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Abstract

A Hilbert Space H is a real or complex inner product space that is also a complete metric space
with respect to the distance function induced by the inner product. A Reproducing Kernel Hilbert
Space(RKHS) is a Hilbert Space of functions in which point evaluations are continuous.

An RKHS is associated with a kernel that reproduces every function in the space. This means
that for any element in the set on which the functions are defined, evaluation at element can be
performed by taking an inner product with a function determined by the kernel. Such a reproducing
kernel exists if and only if every evaluation functional is continuous.

In his 1907 work concerning boundary value problems for harmonic and biharmonic functions,
Stanislaw Zaremba introduced reproducing kernels. James Mercer simultaneously examined func-
tions which satisfy the reproducing property in the theory of integral equations. Later further
work on this topic was done by mathematicians like Gabor Szego,Stefan Bergman, and Salomon
Bochner. The subject was systemtically developed in the early 1950’s by Nachman Aronszan and
Stefan Bergman.

These spaces have wide applications, including complex analysis, harmonic analysis and quantum
mechanics. Reproducing kernel Hilbert spaces are particularly important in the field of statistical
learning theory because of the celebrated representer theorem which states that every function in
an RKHS that minimises an empirical risk function can be written as a linear combination of the
kernel function evaluated at the training points. This is a practically useful result as it effectively
simplifies the empirical risk minimizaton problem from an infinite dimensional to a finite dimensional

optimization problem.
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Chapter 1

Notations

1. Cla, b]: the class of all real-valued continuous functions on [0,1]
2. R[z] : the real part of the complex number z

3. $z]: the imaginary part of the complex number z
1
4. 1,™: the space of all n-tuples (z1,22, ..., z,) € C with the norm |jz|| = (301 |2;[P)P

(28

lp: the space of all sequences () such that Y~ |2, |P < oo

6. LP(L): the space of all measurable p-integrable functions on ¥



Chapter 2

Hilbert Spaces

Definition 2.0.1. A complex vector space X s called an inner product space if to each pair of
elements x,y of X is associated a complex number (z,y) called the inner product of x and y that
satisfies the following four conditions:

1. {(x+y,2) = (z,2) + (y, 2)Vz,y,2 € X.

2. (ax,y) = a(z,y) Va € C.

3. (x,y) = (y,x). (the bar denotes complex conjugation)

4. {x,x) >0 and (z,x) =0 iff x = 0.
Note that conditions 1, 2 and 3 imply that
5. {zy+2) = (z,y) + (z,2).

Proof.

6. (x,ay) = alz,y).

Proof.

(z, ay) = (ay,x) from (3)
from (2)
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Note 2.0.2. The function (,) is linear in the first variable and conjugate linear in the second.

{.,.) is linear in the first variable because
1 (x+y,2) =(2,2) + (y,2).
2. (ax,y) = alz,y).
{,) is conjugate linear in the second because
1Az, y+2) = (z,y) + (z,2).
2. (z,ay) = alz,y).

Definition 2.0.3. A real vector space X is called an Inner Product Space if there is defined a real
Junction (,) on X x X satisfying the properties 1 — 4. Then the properties 3,6 are reduced to

3. (x,y) = (y,x).

6. (x,ay) = (ay,x) = alz,y).
Example 2.0.4. The space C" is an inner product space with the usual definition (z,y) = 23;1 ;7.
Example 2.0.5. The space Cla,b] is an inner product space if we define (f, g) = fah f(x)g(z)dz.

Definition 2.0.6. Let X be a vector space over the field F, where F is either the field R of real
numbers or the field C of complex numbers. The norm ||.| on X is a function that assigns to each

element of X a non negative real value and has the following properties :
1. Jlz|| =0 iff z = 0.
2. Jlaz|| = |a|||z|| VaeF,ze X.
3. Nz +yll <zl + vl VYx,y € X. (is called the triangle inequality).

Definition 2.0.7. A vector space equipped with a norm is called a normed vector space (or a normed

linear space)
The norm induces a metric on X given by d(z,y) = ||l — y/|.

Definition 2.0.8. A Banach Space is a complete normed linear space (complete in the metric

induced by the norm).

Theorem 2.0.9. (Cauchy-Schwarz inequalily)
For x,y € X, we have

()| < ll=[llly]l-

Proof. It y = 0, |ly|| = 0 and (0,z) = (00,2) = 0(#,x) where ¢ is the zero element of X and
(z,0) = (0,z) = 0 = 0 so both sides of the inequality vanish and the inequality is true.

So let us assume that y # 0 and take any scalar « € C. Then we have

0<(z+ay,z+ay)



But

z,ay) — (ay, z) + (ay, ay)
z,ay) — {ay, z) + oy, ay)
x,x) —alr,y) — aly, x) + ooz, y)

Y
= l2)* — aly, 2) —a(z,y) + lal?[ly]l*.

Hence we have ||z||> — a(y, =) — @(z,y) + |a|?|ly||* > 0.

Since y # 0, ||y|| # 0. Choosing a = <||xy7||y2

T 2 _ <w7y><xvy> _ (x,y)(azy) |(x,y>|2 2
L E wiE o =0

<

and using (y, ) = (z,y),

we get,

which gives,

HxHZ_ |(m,y>|2 _ |(:c,y>|2 4 |(m,y>|2 > 0.
llyll? llyll? lyl>
2
Hence we get |22 — |<ﬁ3;ﬁi| > 0 from which we have

(@, )] < llz[lllyll-

Theorem 2.0.10. Given an inner product on X, put

]l = v/ (e, z).

Then |.|| defines a norm on X.
Proof. We will show ||.|| satisfies the three properties of norm.
1.

¢ =0 = V(x,2) =0
= (z,z) =0
= x=0.
Conversly:
=0 = (z,z)=0
= V{(z,z)=0

= ||z|| = 0.



3. Let z,y € X. Then we have,

lz+yl® = (x+y.z+y) = (z,2) + (z,9) + (v, 2) + (v, ).

Since ,
(y,z) = (z,y) and (z,y) + (z,y) = 2R(z,y)
We get ,
o +ylI* = [lz]* + 2R(z, y) + [|ly[|*. (2.1)
Since
2R(z, y) < 2|(z,y)l, (2.2)

using (2.1) in (2.2) and applying Schwarz inequality,we get

o+ l* < Ml + lyl1* + 2llz ][y

That is [l +y[|* < (|lz[| + [ly[)* which proves [l + y|| < [[z]| + [yl

Definition 2.0.11 (Hilbert Space). If the inner product space X with norm (induced by the inner
product) is a complete metric space , we say it is a Hilbert Space. We use the symbol H for a Hilbert

Space.

An inner product space is sometimes called a pre Hilbert Space. If it is not complete, then its
completion is a Hilbert Space.

Example 2.0.12. The space lp is Hilbert Space with the inner product (z,y) = Z;’;l 575
Example 2.0.13. The space Lo[a, b] is a Hilbert Space with the inner product (f, g) = f; f(z)g(x)dx.
Theorem 2.0.14 (Parallelogram Law). If x and y are two vectors in a Hilbert Space, then

2+ yl* + llz = ylI* = 2(lll* + lyl*).

ot



Proof. For any z,y € X, we get

z+yl* = (z+y,z+y)
=(z,z+y) + Y,z +y)

= (z,2) + (2, y) + (. 2) + (v, 9)
= llzll* + (z,9) + (g, ) + >,

Also,
o=yl = (& —y,2—y)
=(z,z—y)—(y,z—y)
= (2,2) — (2,y) — (y.2) + (Y, v)
= |

|z]|? = (2, y) — (y.z) + |l«]*.
Therefore we get
& +ylI* + [l —ylI* = 2[|=|* + 2|l

O

Note 2.0.15. In a Hilbert Space, the norm induced by the inner product satisfies the parallelogram
law. This is not true in general in a Banach Space. That is, the norm in a Banach Space need not

necessarily satisfy the parallelogram law as illustrated by the following example.

Example 2.0.16. In the Banach Space I;" where n > 1 the parallelogram law is not true.
Consider the set e, €, ....e, in ;" where

e1 =(1,0,0,...,0),es = (0,1,0,...,0) and e; = (0,0,0, ..., 1).

We know that 1;™ in a Banach Space with the norm

ol = Sory @], if & = (w1, @2, ooy ) € 171

Let us take © = e; andy = e3. Nowzx +y = e; + e = (1,1,0,0,...0) and z —y = e; — €2 =
(1,-1,0,0,....0).

So |lz| = Llyll = Lllz +yl = 2 and [z — y|| = 2. Hence. |z + ylI* + |l — y[|* = 8 and
22 + 22 = 2 +2 = 4.

Thus lz +yl? + llz =yl # 2(12)1 + llyl?)-

Definition 2.0.17. Let ‘H be the given Hilbert Space. Then x,y € H are said to be orthogonal
denoted by x L y if (x,y) = 0.

