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ABSTRACT

The main aim of this project is to learn a branch of Mathematics that
studies vector spaces endowed with some kind of limit-related structure (e.g.
inner product, norm, topology, etc.) and the linear functions defined on these
spaces and respecting these structures in a suitable sense.

Specifically we will learn vector space with some topology on it (called
topological vector space). A topological vector space (also called a linear
topological space) is one of the basic structures investigated in functional
analysis. A topological vector space is a vector space (an algebraic structure)
which is also a topological space, thereby admitting a notion of continuity.
More specifically, its topological space has a uniform topological structure,
allowing a notion of uniform convergence.

In chapter 1 we will learn some Separation properties in TVS (Topologi-
cal Vector Space) in the sense that two disjoint closed and compact sets can
be separate by finding suitable disjoint neighborhoods. And when TVS is
metrizable in the sense that is there any metric which is compatible with
vector topology having some condition on TVS. And we will learn relation
between Seminorms and Local Convexity. Finally we will conclude that there
are some TVS which are not normed spaces.

In chapter 2, we will learn some definitions like Banach space, dual of
Spaces, convex (affine) set and convex (affine) hull of sets, algebraic relative
interior, algebraic closure of set, and radial boundary etc. Then Separation
properties on convex sets in the sense that there exists a hyperplane (linear
functional) that separates two disjoint compact convex and closed convex
sets.

In chapter 3, we will see Banach- Steinhaus theorem, open mapping the-
orem and closed graph theorem. Banach–Steinhaus theorem In its basic
form, it asserts that for a family of continuous linear operators (and thus
bounded operators) whose domain is a TVS (secound category), pointwise
boundedness is equivalent to uniform boundedness in vector topology.

In chapter 4, we will learn notion of Weak and Weak∗ topology. And
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most important theorems Banach-Alaoglu theorem and Krien-Milman theo-
rem which have many application. Krein–Milman theorem is a proposi-
tion about convex sets in topological vector spaces. Let X be a locally convex
topological vector space and let K be a compact convex subset of X. Then,
the theorem states that K is the closed convex hull of its extreme points.
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Chapter 1

Topological Vector Space

1.1 Introduction

Definition 1.1.1. Topological Vector Space : Suppose τ is a topology
on a vector space X such that

(a) every point of X is a closed set, and

(b) the vector space operations are continuous with respect to τ .
Then X is said to be Topological Vector Space.

Note 1.1.2. To say that addition is continuous means, by definition, that
the mapping

(x, y)→ x+ y

of the cartesian product X ×X into X is continuous: If xi ∈ X for i = 1, 2
and if V is a neighborhood of x1 + x2, there should exist neighborhoods Vi of
xi such that

V1 + V2 ⊂ V.

Similarly, the assumption that scalar multiplication is continuous means that
the mapping

(α, x)→ αx

of K×X into X is continuous : If x ∈ X, α is scalar, and V is a neighborhood
of αx, then for some r > 0 and some neighborhood W of x we have βW ⊂ V
whenever |β − α| < r.
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2 1.1. Introduction

Definition 1.1.3. A subset E of a topological vector space is said to be
bounded if for every neighborhood V of 0 in X corresponds a number s > 0
such that E ⊂ tV for every t > s.

Definition 1.1.4. Invariance : Let X be a topological vector space. Asso-
ciate to each a ∈ X and to each scalar λ 6= 0 the translation operator Ta and
the multiplication operator Mλ by the formulas

Ta(x) = a+ x, Mλ(x) = λx (x ∈ X).

Proposition 1.1.5. Ta and Mλ are homeomorphisms of X onto X.

Definition 1.1.6. A local base of a topological vector space X is a collection
B of neighborhoods of 0 such that every neighborhood of 0 contains a member
of B. The open sets of X are then precisely those that are unions of translates
of members of B.

Note 1.1.7. In the vector space context, the term local base will always
mean a local base at 0.

Definition 1.1.8. A metric d on a vector space X will be called invariant
if

d(x+ z, y + z) = d(x, y)

for all x, y, z in X.

Types of topological vector spaces: In the following definitions, X
always denotes a topological vector space, with topology τ .

(a) X is locally convex if there is a local base B whose members are
convex.

(b) X is locally bounded if 0 has a bounded neighborhood.

(c) X is locally compact if 0 has a neighborhood whose closure is compact.

(d) X is metrizable if τ is compatible with some metric d.

(e) X is an F -space if its topology τ is induced by a complete invariant
metric d.

(f) X is a Frechet space if X is a locally convex F -space.
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1.2 Separation properties

Lemma 1.2.1. : If W is a neighborhood of 0 in X, then there is a neighbor-
hood U which is symmetric (in the sense that U = −U) and which satisfies
U + U ⊂ W .

Proof. Since 0+0 = 0 and addition is continuous, there exist neighborhoods
V1, V2 ∈ N0 such that

V1, V2 ⊂ W.

Set

U = V1 ∩ (−V1) ∩ V2 ∩ (−V2).

U is symmetric; it is an intersection of four open sets that contain zero, hence
it is a non-empty neighborhood of zero. Since U ⊂ V1 and U ⊂ V2 it follows
that

U + U ⊂ W.

Note 1.2.2. Similarly we can prove U + U + U + U ⊂ W .

Theorem 1.2.3. Suppose K and C are subsets of a topological vector space
X, K is compact, C is closed, and K ∩ C = φ. Then 0 has a neighborhood
V such that

(K + V ) ∩ (C + V ) = φ.

Proof. If K = φ, then K + V = φ and the conclusion of the theorem is
obvious. We therefore assume that K 6= φ and consider a point x ∈ K.
Since C is closed, since x is not in C, and since the topology of X is invariant
under translations, the preceding proposition shows that 0 has a symmetric
neighborhood Vx such that x+Vx+Vx+Vx does not intersect C, the symmetry
of Vx shows then that

(x+ Vx + Vx) ∩ (C + Vx) = φ.

Since K is compact, there are finitely many points x1, x2, . . . , xn in K such
that

K ⊂ (x1 + Vx1) ∪ · · · ∪ (xn + Vxn).
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Put V = Vx1 ∩ · · · ∩ Vxn . Then

K + V ⊂
n⋃
i=1

(xi + Vxi + V ) ⊂
n⋃
i=1

(xi + Vxi + Vxi),

and no term in this last union intersects C + V.

Theorem 1.2.4. If B is a local base for a topological vector space X, then
every member of B contains the closure of some member of B.

Proof. Let U ∈ B. Let K = {0} (compact) and C = U c (closed).

Implies there exists a V ∈ N sym
0 , such that

V ∩ (U c + V ) = φ.

It follows that
V ⊂ (U c + V )c ⊂ U.

By the definition of a local base there exists a neighborhood W ∈ B s.t.

W ⊂ V ⊂ (U c + V )c ⊂ U.

Since (U c + V )c is closed,

W ⊂ (U c + V )c ⊂ U.

Proposition 1.2.5. : Every topological vector space is a Hausdorff space.

Theorem 1.2.6. : Let X be a topological vector space.

(a) If A ⊂ X then A =
⋂

(A+ V ), where V runs through all neighborhoods
of 0.

(b) If A ⊂ X and B ⊂ X then A+B ⊂ A+B.

(c) If Y is a subspace of X, so is Y .

(d) If C is a convex subset of X, so is C and C0.

(e) If B is a balanced subset of X, so is B; if also 0 ∈ B0 then B0 is
balanced.

(f) If E is a bounded subset of X, so is E.
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Theorem 1.2.7. : In a topological vector space X,

(a) every neighborhood of 0 contains a balanced neighborhood of 0, and

(b) every convex neighborhood of 0 contains a balanced convex neighborhood
of 0.

Corolloary 1.2.8. :

(a) Every topological vector space has a balanced local base.

(b) Every locally convex space has a balanced convex local base.

Theorem 1.2.9. : Suppose V is a neighborhood of 0 in a topological vector
space X.

(a) If 0 < r1 < r2 < . . . and rn →∞, then

X =
∞⋃
i=1

rnV.

(b) Every compact subset K of X is bounded.

(c) If a1 > a2 > . . . and an → 0 as n→∞ , and if V is bounded, then the
collection

{anV : n = 1, 2, 3, ...}

is a local base for X.

Proof. :

(a) Let x ∈ X and consider the sequence x/rn. This sequence converge to
zero by the continuity of the scalar multiplication. Thus, for sufficiently
large n,

x/rn ∈ V i.e. x ∈ rnV.

(b) Let K ⊂ X be compact. We need to prove that it is bounded, namely,
that for every V ∈ N0,

K ⊂ tV for sufficiently large t.
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Let V ∈ N0 be given, implies ∃ W ∈ N bal
0 s.t. W ⊂ V. We have

K ⊂
∞⋃
i=1

(nW ).

Since K is compact, there are integers n1 < n2 < · · · < ns such that

K ⊂ n1W ∪ · · · ∪ nsW = nsW.

The equality holds because W is balanced. If t > ns, it follows that
K ⊂ tW ⊂ tV.

(c) Let U be a neighborhood of 0 in X. If V is bounded, there exists s > 0
such that V ⊂ tU , ∀ t > s. If n is so large that san < 1, it follows that
V ⊂ (1/an)U . Hence U actually contains all but finitely many of the
sets anV .

1.3 Linear Mapping

Definition 1.3.1. : Suppose that X and Y are vector spaces over the same
scalar field. A mapping T : X −→ Y is said to be linear if

T (αx+ βy) = αT (x) + βT (y) ∀ x, y ∈ X and ∀ α, β ∈ K.

Linear mappings of X into its scalar field are called linear functionals.

Theorem 1.3.2. : Let X and Y be topological vector spaces. If T : X −→ Y
is linear and continuous at 0, then T is continuous. In fact, T is uniformly
continuous, in the following sense : To each neighborhood W of 0 in Y cor-
responds a neighborhood V of 0 in X such that

y − x ∈ V =⇒ Ty − Tx ∈ W.

Theorem 1.3.3. : Let T be a linear functional on a topological vector space
X. Assume Tx 6= 0 for some x ∈ X. Then each of the following four proper-
ties implies the other three :

(a) T is continuous.
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(b) The null space N (T ) is closed.

(c) N (T ) is not dense in X.

(d) T is bounded in some neighborhood V of 0.

Proof. :

• (a) =⇒ (b) : Since N (T ) = T−1({0}) and {0} is a closed subset of the
scalar field K.

• (b) =⇒ (c) : By hypothesis, N (T ) 6= X and N (T ) is closed.

• (c) =⇒ (d) : Suppose that N (T ) is not dense in X. That is, its comple-
ment has a non-empty interior. There exists an x ∈ X and a V ∈ N0

such that
(x+ V )

⋂
N (T ) = φ.

This means that
0 /∈ T (x+ V )

i.e.
∀y ∈ V, Ty 6= −Tx.

we know that every neighborhood contains a balanced neighborhood,
we may assume that V is balanced.
Implies T(V) is balanced as well.
Balanced set in C are either bounded, in which case we are done,
of equal to the whole of C, which contradicts the requirement that
Ty 6= −Tx for all y ∈ V.

• (d) =⇒ (a) : Suppose that T(V) is bounded for some V ∈ N0 i.e., there
exists an M such that

∀x ∈ V, | Tx |≤M.

Let ε > 0 be given. Set W=(ε/M)V . Then for all y ∈ W

| Ty |≤ ε

M
sup
x∈V
| Tx |≤ ε,

which proves that T is continuous at zero (and hence everywhere).
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1.4 Finite Dimensional Spaces

Lemma 1.4.1. : If X is a complex topological vector space and f : C −→ X
is linear, then f is continuous.

Theorem 1.4.2. : If n is a positive integer and Y is an n-dimensional
subspace of a complex topological vector space X, then

(a) every isomorphism of Cn onto Y is a homeomorphism, and

(b) Y is closed.

Theorem 1.4.3. : Every locally compact topological vector space X has finite
dimension.

Proof. : Let X be a locally compact topological vector space: it has some
neighborhood V whose closure V is compact. Being a compact set V is
bounded so is V. Moreover,

B = {V/2n : n ∈ N}

is a local base for X.
Let y ∈ V . Implies y − 1

2
V intersects V i.e. y ∈ V + 1

2
V ,

So V ⊂ V + 1
2
V =

⋃
x∈V

(x+ 1
2
V ).

Since V is compact, it can be covered by finite union:

V ⊂ (x1 +
1

2
V ) ∪ · · · ∪ (xm +

1

2
V ).

Let Y = Span{x1, . . . , xm}. It is a finite dimension subspace of X, hence
closed. Since V ⊂ Y + 1

2
V,

It follows that
1

2
V ⊂ 1

2
Y +

1

4
V = Y +

1

4
V

and hence

V ⊂ Y +
1

2
V ⊂ Y + Y +

1

4
V = Y +

1

4
V.
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By same procedure

V ⊂ Y +
1

8
V

Which implies,

V ⊂
∞⋂
n=1

(Y +
1

2n
V ).

