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When Polyhedral Optimizations Meet Deep
Learning Kernels
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Abstract—Deep Neural Networks (DNN) are well under-
stood to be one of the largest consumers of HPC resources
and efficiently running their training and inference phases
on modern heterogeneous architectures (and accelerators)
poses an important challenge for the compilation com-
munity. Currently, DNNs are actively being studied by the
automatic parallelization and polyhedral compilation com-
munities for the same purpose. In this (initial) paper, we
study the kernels of four varieties of DNN layers with the
goal of applying automatic parallelization techniques for
latest architectures. We show the affine (Polyhedral) nature
of these kernels thereby showing that they are amenable
to well known polyhedral compilation techniques. For
benchmarking purposes, we implemented forward and
backward kernels for four varieties of layers namely convo-
lutional, pooling, recurrent and long short term memory in
PolyBench/C, A well known polyhedral benchmarking
suite. We also evaluated our kernels on the state-of-art
Pluto polyhedral compiler in order to highlight the
speedups obtained by automatic loop transformations.

I. INTRODUCTION

Machine Learning (ML) techniques are being extensively
used for solving real world problems in various domains.
In applications from Computer Vision and Natural Lan-
guage Processing (NLP), Neural Network (NN) models
are trained in order to learn a pattern, after which
the model can be used for an unseen input. Due to
extensive usage of high resolution graphics and large
textual datasets, the real-world HPC requirements of
DNNs is quite large. This makes the application of com-
piler optimizations, parallelization (and tuning) strategies
to the training and inference phase as a vital key to
effectively parallelize and optimize these computations.
In this paper, we discuss the issues that arise from a
per-layer implementation of the main classes of DNNs
as a specific variety of (affine) Polyhedral loop pro-
grams. Our implementation focuses on following the
PolyBench/C [7] structure, a widely used benchmark
for Polyhedral compilation tools. While two of DNN

implementations are perfectly polyhedral codes, presence
of stride parameters makes the remaining two non-
polyhedral. We describe a practical way in which they
can be turned into polyhedral programs. As a proof
of concept of our implementation, as well as to show
the potential of polyhedral compilation framework on
DNNs, we optimize our kernels using a well known poly-
hedral compiler Pluto [2], to study the speedups obtained
by applying a complex sequence of loop transformations.
We see our work as the first step in automatically
generating accelerator specific kernels using advanced
polyhedral compilation techniques. The larger goal of
this study is aimed at applying polyhedral techniques
to automatically generate accelerator specific efficient
programs on various architectures.

II. MOTIVATION

Artificial Neural Networks (ANNs) are biologically in-
spired from interactions of neurons in the human brain.
ANNs consist of several layers with nodes in each layer
obtaining input from nodes in the previous layer via
interconnections between layers. The activation of a
node is determined by the input values and the weights
on the connections between the inputs and the nodes.
The training phase involves updating the weights on
interconnections so that expected results are obtained at
the output layer. The forward pass involves executing the
network on new training inputs, while backward pass
updates the weights to reduce the deviation from the
expected output. Deep NNs typically comprise of a large
number of layers, and their design is crucial to improve
the accuracy of the network.
We now briefly discuss some widely used classes of deep
NNs and state their broad application domain. Convo-
lutional Neural Networks (CNNs) are a class of NNs
widely employed for image and video data. In the recent
past, CNNs have achieved tremendous improvement in
accuracies for several computer vision tasks [6, 8].



Convolutional network consists of one or more (convo-
lutional) layers often accompanied with a subsampling
layer and fully connected layers; the convolutional lay-
ers account for roughly 80% of the computation time.
Pooling layer is a type of layer within a deep CNN,
which summarizes the input presented to it. Since CNNs
are compute intensive, pooling helps to compress the
data as it flows through the deep net. Recurrent Neural
Networks (RNNs) have become a de facto for modeling
sequential dependencies in discrete time series, useful in
context driven tasks (NLPs). Long Short Term Memory
(LSTM) network is another variant of RNN specialized
for improving accuracy during learning phase.
Deep learning workloads are computationally intensive
and manually optimizing their kernels on a variety of
modern parallel architectures (and accelerators) is a
challenging task. In this paper, we try to explore potential
of automatic parallelization for deep learning kernels.
The rest of this paper is organized as follows: In
Section III, we give a quick overview of polyhedral
compilation. Then, in Sections IV–VII, we present the
computational kernels corresponding to forward and
backward phases of various deep NNs. In Sec. VIII, we
discuss the performance improvements obtained by loop
transformations. Finally, in Sec. IX, we state conclusions
and some future work.