From the definition we have the following consequences.

1. The relation of orthogonality is symmetric. That is L y implies y L x.
x L y gives (x,y) = 0 which gives (z,y) = 0. Now (x,y) = (y,2) =0 so that y L = = 0.



2. If x L y, then ax L y for every scalar &« € C. Thus (az,y) = a(z,y) = 0 so that x L y

implies ax L y for any scalar.
3. Since (0,x) =0 for any x € H, 0 L 2 Va € H.

4. If + L x, then z must be zero. For x L z, then (z,z) = 0 which implies (z,z) = ||z]|> = 0.
That is z = 0.

Theorem 2.0.18. (Pythagorean Theorem)If x and y are two orthogonal vectors in a Hilbert Space
H, then

lz+yll? = llz = yl* = llz]I* + ly]1*.

Proof. Since x L y, we have (z,y) = 0. Now,
lz+yl? = (& +y,2+y) = (z,2) + (z,9) + (y,2) + (y.y) = [|2[]> + []y||* by the hypothesis and
e —yl?=(z—y2—y) = (z,2) = (z,9) — (y,2) + (.9) = |21 + [ly[|*.
Hence
[z +ylI* = llz = ylI* = ll=[I* + ly]I*.

a
Lemma 2.0.19. (Polarization Identity): If x,y are any two vectors in a Hilbert Space H, then
Az,y) = [z +yl* = llz =yl +illz +ayl* — iflz - iy|*.
Proof.
llz +yll? = llzl* + {z,9) + (y,2) + [ly]I*. (23)
e —yl* = 2l — (x,y) — (y,2) + llyll*. (24)
Subtracting (2.4) from (2.3) ,we get
Iz +yllI* = llz — yl* = 2(z, y) + 2(y, 2). (2.5)
Replacing y by 4y in (2.5), we get
o+ iyl)* = [l — iy||* = 2(z, iy) + 2(iy, 2) = 2i(x,y) + 2i(y, z)
= |z +iyll® — |z —iyll* = —2i(2,y) + 2i(y, ).
Multiplying both sides of by ¢, we get
ille +ayl? — illz - iyl* = 2(z,y) - 2{y, ). (2.6)
Adding (2.4) and (2.5), we get
4+ yl1” = lla = yl* = illz + iy ||* — illa — iy||* = 4(z, y).
which proves the polarization identity. O



Theorem 2.0.20. Let ||.|| be norm on a Banach space. Then there exists an inner product {,) on
B such that {x,x) = ||z||? for all x € B if and only if the norm satisfies the parallelogram law
llz + 9|12 + || — yl|® = 2||=||> + 2||y||?. In this case such a inner product is unique and it is given by

polarisation identity given in Lemma above.

Note 2.0.21. The above theorem asserts that not all Banach Spaces are Hilbert Spaces. If a norm
does nol satisfy the parallelogram law,il cannol be a Hilbert Space. The following example illustrates
this point.

Example 2.0.22. The space l, with p # 2 is not an inner product space and hence it is not a Hilbert

Space.
Let x = (1,1,0,0,....) and y = (1,—1,0,0,...). Then we note that x,y € k.
1 1 1
Now, ||zl = |yl = 2P|z +y|] = (2P + 0P + ....)P and |z — y|] = (0P + 2P + ....)P s0 that

|z + yl| = llx — y|| = 2. Hence the parallelogram law is not satisfied for p # 2. Hence the complete
space b, for p # 2 is a Banach Space which is not a Hilbert Space.

In the case of a real inner product space the polarisation identity reduces to
Az, y) = o+ yl? + [lz — yl?
Theorem 2.0.23. (Appolonius Theorem): For x,y,z in an inner product space, we have

1 1
lz = l* + [l = 2I* = 2(l= = 5w+ 2)I” + 5w = 2)]*

It generalises the theorem with this name in plane geometry: if ABC is a triangle, and D is the
mid-point of the side BC, then

(AB)? + (AC)? = 2[(AD)* + (BD)?

Theorem 2.0.24. If N is a normed linear space then the norm ||.|| : N = R is continuous function
on R.

Proof. We shall show that if z,, — 2 implies, then ||z,|| — ||z||.
Now,
Nzl = llylll < llz =yl Yo,y € N. (2.7)

Let € > 0, since x,, — x by definition of convergence of sequences in normed linear space.

there exists ng € N such that ||z, —z|| <€ Vn > ng. (2.8)
Using (2.7) and (2.8), we get |||z,||| — |||z]|| < € for all n > ng so that ||z, || — ||z
This proves that the norm is a continuous function on N. O

Theorem 2.0.25. The inner product in o Hilbert Space is jointly continuous,that is if x, — x and
Yn =Y — <‘rn7yn> - (a:,y) as n — 0.



Proof.

(@ns yn) = (@, 9)| = [, yn) = (@0, y) + (20, y) — (2, 9)]
= [(@n, yn — ) + (&0 — 2, 9)|
< [(@nsyn — y)| + {20 — 2. 9)].
We get,
|<xn7yn> - (xy>| < |<xn»yn - y>| + |<xn - $y>| (2’9)
By the Schwarz inequality,
[(@ns yn — u)| < [lznllllyn —yll, (2.10)
and
[z —z,y)] < [lon —z]lllyll. (2.11)

Using (2.10) and (2.11) in (2.9), we get

[(@n,yn) = (@, 9)| < [lzalllyn — yll + 2 — 2|[ly]].

Since z,, — x and y,, = vy, ||z, — x| — 0 and |ly, — y|| — 0. Further since (x,) is a convergent

sequence, it is bounded so that ||z, || < M for all n. O
Theorem 2.0.26. Let S be any subset of H. Let
L—{zcH: 2 LyVycS}

Then

1. SONSt co.

2. St is a closed subspace of H.

3. 0t =H,H+ ={0}.

4. If Sy C S, then Sy C Si-.

5.8 c St
Proof. 1. Letx € S St = =z € S and x € S*.Then in particular, ||z||? = (z,z) = 0so x = 0.

2. Since (0,y) =0V y € S, then 0 € S*+. Hence S* # (). Let 1,25 € S+ and o, 3 € C. Then
(x1,y) = 0 and (xs,y) = 0 for every y € S. Hence Yy € S, we get

<C¥LL’1 + ﬁx27y> = O((l’l,y> + /‘3<x2y> =a.0 + ﬁo

This proves that az; + Bz, € S*. Hence S+ is a subspace of H.
Now to show S* is closed. Let (z,,) € St and (z,) — z in H. Then we have to show that
x € St i.e we need to show (z,y) = OVy € S. Since @, € S+, (z,,y) =0Vy € SVn e N.



Since the inner product is a continuous function, we get
(Tn,y) — (x,y) as n — 0.

Since (z,,,y) = 0 Vn, (zr,y) = 0. Thus € S*+. Hence S* is a closed subset of H. Now S+ is
a closed subspace of complete space implies S* is complete.

3. Let v € H = (x,y) = 0V y € H.In particular, (x,2) = 0.That is x = 0. Let € {0}* =
(x,y) =0Vy € {0} = (2,0)=0 = z € H.

4. Let x € S+ = (2,y) =0V y € S,. Since S; C Sy we get (z,y) =0Vyc S = xS,

5.letz e S = (r,y) =0VyeSt Ifye St = z e St*(by definition). Thus
reS = ze St —= scstt
|

Theorem 2.0.27. Let S be any closed convexr subset of H. Then for each x in H there existsa

unique point xqg in S such that

v — ol = dist(x,S) == inf ||z —
@ — wol| = dist(x, ) ;relslll yll

Proof. Let d = dist(x,S)

a. Existence Claim: There exists a sequence y, in S such that ||z — y,|| — d. Now d =

1
dist(z,S) = d = infyeg ||z — y||(by definition of dist). Let € > 0 be given . Take ¢ = -

now by definition of infimum there existsy, € S such that ||z — y,|| < d + l Already it is
given that d = infyeg |2 — y|| and therefore since y, € S we have d < ||z — yy||.

From the above the two statements we have, Vn € N, there exists y, € S such that d <
e~ gll <d+ 2 = Jlo—yull >

Now by using Appolonius theorem we get:

1 1
= ynll* + llz = ymll* = 2(llz = 5 W +ym) I + 15 (w0 = ym)II)-

1 1
Now S is a convex set and hence §(yn + ym) € S. This implies that ||z — a(yn + Ym)| > d?
1
= e = yall* + 2 = yml|* > 2d% + Sllyn — ym||*.

1
Now as n,m — 00 ,[|lz — ynl|®> + ||z — yml||* — 24> = §||yn — ym||* = 0. This implies (yy)
is a Cauchy sequence and since H is a Hilbert Space the sequence converges to a limit.

Since S is closed xg := limyy, is in S and ||z — || = lim ||z — yu|| = d.

b. Uniqueness
We assume that if ~ there exists another point z; in S for which ||z — x1|| = d, then we show

1 = Xg.