Since B is a local base at zero which implies that V is a subset of every
neighborhood of Y

V ⊂ Y = Y.

But we know that

X =
∞⋃
n=1

nV ⊂ Y

which implies that X=Y i.e. X is finite dimensional.

Theorem 1.4.4. : If X is a locally bounded topological vector space with the
Heine-Borel property, then X has finite dimension.

1.5 Metrization

Theorem 1.5.1. : If X is a topological vector space with a countable local
base, then there is a metric d on X such that

(a) d is compatible with the topology of X,

(b) the open balls centered at 0 are balanced, and

(c) d is invariant: d(x+ z, y + z) = d(x, y) for x, y, z ∈ X.

If, in addition, X is locally convex, then d can be chosen so as to satisfy (a),
(b), (c), and also

(d) all open balls are convex.

Proof. : Without loss of generality we can choose a countable loacl base
whose member are balanced B = {Vn}, and futhermore,

Vn+1 + Vn+1 + Vn+1 + Vn+1 ⊂ Vn.
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(If X is locally convex, the local base can be chosen to include convex sets.)
This implies that for all n and k:

Vn+1 + Vn+2 + · · ·+ Vn+k ⊂ Vn.

Let D be the set of dyadic rational numbers:

D =

{∑∞
n=1

cn
2n

: cn ∈ {0, 1}, cn = 0 for n > N, N ∈ N
}

D is dense in [0,1]. Define the function ϕ : D ∪ {r > 1} −→ 2X :

ϕ(r) =

{
X r ≥ 1

c1(r)V1 + c2(r)V2 + . . . r ∈ D

The sum in this definition is always finite.For example, ϕ(1.2) = X and
ϕ(0.75) = V1 + V2. By property of B,

ϕ

(∑N2

n=N1

cn
2n

)
=
∑N2

n=N1
cnVn ⊂ VN1−1

Then define the functional f : X −→ R :

f(x) =inf{r : x ∈ ϕ(r)}

and define

d(x,y) = f(y-x)

Claim 1: for s, r ∈ D

ϕ(r) + ϕ(s) ⊆ ϕ(r + s)

If r + s ≥ 1 then this is obvious as ϕ(r + s) = X.

Suppose then that r, s ∈ D and r+s ∈ D. The first possibility is that
cn(r) + cn(s) = cn(r + s) for all n. This happens if cn(r) and cn(s) are never
both equal to one. Then,
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ϕ(r+ s) =
∑∞

n=1 cn(r+ s)Vn =
∑∞

n=1 cn(r)Vn +
∑∞

n=1 cn(s)Vn = ϕ(r) +ϕ(s).

Otherwise, there exists an n for which

cn(r) + cn(s) 6= cn(r + s)

Let N is the smallest n: then

cN(r) = cN(s) = 0 and cN(r + s) = 1

which implies

ϕ(r) ⊆ c1(r)V1 + · · ·+ cN−1(r)VN−1 + VN+1 + VN+2 + . . .

⊆ c1(r)V1 + · · ·+ cN−1(r)VN−1 + VN+1 + VN+1

ϕ(s) ⊆ c1(s)V1 + · · ·+ cN−1(s)VN−1 + VN+1 + VN+1

Implies

ϕ(r) + ϕ(s) ⊆ c1(r + s)V1 + · · ·+ cN−1(r + s)VN−1 + VN+1 + VN+1 + VN+1 + VN+1

⊆ c1(r + s)V1 + · · ·+ cN−1(r + s)VN−1 + VN

⊆ ϕ(r + s)

Observation : For all r ∈ D ∪ [1,∞):

0 ∈ ϕ(r).

Claim 2 :

if r < t implies ϕ(r) ⊆ ϕ(t)

For r < t:

ϕ(r) ⊆ ϕ(r) + ϕ(t− r) ⊆ ϕ(t).

Claim 3 : For all x, y ∈ X:

f(x+ y) 6 f(x) + f(y)

Let x, y ∈ X be given. Note that the range of f is [0,1], hence we can limit
ourselves to the case where the right hand side is less than 1. Fix ε > 0.
There are r, s ∈ D such that

f(x) < r, f(y) < s and r + s < f(x) + f(y) + ε.
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Implies x ∈ ϕ(r), y ∈ ϕ(s), hence

x+ y ∈ ϕ(r) + ϕ(s) ⊆ ϕ(r + s)

Thus,

f(x+ y) 6 r + s < f(x) + f(y) + ε

true for all ε > 0.
Claim 4 :
(a) f(x) = f(−x).
(b) f(0) = 0.
(c) f(x) > 0 for x 6= 0.

Since the ϕ(r) are unions of balanced sets they are balanced, from which
follows that f(x) = f(−x).
Since 0 ∈ ϕ(r)for all r ∈ D. f(0) = 0.

Finally, if x 6= 0 it does no belong to some Vn (by separation) i.e., to some
ϕ(s), and since the {ϕ(r)} form an ordered set, it does not belong to ϕ(r)
for all r < s, from which follows that f(x) > 0.

Now finally d is metric:
(a) d(x, y) > 0 as f(y − x) > 0.
(b) d(x, y) = 0 iff f(y − x) = 0 iff y − x = 0 iff y = x.
(c) d(x, y) = d(y, x) as f(x) = f(−x).
(d)

d(x, y) = f(x− y) = f(x− z − (y − z))

6 f(x− z) + f(y − z)

= d(x, z) + d(z, y).

We next want to show that this metric is compatible with the topology.
Consider the d-open balls,

B(0, t) = {x : d(x, 0) < t} = {x : f(x) < t} =
⋃
r<t

ϕ(r).

Now if t < 1
2n

then B(0, t) ⊆ Vn which proves that the open balls, B(0, 1
2n

)
forms a local base.
If the Vn are convex then ϕ(r) are convex.
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Definition 1.5.2. : Cauchy Sequences

(a) Suppose d is a metric on a set X. A sequence {xn} in X is a Cauchy
sequence if to every ε > 0 there corresponds an integer N such that
d(xn, xm) < ε whenever m > N and n > N . If every Cauchy sequence
in X converges to a point of X, then d is said to be a complete metric
on X (say d-cauchy sequence).

(b) Let τ be the topology of a topological vector space X.Fix a local base B
for τ . A sequence {xn} in X is then said to be a Cauchy sequence if to
every V ∈ B corresponds an N such that xn − xm ∈ V if n > N and
m > N (say τ -cauchy sequence).

Note 1.5.3. Since

d(xn, xm) = d(xn − xm, 0) (since d is invariant)

and since the d-balls centered at the origin form a local base for τ , we con-
clude,
A sequence xn in X is a d-Cauchy sequence if and only if it is a τ -Cauchy
sequence.

Note 1.5.4. : If d1 and d2 are invariant metrics on a vector space X which
induce the same topology on X, then

(a) d1 and d2 have the same cauchy sequence, and

(b) d1 is complete iff d2 is complete.

Theorem 1.5.5. : Suppose that (X, d1) and (Y, d2) are metric spaces, and
(X, d1) is complete. If E is a closed set in X, f : E −→ Y is continuous,
and

d2(f(x
′
), f(x

′′
) > d1(x

′
, x
′′
)

for all x
′
, x

′′ ∈ E, then f(E) is closed.

Theorem 1.5.6. : Suppose Y is a subspace of a topological vector space X,
and Y is an F-space (in the topology inherited from X). Then Y is a closed
subspace of X.

Proof. : Let d be such an invariant metric, and set
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B1/n = {y ∈ Y : d(y, 0) < 1/n}

which are open balls in Y. Let Un ∈ N0 be neighborhood of zero in X s.t.
Un ∩ Y = B1/n. Let then Vn ∈ N sym

0 s.t. Vn+1 ⊂ Vn and Vn + Vn ⊂ Un.
Let x∈ Y . Define

En = (x+ Vn) ∩ Y.

Suppose that y1, y2 ∈ En, then

y1 − y2 ∈ Y and y1 − y2 ∈ Vn + Vn ⊂ Un implies y1 − y2 ∈ B1/n.

The sets En are non-empty and their diameter tends to zero. Since Y is
complete, intersection of the Y-closure of the sets En contains exactly one
point, which we denote by y0. y0 is only point, s.t. for every U

′ ∈ N0 in X
and every n,

(y0 + U
′
) ∩ [(x+ Vn) ∩ Y ] 6= φ.

Since open neighborhoods in Y are intersections of open neighborhoods in X
with Y, it follows that for every U ∈ N0 in X and every n

(y0 + U) ∩ (x+ Vn) ∩ Y 6= φ.

Take now any neighborhood W∈ N0 in X and define

FW
n = (x+W ∩ Vn) ∩ Y.

By the exact same argument the intersection of the Y closure of the sets
FW
n contains exactly one point. But since FW

n ⊂ En this point has to be y0.
Thus, there exists a unique point y0, such that for every U, W∈ N0 in X and
every n,

(y0 + U) ∩ (x+W ∩ Vn) ∩ Y 6= φ.

Since the space is Hausdorff, x = y0 ∈ Y i.e. Y = Y.

Theorem 1.5.7. :
(a) If d is a translation-invariant metric on a vector space X then

d(nx, 0) 6 nd(x, 0)

for every x ∈ X and for n=1,2,3,. . .
(b) If xn is a sequence in a metrizable topological vector space X and if
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xn → 0 as n → ∞, then there are positive scalars γn such that γn → ∞
and γnxn → 0.

1.6 Boundedness and Continuity

Definition 1.6.1. Bounded sets:
The notion of a bounded subset of a Topological vector space X already defined
in Definition 1.1.3. Now notion of boundedness w.r.t, metric d as follows:
If d is a metric on a set X, a set E ⊆ X is said to be d-bounded if there is a
number M <∞ such that d(z, y) 6M for all x and y in E.

Note 1.6.2. If X is a topological vector space with a compatible metric d,
the bounded sets and the d-bounded ones need not be the same, even if d is
invariant.

Example 1.6.3. : If d is a metric such as the one constructed in Theorem
1.5.1

d(x, y) = f(y − x)

where f(x) = inf{r : x ∈ ϕ(r)} and

ϕ(r) =

{
X r ≥ 1

c1(r)V1 + c2(r)V2 + . . . r ∈ D
and D is dyadic number

then X is itself d-bounded (with M=1) but X cannot be bounded unless X={0}.

Note 1.6.4. : (1) If X is a normed space and d is the metric induced by the
norm, then the two notions of boundedness coincide ; but if d is replaced by
d1 = d/(1 + d) (an invariant metric which induces the same topology) they
do not.
(2) Cauchy sequences are bounded and hence convergent sequences are bounded.
Also closures of bounded sets are bounded.

Example 1.6.5. : E = {nx : n = 1, 2, 3 . . . } then E is not bounded because
there is a neighborhood V of 0 that does not contain x; hence nx is not in
nV ; it follows that no nV contains E.
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Theorem 1.6.6. : The following two properties of a set E in a topological
vector space are equivalent :

(a) E is bounded.

(b) If {xn} is a sequence in E and {αn} is a sequence of scalers s.t. αn → 0
as n→∞, then αnxn → 0 as n→∞.

Definition 1.6.7. Bounded Linear Transformations : Suppose X and
Y are topological vector spaces and T : X → Y is linear. T is said to be
bounded if T maps bounded sets into bounded sets, i.e., if T (E) is a bounded
subset of Y for every bounded set E ⊆ X.

Theorem 1.6.8. : Suppose X and Y are topological vector spaces and T :
X → Y is linear. Among the following four properties of T, the implications

(1) −→ (2) −→ (3)

holds. If X is metrizable, then also

(3) −→ (4) −→ (1)

so that all four properties are equivalent.

(1) T is continuous.

(2) T is bounded.

(3) If xn → 0 then {Txn : n = 1, 2, 3...} is bounded.

(4) If xn → 0 then Txn → 0.

Proof. : (1) → (2). Let T is continuous. Let V ∈ X be bounded. Let
W ∈ N0 in Y. Since T (0) = 0, ∃ U ∈ N0, T (U) ∈ W.
Because V is bounded there exists an s s.t. for all t > s,

V ⊂ tU.

By linearity, for all t > s,

T (V ) ⊂ T (tU) = tT (U) ⊂ tW,
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hence T (V ) is bounded, which implies that T is bounded.
(2)→ (3). Let T is bounded and let xn → 0. Since convergent sequences are
bounded,

E = {xn | n ∈ N}
is bounded,then

T (E) = {T (xn) | n ∈ N}

is bounded.
(3)→ (4). Let X is metrizable and let d be a compatible and invariant metric.
Let xn → 0 and {T (xn) | n ∈ N} is bounded. As we have metrizability, there
exists a sequence αn →∞, s.t. αnxn → 0.Then,

T (xn) = 1
αn
T (αnxn).