III. POLYHEDRAL COMPILATION

The Polyhedral model focuses on optimizing and par-
allelizing the loop nests. It is a powerful formalism to
analyze and transform the input affine programs so as to
run them on varieties of modern heterogeneous architec-
tures. It can statically analyze programs which involve
affine loop bounds and affine array access functions.
Typically, a polyhedral compiler first creates a model
of input loop nest. A statement nested within a d deep
loop nest is represented as d-dimensional polyhedron
where each integral point represents dynamic instance
of that statement. After extracting such a representation,
data dependence analysis—a well studied problem that
boils down to solving an integer linear programming
problem [3]—is performed. This analysis finds the (dy-
namic) instances of two possibly different statements
which access the same array location, and at least one of
the accesses is a write. Such an analysis is important to
preserve the semantics of original program. The second
step of polyhedral compilation is the affine scheduling
problem [4], that involves finding a complex sequence
of classical loop transformations (such as loop tiling,
permutation, skewing) which expose the parallelism and

Deep Neural Network layers BLAS / HPC kernels
Convolutional layer Stencils, tensor multiplication
Recurrent layer Stencil with varying time steps
LSTM Set of Matrix vector products
Max, sum Pooling Max/Sum reductions

TABLE I: Correspondance among DNN layers and HPC kernels

TABLE II: Program Parameters for CNN

N Number of Input Images in batch
C Number of Input feature maps
K Number of Output feature maps
P × Q Size of output feature map
R × S Size of filter kernel
U,V Stride parameters

improve the data locality. A number of approaches
exist to find a good program transformations from a
large search space, and one practical approach involves
scheduling two dependent statement instances as much
closer (in time space) as possible. The above approach
was first implemented in the Pluto source to source
compiler [2] which we use in this work. The final step of
polyhedral compilation involves generating a loop nest
which scans all valid integer points in polyhedra [1].
The parallel loops is be marked with apt pragmas (like
OpenMP, OpenACC) during code-generation.
In recent past, polyhedral compilation has shown to be
effective in accelerating various linear algebra kernels,
tensor contractions, stencils, image processing applica-
tions etc. We make the crucial observation that many
of the layers used in deep learning pipelines perform
computations that are similar to the ones polyhedral
compilation has been successful in optimizing. It is
known that entries in the column 2 of above table are
well optimized by polyhedral compilers. In this paper, we
try to explore how polyhedral model optimizes various
deep learning layers given the close correspondence as
depicted in table I. We also release the NN kernels.
Earlier researchers who worked only on CNN [9] did
not release their code (Neither HDL nor HLS/C code)
to open-source. To the best of our knowledge, there is no
known implementation of DNNs (as (affine) Polyhedral
programs) for benchmarking purposes. With this paper
we overcome the above limitation.

Fig. 1: C Code : CNN forward pass

IV. CNN
The program parameters of a CNN are described in
Table II. For parallelizing purposes, the CNN program
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TABLE III: Program Parameters for Pooling

N Number of Input images
D Number of feature maps
(IH,IW) Size of input feature map
(OH,OW) Size of output feature map
(DH,DW) Size of Pooling kernel
(SH,SW) Horizontal and vertical stride values

can be thought of as a stencil (with uniform depen-
dences) defined over a loop nest of depth seven, with
the loop body computing convolution. A quick study of
the dependences of the code shows that all four outer
dimensions, namely n, k, p, q, are completely parallel.
The array index expression for inp array accesses the
appropriate location in the input feature map accounting
for inverting and striding. Though our current implemen-
tation assumes absence of padding in the input filters,
though it can be added at a later time. The array access is

Fig. 2: C Code : CNN backward pass

clearly non-affine (due to the multiplication of the stride
parameter with the corresponding indices). The reader is
referred to Section V for a note on affinity of CNN and
MaxPool. In the backward pass, the error information is
propagated from output of a layer to its input. err out
contains the error derivative with respect to the output of
the layer. To compute the error derivative with respect to
the input, err out is multiplied with values from weight
matrix W to accumulate values into err in matrix.