10



By Parallelogram equality,
2o = 21]1* = (2o — 2) — (21 — 2)|?
= 2llzo — z[* + 2[|lzy — 2| — ||(zo — @) + (x1 — 2)||?

1
=2d° +2d* — 22\\5(:30 +21) — 2|

1
As S is a convex set, 5(3:0 +z1) € S, so we have

1
(@0 +a1) — 2] > d.

This implies the right hand side is less than or equal to 2d? +2d? —4d? = 0. Hence we have the
inequality ||xg — 1| < 0. Clearly, ||zo — x1]| > 0, so we must have the equality, and zoy = x;.

O

An interesting is the case when S is a closed linear subspace.
For each z in H let
Ps(x) = xo.

where x( is the unique point in S closest to . Then Pg is a well defined map with range S.
Claim: Ps is idempotent i.e P2 = Ps. 2 € H = Ps(z) = x¢, where 29 € S. Then P%(z) =
Ps(z0) = 20 = Ps(x0).
For each y in S and ¢t € R, we have
llz — (zo + ty)||* > ||z — x0||* (by best approximant property).

From this we get,
& —aoll* + €[ly[|> — 2tR(x — wo,y) > [|lz — wol*.

That is
2||lyl|* > 2tR(x — w0, y).

Since this is true for all real ¢ we must have
%(Z - l'(],y> =0.

Replacing y by ty,we get

Sz — g, y) = 0.

Hence (x — z9,y) =0 = z —x9 € St. Now, since S()S*+ = {0} and * = x — x + x7 where
z —x9 € ST and zg € S. We have by definition of direct sum decomposition,

H=5Ps"
Theorem 2.0.28 (Riesz’s Theorem). Fvery bounded linear functional f on a Hilbert Space H can

11



be represented in terms of the inner product, namely

f(@) = (z,y). (2.12)

where y depends on f, is uniquely determined by f and has norm

lyll = 1I71I- (2.13)

Proof. We prove the theorem in the following three steps.

1. In this step we show that any f € H* has the representation as in (2.12).
If f =0, we take y = 0 so that (2.12) and (2.13) are true. So let us take f # 0. Let us
consider the null space N(f) of f. Since f is continuous we know that N(f) is a proper
closed subspace and since f # 0, N(f) # H and so N(f)t # 0. Hence by the orthogonal
decomposition theorem proved above, there exists a yo # 0 in N(f)*. Let us define for any
arbitrary x € H,
z= f(x)yo — f(yo)z.

Now, f(2) = f(2)f(yo) — f(yo)f(x) = 0. This implies z € N(f). Since yo € N(f)*, we get

0= (z,90) = (f(®)yo — [(yo)r,v0) = f(x) (o, y0) — [ (y0) (7, v0)

= F@){y,90) = F(yo) (@, 90) = 0.
Noting that (yo,%0) = |lvol|® # 0, we get f(x) = (%)(wyo) We use property 6 of inner
Yo
product spaces and write f(z) = (z, f(yog Yo)-
l[oll
Now taking ﬁc(yﬁz Yo as y, we have established that there exists a y such that f(x) = (z,y)
Yo
for any z € H.

2. In this step we show that ||| = ||y]-
If f =0, then y = 0 and (2.13) holds good. Hence we let f # 0. Then y # 0.
From (2.12) and the Schwarz inequality we have

[f @) = (= 9)| < ll]lllyll-

This implies sup,_ % <yl
@

Using the definition of .norm of f. we get from the above,
1A < Nyl (2.14)

To prove the reverse inequality, let us take = y in (2.12), then we obtain

lyll* = (w,y) = f) < If[lyll-

12



Since y # 0, we get
LI 1yl (2.15)

From (2.14) and (2.15) ,we get || f|| = |ly|| which proves (2.13).

3. In this step we establish the uniqueness of y in (2.12).
Let us suppose that y is not unique in the representation (2.12) Suppose for all z € H,
there exists y1 and yo such that f(z) = (z,11) = (x,y2). Then (z,y1) — (z,y2) = 0 which
implies (z,y1 — ya) = 0 for all x € H. Let us choose x to be (y1 — ya) so that

(W1 — Y2, 91 — y2) = [ly1 — Z/2||2 =0.

Hence y; — y2 = 0 so that y; = y, which proves that y is unique in the representation for
f in (2.12). This completes the proof of Riesz Representation theorem for continuous linear
functionals on H.

O

Lemma 2.0.29. If (vi,w) = (ve,w) for all w in an inner product space X, then vy = vy. In

particular, (v,w) =0 Yw € X implies v; = 0.

Proof. By assumption, for all w,

(v1 — vo,w) = (v1,w) — (v2,w) = 0.

For w = v; — vy this gives ||vy — v2|| = 0. Hence vy — v2 = 0, so that v; = ve. In particular,

{(v1,w) = 0 with w = vy gives ||v1]] = 0, so that v; = 0. O

Definition 2.0.30 (Sesquilinear form). Let X and Y be vector spaces over the same field K(R or

C). Then a sesquilinear form (or sesquilinear functional) h on X XY is a mapping
h:XxY —-K

such that Vx,x1,22 € X and y,y1,y2 € Y and all scalars o, 3,
(a) Wy +x2,y) = W1, y) + h(wa,y).
(b) h(x,y1 + y2) = h(z,y1) + h(@,y2).
(¢) Max,y) = ah(z,y).
(d) h(z, By) = Bh(z.y).

Hence h is linear in the first argument and conjugate linear in the second one. If X and Y are
real (K =R), then (d) is simply
Wz, By) = Bh(xz,y).

and h is bilinear since it is linear in both arguments.

If X and Y are normed spaces and if there is a real number ¢ such that Va,y
1h(z, y)| < llz[lllyl].
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then A is said to be bounded and the number

(h(z, )l
Rl = su T = |h(z,y)|.
vex—{(oyyev—{oy llZlllyll  jey=1,jyi=1
is called the norm of h.

Example 2.0.31. The inner product is sesquilinear and bounded.

Theorem 2.0.32. Riesz Representation Theorem
Let H1,Ho be Hilbert Spaces and h : Hi X Hy — K a bounded sesquilinear form. Then h has a
representation h(x,y) = (Sx,y) where S : Hy — Ho is a bounded linear operator. S is uniquely

determined by h and has norm ||S|| = ||h]].

Proof. We consider h(x,y). This is linear in y, because of the bar. To make the previous theorem

applicable, we keep x fixed. Then theorem yields a representation in which y is variable, say,

h(z,y) = (y, 2).

Hence,
h(z,y) = (2,9)-

Here z € Hy is unique but, of course, depends on our fixed « € H;. Consider the operator,

S :Hq, — Hy given by z = Sz

Claim: S is linear

(S(awy + Bx2),y) = h(ax) + B2, y)
= ah(x1,y) + B2, y)
= a(Sz1,y) + {Sz2,y)
= (aSz1 + BSx9,Y).

for all y in Ha, so that by above lemma S(ax; + Bxe) = aSxzy + SS2s.

Claim: S is bounded. Indeed, leaving aside the trivial case S = 0, we have

Sx,y Sz, Sx Sz
= p WSSO g, SO 1SS
w2020 [[2MYl ~ wz0,5020 2llIS2] 20 |2
This proves boundedness. Moreover, ||h|| > ||S||. Claim: ||S]|| = ||A||. Now,
S S
|k = sup (S, )| < sup |Szlly] = ||S|| (using the Schwarz inequality)

0.0 [ZlllYll 220 llllllyll

We have already proved that ||h]| > ||S]|| and therefore we get
1511 = [[A]]-
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Claim: S is unique.
Assume there exists a linear operator T' : H1 — Ho such that for all x € H; and y € Ho we

have
h’(x7y) - <S'7;7y> - <TTy>

we see that Sz = Tz by the above Lemma [or all x € H;. Hence S =T by definition.
a

Definition 2.0.33. Let T : Hi — Hs be a bounded linear operator, where H, and Ho are Hilbert
Spaces. Then the Hilbert Adjoint operator T of T is the operator T* : H1 — Ho such that for all
x € Hi,y € Ho we have (T'x,y) = (x,T*y)

Definition 2.0.34. An isomorphism T of an inner product space X onto an inner product space
X over the same field is a bijective linear operator T : X — X which preserves the inner product,
that is for all z,y € X (Tx,Ty) = (x,y),where we denoted inner product on X and X by the same
symbol for simplicity. X is then called isomorphic with X. X and X are called isomorphic inner

product spaces.

Note that bijectivity and linearity guarantees that T' is a vector space isomorphism of X onto X ,
so that T preserves the whole structure of an inner product space. T is also an isometry of X onto
X because distances in X and X are determined by the norms defined by the inner product on X
and X. Since Hilbert Spaces are also inner product spaces the same definition will always work for
Hilbert Spaces.