As T (αnxn) is bounded and by previous theorem T (xn)→ 0.
(4) → (1). As we have given space is metrizable implies space is Hausdorff
hence sequential continuity implies T is continuous.

1.7 Seminorms and Local Convexity

Definition 1.7.1. A seminorm on a vector space X is a real-valued func-
tion p on X such that
(a) p(x+ y) 6 p(x) + p(y) and
(b) p(αx) = |α|p(x)
for all x and y in X and all scalers α.

Definition 1.7.2. A family P of seminorms on X is said to be separating
if to each x 6= 0 corresponds at least one p ∈P with p(x) 6= 0.

Definition 1.7.3. Consider a convex set A ⊆ X called absorbing if for
every x ∈ X lies in tA for some t > 0. Every absorbing set contain 0.

Definition 1.7.4. For convex absorbing sets A we defined the Minkowski
functional µA by

µA(x) =inf{t > 0 : x ∈ tA} (x ∈ X).

Note that µA(x) <∞ for all x ∈ X, since A is absorbing.
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Properties 1.7.5. If A is an absorbing set then

(1) µA(x) ≥ 0, ∀x ∈ X and µA(0) = 0.

(2) µA(λx) = λµA(x), ∀λ ≥ 0, ∀x ∈ X.

(3) A ⊂ {x ∈ X : µA(x) ≤ 1}

(4) µA1(x) ≤ µA2(x), ∀x ∈ X, if A2 ⊂ A1.

(5) Moreover, If the set A is convex then {x ∈ X : µA(x) < 1} ⊂ A.

Theorem 1.7.6. : Suppose p is a seminorm on a vector space X. Then

(a) p(0) = 0.

(b) |p(x)− p(y)|6 p(x− y).

(c) p(x) > 0.

(d) {x : p(x) = 0} is a subspace of X.

(e) The set B = {x : p(x) < 1} is convex, balanced, absorbing, and p = µB.

Proof. :

(a) p(0) = p(0.x) = 0.p(x) = 0

(b)
p(x) 6 p(y) + p(x− y)

and
p(y) 6 p(x) + p(y − x) = p(x) + p(x− y).

(c) for every x:

0 6 |p(x)− p(0)|= |p(x)|6 p(x).

(d) If p(x) = p(y) = 0 and α, β are scalers then,

0 6 p(αx+ βy) 6 |α|p(x) + |β|p(y) = 0.
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(e) If p(x) < 1 then for every |α|6 1, p(αx) = |α|p(x) < 1, implies B is
balanced. If x, y ∈ B then for every 0 6 t 6 1

p(tx+ (1− t)y) 6 tp(x) + (1− t)p(y) < 1

hence B is convex. For every x ∈ X and s > p(x), p(x/s) < 1, i.e.,
x ∈ sB, so that B is absorbing.

µB(x) =inf{s > 0 : x ∈ sB}
=inf{s > 0 : p(x/s) < 1}
=inf{s > 0 : p(x) < s}.

If p(x) < r then µB(x) < r i.e. µB(x) 6 p. If µB(x) < r, then there
exists an s < µB(x) s.t. p(x) = s i.e. p 6 µB(x).

Theorem 1.7.7. : Suppose A is a convex absorbing set in vector space X.
Then

(a) µA(x+ y) 6 µA(x) + µA(y).

(b) µA(tx) = tµA(x) if t > 0.

(c) µA is seminorm if A is balanced.

(d) If B = {x : µA(x) < 1} and C = {X : µA(x) 6 1}, then B ⊂ A ⊂ C
and µB = µA = µC.

Proof. :
(a) If t = µA(x) + ε and s = µA(y) + ε, for some ε > 0, then x/t and y/s are
in A, hence so is their convex combination

x+y
s+t

= t
s+t

.x
t

+ s
s+t

.y
s

This implies that µA(x+ y) 6 s+ t = µA(x) + µA(y) + 2ε.
(b) From definition.
(c) Follows from (a) and (b).
(d) Let x ∈ B

There exists r ∈ (0, 1) s.t. x ∈ rA
imlies a = x/r ∈ A
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ra+ (1− r)0 = x ∈ A.
Let a ∈ A 1 ∈ {s > 0 : a ∈ sA}
⇒ a ∈ C
⇒ B ⊂ A ⊂ C.
This shows that µC 6 µA 6 µB. To prove equality, fix x ∈ X, and choose
s,t so that µC(x) < s < t. Then x/s ∈ C, µA(x/s) 6 1, µA(x/t) 6 s/t < 1,
hence x/t ∈ B so that µB(x) 6 t. This holds for every t > µC(x). Hence
µB(x) 6 µC(x).

Theorem 1.7.8. : Suppose B is a convex balanced local base in a topological
vector space X. Associate to every V ∈ B its Minkowski functional µV . Then

(a) V = {x ∈ X : µV (x) < 1}, for every V ∈ B, and

(b) {µV : V ∈ B} is a separating family of continuous seminorms on X.

Proof. :

(a) If x ∈ V then x ∈ tV or x/t ∈ V, t < 1 because V is open.
Hence µV (x) < 1.
If x /∈ V then x ∈ tV or x/t ∈ V, t > 1 as V is balanced.
Hence µV (x) > 1.

(b) By Theorem 1.7.5 (e) µV is seminorm
also

| µV (x)− µV (y) |6 µV (x− y) < r

if x− y ∈ rV then µV is continuous. If x ∈ X, x 6= 0, then x /∈ V for
some V ∈ B. For this V, µV (x) > 1. Thus {µV } is separating.

Theorem 1.7.9. Suppose P is a separating family of seminorms on a vector
space X. Associate to each p ∈P and to each positive integer n the set

V (p, n) =

{
x : p(x) <

1

n

}
Let B be the collection of all finite intersections of the sets V (p, n). Then B
is a convex balanced local base for a topology τ on X, which turns X into a
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locally convex space such that
(a) every p ∈P is continuous, and
(b) a set E ⊂ X is bounded iff every p ∈P is bounded on E.

Proof. We define

B =

{ ⋂
(p,n)∈I

V (p, n) : I ⊂ P × N, I is finite set
}

where all the intersection are finite. Clearly B is a collection of set that
contain the origin and that are closed under finite intersection.
Set A ⊂ X be open if it is a union of translate of member of B i.e.,
A is open iff

A =
⋃

B∈B,x∈A

(x+B)

or for x ∈ A, ∃Nx ∈ B s.t. x+Nx ⊂ A. We denote the collection of all such
set by τ . τ is translation invariant topology on X because
(1) φ ∈ τ by taking empty union.
(2) X ∈ τ .
(3) τ is closed under arbitrary union. Obvious as open set are defined in such
a way.
(4) τ is closed under finite intersection.⋂
i∈I
Ai, take x ∈

⋂
i∈I
Ai where I is finite.

implies
x ∈ Ai, ∀i ∈ I

implies
∃Nx ∈ B s.t. x+N i

x ⊂ Ai

∩N i
x ∈ B also x+ ∩N i

x ⊂ Ai, ∀i
implies

x+
⋂
i∈I

N i
x ⊂

⋂
i∈I

Ai

Now each member of B is convex and balanced and B is local base for τ .
Let 0 6= x ∈ X. We have family of separating seminorm so

∃p ∈P, p(x) > 0

∃n ∈ N s.t. np(x) > 1, p(x) > 1/n



22 1.7. Seminorms and Local Convexity

x /∈ V (p, n) or 0 /∈ x− V (p, n)

{0} is closed set as Hence x /∈ {0}.
{x} is closed by translation invariant.

Let U ∈ N, by property of local base, there exists

V (p1, n1) ∩ · · · ∩ V (pk, nk) ⊂ U.

Take

V = V (p1, 2n1) ∩ · · · ∩ V (pk, 2nk).

But we have,

V (pi, 2ni) + V (pi, 2ni) = V (pi, ni).

Hence V + V ⊂ U gives addition is continuous.

Suppose now that x ∈ X, α is a scaler, and U and V are as above. Then
x ∈ sV for some s > 0. Put t = s/(1+ |α|s). If y ∈ x+ tV and |β−α| < 1/s,
then

βy − αx = β(y − x) + (β − α)x

which lies in

|β|tV + |β − α|sV ⊂ V + V ⊂ U

since |β|t 6 1 and V is balanced.

βy ∈ αx+ U.

Hence scaler multiplication is continuous.
Thus X is locally convex topological vector space.

(a) Also every p ∈P is continuous at 0 because for every ε > 0 set n > 1
ε

and
p(V (p, n)) < 1/n

Take x ∈ V (p, n), |p(x)− p(0)|< 1/n < ε.

Hence it is continuous everywhere by

|p(x)− p(y)|6 p(x− y).
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(b) Let E is bounded. Take p ∈P then

V (p, 1) = {x ∈ X : p(x) < 1}

implies E ⊂ nV (p, 1) for some n (by definition).
Conversly, take U neighbourhood of 0 s.t.,

V (p1, n1) ∩ · · · ∩ V (pm, nm) ⊂ U

implies ∃Mi <∞ s.t. pi(E) < Mi, ∀i = [1 : m]
If n > Mini for i = [1 : m] then
nV (pi, ni) = {nx : p(nx) < n/ni} = {y : p(y) < n/ni}.
Hence E ⊂ nU and E is bounded.

Note 1.7.10. If B is a convex balanced local base for topology τ of Locally
convex space X then B generates a separating family P of continuous semi-
norm on X. This P induces a topology τ1 in X then we have τ = τ1. As every
p ∈P is continuous w.r.t, τ topology implies V (p, n) ∈ τ . Hence τ1 ⊂ τ .
Now take W ⊂ B and p = µW then

W = {x : µW (x) < 1} = V (p, 1)

implies W ∈ τ1 for every W ∈ B. Hence τ ⊂ τ1.

Theorem 1.7.11. A topological vector space X is normable iff its origin has
a convex bounded neighbourhood.

Proof. Let if X is normable and ‖.‖ is norm which is compatible with our
topology on X then the open unit ball {x : ‖x‖ < 1} is convex and bounded.
Let V be a convex bounded neighbourhood of 0 then ∃ a convex balanced
neighbourhood of 0, say U (by Theorem 1.2.7) s.t., U ⊂ V , clearly U is
bounded.
Now define

‖x‖ = µU(x), x ∈ X (1.1)

This is a seminorm by Theorem 1.7.6. Now αU (α > 0) form a local base
of (X, τ). Now take x 6= 0 implies ∃ r > 0 s.t., x /∈ rU as U is absorbing.
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Hence (1.1) is norm.
As U is open

U ={x ∈ X : µU < 1}
U ={x ∈ X : ‖x‖ < 1}
rU ={x ∈ X : ‖x‖ < r}, ∀r > 0.

Hence the norm topology coincide with τ .

1.8 Quotient Space

Definition 1.8.1. Let N be a subspace of X. For every x ∈ X define {x+n :
n ∈ N} = x+N called coset. Take all collection of coset with opertion:

(x+N) + (y +N) = x+ y +N

and α(x+N) = αx+N.

This gives a vector space called Quotient Space. Denote by X/N.

Definition 1.8.2. Define π : X → X/N by

π(x) = x+N

Here π is linear map where N is kernel of π and this map is called Quotient
Map.

Definition 1.8.3. Now let (X, τ) be a TVS (Topological vector space ) and
N be a closed subspace of X. Define collection of subset of X/N (say τN) to
be

E ∈ τN if π−1(E) ∈ τ, where E ⊂ X/N

Now τN is a topology on X/N called Quotient Topology.

Theorem 1.8.4. Let N be a closed subspace of a topological vector space X.
Let τ be the topology of X and define τN as above.

(a) τN is a vector topology on X/N ; the quotient map π : X → X/N is
linear, continuous, and open.
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(b) If B is a local base for τ , then the collection of all sets π(V ) with
V ∈ B is a local base for τN .

(c) Each of the following properties of X is inherited by X/N : local con-
vexity, local boundedness, metrizability, normability.

(d) If X is an F-space, or a Frechet space, or a Banach space, so is X/N .

Proof. :

(a) Here π is an onto map.
And we know that:

π−1

( ⋃
α∈Λ

Eα

)
=
⋃
α∈Λ

π−1(Eα)

Also

π−1

( n⋂
i=1

Ei

)
=

n⋃
i=1

π−1(Ei)

Hence from this information we can say τN is a topology on X/N .
Now it remains to prove that its a vector topology.

Observe that A set F ⊂ X/N is τN -close iff π−1(F ) is τ -closed. Also

π−1(π(x)) =
⋃
n∈N

n+ x = N + x.

