and pp = g = Uc-

Proof.
(a) If t = pa(x) + ¢ and s = pa(y) + ¢, for some € > 0, then =/t and y/s are
in A, hence so is their convex combination

Tty .tz s Y
s+t T s+t "t s+t s

This implies that pa(x +vy) < s+t = pa(x) + paly) + 2e.
(b) From definition.

(c) Follows from (a) and (b).

(d) Let z € B

There exists r € (0,1) s.t. x € rA
imlies a = z/r € A
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ra+(1—r)0=z¢€ A.
Letac Ale{s>0:a€ sA}
=acC
= BCACC.
This shows that pue < pa < pp. To prove equality, fix x € X, and choose
s,t so that pe(r) < s <t. Then z/s € C, pa(x/s) < 1,pa(x/t) < s/t <1,
hence =/t € B so that ug(z) < t. This holds for every ¢t > uc(x). Hence
pp(r) < pe(z).

[

Theorem 1.7.8. : Suppose B is a convex balanced local base in a topological
vector space X. Associate to every V € A its Minkowski functional . Then

(a) V={xe X :py(x) <1}, for every Ve B, and
(b) {uy : V € B} is a separating family of continuous seminorms on X.

Proof.

(a) If z € V then z € tV or z/t € V, t < 1 because V is open.

Hence py(x) < 1.
Ifx ¢ Vithenx etV orx/teV, t>1asV is balanced.
Hence py(z) > 1.

(b) By Theorem 1.7.5 (e) py is seminorm
also

| v () — pv (y) < pv(z —y) <7

if z —y € rV then py is continuous. If z € X, z # 0, then = ¢ V for
some V € A. For this V, py(z) > 1. Thus {uy} is separating.

]

Theorem 1.7.9. Suppose &2 is a separating family of seminorms on a vector
space X . Associate to each p € &2 and to each positive integer n the set

V(p,n) = {x:p(l‘) < %}

Let Z be the collection of all finite intersections of the sets V(p,n). Then A
is a convex balanced local base for a topology T on X, which turns X into a
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locally convex space such that
(a) every p € & is continuous, and
(b) a set E C X is bounded iff every p € & is bounded on E.

Proof. We define

,%’:{ ﬂ V(p,n):]CPxN,Iz’sfim'teset}
(pyn)el

where all the intersection are finite. Clearly 4 is a collection of set that
contain the origin and that are closed under finite intersection.
Set A C X be open if it is a union of translate of member of & i.e.,
A is open iff
A= U (x+ B)
Be#,xcA
or forx € A, AN, € # s.t. v + N, C A. We denote the collection of all such
set by 7. 7 is translation invariant topology on X because
(1) ¢ € T by taking empty union.
(2) X er.
(3) 7 is closed under arbitrary union. Obvious as open set are defined in such
a way.
(4) 7 is closed under finite intersection.
N A;, take z € (| A; where I is finite.
iel iel
implies
r€e A, Viel
implies
N, € B sit. x+ N C A,

NN. € B also x +NN. C A;, Vi

v+ \Nic)4

icl il

implies

Now each member of 4 is convex and balanced and 4 is local base for 7.
Let 0 # x € X. We have family of separating seminorm so

dpe P, plx)>0

dneN st np(x) 21, px)=1/n
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x ¢ Vip,n)or0¢x—V(pn)

{0} is closed set as Hence x ¢ {0}.
{z} is closed by translation invariant.

Let U € .4, by property of local base, there exists
Vp,n)N---NV(pg,ng) CU.

Take
V = V(pl, 2n1) N---N V(pk, 27’Lk)

But we have,
V(ps, 2n;) + V(pi, 2n3) = V(pi, ).

Hence V +V C U gives addition is continuous.

Suppose now that x € X, « is a scaler, and U and V are as above. Then
z € sV for some s > 0. Putt = s/(1+|a|s). Ify € x+tV and |f—a] < 1/s,
then

Py —az =Py —x)+(f—a)

which lies in
1BItV + |8 —alsVCV+V CU

since |5|t < 1 and V is balanced.
By € ax + U.

Hence scaler multiplication is continuous.
Thus X is locally convex topological vector space.

(a) Also every p € & is continuous at 0 because for every € > 0 set n > % and
p(V(p,n)) <1/n

Take x € V(p,n), |p(z)—p0)|<1/n<e.

Hence it is continuous everywhere by

Ip(z) — p(y)|< p(z —y).
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(b) Let E is bounded. Take p € & then
V(p,1)={zx e X :p(x) < 1}

implies £ C nV/(p,1) for some n (by definition).
Conversly, take U neighbourhood of 0 s.t.,

Vp,n) NNV (pm,nm) CU

implies IM; < oo s.t. p;(E) < M;, Vi=1[1:m)]

If n > M;n; for i = [1 : m| then

nV(pi, i) = {nx : p(nr) <nfniy = {y: ply) <n/n}.
Hence £F C nU and E is bounded.

O

Note 1.7.10. If # is a convex balanced local base for topology T of Locally
conver space X then % generates a separating family &2 of continuous semi-
norm on X. This &2 induces a topology 71 in X then we have T = 11. As every
p € & is continuous w.r.t, T topology implies V(p,n) € 7. Hence 1y C T.
Now take W C % and p = pw then

W =A{z:pw(x) <1} =V(p,1)
implies W € 1, for every W € #. Hence 7 C 1.

Theorem 1.7.11. A topological vector space X is normable iff its origin has
a convex bounded neighbourhood.

Proof. Let if X is normable and ||.|| is norm which is compatible with our
topology on X then the open unit ball {x : ||z|| < 1} is convex and bounded.
Let V be a convex bounded neighbourhood of 0 then 3 a convex balanced
neighbourhood of 0, say U (by Theorem 1.2.7) s.t., U C V, clearly U is
bounded.

Now define

2] = po(z), 2eX (1.1)

This is a seminorm by Theorem 1.7.6. Now aU (« > 0) form a local base
of (X, 7). Now take x # 0 implies 3 r > 0 s.t., = ¢ rU as U is absorbing.
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Hence (1.1) is norm.

As U is open
U:{$€XI,UU<1}
U={zeX:|z|| <1}
rU ={z € X :||z|| <r}, Vr>0.
Hence the norm topology coincide with 7. O

1.8 Quotient Space

Definition 1.8.1. Let N be a subspace of X. For every x € X define {x+n :
n € N} =xz+ N called coset. Take all collection of coset with opertion:

(z+N)+(y+N)=z+y+N
and a(x + N) = ax + N.
This gives a vector space called Quotient Space. Denote by X/N.

Definition 1.8.2. Define m: X — X/N by
m(z) =+ N

Here 7 is linear map where N is kernel of m and this map is called Quotient
Map.

Definition 1.8.3. Now let (X, 7) be a TVS (Topological vector space ) and
N be a closed subspace of X. Define collection of subset of X/N (say Tn) to
be

Eecryift ' (E) €, where E C X/N
Now 1y is a topology on X/N called Quotient Topology.

Theorem 1.8.4. Let N be a closed subspace of a topological vector space X.
Let T be the topology of X and define Tn as above.

(a) T is a vector topology on X/N; the quotient map m : X — X/N is
linear, continuous, and open.
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(b) If B is a local base for T, then the collection of all sets w(V') with
V e % is a local base for Ty.

(c) Each of the following properties of X is inherited by X/N: local con-
vexity, local boundedness, metrizability, normability.

(d) If X is an F-space, or a Frechet space, or a Banach space, so is X/N.

Proof.

(a) Here 7 is an onto map.
And we know that:

W*OJ&):U¢WQ)

aeA aeA

Also . .
7T_1 ( m Ez) = U 7T_1(Ei>
=1 =1

Hence from this information we can say 7y is a topology on X/N.
Now it remains to prove that its a vector topology.

Observe that A set ' C X/N is ty-close iff 771(F) is T-closed. Also

7 Hr(x)) = U n+x=N+uzx.

neN

Hence N + z is 7—closed as N is closed.

= 7(x) is Ty—closed.

= N + x is Ty—closed. Hence singleton set are closed in X/N.
By definition of 7, 7 it is continuous.