Theorem 2.0.35. FEvery operator A from X toY gives rise, in a natural way to an operator A*
from the dual space Y* to X* and ||A| = ||A*||.

Proof. Let A be an operator from X to Y. For f € Y. For f € Y* let
(A" f)(x) = f(Az)

for all z € X. Then A x f is bounded linear functional on X, i.e, A*f € X*. The equation is some
times written as
(A*f.z) = (f, Az),z € X, f € V™.

A* is called the adjoint of A.
If feY™, and | f|| =1, then

Al

[A*f|l = sup |[(A*f)(x)| = sup |f(Az)| < sup ||Az|| =
llzfi=1 flzll=1 llz)=1

Thus ||A*|| < ||Al|, and A* is a bounded linear operator from Y* to X*. In fact, ||A*|| = ||A]] To
prove this we need to show ||A]| < ||A*||. Let x be any element of X and by the Hahn-Banach
Theorem, there exists a linear functional f on Y such that ||f|| = 1 and f(Az) = ||Az||. Thus

[Az|| = f(Az) = (A" F) (@) < ATl = [1A™[/]|]



This shows that ||A] < ||A*||

Some properties:

1. Let A,B € B(X,Y). Then
(aA+ BB)* = aA” 4+ B”

for all a, 8 € C. From this we conclude that the map A — A* from B(X,Y) to B(Y™*, X*) is

linear.
2. Let A€ B(X,Y),B e B(Y,Z). Then

(BA)* = A*B".

3. The adjoint of the identity of operator on X is the identity operator on X*, i.e,
I"=1.
4. If A is an invertible operator from X to Y then A* is an invertible operator from Y™* to X*,
and (A*)~1 = (A71)".
The map A — A* is an isometry. In general, it not surjective.

Note: Let H be a Hilbert Space. Now H* is isomorphic to H* via a conjugate map linear
map R that associates to y € H. The lincar functional f, defined as fy(x) = (x,y) for all & € H for
every A € B(H), its adjoint A* can be identified with an operator on H. Call this operator Af, so
we have AT = R-1A*R.

If A*f, = f,, then ATy = z. We have

(Ax,y) = fy(Aw) = (A*fy)(x) = fz(x) = <1‘, Z> = <1‘, AT?/)

for all x,y. Thus
(Az,y) = (z, Aly)

for all z,y € H. This equation determines AT uniquely, i.e if there is another linear operator B on
H such that
(Az,y) = (z, By) for all z,y,

then B = Af. It is customary to call this operator At the adjoint of A. We will do so too and use

the symbol A* for this operator. Thus A* is the unique operator associated with A by the condition
(Az,y) = (x, A"y)for all x,y € H.
This correspondence A — A* is conjugate linear.
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Definition 2.0.36. If H,K are Hilbert Spaces and A is linear operator from H to K, then A* is a
linear operator from K to H defined by

(Az,y) = (x, A™y) for all z,y € H

with r € H,y € K.
Theorem 2.0.37. The map A — A* on B(H) has the following properties:
1. it is conjugate linear
2. it is isometric, ||A*|| = || A|| for all A.
3. it is surjective.
4. A** = A for all A.
5. (AB)* = B*A* for all A, B.
6. I"=1.

7. If A is invertible, then so is A* and (A*)™! = (A71)*.

Self-adjoint operators
An operator A on H is said to be self-adjoint or Hermitian, if A = A*.
If A is self-adjoint, then for all x € H

(Az,z) = (z, Ax) = (Ax, x).

So, (Ax,x) is real. Conversely if H is a complex Hilbert Space and (Az,x) is real for all , then A
is self-adjoint.

For every operator A on H, we have

sup [(Az,y)| = [|Az]],
llyll=1
and hence,

sup  [{Az,y)| = sup [|Aa]| = [|A].
[lz|l=1,]lyl|=1 [Jz||=1

If A is self-adjoint, then
Al = sup [(Az,2).

llll=1
Definition 2.0.38. A linear map P on H is called a projection if it is idempotent. If S = ran P
and S" = ker P, then H = S+ 5’, and P is the projection on S along S’. The operator I — P is also

a projection, its range is S’ and kernel S. A special property characterizes orthogonal projections:
those for which S' = S+.
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Proposition 2.0.39. An idempotent operator P on H is an orthogonal projection if and only if il
is self-adjoint.

Proof. Let x € S,y € S’, then Px = x, Py = 0 if P* = P, we have (z,y) = (Pz,y) = (z, Py) = 0.
This shows S’ = S+. Conversely let z be any vector in H, and split as z = 2 +y with z € S,y € S+.

Let Pz = x. Then for any two vectors z1, 29

(Pz1,20) =(x1, 22 + 1)
=<1’17$2>

=(z1 + y1,T2) = (21, Pz2).

This shows P* = P. O

When we talk about Hilbert Spaces we usually mean an orthogonal projection when we say a
projection. To each closed linear subspace S in H there corresponds a unique(orthogonal) projection

P and vice versa.
Theorem 2.0.40. Prove R(A) = N(A*)*L.

Proof. A matrix A for which A and A* commutes is called normal. A basic fact about normal

matrices is that for all v € C" we have ||Av|| = ||A*v||. The reason is that
[|Av||? = (Av, Av) = (v, A* Av) = (A*v, A*v) = ||A*0|)?.

In particular, this implies that Av = 0 if and only if A*v = 0 so A and A* has the same kernel.
Then

so A, A* also have the same image. O
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Chapter 3

Theory of Reproducing Kernel
Hilbert Spaces

3.1 Definition

We will consider Hilbert spaces over the field of either real numbers R or complex numbers C. We
will use F to denote either R or C, so that when we wish to state a definition or a result that is true
for either real or complex numbers, we will use F.

Let X be a set. We denote by F(X,F) the set of functions from X to F. The set F(X,F) is a vector
space over the field F with operations of addition, (f +g)(z) = f(x)+ ¢g(z) and scalar multiplication
(A-)(x) = A(f(=)).

Definition 3.1.1. Given a set X, we will say H C F(X,F) is a Reproducing Kernel Hilbert Space
(RKHS) on X over F, provided that:

1. H is a vector space of F(X,F);
2. H is endowed with an inner product (,) making it into a Hilbert Space;
3. Yy € X the linear evaluation functional, Ey : H — F. defined by Ey(f) = f(y), is bounded.

If H is an RKHS on X, then an application of the Riesz representation theorem shows that the
linear evaluation functional is given by the inner product with a unique vector in H. Therefore

Vx € X, there exists a unique vector k, € H such that
f(x) = Ey(f) = (f, ky), forall feH.

Definition 3.1.2. The function k,, is called the Reproducing Kernel for the point x. The 2-variable
function K : X x X — F defined by
K(z,y) = ky(x) is called the Reproducing Kernel for 1.

Note that we have:
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so that

K(z,y) = (ky, ko) = (ka, ky) = K(y, ).

in the complex case and K(x,y) = K(y,x) in the real case. Also,
1£y112 = llky|1* = (ky. ky) = K (y,9)-

We now look at some examples of Reproducing Kernel Hilbert Spaces. Our examples are drawn

from function theory, differential equations and statistics.

3.2 Basic examples

3.2.1 C" as an RKHS

We let C™ denote the vector space of complex n-tuples and for v = (v1, ..., vp), w = (w1, ..., wy) € C,

n
(v,w) =Y v,
i=1

to denote the usual inner product. C™ with this inner product defined on it is a Hilbert space.

we let

If we let X = {1,...,n}, then we could also think of a complex n-tuple as a function v : X — C ,

where v(j) = v;. With this identification, C™ becomes the vector space of all functions on X. If we

let {e;}7_; denote the "canonical” orthonormal basis for C", that is e; be the function,

1, 1=
0, i # J,
then for every v € C™ we have

v(j) = vj = (v, €;).

Thus, we see that the ”"canonical” basis for C" is precisely the set of kernel functions for point
evaluations when we regard C" as a space of functions. This also explains why this basis seems so
much more natural than other orthonormal bases for C™. Note that the reproducing kernel for C™
is given by

1, 1=3

K(/ij) - <€j,€i> - . .
0, i # J,

which can be thought of as the identity matrix.

More generally, given any (finite or countably infinite) set X, we set

PX)=f:X=>C: ) |f@) < .

reX
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Given f,g € I>(X), we define (f,g) = >, cy f(x)g(x). With these definitions [*(X) becomes a
Hilbert space of functions on X. If for a fixed y € X, we let e, € [?(X) denote the function given by
1, 1=
0, L F
then it is easily seen that {e, },cx is an orthonormal basis for /?(X) and that (f.e,) = f(y), so that

these functions are also the reproducing kernels and as before

1, r=1y
K(z,y) = (ey, €2) =
0, T #y.

3.3 Examples from analysis

3.3.1 Sobolev spaces on [0,1]

These are very simple examples of the types of Hilbert Spaces that arise in different equations.