Hence N + x is τ−closed as N is closed.
⇒ π(x) is τN−closed.
⇒ N + x is τN−closed. Hence singleton set are closed in X/N.
By definition of τN , π it is continuous.

Now let V ∈ τ . As

π−1(π(V )) =
⋃
n∈N

n+ V = N + V

and N + V ∈ τ (union of translation of open sets)
Implies π(V ) ∈ τN
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Implies π is an open mapping.
Now

π(x+ y) = x+ y +N = x+N + y +N = π(x) + (y)

Also
π(αx) = αx+N = α(x+N) = απ(x)

Hence π is linear.
Now let W be neighbourhood of 0 in τN . 0 ∈ π−1(W ) ∈ τ
Implies ∃ (0 ∈)V ∈ τ s.t.

V + V ⊂ π−1(W )

Hence π(V + V ) ⊂ W ⇒ π(V ) + π(V ) ⊂ W.
Since π is open, π(V ) is neighbourhood of 0 in X/N. Hence addition is
continuous.
Now let W be a neighbourhood of 0 in X/N. So π−1(W ) be a neigh-
bourhood of 0 in X.
⇒ ∃ V nbd of 0 in X and |β − α| < ε
⇒ βV ⊂ π−1(W )
⇒ βπ(V ) ⊂ W

π is open⇒ π(V ) ∈ N X/N
0

Hence scaler multiplication is continuous.

(b) By definition of τN , (b) is true by (a).

(c) Comes by (b).

(d) Let X be a F-space and let d is invariant metric on X compatible with
τ .
Define

λ(π(x), π(y)) = inf{d(x− y, z) : z ∈ N}.
Here λ is well defined and is invariant metric on X/N.

π({x : d(x, 0) < r}) = {u : λ(u, 0) < r}.

By (b) λ is compatible with τN .
If X is NLS, define

‖π(x)‖ = inf{‖x− z‖ : z ∈ N}
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called Quotient Norm.

Now to prove λ is complete metric whenever d is complete:
Suppose {un} is a Cauchy sequence in X/N , relative to λ. There is a
subsequence {uni} with λ(uni , uni+1

) < 2−i. One can then inductively
choose xi ∈ X such that π(xi) = uni , and d(xi, di+1) < 2−i. If d is
complete, the Cauchy sequence {xi} converges to some x ∈ X. The
continuity of π implies that uni → π(x) as i → ∞. But if a Cauchy
sequence has a convergent subsequence then the full sequence must
converge. Hence λ is complete.

Theorem 1.8.5. Suppose N and F are subspace of TVS X. N is closed and
F has finite dimension. Then N+F is closed.

Proof. Let π be a quotient map from X to X/N. Then π(F ) is finite dim
space of X/N as F is finite dim. But X/N is TVS and finite dim subspace of
TVS is closed in X/N.
Also

π−1(π(F )) =
⋃
n∈N

n+ F = N + F

and π is continuous hence N+F is closed.

1.9 Examples

Example 1.9.1. The space C(Ω) : Let Ω be open set in (Rn, ‖.‖2). We
consider space C(Ω) a vector space of all comples valued continuous function.
Here sup norm won’t work as there exists unbounded continuous function on
open sets.
We know open set Ω can be written as

Ω =
∞⋃
n=1

Kn

where Kn’s are compact set s.t., Kn is in the interior of Kn+1.
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We topologize C(Ω) with separating family of seminorms,

pn(f) = sup{|f(x)| : x ∈ Kn}

by Theorem 1.7.8.
Since p1 6 p2 6 . . . the sets

Vn = {f ∈ C(Ω) : pn(f) < 1/n}

forms a convex local base for C(Ω).
Now topology of C(Ω) is compatible with the metric,

d(f, g) = max
n

pn(f − g)

2n(1 + pn(f − g))

Now let {fi} be cauchy sequence relative to this metric d, an easy computation
shows that pn(fi − fj)→ 0, ∀n as i, j →∞.
Hence {fi} converges uniformly on Kn to a function f(n) ∈ C(Kn) but
K0
n ⊂ Kn+1 so restriction of f(n + 1) on Kn would be f(n) so we conclude
{fi} converges to f ∈ C(Ω).
Now for given ε > 0 let 2−K < ε then

max
k>K

pk(fn − f)

2k(1 + pk(fn − f))
< ε

also ∃N s.t., ∀n > N

max
k6K

pk(fn − f)

2k(1 + pk(fn − f))
< ε.

Hence d(f, fi) → 0. Thus d is a complete metric. Hence C(Ω) is a Frechet
space.
A set E ⊂ C(Ω) is bounded iff there are numbers Mn < ∞ s.t., pn(f) 6
Mn, ∀f ∈ E ie, |f(x)| 6Mn if f ∈ E and x ∈ Kn.

Choose Kn ( Kn+1 then Kn+1 \Kn ⊂ Kn+1.
Let fj ∈ Vn

Define fj : Ω −→ R by fj(x) =
jd(x,Kn)

d(x,Kn) + d(x,Kn+1 \Kn)

Hence every Vn contains f for which pn+1 is large as we please. Hence Vn is
unbounded true for all n. Hence C(Ω) is not normable as it is not locally
bounded.
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Example 1.9.2. The spaces C∞(Ω) and DK : A complex function f de-
fined in some nonempty open set Ω ⊂ Rn is said to belong to C∞(Ω) if
Dαf ∈ C(Ω) for every multi-index α. If K is a compact set in Rn, then DK

denotes the space of all f ∈ C∞(Rn) whose support lies in K. If K ⊂ Ω then
DK is subspace of C∞(Ω).

Choose compact set Ki(i = 1, 2, 3 . . . ) s.t. Ki lies in the interior of Ki+1

and Ω = ∪Ki. Define seminorms pN on C∞(Ω), N = 1, 2, 3 . . . by

pN(f) = max{|Dαf(x)| : x ∈ KN , |α| 6 N}.

With these collection of seminorms we have metrizable locally convex topology
on C∞(Ω).
Now for x ∈ Ω define Jx : C∞(Ω)→ R by Jx(f) = f(x) which is a continuous
function in our topology. DK is the intersection of kernel of these function
where x ranges in Kc, hence DK is closed in C∞(Ω).
Here p1 6 p2 6 . . .
Hence a local base is given by the sets

VN =

{
f ∈ C∞(Ω) : pN(f) < 1/N

}
(N = 1, 2, . . . )

as V1 ⊂ V2 ⊂ . . .
Now if {fi} is cauchy sequence in C∞(Ω) and if N is fixed then fi − fj ∈
VN for sufficiently large i, j.
Thus |Dαfi −Dαfj| < 1/N on KN if |α| 6 N

Implies Dαfi −→ gKNα uniformly on KN but gKNα
∣∣
KN−1

= g
KN−1
α

So Dαfi −→ gα uniformly on compact subset of Ω.
In particular fi(x) → g0. Hence g0 ∈ C∞(Ω) and gα = Dαg0 and fi → g in
topology of C∞(Ω).
Thus C∞(Ω) is a Frechet space. So is closed subspace DK .

Now the metric constructed by these seminorms which is compatible with
the topology on C∞(Ω) is a bounded metric but no norm is bounded, so the
metric is not induced by any norm. Hence C∞(Ω) is not normable.
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Chapter 2

Convexity in Topological
Vector Space

2.1 Introduction

Definition 2.1.1. : A topological vector space X is a vector space over
a topological field K that is endowed with topology s.t. vector addition + : X
× X → X and scaler multiplication · : K×X → X are continuous function.

Example 2.1.2. : Every normed linear space has a natural topology such
that (the norm induced metric and metric induces a topology.) :
1. + is continuous with this topology by tringle inequality.
2. · is continuous with this topology by tringle inequality and homogenity of
norm.

Theorem 2.1.3. : The mapping x → x + x0 and x → λx where λ 6= 0 ,
λ ∈ K are homeomorphic of X onto itself.

Theorem 2.1.4. : If f is a linear functional on a topological linear space,
then the following statements are equivalent:

(i) f is continuous.

(ii) The kernel of f , kerf = {x : f(x) = 0} is closed.

(iii) There is a neighborhood of the origin on which f is bounded.
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Note 2.1.5. From now on we consider X, Y to be normed linear space and
K to be field (either R or C) unless stated.

Definition 2.1.6. : Let X,Y be normed linear space of same nature. A linear
map T : X → Y is said to be bounded if T (M) is bounded in Y for every
bounded set M ⊂ X. In other words,there exists N > 0 s.t.

‖Tx‖ 6 N ‖x‖ , ∀x ∈ X

In normed linear space linear map T : X → Y is continuous iff it is bounded.

Definition 2.1.7. : L(X, Y ) The set of all linear continuous map from X
with values in Y which becomes a normed linear space by

‖T‖ = sup{‖Tx‖ : ‖x‖ 6 1} = inf{K : ‖Tx‖ 6 K ‖x‖ ,∀x ∈ X} (2.1)

Definition 2.1.8. A complete normed linear space is called Banach space.

Lemma 2.1.9. If Y is a Banach space, the L(X, Y ) is also a Banch space.

Definition 2.1.10. If we consider Y = K then L(X,K) is called dual of X
i.e, set of all continuous linear functional on X. Denoted as X∗. It becomes
a banach space by introducing norm on functional given in equation (2.1)

‖x∗‖ = sup{|x∗(x)| : ‖x‖ 6 1}.

Hence if x∗ ∈ X∗ then

|x∗(x)| ≤ ‖x∗‖ ‖x‖ ∀x ∈ X.

Definition 2.1.11. A family A ⊂ L(X, Y ) is called uniformly bounded
if

sup
T∈A
‖T‖ <∞

Definition 2.1.12. A family A ⊂ L(X, Y ) is called pointwise bounded
if for fixed x ∈ X, Ax = {Tx : T ∈ A } is bounded set in Y.

Theorem 2.1.13. If X is a Banach space, then every pointwise bounded
family of linear continuous maps from L(X, Y ) is uniformly bounded.

Definition 2.1.14. A mapping 〈·, ·〉 : X × X → K is said to be an inner
product if it has the following properties :
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(1) 〈x, x〉 ≥ 0, ∀x ∈ X and 〈x, x〉 = 0 implies x = 0.

(2) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ X.

(3) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉 ∀a, b ∈ K, ∀x, y ∈ X.

Definition 2.1.15. A linear space endowed with an inner product is called
a pre-Hilbert space. A pre-Hilbert space is also considered as a linear
normed space by the norm induced by inner product.

‖x‖ = 〈x, x〉
1
2 , ∀x ∈ X

Definition 2.1.16. Two elements x and y in pre Hilbert space are said to be
orthogonal if 〈x, y〉 = 0. Denoted by x ⊥ y.
If x ⊥ y = 0 ∀y ∈ X then x = 0.

Proposition 2.1.17. The elements x, y are orthogonal iff

‖x+ λy‖ ≥ ‖x‖ , ∀λ ∈ K

Definition 2.1.18. If a pre-Hilbert space is complete in the norm associated
to the given inner product, then it is called a Hilbert space.

Theorem 2.1.19. Riesz : If f is a continuous linear functional on the
Hilbert space X, then there exists a unique element a ∈ X such that

f(x) = 〈x, a〉, ∀x ∈ X

‖f‖ = ‖a‖ .

Conversly, for every a ∈ X, the linear functional fa : X → K defined by

fa(x) = 〈x, a〉, ∀x ∈ X

is continuous, hence fa ∈ X∗, also ‖fa‖ = ‖a‖ ,∀a ∈ X.

2.2 Convex Sets

Let X be a real linear space.
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Definition 2.2.1. A subset C of linear space X is said to be convex if, for
all x and y in C and all t in the interval (0, 1), the point (1 − t)x + ty also
belongs to C. In other words, every point on the line segment connecting x
and y is in C. We denote

[x, y] = {λ1x+ λ2y; λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1}

called the segment generated by elements x, y.

Definition 2.2.2. A subset A of a linear space X is called affine set if for
all x, y ∈ A implies λ1x+ λ2y ∈ A, ∀λ1, λ2 ∈ R where λ1 + λ2 = 1.

If x1, x2, . . . , xn ∈ X, every element of the form λ1x1 + λ2x2 + · · · +
λnxn where λi ∈ R and

∑n
i=1 λi = 1 is called an affine combination of

x1, x2, . . . , xn. If λi ≥ 0, then affine combination is called a convex combina-
tion.

Proposition 2.2.3. Any convex (affine) set contains all the convex (affine)
combinations formed with its elements.