Now let V € 7. As
@ (V) =n+V=N+V
nenN

and N + V € 7 (union of translation of open sets)
Implies 7(V) € 7y
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Implies 7 is an open mapping.
Now

mx+y)=x+y+ N=z+N+y+N=mn(z)+ (y)

Also
m(ax) =ax+ N =a(z+ N) = an(x)
Hence 7 is linear.

Now let W be neighbourhood of 0 in 7. 0 € 7} (W) € 7
Implies 3 (0 €)V € 7 s.t.

V+Vcr (W)

Hence n(V+V)CW ==n(V)+=n(V)CW.

Since 7 is open, 7(V') is neighbourhood of 0 in X/N. Hence addition is
continuous.

Now let W be a neighbourhood of 0 in X/N. So 7~*(W) be a neigh-
bourhood of 0 in X.

=3 VnbdofO0in Xand |[f—a| <e

= AV C a1 (W)

= fr(V)CcW

7 is open = (V) € JI{)X/N

Hence scaler multiplication is continuous.

By definition of 7y, (b) is true by (a).
Comes by (b).

Let X be a F-space and let d is invariant metric on X compatible with

geﬁne
Mm(z),7(y)) = inf{d(x —y,2): 2z € N}.

Here A is well defined and is invariant metric on X/N.
m({x : d(z,0) <r}) = {u: Au,0) <r}.

By (b) A is compatible with 7.
If X is NLS, define

I7(2)|| = inf{{|z — z]| : 2 € N}
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called Quotient Norm.

Now to prove A is complete metric whenever d is complete:

Suppose {u,} is a Cauchy sequence in X/N, relative to A. There is a
subsequence {uy, } with A(up,, tn,,,) < 27". One can then inductively
choose x; € X such that m(z;) = u,,, and d(z;,d;q) < 27% If d is
complete, the Cauchy sequence {x;} converges to some x € X. The
continuity of = implies that w,, — m(z) as i — oco. But if a Cauchy
sequence has a convergent subsequence then the full sequence must
converge. Hence A is complete.

]

Theorem 1.8.5. Suppose N and F are subspace of TVS X. N is closed and
F has finite dimension. Then N+F is closed.

Proof. Let m be a quotient map from X to X/N. Then 7(F') is finite dim
space of X/N as F is finite dim. But X/N is TVS and finite dim subspace of
TVS is closed in X/N.

Also
N7 (F)) = U n+F=N+F
neN
and 7 is continuous hence N+F is closed. O

1.9 Examples

Example 1.9.1. The space C () : Let Q be open set in (R",||.|,). We
consider space C'(£2) a vector space of all comples valued continuous function.
Here sup norm won’t work as there exists unbounded continuous function on
open sets.

We know open set ) can be written as

0 U,
n=1

where K,,’s are compact set s.t., K,, is in the interior of K, 1.
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We topologize C'(2) with separating family of seminorms,

pu(f) = sup{[f(2)] : = € Ky}

by Theorem 1.7.8.
Since py < po < ... the sets

Vi ={f € C(Q) i pu(f) < 1/n}

forms a convex local base for C(().
Now topology of C'(2) is compatible with the metric,

pn(f - g)

W9 =8 4 pulF — 9)
Now let { f;} be cauchy sequence relative to this metric d, an easy computation
shows that p,(f; — f;) = 0, Vn as i,j — oo.
Hence {f;} converges uniformly on K, to a function f(n) € C(K,) but
K? C K11 so restriction of f(n+ 1) on K,, would be f(n) so we conclude
{fi} converges to f € C().
Now for given e > 0 let 275 < ¢ then

pk(fn - f)

T F 0 a1 F

also AN s.t., Yn > N

maa Pi(fr — f)
<k 261+ p(fu — f))
Hence d(f, f;) — 0. Thus d is a complete metric. Hence C()) is a Frechet
space.
A set E C C(Q) is bounded iff there are numbers M, < oo s.t., pu(f) <
M,, VfeFEie |f(x)] <M, if fe Eandzc K,.

< E.

Choose K,, C K, 11 then m C Ky
Let f; €V,
jd(z, Ky)
A, Kn) + d(, Koo \ )
Hence every V,, contains f for which p,.1 s large as we please. Hence V,, is

unbounded true for all n. Hence C(QQ) is not normable as it is not locally
bounded.

Define f; : @ — R by fj(x) =
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Example 1.9.2. The spaces C*™(Q)) and Pk : A complex function f de-
fined in some nonempty open set  C R"™ is said to belong to C*°(Q) if
Def € C(Q) for every multi-index . If K is a compact set in R™, then P
denotes the space of all f € C°(R™) whose support lies in K. If K C § then
Dk is subspace of C*(£).

Choose compact set K;(i = 1,2,3...) s.t. K; lies in the interior of K,
and Q@ = UK. Define seminorms py on C*(Q), N =1,2,3... by

pn(f) = max{|D“f(x)| : x € Ky, |a| < N}.

With these collection of seminorms we have metrizable locally convex topology
on C=(Q).

Now for x € Q define J, : C(2) — R by J.(f) = f(z) which is a continuous
function in our topology. Pi is the intersection of kernel of these function
where x ranges in K¢, hence Pk is closed in C>(£2).

Here py < ps < ...

Hence a local base is given by the sets

vN:{fecOO(Q);pN(f)<1/N} (N=1,2,...)

as Vi C Vo C ...

Now if {f;} is cauchy sequence in C*(Q) and if N is fived then f; — f; €
Vn for suf ficiently large i, 7.

Thus |D*f; — D*f;| < 1/N on Ky if |a| < N

Implies D® f; — g5~ uniformly on Ky but ng‘KN_l = ng’l
So D f; — g uniformly on compact subset of €.

In particular f;(x) — go. Hence go € C*(Q) and g, = D*go and f; — g in
topology of C'>(£2).

Thus C*°(Q)) is a Frechet space. So is closed subspace Py .

Now the metric constructed by these seminorms which is compatible with
the topology on C*>(Q) is a bounded metric but no norm is bounded, so the
metric is not induced by any norm. Hence C*(§2) is not normable.
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1.9. Examples



Chapter 2

Convexity in Topological
Vector Space

2.1 Introduction

Definition 2.1.1. : A topological vector space X is a vector space over
a topological field K that is endowed with topology s.t. vector addition + : X
x X — X and scaler multiplication - : K x X — X are continuous function.

Example 2.1.2. : FEvery normed linear space has a natural topology such
that (the norm induced metric and metric induces a topology.) :

1. + is continuous with this topology by tringle inequality.

2. - 1is continuous with this topology by tringle inequality and homogenity of
norm.

Theorem 2.1.3. : The mapping * — x + x¢ and x — A\x where A # 0 ,
A € K are homeomorphic of X onto itself.

Theorem 2.1.4. : If f is a linear functional on a topological linear space,
then the following statements are equivalent:

(i) f is continuous.
(i) The kernel of f, kerf = {z : f(x) = 0} is closed.

(111) There is a neighborhood of the origin on which f is bounded.

31
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Note 2.1.5. From now on we consider X, Y to be normed linear space and

K to be field (either R or C) unless stated.

Definition 2.1.6. : Let X, Y be normed linear space of same nature. A linear
map T : X — Y is said to be bounded if T(M) is bounded in Y for every
bounded set M C X. In other words,there exists N > 0 s.t.

[Tl < Nlel,  VeeX

In normed linear space linear map T : X — Y is continuous iff it is bounded.

Definition 2.1.7. : L(X,Y) The set of all linear continuous map from X
with values in Y which becomes a normed linear space by

1T = sup{||Tz| - |zl <1} = infAK : |[T2| < K|lz|, Ve € X} (2.1)
Definition 2.1.8. A complete normed linear space is called Banach space.
Lemma 2.1.9. If Y is a Banach space, the L(X,Y") is also a Banch space.

Definition 2.1.10. If we consider Y = K then L(X, K) is called dual of X
i.e, set of all continuous linear functional on X. Denoted as X*. It becomes
a banach space by introducing norm on functional given in equation (2.1)

[2*]| = sup{|=" ()] - [l=]| < 1}.
Hence if * € X* then
2" ()] < fl2*] l=f] Vo e X.