Definition 3.3.2. A function f :[0,1] = R is absolutely continuous provided that for every e > 0
there exists 0 > 0, so that when (z1,Y1),....(Tn, yn) are any non-overlapping intervals contained in
[0.1] with S y; — ;] < 6, then S |£(55) — F(z;)] < e

It is a well known fact that f absolutely continuous if and ounly if f/(x) exists for almost all z,
the derivative is integrable and up to a constant, f is equal to the integral of tis derivative. Thus,
absolutely continuous functions are the functions for which the first fundamental theorem of calculus
applies.

Let,

H ={f|f:]0,1] — R, f is absolutely continuous, f’ is square integrable and satisfiesf(0) = f(1) = 0}.

The set H is a vector space of functions on [0, 1]. In order to make H a Hilbert space we endow H

with the nonnegative, sesquilinear form,

1
- / 1) (t)dt.

Let 0 <2 <1 andlet f €H. Since f is absolutely continuous we have

/f /f Yol (¢

Thus by the Cauchy- Schwartz inequality,

1
x)<</01f’(t)2dt>§</ Yo (0dt) * = 1V

This last inequality shows that (f, f) = 0 if and only if f = 0.

l\JI'—‘
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Thus, (,) is an inner product on H. Also, for every z € [0, 1], F, is bounded with ||E.| < v/z.

All that remains to show that H is an RKIIS is to show that is it is complete in the norm induced
by its inner product. If (f,) is a Cauchy sequence in this norm, then (f,) is Cauchy in L2[0.1] and
hence there exists g € [2[0.1] to which this sequence converges in the L?[0.1]-sense. By the above
inequality. (f,) must be pointwise Cauchy ( and therefore pointwise convergent, since R is complete

) and hence we may define a function by setting f(x) = lim,, f,,(x). Since

)=t [0 = [ ato

It follows that f is absolutely continuous and that f’ = g a.e. Note that even though g was only an
equivalence class of functions, fo t)dt was independent of the particular function chosen from the
equivalence class. Hence, f’ € L2[0,1]. Finally, f(0) = lim,, f,(0) = 0 = lim,, f,(1) = f(1). Thus .
‘We now wish to find the kernel function.

We know that f(z fo Xo,2](t)dt. Thus if could solve the boundary-value problem,

g'(1) = X[o,2 (1), 9(0) = g(1) =

then g € H with f(z) = (f,¢) and so g = k.

Unfortunately, this boundary-value problem has no solution .Yet we know the function k,(t) exists
and is continuous. Instead, to find the kernel function we formally derive a different boundary-value
problem. Then we will show that the function we obtain by this formal solution to H and we will

verify that it is the kernel function. To find k,(t), we first apply integration by parts. We have

f(x) = / F(OKL ()t
Afmmmmfﬁfwmwwzlfmmmm

Let, 6, denote the formal Dirac-delta function, then

/f (1)t

Thus we need to solve the boundary value problem,

—kiy(£) = 0, (t), ky (0) = k(1) =

The solution to this system of equations is called the Green’s function for the differential equation.

Solving formally, by integrating twice and checking the boundary conditions, we find

K(x,y) = ky(r) =



3.4 Function theoretic examples

We now consider some examples of reproducing kernel Hilbert Spaces that arise in complex analysis.
The Bergman spaces appearing below are named alter Stefan Bergman, who originated the theory of
reproducing kernel Hilbert spaces and was the earliest researcher to obtain knowledge about spaces

from their kernel functions.

3.4.1 The Hardy space of the unit disk H*(D)

This plays a key role in function theory, operator theory and in the theory of stochastic processes.

To construct H?(ID), we first consider formal complex power series,

[e o]
o>
n=0

such that > 7 |an|? < co. Using the usual definitions for sums and scalar multiples, the set of all
such power series clearly forms a vector space. Given another such power series g ~ > (b, 2" we

define the inner product,

<f7 g> = Z anm~
n=0

Thus, we have that [|f|> = 32> |an|?.
The map L : H?(D) — I2(Z*) where ZT = {0,1,2,.....} = NU {0}, defined by

L(f) = (ao,al,ag,ag, ......... )

is a linear inner product preserving isomorphism. Hence we see that H?(ID) can be identified with
the Hilbert Space [2(Z*), hence it is itself a Hilbert Space. Thus, we see that the second condition
in the definition of an RKHS is met.

Next we show that every power series in H2(ID), converges to define a function on the disk. To
see that if z € D, then

BN =1 anz"] <Y lanll=["|

n=0 n=0

- 2\1/2 — 231/2 _ L
< (L )2 ) = -~y

Thus,each power series defines a function on D.
Now we want to see that if two power series define the same function on D, then they are the same
power series i.e that their coefficients must all be equal. To see this recall that the functions that

the power series define are infinitely differentiable on their radius of convergence. By differentiating
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the function f, n times and evaluating at 0, we obtain (n!)a,. Thus, if two power series are equal
as functions on D, then they are the same power series.

Also the vector space operations on formal power series clearly agree with their vector space opera-
tions s functions on D and so (1) is met.

The above inequality also shows that the map F, is bounded with ||£,| < and so H?(D)

1
V=22

is an RKHS on D.
We now compute the kernel function for H?(D).

Let w € D, note that g(z) = Y0 jw"z" € H*(D) and for any f(z) = Y07 a,2" € H*(D),
we have that (f,g) = > o0 apw™ = f(w).

Thus ¢ is the reproducing kernel for w and so

K(z,w) = ky(z) = g(2) = f:u?"z": 1_ :
n=0

1—wz

This function is called the Szego Kernel on the disk.Note that

1

VI=]2?2

Bzl = K(z, 2) =

3.4.2 Bergman Spaces on complex Domains

Stefan Bergman introduced the concept of reproducing kernel Hilbert Spaces and used them to study
various problems in complex analysis. The spaces that he introduced now bear his name. Let G C C

be open and connected. We let
B*(G) = {f : G — C|fis analytic on G and // |f(z + wy)|Pdzdy < oo}
J JG
where drdy denotes the area measure. We define a sesquilinear form on B2(G) by

(f.g) = / /G [ (@ +iy)a(@ + dydzdy,

If f € B%(g) is nonzero, then since f is analytic, f is continuous and consequently there will be an
open set on which |f| is bounded away from 0. Hence, f # 0 implies that (f, f) > 0, and so B%(G)
is an inner product space.
Also, if f,g € B*(g) and f = g a.e. then the continuous function, |f — g| can not be bounded away
from 0 on any open set, and so f(z) = g(z) for every 2 € G. Thus, B%(G) can be regarded as a
vector subspace of L2(Q).

Theorem 3.4.3. Let G C C be open and connected. Then B*(G) is a RKHS on G.

Proof. 1f we fix w € G and choose R > 0 such that the closed ball of radius R centered at w, B(w; R)

is contained in G (since G is open).
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Then by Mean Value property we have

2m
fw) = 5= [ 1w +rea,

for any 0 <r < R.
Multiplying r on both sides and integrating in r € [0, R], we obtain,

R 1 R pom i
/07.][(’!0):%/0/0 rf(w 4+ re*)d0dr

1 )
— === [ [ o J iy

Thus by Cauchy-Schwartz inequality, it follows that

1
1 p—
sl o] [

1

= meH\/TTR
1

= mllfH.

This proves that for w € G the evaluation functional is bounded.

So all that remains to prove that B?(G) is an RKHS is to show that B%(G) is complete in this
norm. Let f, be a Cauchy sequence in B?(G). For any w € G. Pick R as above and pick
0 < ¢ < d(B(w; R),G°) where d(.,.) denotes the distance between 2 sets.

Then for any z in the closed ball of radius R centered at w we have that the closed ball of radius &

centered at z contained in G. Hence by the above estimate,

1

a/m

Thus,the sequence of functions is uniformly covergent on every closed ball contained in G. If we

[/n(2) = fm(2)] < [fn = Fmll-

let f(z) = lim f,(2) denote the pointwise limit of this sequence, then we have that f, converges
uniformly to f on each closed ball contained in G. As a consequence of Cauchy’s integral theorem,
a sequence of holomorphic functions that converges uniformly on compact sets must converge to a

holomorphic function and therefore f is analytic.

Since B3(G) C L*(G) (by definition) and L*(G) is complete , There exists h € L?(G) such that
IIh — fnll2 = 0. Moreover, we may choose a subsequence fp, such that h(z) = lim f,, (z) almost
everywhere but this implies that h(z) = f(z) almost everywhere and so ||f — fnll2 — 0. Thus
f € B%(G) and so B?(G) is complete. |

Definition 3.4.4. Given any open connected subset G C C, the reproducing kernel for B%(G) is
called the Berman Kernel for G.

Note that the above inequality shows B2(C) = (0), since in this case R could be taken arbitrarily
and so | f(w)| = 0 for any f € B?(C). Thus, the only analytic function defined on the whole complex



plane that is square integrable is the 0 function.