Proof. Let C is a convex(affine) subset of X.
We prove by mathematical induction, as for k = 2 the result is obvious by
definition. Let the hypothesis is true for k = n− 1.
Take convex (affine)combination of n elements x1, x2, . . . , xn ∈ C,

λ1x1 + λ2x2 + · · ·+ λnxn = λ1x1 + · · ·+ λn−2xn−2 + (λn−1 + λn)x̄n−1 ∈ C,

where

x̄n−1 =
λn−1

λn−1 + λn
xn−1 +

λn
λn−1 + λn

xn

as x̄n−1 ∈ C whenever λn−1 + λn 6= 0 (As λi + λj 6= 0 for some i, j ∈
{1, . . . , n} and i 6= j otherwise all λi = 0).
Hence true for all finite n ∈ N.

Properties 2.2.4.

(1) The intersection of many arbitrary convex (affine) sets is again a con-
vex (affine) set.
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(2) The union of a directed by inclusion family of convex (affine) sets is a
convex (affine) set.

(3) If A1, A2, . . . , An are convex(affine) sets and λ1, λ2, . . . , λn ∈ R, then
λ1A1 + λ2A2 + · · ·+ λnAn is a convex (affine) set.

(4) The linear image and the linear inverse image of a convex (affine) set
are again convex (affine) sets.

(5) If X is a linear topological space, then the closure and the interior of a
convex (affine) set is again convex (affine).

Definition 2.2.5. Let C be any arbitrary subset of X, then intersection of
all convex(affine) sets containing C is called convex (affine) hull,i.e. the
smallest convex (affine) set which contain C. Denoted by conv C (aff C).

conv C =

{ n∑
i=1

λixi | n ∈ N, λi ≥ 0, xi ∈ C,
n∑
i=1

λi = 1

}

aff C =

{ n∑
i=1

λixi | n ∈ N, λi ∈ R, xi ∈ C,
n∑
i=1

λi = 1

}
.

Proposition 2.2.6. In a real linear space, a set is affine iff it is a translation
of a linear subspace.

Definition 2.2.7. A point a0 ∈ X(real linear space) is said to be algebraic
relative interior of A ⊂ X if, for every straight line through a0 which lies
in affA, there exists an open segment contained in A which contains a0. If
affA = X, the point a0 is called the algebraic interior of A. The set of all
the algebraic (relative) interior points of A is called the algebraic (relative)
interior of the set A and we denote it by (Ari)Ai.

Ari = {a0 ∈ A : ∀x ∈ X, ∃ tx > 0, ∀t ∈ [0, tx], a0 + tx ∈ A}

Example 2.2.8. Let X = R2 and A = (0, 1)×{0}, then every point of A is
an algebraic relative interior.
Now if A = (0, 1)× (0, 1) then every point of A is an algebraic interior.

Definition 2.2.9. If X is a topological vector space, then a point a0 ∈ X is
said to be a relative interior of A ⊂ X if a0 is contained in an open subset
of affA (induced topology) which is completely contained in A. The set of all
relative interior points of A is called the relative interior of A, and denoted
by riA. And interior of A by intA.



36 2.2. Convex Sets

Note 2.2.10. If affA = X then riA = intA. Also if intA 6= φ or Ai 6= φ
then affA = X.

Definition 2.2.11. The set of all points x ∈ X for which there exists u ∈ A
s.t. [u, x[⊂ A, where [u, x[ is the segment joining u and x, including u and
excluding x, is called algebraic closure. Denoted by Aac.

Definition 2.2.12. The set of all elements x ∈ X for which [u, x] ∩ A 6= φ
for every u ∈ ]0, x[ and λx /∈ A for every λ > 1 is called radial boundary
of a set A.

Result 2.2.13. :

(1) µA = µ{0}∪Arb .

(2) Arb = {x ∈ X : µA(x) = 1}

Proposition 2.2.14. Let X be a finite-dimensional separated topological lin-
ear space and let A be a convex set of X. A point x0 ∈ A is algebraic interior
of A if and only if x0 is an interior point (in the topological sense) of A.

Corolloary 2.2.15. A point x0 ∈ A where A is a convex set from a finite-
dimensional separated topological linear space, is an algebraic relative interior
point of A if and only if it is a relative interior point of A.

Result 2.2.16. If X is a separated topological linear space, then every (rel-
ative) interior point of a set is again an algebraic (relative) interior point of
this set, that is,

intA ⊆ Ai riA ⊆ Ari (2.2)

Proposition 2.2.17. If A is a convex set for which the origin is an algebraic
relative interior point, then

Ari = {x ∈ X : µA(x) < 1} and Aac = {x ∈ X : µA(x) ≤ 1}.

Corolloary 2.2.18. The interior of a convex set is either an empty set or
it coincides with its algebraic interior.

Corolloary 2.2.19. The Minkowski functional of a convex, absorbent set A
of a topological linear space is continuous iff intA 6= φ. In this case, we have

intA = Ai, Ā = Aac, F rA = Arb,

where FrA = Ā ∩ c̄A.
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Definition 2.2.20. A maximal affine set is called a hyperplane. We say
that the hyperplane is homogeneous (hyperspace) if it contains the origin.
Equivalently, any subspace of X having co-dimension equal to 1 is hyper-
space.

A set is a hyperplane if and only if it is the translation of a maximal
linear subspace. Hence hyperspace is a maximal linear subspace of X.

Proposition 2.2.21. In a real topological linear space X, any homogeneous
hyperplane is either closed or dense in X.

Proof. Let H is homogeneous hyperplane.
Take x, y ∈ H and λ1, λ2 ∈ R
Implies ∃ nets (xi)i∈I and (yi)j∈J in H which converges to x and y respectively.
As TVS is a hausdorff space and + , · are continuous.
We have λ1x+ λ2y ∈ H
So H is a linear subspace of X. By maximality of H, H ⊆ H, either H =
H or H = X.

Theorem 2.2.22. The kernel of a nontrivial linear functional is a homo-
geneous hyperplane. Conversely, for every homogeneous hyperplane H there
exists a functional, uniquely determined up to a nonzero multiplicative con-
stant, with the kernel H.

Proof. Since f 6= 0, Kerf = f−1({0}), Kerf is proper subspace of X. Let
a ∈ X s.t. f(a) 6= 0.

For every x ∈ X, take z = x− f(x)
f(a)

a.

Hence z ∈ Kerf so that span(Kerf ∪ {a}) = X. Hence Kerf is homoge-
neous hyperplane in X.

Conversely, Let H be hyperspace in X and a /∈ H.
Now for every x ∈ X ∃! z ∈ H and k ∈ K s.t. x = z + ka. Define

f(x) = k

Then Kerf = H.
Uniqueness Let f1 and f2 be two non trivial linear functional s.t. Kerf1 =
Kerf2.
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If x0 /∈ Kerf1 we have x− f1(x)
f1(x0)

x0 ∈ Kerf1 ∀x ∈ X

f2(x− f1(x)

f1(x0)
x0) = 0⇒ f2(x) = kf1 ∀x ∈ X

where k = f2(x0)
f1(x0)

.

Corolloary 2.2.23. If f is a nontrivial linear functional on the linear space
X, then {x ∈ X : f(x) = k} is a hyperplane of X, for every k ∈ R. Con-
versely, for every hyperplane H, there exists a linear functional f and k ∈ R,
such that H = {x ∈ X : f(x) = k}.

Corolloary 2.2.24. A hyperplane is closed iff it is determined by a noniden-
tically zero continuous linear functional.

2.3 Separation of Convex Sets

If f(x) = k, k ∈ R, is the equation of hyperplane in a real linear space X, we
have two open half-spaces {x ∈ X : f(x) < k}, {x ∈ X : f(x) > k} and
two closed half-spaces {x ∈ X : f(x) ≤ k}, {x ∈ X : f(x) ≥ k}.

Result 2.3.1. A convex set which contains no point of a hyperplane is con-
tained in one of the two open half-spaces determined by that hyperplane.
Indeed, if C is convex set and x1, x2 be s.t. f(x1) > k and f(x2) < k but
λx1 + (1− λ)x2 ∈ C and f is continuous so ∃λ1 ∈ (0, 1) s.t. f(λ1x1 + (1−
λ1)x2) = k, hence x1 and x2 cannot be contained in a convex set which is
dsjoint from hyperplane f(x) = k.

Remark 2.3.2. If X is a topological linear space, then the open half-spaces
are open sets and the closed half-spaces are closed sets if and only if the
linear functional f which generated them is continuous, or, equivalently, the
hyperplane {x ∈ X : f(x) = k} is closed.

Definition 2.3.3. A function f : X → (−∞,∞) is called convex if

f(λ1x+ λ2y) ≤ λ1f(x) + λ2f(y) (2.3)

for all x, y ∈ X and λ1 ≥ 0, λ2 ≥ 0, with λ1 + λ2 = 1. If inequality is
strict for x 6= y in Dom(f) and λ1 > 0, λ2 > 0, then the function f is called
strictly convex.
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Equivalent to inequality (2.3)

(a1 + a2)f

(
a1x1 + a2x2

a1 + a2

)
≤ a1f(x1) + a2f(x2) (2.4)

for all x1, x2 ∈ X and a1 > 0, a2 > 0.

Theorem 2.3.4. (Hahn-Banach) Let X be a real linear space, let p be a
real convex function on X and let Y be a linear subspace of X. If a linear
functional f0 defined on Y satisfies

f0(y) ≤ p(y), ∀y ∈ Y, (2.5)

then f0 can be extended to a linear functional f defined on all of X, satisfying

f(x) ≤ p(x), ∀x ∈ X. (2.6)

Proof. If u, v ∈ Y , x0 ∈ X \ Y and α > 0 β < 0 we have

αf0(u)− βf0(v) = f0(αu− βv) = (α− β)f0

[
α(u+ 1

α
x0)

α− β
+
−β(v + 1

β
x0)

(α− β)

]
≤ (α− β)p

[
α(u+ 1

α
x0)

α− β
+
−β(v + 1

β
x0)

(α− β)

]
(by 2.5)

≤ αp

(
u+

1

α
x0

)
− βp

(
v +

1

β
x0

)
. (by 2.4)

So we have,

βp(v +
1

β
x0)− βf0(v) ≤ αp(u+

1

α
x0)− αf0(u) true for all u, v ∈ Y.

Hence, ∀u, v ∈ Y and α > 0, β < 0, ∃c ∈ R such that

sup

{
βp(v +

1

β
x0)− βf0(v)

}
≤ c ≤ inf

{
αp(u+

1

α
x0)− αf0(u)

}
(2.7)

Now consider subspace X1 = span(Y ∪ {x0}). For each element x1 ∈ X1 we
have x1 = y + λx0 with y ∈ Y and λ ∈ R uniquely determined.
Define f1 on X1 by

f1(x1) = f1(y + λx0) = f0(y) + λc where c is from (2.7)



40 2.3. Separation of Convex Sets

Hence f1 is linear and f |Y = f0. Now for λ 6= 0

f1(x1) = f0(y) + λc ≤ f0(y) + λ

[
1

λ
p(y + λx0)− 1

λ
f0(y)

]
= p(x1) (by 2.7)

Let P = {(Z, fz) : Y ⊆ Z and fz|Y = f0 and fz(y) ≤ p(y) ∀y ∈ Z}. So P
is non empty.
Define ≺ on P by

(Z, fz) ≺ (W, fw) if Z ⊆ W and fw|Z = fz

Then (P,≺) is poset.
Let (Zα, fzα) be chain in (P,≺). Define

⋃
α∈Λ

Zα. Define f on
⋃
α∈Λ

Zα by

f(z) = fzα(z) for z ∈ Zα. Hence
⋃
α∈Λ

Zα is an upper bound. By Zorn’s lemma

there exists maximal (W, fw) in (P,≺). Hence W = X, if not maximality
of W will controdict.

Theorem 2.3.5. If A is a convex set with Ari 6= φ and M is an affine set
such that M ∩ Ari = φ, then there exists a hyperplane containing M, which
is disjoint from Ari.

Theorem 2.3.6. If A is a convex set with a nonempty interior and if M is
an affine set which contains no interior point of A, then there exists a closed
hyperplane which contains M and which again contains no interior point of
A.

Corolloary 2.3.7. On a topological linear space there exist nontrivial con-
tinuous linear functionals (or closed hyperplanes) if and only if there exist
proper convex sets with nonempty interior. On any proper locally convex
space there exist nontrivial continuous functionals and closed hyperplanes.

Definition 2.3.8. A hyperplane H is called a Supporting hyperplane of
a set A if H contains at least one point of A and A lies in one of the two
closed half-spaces determined by H. A point of A through which a supporting
hyperplane passes is called support point of A.

Note 2.3.9. In a linear topological space, any supporting hyperplane of a
set with a nonempty interior is closed. Algebraic interior point cannot be a
support point. Hence, any support point is necessarily an algebraic boundary
point.
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Theorem 2.3.10. If the interior of a convex set is nonempty, then all the
boundary points are support points.