V. MAX POOLING

Pooling is a form of layer usually added after convo-
lutional layer in CNN to reduce the spatial size of the
representation in the network. The program parameters
for max pooling operation are provided in Table III.
In MaxPooling, the maximum input value within the
window is termed as the output of the operation as shown
in Algo. 1. Only the maximum value of input window
contributes to the output value. During backpropagation
phase (shown in Algo. 2), the error derivative with
respect to output is added only to the input pixels which
have contributed to the output value.
Affinity of CNN and MaxPool: A central operation
in CNN is convolution which accesses the array index
expression by multiplying the stride parameter with the
loop dimension to get the required offset in the input

Algorithm 1 Max pooling layer: Forward pass
Require: N, D, IH, IW, DH, DW, SH, SW, inp[N][D][IH][IW]: Input
1: OH← (IH - DH)/SH + 1
2: OW← (IW - DW)/SW + 1
3: ∀ (n ∈ N, d ∈ D, r ∈ OH, c ∈ OW ) do {
4: val← MIN INT
5: for each h ∈ [SH ∗ r,min(SH ∗ r + dh, ih)) do
6: for each w ∈ [SW ∗ c,min(SW ∗ c + dw, iw)) do
7: val← MAX(val, inp[n][d][h][w])
8: end for
9: end for

10: out[n][d][r][c]← val
11: }

Algorithm 2 Max pooling layer: Backward pass
Require: N, D, IH, IW, DH, DW, SH, SW
Require: inp[N][D][IH][IW], err out[N][D][OH][OW]: Input data
1: OH← (IH - DH)/SH + 1
2: OW← (IW - DW)/SW + 1
3: ∀ (n ∈ N, d ∈ D, r ∈ OH, c ∈ OW ) do {
4: for each h ∈ [SH ∗ r,min(SH ∗ r + dh, ih)) do
5: for each w ∈ [SW ∗ c,min(SW ∗ c + dw, iw)) do
6: if out[n][d][r][c] == inp[n][d][h][w] then
7: err in[n][d][h][w] += err out[n][d][r][c]
8: end if
9: end for

10: end for
11: }

image. Though this makes the array access function non-
affine, as these stride parameters are constant integer
literals for each individual layer within a DNN, and are
fixed while designing the network, we fix them statically.
A similar strategy was used by Zang et al. [9] who used
Polyhedral techniques for FPGA code generation. The
same argument applies MaxPool layer as well.

VI. RNN

The unique aspect of RNNs is the feedback loop where
the output of the neuron is passed as input to the same
neuron leading to a recurrence in time dimension. The
presence of feedback loop introduces a set of depen-
dences during both forward and backward phases of the
network. The layer has three weight matrices namely
U, V,W which are learnt during back-propagation phase.
During back-propagation, the error of output neuron is
propagated T steps back in time. The kernel parameters
for a typical RNN is shown in Table IV.

Algorithm 3 RNN layer: Forward pass
Require: BT, T, P, Q, S
Require: U[S][P], W[S][S], V[Q][S]: Weight matrices
Require: state(t), input(t): Vector of size S, P resp.
1: state(0)← U * input(0)
2: output(0)← V * state(0)
3: for each t ∈ [1, T ) do
4: state(t)← U * input(t) + W * state(t-1)
5: output(t)← V * state(t)
6: end for
7:

TABLE IV: Program Parameters for RNN

T Number of time steps
P Size of input vector
Q Size of output vector
S Size of hidden vector
BPTT Truncated Unroll factor
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TABLE V: Program Parameters for LSTM

T Number of time steps
P Size of input vector
Q Size of output vector
S Size of hidden vector

As described in Algo. 3, in the forward pass of RNN,
state(t) denotes hidden state vector at each time step
and similarly output(t) is the output at timestep t. The
hidden state (state(t)) computation at time step t uses
information of current input vector and hidden state
vector of previous time step. U and W are multiplied
with input(t) and state(t − 1) respectively and the
quantities are added to get the final result. The output
vector is obtained by computing an inner product of V
and current hidden state i.e. state(t).