When A = area(G) < oo.

Consider f(z) =1V z € C, then [ [, |f(x + iy)|*dedy = [ [, |1]*dzdy = area(G)
1

= [f(z) = 1€ BXG) and ||f(2)l|p2 = [|1]| p= = A2
In this case, it is natural to re-normalize so that||1|| = 1. To do this we just redefine the inner

product to be
1 -
(f.9)= ;/Lf(w+ty)g(w+by)dwdy~

When we will refer to the Bergman Space on such a domain (G : A = area(A) < c0) we mean
the normalized Bergman Space. So, in particular, by the space, B2(D), we mean the space of

square-integrable analytic functions on D, with inner-product

(f,9) = %//Dj(a‘ + wy)g(x + wy)dady.
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Chapter 4

Fundamental results

Let X be any set and H be an RKHS on X with kernel K. In this chapter we begin with a few
results that show that K completely determines the space H. We will introduce the concept of a
Parseval frame and show that, given any Parseval frame for an RKHS, the kernel can be constructed
as a power series. Conversely, any series that yields the kernel in this fashion must be a Parseval
frame for the RKHS. Next, we will prove Moore’s theorem, which characterizes the functions that
are the kernel functions of some RKIIS. Such functions are often called either Positive definite or
Positive Semidefinite. Thus, every such function yields an RKHS by Moore’s theorem, but it is
often quite difficult to obtain a concrete description of the induced RKHS. We call the problem of
obtaining the RKHS from the function the Reconstruction Problem and we illustrate this process by

some important examples.

4.1 Hilbert Space Structure

Proposition 4.1.1. Let H be an RKHS on the set X with kernel K. Then the linear span of the
functions, ky(.) = K(.,y) is dense in H.

Proof. A function f € H is orthogonal to the span of the functions k, : y € X if and only if (f, ky) =
f(y) =0 for every y € X, which is if and only if f = 0. a

Lemma 4.1.2. Let H be a RKHS on X and {f,} C H. Iflim, || f,,— f|| = 0. then f(z) = lim,, f,(z)
for every x € X.

Proof. As we know lim,, || f,, — f|| = 0 implies || f, — fl|/|/|kn]] = 0 as n — oco. Thus our result follows

from the following inequality,
[fn(x) = f(@)] = [(fa = [, k)| < || fu = flll[ke|l (Cauchy Schwarz inequality).

O

Proposition 4.1.3. Let H; be RKHS’s on X with kernels, K;(x,y)fori = 1,2. If Ki(z,y) =
Ky(z,y) for all z,y € X, then Hi = Ho and ||f]1 = ||f|l2 for every f.

27



Proof. Let K(z,y) = K1(z,y) = Ko(z,y) and W; = span{k,} € H;fori = 1,2. By the Proposition
4.1.1, W; is dense in H;,i = 1,2. Note that for any f € W;, we have f(z) = Zj ajkg(x) =
> j a; K (x,xz;),which means that values of f are independent of whether we regard it as in W; or
Wa.

Also, for such an f,
IAF = cidy ko ko) = > it K (25, 2:) = || £113.
7 ,J
Thus,|| f[|1 = || fl|2, for all f € Wy = Wha.

Finally, if f € Hoo, then there exists a sequence of functions, {fn} € We with [|f — full1 — 0.
Since, fp, is Cauchy in Wy, it is also Cauchy in We, so there exists g € Ha such that ||g — fnll2 — 0.
By the Lemma 4.1.2, f(z) = lim, f,(z) = g(x). Thus, every f € H; is also in Hs and by an
analogous argument, every g € Hoy is in H;. Hence H; = Ho.

Finally, ||f]l1 = ||f|l2 for every f in a dense subset. Thus we get that the norms are equal for
every f. O

Definition 4.1.4. Given vectors {hs : s € S} in a normal space H, indexed by an arbitrary set S.
We say that h =3 g hs if for every ¢ > 0, there ezisls a finite subsel Fy C S such thal for any
finite set I' with Iy C I" C S, we have [[h — 3 cp hs|| < c.

Two examples of this type of convergence are given by the two Parseval identities.

If {es : s € S} is an orthonormal basis for a Hilbert Space H, then for any h € H, we have

21* = 1, es)?

sesS

and

h = Z(h,es)es.
seS
Note that here we do not need S to be an ordered set. Perhaps,the key example to keep in mind is
the following.
_ =

. o0
Take a,, = o € N, then the series, > ", a,, converges, but . a, does not converge.

For complex numbers, one can show that >, -\ zn converges if and only if >°>7 | |2,| converges.

Thus convergence is equivalent to absolute convergence in the complex case.

Theorem 4.1.5. Let H be a RKHS on X with reproducing kernel, K(x,y). If {es : s € S} is an

orthonormal basis for H, then K(x,y) = >, g €s(y)es(x) where this series converges pointwise.

Proof. For any y € X, we have (ky,es) = (es,ky) = es(y). Hence ky = > o(ky,e50es =

> ses €s(y)es, where these sums converge in the norm on H.

But norm convergence implies point wise convergence. Hence, K (x,y) = ky(x) = > g €s(y)es(z).
O
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Example 4.1.6. In the Hardy Space, the funclions en(z) = 2™, n € Z+ form an orthonormal basis

and hence, the reproducing kernel for the Hardy Space is given by

S aes(s) = 3 (o) = ——
n=0

sES

Theorem 4.1.7. Let H be an RKHS on X with reproducing kernel K, Ho C H be a a closed
subspace and define(linear map) Py : H — Ho. Then Hy is an RKHS on X with reproducing kernel
Ko(z,y) = (Po(ky), ka)

Proof. Since evaluation of a point in X defines a bounded linear functional on H, thus it remains
bounded when restricted to the subspace Hg. Hence, Hg is an RKHS on X.

For f € Ho,

Fla) = {foha) = (Po(d), k) = (. B (k) = (1. Palk).
Hence, Py(k;) is the kernel function for Hy and we have
Ko(z,y) = (Po(ky), Po(kz)) = (Fo(ky). kz).
O

Definition 4.1.8. Lel H be a Hilberl Space wilh inner product (-,-). A sel of veclors {fs :s € S} C
H is called a Parseval Frame for H provided

al* = > 1, £)]?

ses

for every h € H.

For example if {us : s € S} and {v, : t € T} are two orthonormal bases for H, then the sets
{us :5s€S}U0 and {(us)/vV2:s€S}uU {%v 1t € T} are both Parseval frames for H.

In particular, we see that Parseval frames need not be linearly independent sets. The following

result shows one of the most common ways that Parseval frames arise.

Proposition 4.1.9. Let H be a Hilbert Space and M C H be a closed subspace. Suppose P denote
the orthogonal projection of H onto M. If {es : s € S} is an orthonormal basis for H, then
{P(es) : s € S} is a Parseval Frame for M.

Proof. For any h € M, h = P(h) and (h,es) = (P(h),es) = (h, P*(es) = (h, P(es)) as P* = P.
Thus, [|A]]* = > ,cqll(h, P(es))||* and the result follows. O

The following result shows that any of the Parseval identities can be used to define Parseval
frames. Let 12(S) :={g: 5 — C: >, gllg(s)||* < oo} be the Hilbert Space of square- summable
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functions on S and e; : S — C defined by

1 t=s
0 t#s

ei(s) =

be the canonical orthonormal basis.

Proposition 4.1.10. Let H be a Hilbert Space and {fs : s € S} C H. Then the following are

equivalent
1. The sel {[s:s € S} is a Parseval Frame
2. The function V : H — 12(S) given by (Vh)(s) = (h, fs) is a well-defined isometry.
3. For all h € H, we have h =37 _s(h, fs) fs.

Moreover, if {fs : s € S} is a Parseval Frame, then for any hi,has € H we have (hy,hs) =
Zses<h17f8><fs-,h2>-

Proof. (1) = (2). First assume that {f; : s € S} is a Parseval frame and define V : H — 13(S),
by (Vh)(s) = (h, fs), , so in terms of the basis, Vh = 3" __g(h, fs)es. Since f, is a Parseval frame,

we see that

VAP = Q (h, f)es, Y (hs f)es) = D (hy fo) (b, £y = Y (b fo) I = |[h))?

seS seS seS seSs

(2) = (3). Now suppose V is an isometry. Note that (h, V*e;) = (Vh,ey) and Vh =37 (b, fs)es =
(Vh,er) = (O seglh, fs)es,es) = (h, ft) and hence V*e; = f;. Since V is an isometry, we have
(Vh,Vh) = (h,h) which is equivalent to saying (Vh,Vh) = (h,V*Vh) = (h,h). Thus =
(h,(V*V —I)h) = 0 from this we get V*V = Iy Now it follows that

h=V*Vh=V" (Z(h, fs>€s> = Z<h fs)V™(es) = Z(hv Is)fs

ses ses seS

for every h € H.
(3) = (1). Finally assume that Y o (h, fs)fs = hforallh € H. We have (h,h) = > o(h, fs){fs, h) =

Pses [(h. f)I2.