Theorem 2.3.11. If A1 and A2 are two nonempty convex sets and if at least
one of them has a nonempty interior and is disjoint from the other set, then
there exists a separating hyperplane. Moreover, if A1 and A2 are open, the
separation is strict.

Corolloary 2.3.12. If A1 and A2 are two nonempty disjoint convex set of
Rn, there exists a nonzero element c = (c1, . . . , cn) ∈ Rn \ {0}, such that

n∑
i=1

ciui ≤
n∑
i=1

civi, ∀u = (ui) ∈ A1, ∀v = (vi) ∈ A2.

Example 2.3.13. Counter example to Theorem 2.3.11 that if we drop con-
dition A1 and A2 to be open: Consider disjoint convex sets

A1 = {(x1, x2) : x1 ≤ 0} and A2 = {(x1, x2) : x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}

has nonempty interiors in R2 but cannot be strictly separated, only separating
hyperplane is x1 = 0.

Theorem 2.3.14. If F1 and F2 are two disjoint nonempty closed convex sets
in a separated locally convex space such that at least one of them is compact,
then there exists a hyperplane strictly separating F1 and F2. Moreover, there
exists a continuous linear functional f such that

sup{f(x) : x ∈ F1} < inf{f(x) : x ∈ F2}. (2.8)

Corolloary 2.3.15. If x0 /∈ F , where F is a nonempty closed convex set of
a separated locally convex space, then there exists a closed hyperplane strictly
separating F and x0, that is, there is a nontrivial continuous linear functional
such that

sup{f(x) : x ∈ F} < f(x0).

Theorem 2.3.16. A proper convex set of a separated locally convex space is
closed if and only if it coincides with an intersection of closed half-spaces.

Corolloary 2.3.17. A closed convex set with nonempty interior of a sep-
arated locally convex space coincides with the intersection of all half-spaces
generated by its supporting hyperplanes.
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Chapter 3

Completeness

3.1 Baire Category

Definition 3.1.1. Let S be a Topological Space. The sets of the first cat-
egory in S are those that are countable unions of nowhere dense sets. Any
subset of S that is not of the first category is said to be of the second cate-
gory in S.
Example : Q ⊂ (R, τusual) is of first category. But Qc ⊂ (R, τusual) is of
second category.

Note 3.1.2. In general, host space and its topology plays fundamental role
in determing category. Example - Z ⊂ R. Z as subspace of R is of second
category in itself but as Z ⊂ R is of first category.

Properties 3.1.3. Let S be a Topological Space.

(1) If A ⊂ B and B is of the first category in S, so is A.

(2) Any countable union of sets of the first category is of the first category.

(3) Any closed set E ⊂ S whose interior is empty is of the first category
in S.

(4) If h is a homeomorphism of S onto S and if E ⊂ S, then E and h(E)
have the same category in S.

Theorem 3.1.4. If S is either

43
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(1) a complete metric space, or

(2) a locally compact Hausdorff space,

then the intersection of every countable collection of dense open subsets of S
is dense in S.

Proof. (1) Let {Dn}n∈N is any countable collection of open dense set.
Let x0 ∈ S , r > 0. And let B(x0, r) be the open ball centered at x0 with
radius r.

To prove :
∞⋂
n=1

Dn and B(x0, r) has non empty intersection.

Since D1 is dense in S, we have

D1 ∩B(x0, r) 6= φ.

So let x1 ∈ D1∩B(x0, r). Both are open sets ∃ r1 > 0 with r1 < 1 such that,

B(x1, r1) ⊂ D1 ∩B(x0, r)

Since D2 is dense in S, we have

D2 ∩B(x1, r1) 6= φ

So let x2 ∈ D2 ∩ B(x1, r1). Both are open sets ∃ r2 > 0 with r2 <
1
2

such
that,

B(x2, r2) ⊂ D2 ∩B(x1, r1)

Processing in this way we get,
Dn+1 is dense in S, we have

Dn+1 ∩B(xn, rn) 6= φ

So let xn+1 ∈ Dn+1∩B(xn, rn). Both are open sets ∃ rn+1 > 0 with rn+1 <
1

n+1

such that,

B(xn+1, rn+1) ⊂ Dn+1 ∩B(xn, rn)

We obtain a sequence (xn) ∈ S and (rn)n∈N , limn→∞ rn = 0

B(xn+1, rn+1) ⊂ Dn+1 ∩B(xn, rn) ⊂ B(xn, rn)
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By Cantor Intersection Theorem we have

∞⋂
n=1

B(xn+1, rn+1) 6= φ

φ 6=
∞⋂
n=1

B(xn, rn) ⊂
∞⋂
n=1

Dn ∩B(xn, rn) ⊂ (
∞⋂
n=1

Dn) ∩B(x0, r)

(2) Let B0 be an arbitary non empty open set in S. Similarly by part (1)
if n ≥ 1 and an open set Bn−1 6= φ has been choosen, then ∃ an open set
Bn 6= φ with

Bn ⊂ Dn ∩Bn−1

Since S is locally compact Hausdorff Space, Bn can be chosen compact. Put

K =
∞⋂
n=1

Bn.

K 6= φ by compactness. By our construction K ⊂ B0 and K ⊂ Dn for each
n. Hence B0 intersects

⋂
n∈N

Dn.

Note 3.1.5. If {Ei} is a countable collection of nowhere dense subsets of S,
and if Vi is the complement of Ei , then each Vi is dense, and the conclusion
of Baire’s theorem is that ∩Vi 6= φ· Hence S 6= ∪Ei. Therefore, complete
metric spaces, as well as locally compact Hausdorff spaces, are of the second
category in themselves.

Definition 3.1.6. Equicontinuity : Suppose X and Y are topological vector
spaces and Γ is a collection of linear mappings from X into Y. We say that
Γ is equicontinuous if to every neighborhood W of 0 in Y there corresponds
a neighborhood V of 0 in X such that T (V ) ⊂ W for all T ∈ Γ.

Theorem 3.1.7. Suppose X and Y are topological vector spaces, Γ is an
equicontinuous collection of linear mappings from X into Y, and E is a
bounded subset of X. Then Y has a bounded subset F such that T (E) ⊂ F
for every T ∈ Γ.

Proof. Let F =
⋃
T∈Γ

T (E). Let W be a neighborhood of 0 in Y. Since Γ is

equicontinuous there is a neighborhood V of 0 in X s.t. T (V ) ⊂ W, ∀T ∈ Γ.
Since E is bounded, E ⊂ tV for large t,

T (E) ⊂ T (tV ) = tT (V ) ⊂ tW.
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Hence
⋃
T∈Γ

T (E) ⊂ tW implies F ⊂ tW . Hence F is bounded.

Theorem 3.1.8. (Banach-Steinhaus) : Suppose X and Y are topological
vector spaces, Γ is a collection of continuous linear mappings from X into Y,
and B is the set of all x ∈ X whose orbits

Γ(x) = {T (x) : T ∈ Γ}

are bounded in Y.
If B is of secound category in X, then B=X and Γ is equicontinuous.

Proof. Pick balanced neighborhood W and U of 0 in Y s.t. U +U = W . Put

E =
⋂
T∈Γ

T−1(U).

If x ∈ B, then Γ(x) ⊂ nU for some n, so that x ∈ nE. Hence B ⊂
∞⋃
n=1

nE.

Now atleast one nE is of the second category of X, since this is true of B. But
x → nx is homeomorphism of X onto X, implies E itself of second category
in X. E has nonempty interior but E is closed since T is continuous. Let E
has an interior point x. Then x− E contain a neighborhood V of 0 in X.

V ⊂ x− E

T (V ) ⊂ Tx− T (E) ⊂ U − U ⊂ W ∀T ∈ Γ.

Implies Γ is equicontinuous and by previous theorem Γ is uniformly bounded.
Each Γ is bounded in Y, Hence B = X.

Corolloary 3.1.9. If Γ is a collection of continuous linear mappings from
an F-space X into a topological vector space Y, and if the sets

Γ(x) = {Tx : T ∈ Γ}

are bounded in Y, for every x ∈ X, then Γ is equicontinuous.

Proposition 3.1.10. Suppose X and Y are topological vector spaces, and
{Tn} is a sequence of continuous linear mappings of X into Y.

(1) If C is the set of all x ∈ X for which {Tn(x)} is a Cauchy sequence in
Y, and if C is of the second category in X, then C = X.
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(2) If L is the set of all x ∈ X at which

T (x) = lim
n→∞

Tn(x)

exists, if L is of the second category in X, and if Y is an F-space, then
L = X and T : X → Y is continuous.

Corolloary 3.1.11. If Tn is a sequence of continuous linear mappings from
an F-space X into a topological vector space Y, and if

T (x) = lim
n→∞

Tn(x)

exists for every x ∈ X, then T is continuous.

Theorem 3.1.12. Suppose X and Y are topological vector spaces, K is a
compact convex set in X, Γ is a collection of continuous linear mappings of
X into Y, and the orbits

Γ(x) = {Tx : T ∈ Γ}

are bounded subset of Y, for every x ∈ K.
Then there is bounded set B ⊂ Y s.t. T (K) ⊂ B for every T ∈ Γ.

Proof. Let B be the union of all sets Γ(x), for x ∈ K. Pick balanced neigh-
borhood W and U of 0 in Y s.t. U + U ⊂ W . Put

E =
⋂
T∈Γ

T−1(U)

If x ∈ K, then Γ(x) ⊂ nU for some n, so that x ∈ nE. We have

K =
∞⋃
n=1

(K ∩ nE).

Since E is closed, Baire’s theorem shows that K ∩nE has nonempty interior
(relative to K) for at least one n (say n0).
We fix an interior point x0 of K ∩ nE, we fix a balanced neighborhood V of
0 in X s.t.

K ∩ (x0 + V ) ⊂ nE

and we fix a p > 1 s.t.
K ⊂ x0 + pV.
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Such p exists since K is compact.
If now x is any point of K and

z = (1− p−1)x0 + p−1x

then z ∈ K, since K is convex. Also,

z − x0 = p−1(x− x0) ∈ V.

Hence z ∈ nE. Since T (nE) ⊂ nU for every T ∈ Γ and since x = pz − (p−
1)x0,and since U is balanced we have

Tx ∈ pnU − (p− 1)nU ⊂ pn(U + U) ⊂ pnW.

Thus B ⊂ pnW , hence B is bounded.

3.2 The Open Mapping Theorem

Theorem 3.2.1. Suppose X is an F-space and Y is a topological vector
space. Also suppose T : X → Y is continuous and linear and T (X) is of
second category in Y. Then

(1) T(X)=Y,

(2) T is open mapping, and

(3) Y is an F-space.

Proof. Obviously (2) implies (1), T (X) is open in Y and only open subspace
of Y is Y itself, so T(X)=Y.
To prove (2), let V be a neighborhood of 0 in X. We have to show that
T (V ) contains a neighborhood of 0 in Y (since our topologies are invariant
so enough to show nbd around 0).
Let d be invariant metric on X that is compatible with the topology of X.
Define

Vn = {x : d(x, 0) < 2−nr} (n ∈ N)
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where r > 0 is so small that V0 ⊂ V . We proceed by proving that for some
neighborhood W of 0 in Y satisfies

W ⊂ T (V1) ⊂ T (V ) (3.1)

Since V2 − V2 ⊂ V1, by Theorem 1.2.6 (b)

T (V2)− T (V2) ⊂ T (V2)− T (V2) ⊂ T (V1).

Also we know that T (X) =
∞⋃
k=1

kT (V2), because V2 is neighborhood of 0. At

least one kT (V2) is therefor of second category in Y. Because of homeomor-
phism y → ky of Y onto Y, T (V2) is of second category in Y. Its closure
therefore has nonempty interior. Now take x ∈ int(V2)

0 ∈ x− int(V2) ⊂ T (V2)− T (V2).

First inclusion of equation (3.1) is done. To prove second inclusion in equa-
tion (3.1), fix y1 ∈ T (V1). Assume n > 1 and yn has been chosen in T (Vn).

What was just proved for V1 is true for Vn+1, so that T (Vn+1) contains a
neighborhood of 0. Hence

(yn − T (Vn+1)) ∩ T (Vn) 6= φ.

This says that ∃xn ∈ Vn s.t.

T (xn) ∈ yn − T (Vn+1).

Put yn+1 = yn − T (xn). Then yn+1 ∈ T (Vn+1) and construction proceeds.
Since d(xn, 0) < 2−nr for n ∈ N, the sums x1 + · · · + xn forms a cauchy
sequence which converges (by the completeness of X) to some x ∈ X, with
d(x, 0) < r. Hence x ∈ V . Since

m∑
n=1

T (xn) =
m∑
n=1

(yn − yn+1) = y1 − ym+1

and since ym+1 → 0 as m → ∞, hence y1 = T (x) ∈ T (V ). Hence (2) is
proved.
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By Theorem 1.8.4 X/N is an F-space, if N is the null space of T. Define

f(x+N) = T (x) (x ∈ X).