Definition 2.1.11. A family o C L(X,Y) is called uniformly bounded
if

sup [|T]| < oo

Teo
Definition 2.1.12. A family o C L(X,Y) is called pointwise bounded
if for fized x € X, of, = {Tx :T € o} is bounded set in Y.

Theorem 2.1.13. If X is a Banach space, then every pointwise bounded
family of linear continuous maps from L(X,Y') is uniformly bounded.

Definition 2.1.14. A mapping (-,-) : X x X — K is said to be an inner
product if it has the following properties :
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(1) (x,z) > 0,Yx € X and (z,x) = 0 implies x = 0.
(2) (z,y) = (7, 7) Yo,y € X.
(3) {ax +by,z) = alz,z) +bly,z) Va,be K, Va,y € X.

Definition 2.1.15. A linear space endowed with an inner product is called
a pre-Hilbert space. A pre-Hilbert space is also considered as a linear
normed space by the norm induced by inner product.

lz]| = (z,2)2, VreX

Definition 2.1.16. Two elements x and y in pre Hilbert space are said to be
orthogonal if (x,y) = 0. Denoted by x L y.
Ifv L y=0Vy e X then z = 0.

Proposition 2.1.17. The elements z, y are orthogonal iff
|2+ Ayl > lzf|,  VAeK

Definition 2.1.18. If a pre-Hilbert space is complete in the norm associated
to the given inner product, then it is called a Hilbert space.

Theorem 2.1.19. Riesz : If f is a continuous linear functional on the
Hilbert space X, then there exists a unique element a € X such that

flz)=(x,a), VrelX

If1] = llall -
Conversly, for every a € X, the linear functional f, : X — K defined by

falx) =(x,0), Ve X

is continuous, hence f, € X*, also || f,| = ||a||,Va € X.

2.2 Convex Sets

Let X be a real linear space.
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Definition 2.2.1. A subset C of linear space X 1is said to be convex if, for
all x and y in C and all t in the interval (0,1), the point (1 — t)z + ty also
belongs to C. In other words, every point on the line segment connecting
and y is in C. We denote

[,y ={Mx + Ay AL >0, Ao >0, A\ + Xy =1}
called the segment generated by elements x, v.

Definition 2.2.2. A subset A of a linear space X is called affine set if for
all x,y € A implies \yx + Moy € A, VA1, g € R where Ay + Xy = 1.

If v1,29,..., 2, € X, every element of the form \ixy + Xoxs + -+ +
ATy Where \; € R and Z?Zl Ai = 1 is called an affine combination of
T1,%o, ..., Tn. If \; >0, then affine combination is called a conver combina-
tion.

Proposition 2.2.3. Any convex (affine) set contains all the convex (affine)
combinations formed with its elements.

Proof. Let C is a convex(affine) subset of X.

We prove by mathematical induction, as for k = 2 the result is obvious by
definition. Let the hypothesis is true for k =n — 1.

Take convex (affine)combination of n elements 1, xs, ..., z, € C,

AT+ AT + -+ Xy = M+ -+ ApaTpo + (Am1 + M) T € C
where
/\n—l + /\n
— Tyt ——x,
>\TL—1 + )\n ! )\n—l + )\n
as T,—1 € C whenever \,_1 + A, # 0 (As \; + \; # 0 for some i,j €

{1,...,n} and i # j otherwise all \; = 0).
Hence true for all finite n € N. O]

Tn—1 =

Properties 2.2.4.

(1) The intersection of many arbitrary convez (affine) sets is again a con-
vex (affine) set.
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(2) The union of a directed by inclusion family of convex (affine) sets is a
convez (affine) set.

(3) If Ay, As, ..., A, are convex(affine) sets and Ai, Ao, ..., A\, € R, then
MA+ XAy + -+ N A, is a convex (affine) set.

(4) The linear image and the linear inverse image of a convex (affine) set
are again convex (affine) sets.

(5) If X is a linear topological space, then the closure and the interior of a
convex (affine) set is again convez (affine).

Definition 2.2.5. Let C be any arbitrary subset of X, then intersection of
all convex(affine) sets containing C is called convex (affine) hullji.c. the
smallest convez (affine) set which contain C. Denoted by conv C (aff C).

conv C' = {Z/\’xl |neNN >0,z EC,Z)\Z» = 1}
i=1 i=1

aﬁC’: {Z)\Z.le | nGN,AiER,xi GC,Z/\lzl}
i=1 =1

Proposition 2.2.6. In a real linear space, a set is affine iff it is a translation
of a linear subspace.

Definition 2.2.7. A point ay € X (real linear space) is said to be algebraic
relative interior of A C X if, for every straight line through ag which lies
in affA, there exists an open segment contained in A which contains ag. If
affA = X, the point aq is called the algebraic interior of A. The set of all
the algebraic (relative) interior points of A is called the algebraic (relative)
interior of the set A and we denote it by (A™)A".

A" ={ap € A:Vr € X,3t, >0, YVt €[0,t,], ap+tx € A}

Example 2.2.8. Let X = R? and A = (0,1) x {0}, then every point of A is
an algebraic relative interior.
Now if A =(0,1) x (0,1) then every point of A is an algebraic interior.

Definition 2.2.9. If X is a topological vector space, then a point ag € X is
said to be a relative interior of A C X if ag is contained in an open subset
of affA (induced topology) which is completely contained in A. The set of all
relative interior points of A is called the relative interior of A, and denoted
by riA. And interior of A by intA.
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Note 2.2.10. If affA = X then riA = intA. Also if intA # ¢ or A* # ¢
then affA = X.

Definition 2.2.11. The set of all points x € X for which there exists u € A
s.t. [u,z[C A, where [u,x[ is the segment joining u and z, including v and
excluding x, is called algebraic closure. Denoted by A%.

Definition 2.2.12. The set of all elements © € X for which [u,z] N A # ¢

for every u € 10,z[ and Az ¢ A for every A > 1 is called radial boundary
of a set A.

Result 2.2.13. :

(1) pa = pgoyuar-
(2) A" ={z € X : pa(x) =1}

Proposition 2.2.14. Let X be a finite-dimensional separated topological lin-
ear space and let A be a convex set of X. A point xq € A is algebraic interior
of A if and only if xy is an interior point (in the topological sense) of A.

Corolloary 2.2.15. A point xqg € A where A is a convex set from a finite-
dimensional separated topological linear space, is an algebraic relative interior
point of A if and only if it is a relative interior point of A.

Result 2.2.16. If X is a separated topological linear space, then every (rel-
ative) interior point of a set is again an algebraic (relative) interior point of
this set, that is,

intAC AY riAC A" (2.2)

Proposition 2.2.17. If A is a convex set for which the origin is an algebraic
relative interior point, then

A ={z € X :pa(x) < 1} and A = {z € X : pa(z) < 1}
Corolloary 2.2.18. The interior of a convex set is either an empty set or
it coincides with its algebraic interior.

Corolloary 2.2.19. The Minkowsk: functional of a convex, absorbent set A
of a topological linear space is continuous iff intA # ¢. In this case, we have

intA= A", A=A%* FrA=A",
where FrA = AN cA.
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Definition 2.2.20. A mazximal affine set is called a hyperplane. We say
that the hyperplane is homogeneous (hyperspace) if it contains the origin.
Equivalently, any subspace of X having co-dimension equal to 1 is hyper-
space.

A set is a hyperplane if and only if it is the translation of a mazximal
linear subspace. Hence hyperspace is a maximal linear subspace of X.

Proposition 2.2.21. In a real topological linear space X, any homogeneous
hyperplane is either closed or dense in X.

Proof. Let H is homogeneous hyperplane.

Take x,y € H and M\, 2 €R

Implies 3 nets (x;);er and (y;)jes in H which converges to x and y respectively.
As TVS is a hausdorff space and 4 , - are continuous.