Algorithm 4 RNN layer: Backward pass
Require: BT, T, P, Q, S, (U[S][P], W[S][S], V[Q][S]): Weights
Require: errout(t), state(t), input(t): Vector of size Q, S, P resp.
1: for each t ∈ [T − 1, 1] do
2: errV + = errout(t) ∗ state(t)
3: errAS [1 : r] = V * errout(t)

4: for each step ∈ [t + 1,max(0, t− BT )) do
5: if step > 0 errW+ = errAS [1 : r] ∗ state(step− 1)

6: errU+ = errAS [1 : r] ∗ input(step)

7: errBS + = errAS [1 : r] ∗W
8: errAS [1 : r] = errBS [1 : r]

9: end for
10: end for

We describe the backward pass in Algo. 4, where the
error derivatives are summed up for each time step
t. This computes the error accumulation of gradient
using chain rule. The errBS acts as an intermediate
vector during the back-propagation step to store the error
derivative with respect to the hidden state vector state(t)
represented as errAS in the Algorithm.

VII. LSTM

LSTM is a special kind of RNN, designed to combat
vanishing gradients [5] through a gating mechanism. A
typical LSTM layer is comprised of a forget gate, an
input gate and an output gate. Each gate masks some
information (from the stream of data flowing through
the network) propagating through itself, or its previous
layers depending on the type of gate. The parameters
required to describe LSTM are given in Table V.
In Algo. 5, inputgate, forgetgate, outputgate represent
the input, forget and output gates respectively, and work
like masks. The inputgate decides to what extent the
current input contributes to the newly computed state
memory(t). The forgetgate, defines the factor of the
previous state which is retained in the current state.
Finally, the outputgate, defines how much of the internal
state is exposed to the external network (that is, to the
subsequent layers and to the next time step as well).

Algorithm 5 LSTM Neural Network layer: Forward pass
Require: T, P, Q, S, (input(t), state(t)): Vectors of size P, S resp.
Require: Wi[S][S], Wf [S][S], Wo[S][S], Wg [S][S]: Weight matrices for hidden state.Suffix

represent gate type (input, forget, output, hidden)
Require: Ui[S][P], Uf [S][P], Uo[S][P], Ug [S][P]: Weight matrices for input state.
1: for each t ∈ [1, T ) do
2: inputgate[1:S]←input(t)*Ui+state(t-1)*Wi

3: forgetgate[1:S]←input(t)*Uf +state(t-1)*Wf

4: outputgate[1:S]←input(t)*Uo+state(t-1)*Wo

5: candstate[1:S]←input(t)*Ug+state(t-1)*Wg

6: memory(t)←memory(t-1)*forgetgate+ candstate*input(t)
7: state(t)←memory(t)*outputgate

8: end for

candstate is a candidate hidden state that is computed
based on the current input and the previous hidden states.
The method of computing candstate is the same as that of
computing state(t) in a RNN, except that the parameters
U and W are replaced with Ug and Wg. memory(t) can
be considered as internal memory of the unit, which is a
sum of two components: a) memory(t− 1) multiplied
by the forget gate forgetgate, b) newly computed
candidate hidden state candstate multiplied by the input
gate inputgate. In other words, it is a combination of
how we want to combine the new input with previous
memory. Given the memory(t), the output state(t) is
computed by multiplying the memory(t) with the output
gate outputgate.
The back-propagation phase for LSTM(Alg. 6) con-
sists of computing errors for vectors representing var-
ious gates(input/output/forget/cand state). Using these,
errors for weight matrices are computed. Notice that,
while computing errors for Ui, Ug, Uf , Uo, input(t)
gets multiplied with the error values for a gate.
While, error computation of Wi,Wg,Wf ,Wo re-
quires state(t). This is so because during for-
ward phase Ui, Uf , Uo, Ug represents weight matrices
for input(t) and Wi,Wf ,Wo,Wg represents weight
matrices for candidate hidden state.
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Fig. 3: Execution times for forward pass