So f is isomorphism and that T (x) = f(π(x)), where π is quotient map. If V
is open in Y,then

f−1(V ) = {x+N ∈ X/N : f(x+N) ∈ V }
= {x+N ∈ X/N : T (x) ∈ V }
= {x+N ∈ X/N : x ∈ T−1(V )}
= π(T−1(V ))

is open, since T is continuous and π is open. Hence f is continuous. If E is
open in X/N , then

f(E) = T (π−1(E))

is open, π is continuous and T is open. Hence F is homeomorphism. As X/N
is an F-space so is Y.

Corolloary 3.2.2.

(a) If T is a continuous linear mapping of an F-space X onto an F-space
Y, then T is open.

(b) If T satisfies (a) and is one-to-one, then T−1 : Y → X is continuous.

(c) If X and Y are Banach spaces, and if T : X → Y is continuous, linear,
one-to-one, and onto, then there exist positive real numbers a and b
such that

a ‖x‖ 6 ‖T (x)‖ 6 b ‖x‖
for every x ∈ X.

(d) If τ1 ⊂ τ2 are vector topologies on a vector space X and if both (X, τ1) and (X, τ2)
are F-spaces, then τ1 = τ2.

3.3 The Closed Graph Theorem

Definition 3.3.1. Graphs : If X and Y are sets and f maps X into Y, the
graph of f is the set of all points (x, f(x)) in the cartesian product X × Y .
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Proposition 3.3.2. If X is a topological space, Y is a Hausdorff space, and
f : X → Y is continuous, then the graph G of f is closed.

Theorem 3.3.3. The closed graph theorem : Suppose X and Y are F-
space and T : X → Y is linear map. Further G = {(x, T (x)) : x ∈ X} is
closed in X × Y . Then T is continuous.

Proof. X×Y is a vector space if addition and scaler multiplication are defined
componentwise:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

α(x1, y1) = (αx1, αy1).

There are complete invariant metrics dX and dY on X and Y, respectively,
which induce their topologies. If

d((x1, , y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

then d is an invariant metric on X × Y which is compatible with its product
topology and which makes X × Y into an F-space.
Since T is linear map hence G is subspace of X × Y . Closed subset of a
complete metric space is complete. Therefore G is F-space.

Define π1 : G→ X and π2 : X × Y → Y by

π1(x, T (x)) = x, π2(x, y) = y.

So π1 is continuous beijective linear map. So from open mapping theorem

π−1
1 : X → G

is continuous. Also T = π2◦π−1
1 and π2 is continuous. Hence T is continuous.

Definition 3.3.4. Bilinear Map : Suppose X, Y, Z are vector spaces and
B maps X × Y into Z. Associate to each x ∈ X and to each y ∈ Y the
mapping

Bx : Y → Z and By : X → Z

by defining
Bx(y) = B(x, y) = By(x).

B is said to be bilinear if every Bx and every B
y are linear.
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Definition 3.3.5. If X, Y, Z are topological vector spaces and if every Bx

and every By is continuous, then B is said to be separately continuous.

Proposition 3.3.6. Suppose B : X × Y → Z is bilinear and separately
continuous, X is an F-space, and Y and Z are topological vector spaces. Then

B(xn, yn)→ B(x0, y0) in Z

whenever xn → x0 in X and yn → y0 in Y. If Y is metrizable, it follows that
B is continuous.



Chapter 4

Weak and Weak*-Topology

4.1 Prerequisites

Proposition 4.1.1. Suppose M is a subspace of a vector space X, p is a
seminorm on X, and f is a linear functional on M such that

|f(x)| 6 p(x) (x ∈M).

Then f extends to a linear functional T on X that satisfies

|T (x)| 6 p(x) (x ∈ X).

Proposition 4.1.2. Suppose A and B are disjoint, nonempty and convex
sets in a topological vector space X.

(1) If A is open there exists T ∈ X∗ and γ ∈ R s.t.

Re Tx < γ 6 Re Ty

∀x ∈ A and ∀y ∈ B.

(2) If A is compact and B is closed and X is locally convex space, then there
exist T ∈ X∗, γ1, γ2 ∈ R s.t.

Re Tx < γ1 < γ2 < Re Ty

∀x ∈ A and ∀y ∈ B.

53
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Proposition 4.1.3. Suppose M is a subspace of a locally convex space X,
and x0 ∈ X. If x0 is not in the closure of M, then there exists T ∈ X∗ such
that T (x0) = 1 but Tx = 0 for every x ∈M .

Proposition 4.1.4. Suppose B is a convex, balanced, closed set in a locally
convex space X, x0 ∈ X, but x0 /∈ B. Then there exists T ∈ X∗ such that
|T (x)| 6 1 for all x ∈ B, but T (x0) > 1 .

4.2 Weak Topologies

Lemma 4.2.1. If τ1 ⊂ τ2 are topologies on a set X, if τ1 is a Hausdorff
topology, and if τ2 is compact, then τ1 = τ2.

Proof. Let F ⊂ X be τ2 − closed. Since X is τ2-compact, so is F. Since
τ1 ⊂ τ2 implies F is τ1-compact. Since τ1 is a Hausdorff topology, implies
that F is τ1-closed. Conclude that τ2 ⊂ τ1. Hence τ1 = τ2.

Definition 4.2.2. Suppose that X is a set and F is a nonempty family of
mappings f : X → Yf , where each Yf is a topological space. Let τ be the
collection of all unions of finite intersections of sets f−1(V ), with f ∈ F
and V open in Yf . Then τ is a topology on X, and it is in fact the weakest
topology on X that makes every f ∈ F continuous. This τ is called the
weak topology on X induced by F , or, more succinctly, the F -topology of
X.

Example 4.2.3. Let X be the cartesian product of a collection of topological
spaces Xα. If πα(x) denotes the αth coordinate of a point x ∈ X, then πα
maps X onto Xα, and the product topology τ of X is its {πα}-topology, the
weakest one that makes every πα continuous.

Lemma 4.2.4. If F is a family of mappings f : X → Yf , where X is a set
and each Yf is a Hausdorff space, and if F separates points on X, then the
F -topology of X is a Hausdorff topology.

Lemma 4.2.5. If X is a compact topological space and if some sequence
{fn} of continuous real-valued functions separates points on X, then X is
metrizable.
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Proof. Let τ be the given topology on X. Suppose, without loss of generality,
that |fn| 6 1 for all n, and let τd be the topolgy induced on X by the metric

d(p, q) =
∞∑
n=1

2−n|fn(p)− fn(q)|.

Since each fn is τ -continuous and the series converges uniformly on X ×X,
d is τ -continuous function on X ×X. The balls

B(p, r) = {q ∈ X : d(p, q) < r}

are therefore τ -open. Thus τd ⊂ τ . Since τd is induced by a metric, τd is a
Hausdorff topology, and now Lemma 4.2.1 implies that τ = τd.

Lemma 4.2.6. Suppose T1, T2, . . . , Tn and T are linear functionals on a vec-
tor space X. Let

N = {x ∈ X : T1x = · · · = Tnx = 0}.

The following are equivalent:

(1) Ther are scalars β1, . . . , βn such that

T = β1T1 + · · ·+ βnTn.

(2) There exists γ <∞ such that

|Tx| ≤ γ max1≤i≤n |Tix| (x ∈ X).

(3) Tx = 0 for every x ∈ N.

Theorem 4.2.7. Suppose X is a vector space and X
′

is a separating vector
space of linear functionals on X. Then the X

′−topology τ
′

makes X into a
locally convex space whose dual space is X

′
.

Proof. We know that R and C are Hausdorff space so by Lemma 4.2.3
τ
′

is a Hausdorff topology. The elements of X
′

are linear which gives τ
′

translational-invariant. If T1, . . . , Tn ∈ X
′

and if ri > 0 and if

V = {x : |Tix| < ri for 1 ≤ i ≤ n},
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then V is balanced, convex and V ∈ τ ′ . And collection of all V form local
base for τ

′
.

Here 1
2
V + 1

2
V = V , hence addition is continuous. Suppose x ∈ X and α is

scalar. Then x ∈ sV for some s > 0 as V is absorbing set too. If |β − α| < r
and y ∈ x+ rV then

βy − αx = (β − α)y + α(y − x)

∈ (rx+ r2V ) + (|α|rV )

⊂ rsV + r2V + |α|rV
⊂ V.

provided r(s+ r) + |α|r < 1. Hence scalar multiplication is continuous.
So we proved τ

′
is locally convex vector topology. Also every T ∈ X ′ is τ

′

continuous. Conversely, suppose T is τ
′

continuous linear functional on X.
Then |Tx| < 1 for all x in some set V constucted earlier. By Lemma 4.2.6
T =

∑
βiTi. Since Ti ∈ X

′
and X

′
is vector space, T ∈ X ′ .

4.2.8 The weak topology of a topological vector space

Suppose X is a topological vector space (τ) whose dual X∗ separates points
on X. The X∗-topology of X is called weak topology of X.
Let X be topologized by weak topology τw and denote it by Xw.
τw is weakest topology on X means τw ⊂ τ , So τ will often called original
topology.

Let {xn} be sequence in X. xn → 0 originally means every original neigh-
borhood of 0 contains all xn except finite. xn → 0 weakly means every weak
neighborhood of 0 contains all xn except finite.

Note 4.2.9.

(1) Since every weak neighborhood of 0 contains a neighborhood of the form

V = {x : |Tix| < ri for 1 ≤ i ≤ n}

where Ti ∈ X∗ and ri > 0, so xn → 0 weakly iff Txn → 0 for every
T ∈ X∗.
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(2) Every originally convergent sequence converges weakly.

(3) A set E ⊂ X is weakly bounded iff for every T ∈ X∗ is bounded function
on E.

(4) Consider V construct earlier and N = {x : T1x = · · · = Tn = 0}. Since
x → (T1x, . . . , Tnx) maps X into C with null space N, so dimX ≤
n+dimN . Since N ⊂ V so if X is infinite dimensional then every weak
neighborhood of 0 contains an infinite dimensional subspace; hence Xw

is not locally bounded.

Theorem 4.2.10. Suppose E is a convex subset of locally convex space X.
Then the weak closure Ew of E is equal to its original closure E.

Proof. Ew is weakly closed, hence originally closed, so E ⊂ Ew. Choose
x0 ∈ X , x0 /∈ E. By Theorem 4.1.2 there exist T ∈ X∗ and α ∈ R such that,
for every x ∈ E,

Re Tx0 < α < Re Tx.

The set {x : Re Tx < α} is weak neighborhood of x0 that does not intersect
E. Thus x0 /∈ Ew. Hence Ew ⊂ E.

Corolloary 4.2.11. For convex subsets of a locally convex space,

(1) originally closed equals weakly closed and

(2) originally dense equals weakly dense.

Theorem 4.2.12. Suppose X is a metrizable locally convex space. If {xn}
is a sequence in X that converges weakly to some x ∈ X, then there is a
sequence {yi} in X such that

(1) each {yi} is a convex combination of finitely many xn , and

(2) yi → x originally.

4.2.13 The weak∗-topology of a dual space

Let X be topological vector space whose dual is X∗. Now every x ∈ X
induces a linear functional fx on X∗ defined by

fxT = Tx

and that {fx : x ∈ X} separates points on X∗. The X-topology of X∗ is
called weak∗-topology of X∗.
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4.3 Compact Convex Sets

Theorem 4.3.1. The Banach-Alaoglu theorem : If V is neighborhood
of 0 in a topological vector space X and if

K = {T ∈ X∗ : |Tx| ≤ 1 for every x ∈ V }

then K is weak∗-compact.

Proof. Since neighborhoods of 0 are absorbing, so corresponds to every x ∈ X
there is number γx <∞ such that x ∈ γxV . Hence

|Tx| ≤ γx (x ∈ X, T ∈ K).

Let Dx = {α ∈ R : |α| ≤ γx}. Let τ be the product topology on P, cartesian
product of all Dx, one for each x ∈ X. Set P is compact set being cartesian
product of compact sets (Tychonoff’s theorem). πx : D → Dx defined by
πx(α) = αx, x coordinate of α. So πx is continuous. Elements of P are the
functions on X (linear or not) that satisfy

|f(x)| ≤ γx (x ∈ X)

Thus K ⊂ X∗ ∩ P . So K inherits two topologies: one from X∗ (weak∗ −
topology) and τ from P.
Claim (a) : These two topologies coincide on K.
Fix some T0 ∈ K. Choose xi ∈ X, for 1 ≤ i ≤ n; choose δ > 0. Take

W1 = {T ∈ X∗ : |fxiT − fxiT0| < δ1 ≤ i ≤ n}
= {T ∈ X∗ : |Txi − T0xi| < δ1 ≤ i ≤ n}

W2 = {f ∈ P : |f(xi)− T0xi| < δ1 ≤ i ≤ n}.