We have Mz + Ay € H

So H is a linear subspace of X. By maximality of H, H C H, either H =
Hor H=X. O]

Theorem 2.2.22. The kernel of a nontrivial linear functional is a homo-
geneous hyperplane. Conversely, for every homogeneous hyperplane H there
exists a functional, uniquely determined up to a nonzero multiplicative con-
stant, with the kernel H.

Proof. Since f # 0, Kerf = f~1({0}), Kerf is proper subspace of X. Let

a€ X st fla)#0.
f(x)

For every x € X, take z = x — Fa) O
Hence z € Kerf so that span(Kerf U {a}) = X. Hence Kerf is homoge-

neous hyperplane in X.

Conversely, Let H be hyperspace in X and a ¢ H.
Now for every x € X 3! 2z € H and k € K s.t. © = z + ka. Define

fa) =k

Then Kerf = H.
Uniqueness Let f; and fs be two non trivial linear functional s.t. Kerf; =
K@?"fg .
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If g ¢ Kerf, we havex—%xo € Kerf, Ve e X

~ filz)

fal fi(wo)

JI()) :0:>f2<$>:]€f1 Ve e X

_ fa(zo)
where k£ = i)

]

Corolloary 2.2.23. If f is a nontrivial linear functional on the linear space
X, then {z € X : f(x) = k} is a hyperplane of X, for every k € R. Con-
versely, for every hyperplane H, there exists a linear functional f and k € R,
such that H ={x € X : f(x) = k}.

Corolloary 2.2.24. A hyperplane is closed iff it is determined by a noniden-
tically zero continuous linear functional.

2.3 Separation of Convex Sets

If f(z) =k, k € R, is the equation of hyperplane in a real linear space X, we
have two open half-spaces {z € X : f(z) < k},{z € X : f(z) > k} and
two closed half-spaces {z € X : f(z) < k},{zr € X : f(x) > k}.

Result 2.3.1. A convex set which contains no point of a hyperplane is con-
tained in one of the two open half-spaces determined by that hyperplane.
Indeed, if C is convexr set and x1,x9 be s.t. f(x1) > k and f(x2) < k but
Ax1+ (1 — Nz € C and f is continuous so 3\, € (0,1) s.t. f(Mz + (1 —
A )xza) = k, hence x1 and xs cannot be contained in a convexr set which is
dsjoint from hyperplane f(z) = k.

Remark 2.3.2. If X is a topological linear space, then the open half-spaces
are open sets and the closed half-spaces are closed sets if and only if the
linear functional f which generated them is continuous, or, equivalently, the
hyperplane {x € X : f(x) =k} is closed.

Definition 2.3.3. A function f: X — (—00,0) is called convex if
fuz + Xay) < A f(x) + Aaf(y) (2.3)

for all x,y € X and \y > 0,y > 0, with \y + X\o = 1. If inequality is
strict for x # y in Dom(f) and Ay > 0, Ay > 0, then the function f is called
strictly convez.
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Equivalent to inequality (2.3)

(an+ )f(#> < af() + axf(z2) (2.4

aj + as
for all 1,25 € X and a; > 0,ay > 0.

Theorem 2.3.4. (Hahn-Banach) Let X be a real linear space, let p be a
real convex function on X and let Y be a linear subspace of X. If a linear
functional fo defined on Y satisfies

foly) <ply),  Vyey, (2.5)
then fo can be extended to a linear functional f defined on all of X, satisfying
f#) <plx), VeeX. (2.6)

Proof. fu,v €Y, 20€ X \Y and a > 0 5 < 0 we have

_ _ N a(u+ 2wo)  —Bv+ 50)
afo(u) = Bfo(v) = folau — Bv) = (a — B) fo a—f3 (a—B) ]

a(u+ Lag)  —Plv+ %xo
a—pf (a—5)

So we have,

Bp(v + %xo) — Bfo(v) < ap(u + éxo) — afo(u) true for all u,v €Y.

Hence, Yu,v € Y and a > 0,8 < 0, dc € R such that

B

Now consider subspace X; = span(Y U {zy}). For each element z; € X; we
have 1 = y + A\zg with y € Y and A € R uniquely determined.
Define f; on X; by

suza{ﬁp(v + La) - 5fo(v)} <e< mf{ap<u +Zag) - afo<u>} 2.7)

fi(z1) = fily + Azo) = fo(y) + Ac where ¢ is from (2.7)
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Hence f; is linear and f|,, = fo. Now for A # 0

Fi) = folu) + e < folw) +A| 30y + Aeo) = 3 folw)| =) (by 27

Let Z ={(Z,f.):Y CZ and f.|y = fo and f.(y) < p(y) Yy € Z}. So &
is non empty.
Define < on & by

(Zv fZ> = (Wafw) Zf Z g W and fw|Z = fz

Then (£, <) is poset.
Let (Za, f.,) be chain in (£, <). Define |J Z,. Define f on |J Z, by

ac acA
f(z) = f..(2) for z € Z,. Hence |J Z, is an upper bound. By Zorn’s lemma
ac
there exists maximal (W, f,,) in (£, <). Hence W = X if not maximality

of W will controdict.
O

Theorem 2.3.5. If A is a convex set with A™ # ¢ and M is an affine set
such that M N A™ = ¢, then there exists a hyperplane containing M, which
is disjoint from A™.

Theorem 2.3.6. If A is a convex set with a nonempty interior and if M is
an affine set which contains no interior point of A, then there exists a closed
hyperplane which contains M and which again contains no interior point of

A.

Corolloary 2.3.7. On a topological linear space there exist nontrivial con-
tinuous linear functionals (or closed hyperplanes) if and only if there exist
proper convex sets with nonempty intertor. On any proper locally convex
space there exist nontrivial continuous functionals and closed hyperplanes.

Definition 2.3.8. A hyperplane H is called a Supporting hyperplane of
a set A if H contains at least one point of A and A lies in one of the two
closed half-spaces determined by H. A point of A through which a supporting
hyperplane passes is called support point of A.

Note 2.3.9. In a linear topological space, any supporting hyperplane of a
set with a mnonempty interior is closed. Algebraic interior point cannot be a
support point. Hence, any support point is necessarily an algebraic boundary
point.
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Theorem 2.3.10. If the interior of a convex set is nonempty, then all the
boundary points are support points.

Theorem 2.3.11. If Ay and As are two nonempty convex sets and if at least
one of them has a nonempty interior and is disjoint from the other set, then
there exists a separating hyperplane. Moreover, if Ay and As are open, the
separation 1s strict.

Corolloary 2.3.12. If Ay and Ay are two nonempty disjoint convexr set of
R™, there exists a nonzero element ¢ = (cy,...,¢,) € R*\ {0}, such that

n

ZCZ‘UZ' < chi, Yu = (UZ> € Al, Vv = (’UZ) S Ag.

i=1 =1

Example 2.3.13. Counter ezample to Theorem 2.3.11 that if we drop con-
dition Ay and As to be open: Consider disjoint convex sets

Ay = {(x1,22) : 11 <0} and Ay = {(z1,22) : x129 > 1,21 > 0,29 > 0}

has nonempty interiors in R? but cannot be strictly separated, only separating
hyperplane is x1 = 0.

Theorem 2.3.14. If I, and F5 are two disjoint nonempty closed convex sets
i a separated locally convexr space such that at least one of them is compact,
then there exists a hyperplane strictly separating Fy and Fy. Moreover, there
exists a continuous linear functional f such that

sup{f(z) :x € Fi} < inf{f(x): x € Fy}. (2.8)

Corolloary 2.3.15. If xy ¢ F, where F is a nonempty closed convex set of
a separated locally convex space, then there exists a closed hyperplane strictly
separating F' and xq, that is, there is a nontrivial continuous linear functional
such that

sup{f(x):xz € F} < f(xo).

Theorem 2.3.16. A proper convex set of a separated locally convex space is
closed if and only if it coincides with an intersection of closed half-spaces.

Corolloary 2.3.17. A closed convex set with nonempty interior of a sep-
arated locally convex space coincides with the intersection of all half-spaces
generated by its supporting hyperplanes.
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2.3. Separation of Convex Sets



Chapter 3

Completeness

3.1 Baire Category

Definition 3.1.1. Let S be a Topological Space. The sets of the first cat-
egory in S are those that are countable unions of nowhere dense sets. Any
subset of S that is not of the first category is said to be of the second cate-
gory in S.