Since V' is an isometry, for any hi, ho € H, we have

(hi,ha)y =(V*Vhy, ha)y
:<Vh1, th)p(s)

= (Vin)(s)(Vha)(s)

ses

:Z(hl,fs><fs:h2>

SES
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Proposition 4.1.11 (Larson). Let {fs : s € S} be a Parseval frame for a Hilbert Space H, then
there is a IHilbert Space K containing H as a subspace and an orthonormal basis {es : s € S} for K,
such that fs = Py(es) for all s € S, where Py is the orthogonal projection of K on H

Proof. Let K = 1?(S) and V : H — [%(S) be the isometry defined in Proposition 4.1.10. By
identifying H with V(#) we may regard H as a subspace of 12(S). Note that P = VV* : [3(S) —
12(S) satisfies P = P* and P2 = (VV*)(VV*) = V(V*V)V* = VV* = P. Thus, P is the orthogonal
projection onto some subspace of (2(S). As Pe, = V(V*es) = Vfs € V(H), we get that P is the
projection onto V(H) and when we identify h with Vh, we have P is the projection onto H with
Pe;, =V f, = fs. O

The following result was pointed out by M. Papadakis.

Theorem 4.1.12 (Papadakis). Let H be an RKHS on X with reproducing kernel K and the {f, : s €
S} is a Parseval Frame for H iff K(x,y) =" cq fs(x)fs(y), where the series converges pointwise.

Proof. Assuming that the set is a Parseval frame we have that

K(z,y) = (ky ka) = D> (ky, £o) (Fs () fo(2)

sES

Conversely, assume that the sum of functions give K as above. If i are scalars and h =) Oy ky,

is any finite linear combination of kernel functions, then
—Za aszs y7)fs yz Za azz ku»fs><f87ky>

SES seS
2
_Z Za7 Yji fS fmzal Yi :Z| hvfs>|
seES j SES

By the Proposition 4.1.1, if we assume that £ denote the linear span of the kernel functions, then
L is dense in H. Thus, V : £ — 12(S) defined by (V)h(s) = (h, f,) is an isometry on £. Hence, V
extends to be an isometry V on H, which is given by the same formula. Thus, the condition to be
a Parseval Frame is met by the set {fs : s € S}. O

4.2 Characterization of reproducing kernels

We now try to find the necessary and sufficient conditions for a function K : X x X — C to be the

reproducing kernel for some RKHS. We first note some facts about matrices.

1. Let A = (a;;) be a n x n complex matrix. Then A is Positive if and only if for every
{a1, a9, ....;an} € C we have szzl a;oja; 5 > 0. We denote this by A > 0.

2. If we assume (-,-) denote the usual inner product on C", then in terms of the inner product,
A > 0if and only if (Az,z) > 0 for every € C". In fact the sum in the definition is (Az, x)

for a vector  whose i-th component is the number «;.
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3. If A> 0 and B > 0 both are n x n matrices, then A+ B > 0 and rA > 0 for any r € RT.
4. A matrix A > 0 if and only if A = A* and every cigenvalue of A is nonnegative.

5. A matrix A > 0 if and only if A = A* and every eigenvalue of A is strictly positive.

6. Since A is a n X n matrix, we see that A > 0 is equivalent to A > 0 and A is invertible.

Definition 4.2.1. Let X be a set and K : X xX — C be a function of two variables. Then K is called
a Kernel function provided that for every n and the choice of n distinct points, {x1, %2, ....,xn} C X,
the matriz (K (x;,x;)) > 0. The kernel function is denoted as K > 0.

Proposition 4.2.2. Let X be a set and H be an RKHS on X with reproducing kernel K. Then K

is a kernel function.

Proof. Fix {z1, 2, ...... ,Znt C X and a1, a9, ....,a, € C. Then we have
S @K (i, a5) = O ke, Y oike) =Y ok, ||* >0,
() J i J
and the result follows. O

In general, for a reproducing kernel Hilbert space the matrix P = (K(x;,2;)) is not strictly
positive,but the above calculation shows that (P, ) = 0 if and only if || Zj a;kg,|| = 0. Tence, for
every f € H we have || 32, ajka, || = 0. As 37, a; f(x;) = (f, 22 ajka,;) = 0, in this case there is an
equation of linear dependence between the values of every function in H at the finite set of points.

Such examples do naturally exist. Recall that in the Sobolev spaces on [0,1], we were interested
in spaces with boundary conditions, like f(0) = f(1), in which k1 (t) = ko(¢).

On the other hand, many spaces of analytic functions, such as the Hardy or Bergmann spaces,
contain all polynomials. Note that there is no equation of the form ) j Bip(x;) = 0, with ; not
all zero, which is satisfied by all polynomials. Consequently, the reproducing kernel that is satisfied
by all polynomials. Hence, the reproducing kernels for these spaces always define matrices that are

strictly positive and invertible.

Thus for example, the Szego kernel for the Hardy space, we see that for any choice of points
1
A1y ..oy Ap in the disk, the matrix ——— 1is invertible, by standard linear algebraic methods.
WY
Theorem 4.2.3 (Moore). Let X be a set and K : X x X — C be a function. If K is a kernel
function, then there exists a reproducing kernel Hilbert space H of functions on X such that K is

the reproducing kernel of H.

Proof. Let ky : X — C be a function defined by ky(2) = K(x,y). From Theorem 4.1.1 we know
that if K is the kernel function of an RKHS then the span of these functions is dense in it. So it is
a natural attempt to define a sesquilinear form on the vector space that is the span of the functions
ky, with y € X.

Let W C F(X) be the vector space of functions spanned by the set {k, : y € X} and B :
W x W — C given by B(3_; ajky,,>>; Biky,) = > ; ;B K (yi,y;), where a; and f; both are

32



scalars.

Since a given function could be expressed in many different ways as sum of the functions k,, our
first task to show that B is well defined. For showing that B is well-defined on W, it is enough to
show that if f = >, ajky, is identically zero as a function on X, then B(f,g) = B(g, f) = 0 for
every g € W. Since W is spanned by the functions k,, to prove the last equation it will be enough
to show that B(f,ky) = B(ky. f) = 0. By definition B(f.k;) =3, K(z,y;) = f(2) = 0. Similarly,

B(ky, f) = Za_jK(yj,m) = ZajK(x,yj) = f(z) =0.
J J

Conversely, if B(f,w) = 0 for every w € W, then by taking w = k,, we see that f(y) = 0. Thus,
B(f,w) =0 for all w € W if and only if f is identically zero as a function on X.

Thus, B is well-defined and it is easy to check that it is sesquilinear. Moreover, for any f € W
we have f(z) = B(f, kz)-

As (K (yi, y;)) is positive( or semi-definite), for any f = >°; a;ky,, we have B(f, f) = 3=, ; oo K (yi. y;) >
0. Thus B defines a semidefinite inner product on W. Hence, by the same proof as for the Cauchy-
Schwarz inequality, one can observe that B(f, f) = 0 if and only if f(y) = B(f,k,) = 0 for every
y € X, i.e f is identically 0. Therefore, B is an inner product on W.
Now given any inner product on a vector space, we can complete the space by taking equivalence
classes of Cauchy sequences from W to obtain a Hilbert space. We have to show that every element

of H can be identified uniquely with a function on X.

For, given h € H define
h(z) = (h, ko)

and take
H={h:heH}
so that H is a set of functions on X. If I : H — F(X;C) is defined by L(h) = h, then L is clearly
linear and so H is a vector space of functions on X. Moreover for any function f € W, we have
f(@) = f(2).
We have to show that the map that sends h — h is one-to-one. That is, (x) = 0 for all z € X
if and only if A = 0.

Suppose that 71(:76) =0 for every x € X. Then h L k, for every x € X, so h L W. Since W is
dense in H, we have h = 0 and so the map L : H — # is one-to-one and onto. Thus, if we define an

inner product on H by (h}, iig), then # will be a Hilbert space of functions on X. Since

we see that every point evaluation is bounded and ky = ky is the reproducing kernel for the point
x. Thus, H is an RKHS on X. Since l%y is the reproducig kernel for the point y, we get l%y(x) =
(ky, kz) = K(z,y) is the reproducing kernel for .

O

33



4.2.4 The Reconstruction Problem

If we start with the Szejo Kernel on the disk, K(z,w) =

T2 then the space W that we have
obtain in the proof of Moore’s Theorem consists of linear combination of the functions k,,(z), which
are rational functions with a single pole of order one outside the disk.

Thus the space W doesn’t contain polynomials. Yet the space H(K) = H?(D) contains the

polynomials as a dense subset and has the set {z" : n > 1} as an orthonormal basis.

Theorem 4.2.5. Let X be a topological space, with product topology on X x X and K : X x X — C

be a kernel function. If K is continuous then every function in H(K) is continuous.