4



VIII. PERFORMANCE ANALYSIS

To study speedups obtained by applying polyhedral
transformations, we use Pluto [2] (version 0.11.4), a
widely used source-to-source polyhedral optimizer with
--tile --parallel flags. All experiments were
performed with the data set sizes set to the Poly-
Bench variable EXTRA-LARGE. We compiled the par-
allel codes generated by Pluto using GCC-7.0.0, and
OpenMP-4.5 for execution. The experiments were per-
formed on Intel(R) Xeon(R) CPU E5-2630 v3@2.40GHz
cluster having two processors with each processor having
8 hardware cores. We ran each program three times by
using benchmarking script bundled within PolyBench,
which internally runs it five times. We selected median of
three trials as the execution time. We separately recorded
the execution times for serial and parallel versions for
both forward and backward phases.

Algorithm 6 LSTM Backward pass
Require: T, P, Q, S, Wi[S][S], Wf [S][S], Wo[S][S], Wg [S][S], Ui[S][P], Uf [S][P], Uo[S][P],

Ug [S][P], outputgate[1:S],inputgate[1:S],forgetgate[1:S], candstate[1:S]
Require: memory(t), input(t) Vector of size S, P resp
1: for each t ∈ [T − 1, 1) do
2: err

g
output = memory(t)*errstate(t)

3: errmemory(t) += outputgate[1:S]*errstate(t)

4: err
g
forget

= memory(t-1)*errmemory(t)

5: errmemory(t−1) += forgetgate[1:S] * errmemory(t)

6: err
g
input = candstate[1:S] * errmemory(t)

7: err
g
cand state

= inputgate[1:S] * errmemory(t)

8: err Ui/g/f/o+=input(t)*(errg
input/cand state/forget/output

)

9: err Wi/g/f/o+=state(t)*(errg
input/cand state/forget/output

)

10: errstate(t−1) += Wi*errginput + Wf *errg
forget

+ Wo*errgoutput +
Wg*errg

cand state
11: end for
12: . Note: Line 8,9 defines 4 statements, with one to one correspondence between LHS and RHS

alternatives
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Fig. 4: Execution times for backward pass

The plots showing execution times for forward and
backward phases are given in 3 and 4 respectively. We
make following observations from plots: 1) Backward
phase is more compute intensive than forward phase for

Type Forward Backward
CNN 2.21x 51.78x
RNN 0.79x 1.71x
LSTM 1.77x 1.59x
MaxPool 14.84x NA

TABLE VI: Speed-up over serial execution

all layers except SumPooling. 2) RNN, LSTM consist
of Polyhedral loops that are successfully parallelized
by Pluto. 3) For CNN and Maxpool, we were forced
to replace the stride parameters with integer constants
defined in our header file. This made CNN and Maxpool
(forward pass) analyzable for Pluto. 4) The backward
phase of MaxPooling kernel consists of a data dependent
condition which Pluto's dependence analysis is unable
to analyze. 5) No speedups were observed for forward
phase of RNN and backward phase of SumPooling. 6)
Average speedups observed for forward and backward
phases are 2.15 and 2.69 respectively.

IX. CONCLUSIONS AND FUTURE WORK

We implemented the four varieties of neural network
layers as loop-programs in the PolyBench framework.
While RNN and LSTM strictly adhere to Polyhedral
framework’s affinity conditions, CNN and MaxPool do
not and we had to fix the stride parameters of their
codes manually. The programs show significant speedups
after applying polyhedral transformations. We released
our PolyBench/NN C implementation https://github.com/
hrishikeshv/polybench/tree/master/polyNN so that other
researchers can work on advanced optimizations on these
kernels. Though our work is preliminary, we believe it
will form a basis to apply automatic loop transformations
that expose parallelization as well as data locality opti-
mization opportunities for different DNN architectures
on various heterogeneous architectures and accelerators.
Acknowledgments: The authors are thankful to Prof.
Sanjay Rajopadhye for motivation and encouragement.
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