Example : Q C (R, Tusuat) s of first category. But Q° C (R, Tysuar) s of
second category.

Note 3.1.2. In general, host space and its topology plays fundamental role
in determing category. Ezample - Z C R. 7Z as subspace of R is of second
category in itself but as Z C R is of first category.

Properties 3.1.3. Let S be a Topological Space.

(1) If A C B and B is of the first category in S, so is A.
(2) Any countable union of sets of the first category is of the first category.

(3) Any closed set E C S whose interior is empty is of the first category
in S.

(4) If h is a homeomorphism of S onto S and if E C S, then E and h(E)

have the same category in S.

Theorem 3.1.4. If S is either

43
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(1) a complete metric space, or

(2) a locally compact Hausdorff space,

then the intersection of every countable collection of dense open subsets of S
15 dense in S.

Proof. (1) Let {D,, }nen is any countable collection of open dense set.
Let zg € S, r > 0. And let B(zg,r) be the open ball centered at z, with
radius r.

o0

To prove : (| D, and B(xg,r) has non empty intersection.
n=1

Since D; is dense in S, we have

Dy N B(xg, 1) # ¢.
So let 1 € Dy N B(xg, 7). Both are open sets 3 > 0 with 7; < 1 such that,
B(z1,m1) C Dy N B(xy,7)
Since D, is dense in S, we have

DzﬂB(Q?l,T’l) # ¢

So let x5 € Dy N B(xy,71). Both are open sets 3 o > 0 with ry < % such
that,
B(zg,19) C Dy N B(x1,71)

Processing in this way we get,
D, 44 is dense in S, we have

Dn—H N B(xm Tn) 7£ ¢

Solet x,.1 € Dy 1NB(xy,r,). Both are open sets 37,1 > 0 withr,1 < n+r1
such that,
B(zpi1,7ns1) C Dy N B(xy,1y)

We obtain a sequence (x,,) € S and (7,)nen , iy, 00 7 = 0

B(xpi1,7n41) C Dypyr N B(xp, 1) C B(xy, )
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By Cantor Intersection Theorem we have

(]-B($n+b7ﬁ+ﬂ #‘ﬁ

n=1

¢ # [\ B(@n, 1) C [ | Dn N B@n, ) C ([1) D) N Blao, 7)
n=1 n=1 n=1
(2) Let By be an arbitary non empty open set in S. Similarly by part (1)
if n > 1 and an open set B, ; # ¢ has been choosen, then 3 an open set
B, # ¢ with o
B,CcD,NB,

Since S is locally compact Hausdorff Space, B,, can be chosen compact. Put
K= (B,

n=1
K # ¢ by compactness. By our construction K C By and K C D,, for each

n. Hence By intersects [ D,.
neN

]

Note 3.1.5. If {E;} is a countable collection of nowhere dense subsets of S,
and if V; is the complement of E; , then each V; is dense, and the conclusion
of Baire’s theorem is that NV; # ¢- Hence S # UFE;. Therefore, complete
metric spaces, as well as locally compact Hausdorff spaces, are of the second
category in themselves.

Definition 3.1.6. Equicontinuity : Suppose X and Y are topological vector
spaces and I is a collection of linear mappings from X into Y. We say that
I' is equicontinuous if to every neighborhood W of 0 in Y there corresponds
a neighborhood V of 0 in X such that T(V) C W for all T € T.

Theorem 3.1.7. Suppose X and Y are topological vector spaces, T' is an
equicontinuous collection of linear mappings from X into Y, and E is a
bounded subset of X. Then Y has a bounded subset F such that T(E) C F
for every T € T.

Proof. Let F' = |J T(F). Let W be a neighborhood of 0 in Y. Since I' is

Ter
equicontinuous there is a neighborhood V of 0 in X s.t. T(V) c W, VT € T.

Since E is bounded, £ C tV for large t,
T(E)CTtV)=tT(V)CtW.
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Hence |J T'(E) C tW implies F' C tW. Hence F is bounded. O
Ter

Theorem 3.1.8. (Banach-Steinhaus) : Suppose X and Y are topological
vector spaces, I' is a collection of continuous linear mappings from X into Y,
and B is the set of all v € X whose orbits

['(z)={T(z): T €T}

are bounded in Y.
If B is of secound category in X, then B=X and I" is equicontinuous.

Proof. Pick balanced neighborhood W and U of 0in Y s.t. U+ U = W. Put

E=()\T7'0).

Tell

If z € B, then I'(z) C nU for some n, so that = € nE. Hence B C |J nFE.

Now atleast one nE is of the second category of X, since this is true gf 1B But
x — nx is homeomorphism of X onto X, implies E itself of second category
in X. E has nonempty interior but E is closed since T is continuous. Let E
has an interior point x. Then x — E contain a neighborhood V of 0 in X.

Vcaxe—F

T(V)CTex—T(E)cU-UcCW VT eT.

Implies I' is equicontinuous and by previous theorem I' is uniformly bounded.
Each I' is bounded in Y, Hence B = X. O

Corolloary 3.1.9. If I is a collection of continuous linear mappings from
an F-space X into a topological vector space Y, and if the sets

['(x)={Tz:TeTl}
are bounded in Y, for every x € X, then I' is equicontinuous.

Proposition 3.1.10. Suppose X and Y are topological vector spaces, and
{T,} is a sequence of continuous linear mappings of X into Y.

(1) If C is the set of all x € X for which {T,(x)} is a Cauchy sequence in

Y, and if C is of the second category in X, then C = X.
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(2) If L is the set of all x € X at which

T(x) = lim T, (z)

n—oo

exists, if L is of the second category in X, and if Y is an F-space, then
L=X andT:X —Y is continuous.

Corolloary 3.1.11. If T, is a sequence of continuous linear mappings from
an F-space X into a topological vector space Y, and if

T(x) = lim T,(x)

n—oo

exists for every x € X, then T is continuous.

Theorem 3.1.12. Suppose X and Y are topological vector spaces, K is a
compact convex set in X, I' is a collection of continuous linear mappings of
X into Y, and the orbits

[(x)={Tz:T €T}

are bounded subset of Y, for every x € K.
Then there is bounded set B C'Y s.t. T(K) C B for every T € T.

Proof. Let B be the union of all sets I'(z), for z € K. Pick balanced neigh-
borhood Wand Uof 0in Y s.t. U+ U C W. Put

E=(\T7'(0)

Tell

If z € K, then I'(z) C nU for some n, so that x € nE. We have

K = G(KﬁnE).

n=1

Since E is closed, Baire’s theorem shows that K NnFE has nonempty interior
(relative to K) for at least one n (say ny).
We fix an interior point xy of K N nkE, we fix a balanced neighborhood V of
0 in X s.t.

Kn(zg+V)CnE

and we fix a p > 1 s.t.
KCI’Q—FPV
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Such p exists since K is compact.
If now x is any point of K and

z=1—p Yoy +p'a
then z € K, since K is convex. Also,
z—x9g=p (x—x0) EV.

Hence z € nE. Since T'(nE) C nU for every T € ' and since x = pz — (p —
1)xg,and since U is balanced we have

Tz € pnU — (p — 1)nU C pn(U + U) C pnW.

Thus B C pnW, hence B is bounded.

3.2 The Open Mapping Theorem

Theorem 3.2.1. Suppose X is an F-space and Y is a topological vector
space. Also suppose T : X — Y s continuous and linear and T(X) is of
second category in Y. Then

(1) T(X)=Y,
(2) T is open mapping, and

(3) Y is an F-space.

Proof. Obviously (2) implies (1), 7'(X) is open in Y and only open subspace
of Yis Y itself, so T(X)=Y.

To prove (2), let V be a neighborhood of 0 in X. We have to show that
T(V) contains a neighborhood of 0 in Y (since our topologies are invariant
so enough to show nbd around 0).