Let n, xi, and δ range over all possible values. So W1 then form a local base
for the weak∗-topology of X∗ at T0 and the sets W2 form a local base for
product topology τ of P at T0. As K ⊂ X∗ ∩ P , we have

W1 ∩K = W2 ∩K.

Cliam (b) : K is closed subset of P.
Suppose f0 is in τ -closure of K. Choose x, y ∈ X, scalers α, β and ε > 0. The
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set of all f ∈ P suct that |f−f0| < ε at x, y, and αx+βy is a τ -neighborhood
of f0. Therefore K contains such a f . Since f is linear,

f0(αx+βy)−αf0(x)−βf0(y) = (f0−f)(αx+βy)+α(f−f0)(x)+β(f−f0)(y)

so that

|f0(αx+ βy)− αf0(x)− βf0(y)| = (1 + |α|+ |β|)ε.

Since ε was arbitrary, so f0 is linear. Now if x ∈ V and ε > 0, by same
argument shows f ∈ K such that |f(x) − f0(x)| < ε. Since |f(x)| ≤ 1, by
definition of K, hence |f0(x)| ≤ 1. Hence f0 ∈ K.
Now since P is compact, (b) implies that K is τ -compact and then (a) implies
that K is weak∗-compact.

Theorem 4.3.2. If X is separable topological vector space, if K ⊂ X∗ and
if K is weak∗-compact, then K is metrizable, in the weak∗-topology.

Proof. Let {xn} be countable dense set in X. Define fn(T ) = Txn, for T ∈
X∗. Each fn is weak∗-coontinuous. If fn(T1) = fn(T2) ∀n, then T1xn =
T2xn,∀n, which implies that T1 = T2, since both are continuous on X and
coincide on a dense set.
Thus {fn} is a countable family of continuous function that separates points
on X∗. So by Lemma 4.2.5 K is metrizable.

Proposition 4.3.3. If V is neighborhood of 0 in a separable topological vector
space X, and if {Tn} is a sequence in X∗ such that

|Tnx| ≤ 1 (x ∈ V, n = 1, 2, . . . ),

there is a subsequence {Tni} and there is a T ∈ X∗ such that

Tx = lim
n→∞

Tnix (x ∈ X).

In other words, the polar of V is sequentially compact in the weak∗-topology.

Theorem 4.3.4. In a locally convex space X, every weakly bounded set is
originally bounded and vice versa.
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Proof. Every originally bounded set is weakly bounded because every weak
neighborhood of 0 in X is an original neighborhood of 0.

Conversely, assume that E ⊂ X is weakly bounded and U is an original
neighborhood of 0 in X. We have to show there exists t > 0 such that E ⊂ tU .
Since X is locally convex, there is a convex, balanced, original neighborhood
V of 0 in X such that V ⊂ U . Let K ⊂ X∗ be the polar of V :

K = {T ∈ X∗ : |Tx| ≤ 1 ∀x ∈ V }.

Claim : V = {x ∈ X : |Tx| ≤ 1, T ∈ K} (1)
V ⊂ {x ∈ X : |Tx| ≤ 1, T ∈ K} by definition of K, implies V ⊂ {x ∈ X :
|Tx| ≤ 1, T ∈ K} as the set in right side is closed. Suppose a ∈ X but a /∈ V .
Proposition 4.1.4 shows that T (a) > 1 for some T ∈ K. Hence claim holds.
Since E is weakly bounded, there corresponds to each T ∈ X∗ a number
βT <∞ such that

|Tx| < βT ∀x ∈ E. (2)

Since K is convex and weak∗-compact and since the function T → Tx are
weak∗-continuous, by Theorem 3.1.13 we conclude from equation (2) that
there is constant β <∞ such that

|Tx| ≤ β (x ∈ E, T ∈ K).

Now from equation (1) and (2), β−1x ∈ V ⊂ U for all x ∈ E. Since E is
balanced,

E ⊂ tV ⊂ tU (t > β).

Hence E is originally bounded.

Corolloary 4.3.5. If X is normed space, if E ⊂ X and if

sup
x∈E
|Tx| <∞ (T ∈ X∗)

then there exists β <∞ such that

‖x‖ ≤ β (x ∈ E).
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Definition 4.3.6.

(1) If X is a topological vector space and E ⊂ X, the closed convex hull of
E, written co(E), is the closure of co(E).

(2) A subset E of a metric space X is said to be totally bounded if E lies in
the union of finitely many open balls of radius ε, for every ε > 0.

(3) A set E in a topological vector space X is said to be totally bounded if
to every neighborhood V of 0 in X corresponds a finite set F such that
E ⊂ F + V .

Proposition 4.3.7. If E ⊂ Rn and x ∈ co(E), then x lies in the convex hull
of some subset of E which contains at most n+ 1 points.

Theorem 4.3.8.

(1) If A1, . . . , An are compact convex sets in a topological vector space X,
then co(A1 ∪ · · · ∪ An) is compact.

(2) If X is a locally convex topological vector space and E ⊂ X is totally
bounded, then co(E) is totally bounded.

(3) If X is a Frechet space and K ⊂ X is compact, then co(K) is compact.

(4) If K is a compact set in Rn, then co(K) is compact.

Proof. (1) Let S be the simplex in Rn consisting of all s = (s1, . . . , sn) with

si ≥ 0,
n∑
i=1

si = 1. Put A = A1 × · · · × An. Define f : S × A→ X by

f(s, a) =
n∑
i=1

siai

and put K = f(S × A).
Since f is continuous and S × A is compact so K is compact and K ⊂
co(A1 ∪ · · · ∪ An).
If (s, a) and (t, b) are in S × A and if α ≥ 0, β ≥ 0, α + β = 1, then

αf(s, a) + βf(t, b) = f(u, c),
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where u = αs+ βt ∈ S and c ∈ A, because

ci =
αsiai + βtibi
αsi + βti

∈ Ai 1 ≤ i ≤ n

So K is convex. Since Ai ⊂ K for each i [take si = 1, sj = 0 for j 6= i], the
convexity of K implies that co(Ai ∪ · · · ∪ An) ⊂ K.
So K = co(Ai ∪ · · · ∪ An), hence conclusion hold.

(2) Let U be a neighborhood of 0 in X. Choose a convex neighborhood V
of 0 in X such that V +V ⊂ U . Then E ⊂ F +V for some finite set F ⊂ X.
Hence E ⊂ co(F ) + V . The set co(F ) + V is convex. It follows that

co(E) ⊂ co(F ) + V.

But co(F ) is compact [by (1)], and therefore co(F ) ⊂ F1 + V for some finite
set F1 ⊂ X. Thus

co(E) ⊂ F1 + V + V ⊂ F1 + U.

Since U was arbitrary, co(E) is totally bounded.

(3) Closures of totally bounded sets are totally bounded in every metric
space, and hence are compact in every complete metric space. So if K is
compact in a Frechet space, then K is obviously totally bounded ; hence
co(K) is totally bounded, by (2), and therefore co(K) is compact.

(4) Let S be simplex in Rn+1 consisting of all t = (t1, . . . , tn+1) with ti ≥ 0
and

∑
ti = 1. Let K be compact, K ⊂ Rn. By Proposition 4.3.7, x ∈ co(K)

iff

x =
n+1∑
i=1

tixi

for some t ∈ S and xi ∈ K (1 ≤ i ≤ n + 1). In other words, co(K) is the
image of S ×Kn+1 under the continuous mapping

(t, x1, . . . , xn+1)→
n+1∑
i=1

tixi.

Hence co(K) is compact.
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Proposition 4.3.9. Suppose X is a topological vector space on which X∗

separates points. Suppose A and B are disjoint, nonempty, compact, convex
sets in X. Then there exists T ∈ X∗ such that

sup
x∈A

Re Tx < inf
y∈B

Re Ty.

Definition 4.3.10. Extreme points : Let K be a subset of a vector space
X. A nonempty set S ⊂ K is called an extreme set of K if no point of
S is an internal point of any line interval whose end points are in K, except
when both end points are in S. i.e. If x ∈ K, y ∈ K, 0 < t < 1, and

(1− t)x+ ty ∈ S

then x, y ∈ S.
The extreme points of K are the extreme sets that consist of just one point.
And the set of all extreme points are denoted by E(K).

Theorem 4.3.11. The Krein-Milman Theorem : Suppose X is a topo-
logical vector space on which X∗ separates points. If K is a nonempty com-
pact convex set in X, then K is the closed convex hull of the set of its extreme
points. In symbols, K = co(E(K)).

Proof. Let P be the collection of all compact extreme sets of K. Since K ∈
P, P 6= φ.
Claim(1) : The intersection S of any nonempty subcollection of P is a
member of P, unless S = φ.
Assume S =

⋂
i∈I
Ei, Ei ∈ P. Being the intersection of closed sets, S is

closed and S ⊂ K so S is compact. Let x ∈ S and x = λu+(1−λ)v for some
u, v ∈ K and λ ∈ [0, 1]. Now x ∈ Ei ∀i ∈ I and Ei is an extreme subset of
K so we have u, v ∈ Ei ∀i ∈ I. Hence u, v ∈ S. Thus claim hold.
Claim(2) : If S ∈P, T ∈ X∗, µ is the maximum of Re T on S, and

ST = {x ∈ S : Re Tx = µ},

then ST ∈P.
Suppose tx+ (1− t)y = z ∈ ST , x, y ∈ K, 0 < t < 1. Since z ∈ S and S ∈P
we have x, y ∈ S. Hence Re Tx ≤ µ,Re Ty ≤ µ. Since Re Tz = µ and T is
linear we have Re Tx = µ = Re Ty. Hence x, y ∈ ST . Hence claim hold.
Choose some S ∈P. Let P

′
= {E : E ⊂ S,E ∈P}. Since S ∈P

′
, P

′
is
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not empty. Partially order P
′

by set inclusion, let ω be a maximal totally
ordered subcollection of P

′
, and let M be the intersection of all members of

ω. Since ω is a collection of compact sets with the finite intersection property,
M 6= φ. By (1), M ∈P

′
. The maximality of ω implies that no proper subset

of M belongs to P. It now follows from (2) that every T ∈ X∗ is constant
on M. Since X∗ separates points on X, M has only one point. Therefore M
is an extreme point of K.
We proved

E(K) ∩ S 6= φ (∗)

for every S ∈ P. In other words, every compact extreme set of K contains
an extreme point of K.
Since K is compact and convex, we have

co(E(K)) ⊂ K

and hence co(E(K)) is compact.

Assume that some x0 ∈ K is not in co(E(K)). By Proposition 4.3.9,
there is T ∈ X∗ such that Re Tx < Re Tx0 for every x ∈ co(E(K)). If KT

is defined as in (2), then KT ∈ P. Choice of T shows that KT is disjoint
from co(E(K)) and controdicts equation (*). Hence K = co(E(K)).

Theorem 4.3.12. If K is compact subset of locally convex space X then
K ⊂ co(E(K)). Equivalently, co(K) = co(E(K)).

Theorem 4.3.13. If K is a compact set in a locally convex space X, and if
co(K) is also compact, then every extreme point of co(K) lies in K.

Proof. Assume that some extreme point p of co(K) is not in K i.e. p ∈ Kc,
Kc is open. Then there is a convex balanced neighborhood V of 0 in X such
that

(p+ V ) ∩K = φ (1)

K ⊂
⋃
x∈K

(x+V ) and since K is compact every open cover have finite subcover,

So there are x1, . . . , xn in K such that K ⊂
n⋃
i=1

(xi + V ). Each set

Ai = co(K ∩ (xi + V )) (1 ≤ i ≤ n)
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is convex and also compact, since Ai ⊂ co(K). Also K ⊂ A1 ∪ · · · ∪ An. By
Theorem 4.3.8 (1) we have

co(K) ⊂ co(A1 ∪ · · · ∪ An) = co(A1 ∪ · · · ∪ An).

Since Ai ⊂ co(K) for each i, we get co(K) ⊃ co(A1 ∪ · · · ∪ An). Thus

co(K) = co(A1 ∪ · · · ∪ An). (2)

So p ∈ co(A1 ∪ · · · ∪ An), in particular p = t1y1 + · · ·+ tNyN , where each yj
lies in some Ai, each tj is positive and

∑
tj = 1. The grouping

p = t1y1 + (1− t1)
t2y2 + · · ·+ tNyN
t2 + · · ·+ tN

(3)

exhibits p as a convex combination of two points of co(K), by (2). Since p
is an extreme point of co(K), we conclude from (3) that y1 = p. Thus, for
some i,

p ∈ Ai ⊂ xi + V ⊂ K + V ,

which contradicts (1).
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