Let d be invariant metric on X that is compatible with the topology of X.
Define

Vo =A{x:d(z,0) <27"r} (n e N)
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where r > 0 is so small that Vo C V. We proceed by proving that for some
neighborhood W of 0 in Y satisfies

W crT(Vh) cT(V) (3.1)

Since V, — V5 C V4, by Theorem 1.2.6 (b)

T(Va) — T(Va) C T(Va) — T(Va) C T(VA).

Also we know that T'(X) = |J kT(V3), because V5 is neighborhood of 0. At
k=1

least one kT'(V3) is therefor of second category in Y. Because of homeomor-
phism y — ky of Y onto Y, T'(V3) is of second category in Y. Its closure
therefore has nonempty interior. Now take x € int(V53)

0€x—int(Vy) C T(Va) — T(Va).

First inclusion of equation (3.1) is done. To prove second inclusion in equa-
tion (3.1), fix y; € T'(V}). Assume n > 1 and y,, has been chosen in T'(V},).

What was just proved for V] is true for V1, so that T'(V,, ;1) contains a
neighborhood of 0. Hence

(Wn = T(Vay1)) NT (Vo) # &.

This says that dz,, € V,, s.t.

T(xn) € Y — T (Vis1)-
Put yp41 = yn — T(z,,). Then y,11 € T(V,51) and construction proceeds.
Since d(z,,0) < 27" for n € N, the sums x; + --- + z,, forms a cauchy
sequence which converges (by the completeness of X) to some = € X, with
d(xz,0) <r. Hence z € V. Since

Z T(iL‘n) = Z(yn - ynJrl) =Y — Ym+1
n=1 n=1

and since y,,11 — 0 as m — oo, hence y; = T(x) € T (V). Hence (2) is
proved.
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By Theorem 1.8.4 X/N is an F-space, if N is the null space of T. Define
flz+N)=T(z) (x € X).

So f is isomorphism and that T'(z)
is open in Y,then

f(n(z)), where 7 is quotient map. If V

f'V)y={z+ NeX/N: f(x+N)eV}

={r+NeX/N:T(x) eV}

={r+NeX/N:xeT HV)}

= (T (V))
is open, since T is continuous and 7 is open. Hence f is continuous. If E is
open in X/N, then

f(E) =T(n"(E))

is open, 7 is continuous and T is open. Hence F is homeomorphism. As X/N

is an F-space so is Y. O

Corolloary 3.2.2.

(a) If T is a continuous linear mapping of an F-space X onto an F-space
Y, then T is open.

(b) If T satisfies (a) and is one-to-one, then T=' 1Y — X is continuous.

(¢) If X and Y are Banach spaces, and if T : X — Y is continuous, linear,
one-to-one, and onto, then there exist positive real numbers a and b
such that

alz[ <|T()| <ol

for every x € X.

(d) If 11 C 1o are vector topologies on a vector space X and if both (X, 1) and (X, 13)

are F-spaces, then 11 = 7.

3.3 The Closed Graph Theorem

Definition 3.3.1. Graphs : If X and Y are sets and f maps X into Y, the
graph of f is the set of all points (x, f(x)) in the cartesian product X x Y.
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Proposition 3.3.2. If X is a topological space, Y is a Hausdorff space, and
f: X =Y is continuous, then the graph G of f is closed.

Theorem 3.3.3. The closed graph theorem : Suppose X and Y are F-
space and T : X — Y is linear map. Further G = {(z,T(x)) : x € X} is
closed in X x'Y. Then T is continuous.

Proof. X xY is a vector space if addition and scaler multiplication are defined
componentwise:

(z1,91) + (T2, 42) = (21 + 72,41 + 1)

a(ry,y1) = (axy, ayr).

There are complete invariant metrics dx and dy on X and Y, respectively,
which induce their topologies. If

d(@la 73/1)7 (1’2,y2)) = dX(ﬂfl, xz) + dY(y1,y2)

then d is an invariant metric on X x Y which is compatible with its product
topology and which makes X X Y into an F-space.

Since T is linear map hence G is subspace of X x Y. Closed subset of a
complete metric space is complete. Therefore G is F-space.

Definem : G — X and my: X XY — Y by
m(z,T(x)) = =, ma(z,y) =Y.
So 7 is continuous beijective linear map. So from open mapping theorem
X =G

is continuous. Also T' = myom; Land 5 is continuous. Hence T is continuous.

]

Definition 3.3.4. Bilinear Map : Suppose X, Y, Z are vector spaces and
B maps X XY into Z. Associate to each x € X and to each y € Y the

mapping
B,:Y—Z7 and BY: X —> 7
by defining
B,(y) = B(z,y) = B(x).

B is said to be bilinear if every B, and every BY are linear.
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Definition 3.3.5. If X, Y, Z are topological vector spaces and if every B,
and every BY is continuous, then B is said to be separately continuous.

Proposition 3.3.6. Suppose B : X XY — Z is bilinear and separately
continuous, X 1s an F-space, and Y and Z are topological vector spaces. Then

B('rnayn) — B(%,yo) in Z

whenever x,, — xo in X and y, — yo n Y. If Y is metrizable, it follows that
B is continuous.



Chapter 4

Weak and Weak™-Topology

4.1 Prerequisites

Proposition 4.1.1. Suppose M is a subspace of a vector space X, p is a
seminorm on X, and f is a linear functional on M such that

[f(@)| <plz)  (z€ M)
Then f extends to a linear functional T on X that satisfies
T(z)| < plx)  (ze€X)

Proposition 4.1.2. Suppose A and B are disjoint, nonempty and convex
sets in a topological vector space X.

(1) If A is open there exists T € X* and v € R s.t.
ReTr <vy< ReTy

Vr € A and Yy € B.

(2) If A is compact and B is closed and X is locally convex space, then there
erist T' € X*, v1,72 € R s.t.

ReTx <y <y < ReTy

Ve e A and Yy € B.

93
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Proposition 4.1.3. Suppose M is a subspace of a locally convex space X,
and xo € X. If x¢ is not in the closure of M, then there exists T € X* such
that T'(zo) = 1 but Tx =0 for every x € M.

Proposition 4.1.4. Suppose B is a convex, balanced, closed set in a locally
convex space X, g € X, but xy ¢ B. Then there exists T € X* such that
|T(x)] <1 for allx € B, but T(x9) > 1.

4.2 Weak Topologies

Lemma 4.2.1. If ;1 C 1 are topologies on a set X, if 7 1s a Hausdorff
topology, and if 7o is compact, then T = Ts.

Proof. Let FF C X be 175 — closed. Since X is my-compact, so is F. Since
71 C T implies F is 7-compact. Since 7y is a Hausdorff topology, implies
that F is 7-closed. Conclude that 7 C 7. Hence 7 = 7.

[]

Definition 4.2.2. Suppose that X is a set and F is a nonempty family of
mappings [+ X — Yy , where each Y} is a topological space. Let T be the
collection of all unions of finite intersections of sets f~(V), with f € F
and V open in Yy . Then 7 is a topology on X, and it is in fact the weakest
topology on X that makes every f € # continuous. This T is called the
weak topology on X induced by F, or, more succinctly, the % -topology of
X.

Example 4.2.3. Let X be the cartesian product of a collection of topological
spaces Xo. If mo(x) denotes the ath coordinate of a point x € X, then m,
maps X onto X,, and the product topology T of X is its {m,}-topology, the
weakest one that makes every m, continuous.

Lemma 4.2.4. If.% is a family of mappings f : X — Yy , where X is a set
and each Yy is a Hausdorff space, and if F separates points on X, then the
F -topology of X is a Hausdorff topology.

Lemma 4.2.5. If X is a compact topological space and if some sequence
{fn} of continuous real-valued functions separates points on X, then X is
metrizable.



95

Proof. Let T be the given topology on X. Suppose, without loss of generality,
that | f,| <1 for all n, and let 74 be the topolgy induced on X by the metric

d(p,q) = > 27" falp) = fulg)].

Since each f,, is 7-continuous and the series converges uniformly on X x X,
d is 7-continuous function on X x X. The balls

B(p,r)={qe€ X :d(p,q) <r}

are therefore 7-open. Thus 75, C 7. Since 74 is induced by a metric, 74 is a
Hausdorff topology, and now Lemma 4.2.1 implies that 7 = 74. ]

Lemma 4.2.6. Suppose 11,15, ..., T, and T are linear functionals on a vec-
tor space X. Let

N={zxe X :Thx=---=T,x=0}.
The following are equivalent:
(1) Ther are scalars Py, ..., B, such that

(2) There exists v < oo such that

Tz < v mazi<i<y [Tizl (x € X).

(3) Tx =0 for every x € N.

Theorem 4.2.7. Suppose X is a vector space and X' is a separating vector
space of linear functionals on X. Then the X —topology T makes X into a
locally convex space whose dual space is X' .

Proof. We know that R and C are Hausdorff space so by Lemma 4.2.3
7" is a Hausdorff topology. The elements of X  are linear which gives 7
translational-invariant. If 7y,...,T, € X and if ; > 0 and if

V={x:|Tiz| <r; for 1 <i<n},
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then V is balanced, convex and V € 7. And collection of all V form local
base for 7.

Here %V + %V =V | hence addition is continuous. Suppose z € X and « is
scalar. Then = € sV for some s > 0 as V is absorbing set too. If | —a| <r
and y € x +rV then

By —azx = (B —a)y+aly—z)
c (rz +r*V) + (la|rV)
CrsV + 7V + |a|rV
cV.

provided r(s + r) + |a|r < 1. Hence scalar multiplication is continuous.
So we proved 7 is locally convex vector topology. Also every T € X' is 7
continuous. Conversely, suppose T is 7 continuous linear functional on X.
Then |Tz| < 1 for all x in some set V constucted earlier. By Lemma 4.2.6
T => 5;T;. Since T; € X" and X' is vector space, T' € X'

O

4.2.8 The weak topology of a topological vector space

Suppose X is a topological vector space (7) whose dual X* separates points
on X. The X*-topology of X is called weak topology of X.

Let X be topologized by weak topology 7, and denote it by X,,.

Tw 18 weakest topology on X means 7, C 7, So 7 will often called original
topology.

Let {x,} be sequence in X. x,, — 0 originally means every original neigh-
borhood of 0 contains all x,, except finite. z,, — 0 weakly means every weak
neighborhood of 0 contains all x,, except finite.

Note 4.2.9.

(1) Since every weak neighborhood of 0 contains a neighborhood of the form
V=Ax:|Tiz|<r; for 1 <i<n}

where T; € X* and r; > 0, so x, — 0 weakly iff Tx, — 0 for every
T e X*.
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(2) Every originally convergent sequence converges weakly.

(3) A set E C X is weakly bounded iff for every T € X* is bounded function
on E.

(4) Consider V construct earlier and N = {x : Tyx = --- =T,, = 0}. Since
r — (Tiz,...,Tyx) maps X into C with null space N, so dimX <
n+dimN. Since N CV so if X is infinite dimensional then every weak
netghborhood of 0 contains an infinite dimensional subspace; hence X,
15 not locally bounded.

Theorem 4.2.10. Suppose E is a convex subset of locally convex space X.
Then the weak closure E., of E is equal to its original closure E.

Proof. E,, is weakly closed, hence originally closed, so £ C E,. Choose
19 € X ,29 ¢ E. By Theorem 4.1.2 there exist T € X* and a € R such that,
for every z € E,

Re Txg < oo < Re Tx.

The set {x : Re Tz < a} is weak neighborhood of xy that does not intersect
E. Thus xy ¢ E,. Hence E,, C E. O

Corolloary 4.2.11. For convex subsets of a locally convex space,
(1) originally closed equals weakly closed and

(2) originally dense equals weakly dense.

Theorem 4.2.12. Suppose X is a metrizable locally convex space. If {x,}
15 a sequence in X that converges weakly to some x € X, then there is a
sequence {y;} in X such that

(1) each {y;} is a conver combination of finitely many z,, , and

(2) y; — x originally.

4.2.13 The weak*-topology of a dual space

Let X be topological vector space whose dual is X*. Now every z € X
induces a linear functional f, on X* defined by

f.T =Tx

and that {f, : * € X} separates points on X*. The X-topology of X* is
called weak*-topology of X*.
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4.3 Compact Convex Sets

Theorem 4.3.1. The Banach-Alaoglu theorem : If V is neighborhood
of 0 in a topological vector space X and if

K={TeX":|Tz| <1 for every x € V}
then K is weak™-compact.

Proof. Since neighborhoods of 0 are absorbing, so corresponds to every x € X
there is number ~, < oo such that x € 7, V. Hence

|Tx| <7, (xe X, T eK).

Let D, = {a € R: |a] <~,}. Let 7 be the product topology on P, cartesian
product of all D, one for each z € X. Set P is compact set being cartesian
product of compact sets (Tychonoff’s theorem). 7, : D — D, defined by
(@) = @y, x coordinate of a. So 7, is continuous. Elements of P are the
functions on X (linear or not) that satisfy

f@)] < (zeX)

Thus K € X* N P. So K inherits two topologies: one from X* (weak* —
topology) and 7 from P.

Claim (a) : These two topologies coincide on K.

Fix some Ty € K. Choose z; € X, for 1 < i < n; choose § > 0. Take

—{T € X*: |Tw; — Tyw;| < 61 <i < n}

Let n,z;, and ¢ range over all possible values. So W; then form a local base
for the weak*-topology of X* at T and the sets W5 form a local base for
product topology 7 of P at Ty. As K C X* N P, we have

WinkK=W,NK.

Cliam (b) : K is closed subset of P.
Suppose fy is in 7-closure of K. Choose =,y € X, scalers «, 5 and € > 0. The
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set of all f € P suct that |f— fo| < € at z,y, and ax+ Py is a T-neighborhood
of fy. Therefore K contains such a f. Since f is linear,

folax+By)—afo(x)—Bfoly) = (fo— f)(az+By)+alf— fo)(x)+B(f —fo)(y)

so that
| folax + By) — afo(z) — Bfo(y)| = (L + |a] +[B])e.

Since € was arbitrary, so fy is linear. Now if x € V and ¢ > 0, by same
argument shows f € K such that |f(z) — fo(x)| < €. Since |f(x)| < 1, by
definition of K, hence |fo(x)| < 1. Hence fy € K.

Now since P is compact, (b) implies that K is 7-compact and then (a) implies
that K is weak*-compact.

[

Theorem 4.3.2. If X is separable topological vector space, if K C X* and
if K is weak*-compact, then K is metrizable, in the weak*-topology.

Proof. Let {z,} be countable dense set in X. Define f,,(T) = Tz, for T €
X*. Each f, is weak*-coontinuous. If f,(T}) = f.(T2) Vn, then Tix, =
Tyx,,Vn, which implies that 77 = T3, since both are continuous on X and
coincide on a dense set.

Thus {f,} is a countable family of continuous function that separates points
on X*. So by Lemma 4.2.5 K is metrizable. O]

Proposition 4.3.3. If V is neighborhood of 0 in a separable topological vector
space X, and if {T,} is a sequence in X* such that

|T,z| <1 (xeVin=12,...),
there is a subsequence {T,,} and there is a T € X* such that

Tx = lim T,,x (x € X).

n—0o0

In other words, the polar of V is sequentially compact in the weak*-topology.

Theorem 4.3.4. In a locally convexr space X, every weakly bounded set is
originally bounded and vice versa.



60 4.3. Compact Convex Sets

Proof. Every originally bounded set is weakly bounded because every weak
neighborhood of 0 in X is an original neighborhood of 0.

Conversely, assume that F C X is weakly bounded and U is an original
neighborhood of 0 in X. We have to show there exists ¢ > 0 such that £ C tU.
Since X is locally convex, there is a convex, balanced, original neighborhood
V of 0 in X such that V C U. Let K C X* be the polar of V :

K={TeX":|Tz|<1 VxeV}.

Claim: V={r e X :|Tz| <1, T € K} (1)

V c{re X :|Tz| <1, T € K} by definition of K, implies V C {z € X :
|Tx| <1, T € K} as the set in right side is closed. Supposea € X but a ¢ V.
Proposition 4.1.4 shows that T'(a) > 1 for some T' € K. Hence claim holds.
Since E is weakly bounded, there corresponds to each T" € X* a number
Br < oo such that

|Tx| < Br Vzek. (2)

Since K is convex and weak*-compact and since the function T" — T'x are
weak*-continuous, by Theorem 3.1.13 we conclude from equation (2) that
there is constant § < oo such that

|Tx| < (xe E, T eK).

Now from equation (1) and (2), 37'x € V C U for all x € E. Since E is
balanced,
EctVctU (t>B).

Hence E is originally bounded.

Corolloary 4.3.5. If X is normed space, if E C X and if

sup|Tz| < oo (T e X™)
el

then there exists B < oo such that

e <8 (ze k).
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Definition 4.3.6.

(1) If X is a topological vector space and E C X, the closed convezr hull of
E, written ¢o(E), is the closure of co(E).

(2) A subset E of a metric space X is said to be totally bounded if E lies in
the union of finitely many open balls of radius €, for every e > 0.

(3) A set E in a topological vector space X is said to be totally bounded if
to every neighborhood V of 0 in X corresponds a finite set F such that
ECF+V.

Proposition 4.3.7. If E C R" and x € co(E), then z lies in the convex hull
of some subset of E which contains at most n + 1 points.

Theorem 4.3.8.

(1) If Ay, ..., A, are compact convez sets in a topological vector space X,
then co(Ay U ---U A,) is compact.

(2) If X is a locally convex topological vector space and E C X is totally
bounded, then co(E) is totally bounded.

(3) If X is a Frechet space and K C X is compact, then co(K) is compact.

(4) If K is a compact set in R™, then co(K) is compact.

Proof. (1) Let S be the simplex in R™ consisting of all s = (sy,...,s,) with

$,>0,>8;,=1. Put A=Ay x--- x A,. Define f: S x A— X by
i—1

1=

and put K = f(S x A).

Since f is continuous and S x A is compact so K is compact and K C
co(A;U---UA,).

If (s,a) and (t,b) arein S x Aand if « >0, 8 >0, o+ =1, then

&f(S, a) + 5f(t’b) = f(u,c),
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where u = as+ t € S and c € A, because

o = WwHOtb oy oy
as; + ft;
So K is convex. Since A; C K for each i [take s; =1, s; =0 for j # i], the
convexity of K implies that co(A; U---UA,) C K.
So K = co(A; U---UA,), hence conclusion hold.

(2) Let U be a neighborhood of 0 in X. Choose a convex neighborhood V
of 0 in X such that V+V C U. Then E C F +V for some finite set F' C X.
Hence E C co(F) + V. The set co(F) + V is convex. It follows that

co(E) C co(F)+ V.

But co(F') is compact [by (1)], and therefore co(F) C F; + V for some finite
set F1 C X. Thus
CO(E) CF1+V+VCF1+U.

Since U was arbitrary, co(E) is totally bounded.

(3) Closures of totally bounded sets are totally bounded in every metric
space, and hence are compact in every complete metric space. So if K is
compact in a Frechet space, then K is obviously totally bounded ; hence
co(K) is totally bounded, by (2), and therefore ¢o(K) is compact.

(4) Let S be simplex in R™*! consisting of all ¢ = (¢y,...,t,41) witht; >0
and > t; = 1. Let K be compact, K C R™. By Proposition 4.3.7, x € co(K)
iff

n+1

i=1

for some t € S and x; € K (1 <i <n+1). In other words, co(K) is the
image of S x K™ under the continuous mapping

n+1
<t7x17 s 7xn+1) - E tzxz
1=1

Hence co(K) is compact.
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Proposition 4.3.9. Suppose X is a topological vector space on which X*
separates points. Suppose A and B are disjoint, nonempty, compact, convex
sets in X. Then there exists T € X* such that

sup Re T'x < inf Re TY.
€A yeB

Definition 4.3.10. Extreme points : Let K be a subset of a vector space
X. A nonempty set S C K is called an extreme set of K if no point of
S 1s an internal point of any line interval whose end points are in K, except
when both end points are in S. i.e. [fx e K, ye K, 0<t<1, and

(1-thr+tyesS

then z,y € S.
The extreme points of K are the extreme sets that consist of just one point.
And the set of all extreme points are denoted by E(K).

Theorem 4.3.11. The Krein-Milman Theorem : Suppose X is a topo-
logical vector space on which X* separates points. If K is a nonempty com-

pact convex set in X, then K is the closed convex hull of the set of its extreme
points. In symbols, K = co(E(K)).

Proof. Let & be the collection of all compact extreme sets of K. Since K &
P, P # .

Claim(1) : The intersection S of any nonempty subcollection of & is a
member of & unless S = ¢.

Assume S = (( E;, E; € &. Being the intersection of closed sets, S is
iel

closed and S C K so S is compact. Let z € S and x = Au+ (1 — \)v for some

u,v € K and A € [0,1]. Now = € E; Vi € I and E; is an extreme subset of

K so we have u,v € F; Vi € I. Hence u,v € S. Thus claim hold.

Claim(2) : If S € 22, T € X*, uu is the maximum of Re T on S, and
Sr={x€S:ReTx=pu},

then Sp € &.
Suppose tx+ (1 —t)y =z € Sp,x,y € K,0 <t < 1. Since z € Sand S € &
we have z,y € S. Hence Re Tx < p, Re Ty < p. Since Re Tz = p and T is

linear we have Re Tx = u = Re Ty. Hence z,y € Sr. Hence claim hold.
Choose some S € P. Let # = {E:ECS,E € &}. Since S € &', &' is
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not empty. Partially order 22’ by set inclusion, let w be a maximal totally
ordered subcollection of 22’, and let M be the intersection of all members of
w. Since w is a collection of compact sets with the finite intersection property,
M # ¢. By (1), M € &'. The maximality of w implies that no proper subset
of M belongs to &. It now follows from (2) that every T' € X* is constant
on M. Since X* separates points on X, M has only one point. Therefore M
is an extreme point of K.

We proved

E(K)NS # ¢ (%)

for every S € &. In other words, every compact extreme set of K contains
an extreme point of K.
Since K is compact and convex, we have

c(E(K)) C K

and hence ¢o(F(K)) is compact.

Assume that some zy € K is not in ¢o(E(K)). By Proposition 4.3.9,
there is T € X* such that Re Tx < Re Tz for every x € co(E(K)). If Kr
is defined as in (2), then Ky € 2. Choice of T shows that Ky is disjoint
from ¢o(E(K)) and controdicts equation (*). Hence K = ¢o(F(K)). O

Theorem 4.3.12. If K is compact subset of locally convexr space X then
K Cco(FE(K)). Equivalently, co(K) = co(F(K)).

Theorem 4.3.13. If K is a compact set in a locally convexr space X, and if
co(K) is also compact, then every extreme point of co(K) lies in K.

Proof. Assume that some extreme point p of ¢o(K) is not in K i.e. p € K¢,
K¢ is open. Then there is a convex balanced neighborhood V of 0 in X such
that

p+V)NK =¢ (1)

K C | (z+V) and since K is compact every open cover have finite subcover,
zeK
So there are zy,...,x, in K such that K C |J(z; + V). Each set
i=1

A=@K N(z+V) (1<i<n)
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is convex and also compact, since A; C co(K). Also K C A;U---UA,. By
Theorem 4.3.8 (1) we have

co(K)Cceo(A1U---UA,) =co(AyU---UA,).
Since A; C co(K) for each i, we get co(K) D co(A; U---UA,). Thus
co(K) =co(A;U---UA,). (2)

Sop € co(AyU---UA,), in particular p = t1y1 + - - - + tnyn, where each y;
lies in some A;, each t; is positive and ) ¢; = 1. The grouping

toyo + - +tNyN
) (3)
to+---+1in

p=tiyi+(1—1t

exhibits p as a convex combination of two points of ¢o(K), by (2). Since p
is an extreme point of ¢o(K), we conclude from (3) that y; = p. Thus, for
some i,

peA, Cu;+VCK+V,

which contradicts (1). O
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