Proof. Let f € H(K) and fix yo € X. Given € > 0, we have to prove that there is a neighborhood
U of yo such that for every y € U, |f(y) — f(yo)| < e. By the continuity of K, we can choose a
neighborhood V' C X x X of (yo,%o) such that (z,y) € V implies that

2

€
[K(z,y) = K(yo, yo)| < 30+ D

Since X x X is endowed with the product topology, we can pick a neighborhood U C X of yg such
that U x U C V. For y € U, we have

ky — kyoll> = K (y.y) — K(y.50) — K(y0,y) + K (y0,%0)

= [K(y,y) — K(¥0,0)] = [K(¥,%0) — K(¥0,v0)] — [K(¥0,y) — K (Y0, y0)]
2

€
DTIEESY
Hence,
1F(y) = F (o)l = [ Ry = Ryl < TRy = Ryoll <6
which completes the proof of the theorem. O

Proposition 4.2.6. Let K : X X X — C be a kernel function and H(K) be the corresponding RKHS.
Then the function K is also a kernel function and we have H(K) = {f : f € H(K)}. Moreover, the
map C : H(K) — H(K) defined by C(f) = f is a surjective conjugate-linear isometry.

Proof. Given x1, %2, 23, .....T, and ag,....,a, € C, we have

n n n
Z aio; K(zi,25) = Z i @; K (i, ) = Z @iy K (i, 25) > 0

i,7=1 i,j=1 i,j=1

as K is a kernel function. Thus, K is a kernel function.

From the proof of Moore’s Theorem, we see that the linear span of the functions K (-,y) = ky(-)
is dense in ’H(f) First, we want to show that for any of points y1,¥s2, ...... ,Yn € X and scalars

Oy nnnns ay € C, setting

n n
c Z“jkyj = Zajk'yj
j=1 j=1
yields a well-defined isometric conjugate linear map on these dense linear spans.
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To show that C' is well-defined it is enough to show that if we had two different ways to express
the same function in H(K) as a linear combination of the function k,, then the corresponding linear
combination of the functions l_@y with the conjugate linear coefficients would give the same function
in H(K). To show this, it is enough to show that if a linear combination of functions k, adds up to
the 0 function in H, then the corresponding conjugate linear combination of the functions l_cy adds
up to the 0 function in H(K).

n n
l Zajkyj”g{(f{) = Z ;@i (ky, Ky, ) (k)
i=1

i,j=1

n n
=Y @ik (y,y;) = Y aeK (vi,y;)
i1 i1

n
- Z a]al<ky] ) k:‘/i>7‘t<k’)
i,j=1

n
=1 aiky, 1300,
j=1

This calculation shows that the conjugate linear map C' is isometry, so that if the first function
adds up to 0, so does the second function. Thus, C' is well-defined, isometry and conjugate linear

on these dense subspaces.

Now it is a standard argument in functional analysis that, by taking limits in the domain, we
can extend any bounded conjugate linear map from a dense subspace to the whole space. Moreover,
since C' is isometry, this extension to the whole space will be isometry. Since C' is isometry and its
range contains a dense subspace, C' will map H(K) onto H(K). Note that on the original linear
span, C takes a function to its complex conjugate. Hence, H(K) = C(H(K)) = {f : f € H(K)}.

O

4.2.7 The RKHS induced by a function

We start with an example of a kernel function that yields a one-dimensional RKHS.

Proposition 4.2.8. Let X be a set, let f be a non zero function on X and set K(z,y) = f(z)f(y).
Then K is a kernel function, H(K) is one dimensional space spanned by f, ||f|| = 1.

Proof. To see that K is positive, we compute
Z ajoz_iK(x,Lv, :L‘j).
(2%}

Now,
2

>0

Zaja_iK(mL-, T;) = Z aja; f(zi)f(zy) =

i,j 1,3

me(zi)

To find H(K'), note that every function k, = f(y)f. Hence the subspace W, used in the proof of

Moore’s theorem, is just the one dimensional space spanned by f. Since finite dimensional spaces



are automatically complete, H(K) = Span .
Finally, we compute the norm of f. Fix any point y such that f(y) # 0. Then |f(y)|%|f]|* =

IF@)FI? = [lkyl® = (ky ky) = K(yy) = [fF@)PP = [fW)PIIfII> = [f(y)|” and it follows that

IfIF=1.
|

4.2.9 The RKHS of the Min function

We prove that the function
K :[0,400) x [0,4+0) = R

defined by K(x,y) = min(z,y), is a kernel function and try to obtain some information about
Hr(K). This kernel function and the corresponding RKHS play an important role in the study of

Brownian motion.

Lemma 4.2.10. Let J, denote the n x n matrixz with every entry equal to 1. Then J, >0, J, has

n eigenvalue of multiplicity one and every other eigenvalue of Jp, is equal to 0.

Proof. Given v = (ay, as,as, .....,a,) € C". we have
2
n n
<Jn’U,’U> = E o0 = E (&) Z 0.
ij=1 =1

Hence, J,, > 0. If v; is a vector with each entry equal to 1, then .J,v; = nv; so one eigenvalue is n.
Note that J2 = nJ,. If w is any non-zero eigenvector with eigenvalue X\ then \2w = J2w =
nJ,w = ndw. Hence, A\? = n) so that A € {0,n}. However, since the trace of .J,, is the sum of all

eigenvalues which is equal to n, which implies all other eigenvalues of J,, as equal to 0. O

Proposition 4.2.11. Let K : [0,00) x [0,00) = R be defined by the K(z,y) = min{z,y}. Then K

is a kernel function.

Proof. For x1,xs, 23, ...... , Ty € [0,00) we have to show that the corresponding matrix (K (z;,x;)) is
positive. The proof is by induction on the number of points n. Clearly, min{z, 2} = x > 0, so the case
of n = 1 1is done. If we permute the points such that 0 < 7 < x5 < oo < x,, this corresponds
to conjugating the original matrix by a permutation unitary, which does not affect whether or not
the matrix is positive. So we assume that the points are given in this ordering.

The matrix (K (z;,y;)) has the form

T, T - X1 0 0 0

Ty To - X9 0 zo—21 --- 0
=x1Jn +

Ty Tz Ty 0 mo—m1 -+ Tp—1

where J,, is the matrix of all ones. Since z; > 0 and J,, > 0 the first matrix in this sum is
positive. The lower (n — 1) x (n — 1) block m the second matrix is of the form K(y;,y;) where
yi = x; —x1 > 0, for i > 2. By the induction hypothesis, this (n — 1) x (n — 1) positive matrix.

Since the sum of two positive matrices is positive the matrix (K (z;,z;)) > 0.
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Thus, K induces an RKHS of continuous real-valued functions Hg(K) on [0, +oc) and we would
like to try to get some information about this space. First, it easy to show that K is continuous and
hence, by our earlier result, every function in this space is continuous on [0, +00).

We look at a typical function in Wx. Choose y; < .... < y, in [0, +00) and scalars ay, as, ..., a, €

R, we see that a typical function is given by

(i @z, 0<z<uy
n iy + (i aiy), Y1 ST <ys
Zaikyi (x)=1<" :
- (O aiyi) + an®,  Yno1 ST <yn
2?21 aiYi Yn <@

Thus we see that every function in the span of the kernel function is continuous, piecewise linear
, 0 at 0 and eventually constant. Conversely, it can be shown that every function belongs to the span
of the kernel functions. So Hg(K) will be a space of continuous functions that is the completion of

this space of "sawtooth ” functions. O

4.2.12 The RKHS induced by the inner product

Definition 4.2.13. Let H be a Hilbert Space and hy, ha, ....,h, € H. Then the n X n matrix

((his hy))
is called the GRAMMIAN of these vectors.

Proposition 4.2.14. Let ‘H be a Hilbert Space and hi,hs,.....h, € H. Then their Grammian,

G = ((hi. hy)) is a positive semidefinite matriz. Moreover, G is a positive definite matriz if and only

if ha, ..., hy are linearly independent.

Proof. Let y = (y1,....,yn)" € C"™ and then

n n
(Gy.y) =Y (ha by B = | > Fihal|* > 0.
ij=1 i=1

Also,(Gy,y) = 0 if and only if the corresponding linear combination is the 0 vector. Hence, G is

positive definite if and only if no nontrivial linear combination of hq, ..., h,, is O. O

Proposition 4.2.15. Let £ be a Hilbert Space with inner product {-,-) and K : LX L — C be defined
by K(x,y) = (x,y). Then K is a kernel function on L, H(K) is the vector space of bounded linear
functionals on L and the norm of a functional in H(K) is the same as its norm as a bounded linear

Sfunctional.

Proof. The Proposition 4.2.14 shows that K is a kernel function. Note that for each y € L,k :
L — C is the bounded linear functional defined as ky(-) = (-,y). Thus, linear combinations of kernel
functions are again bounded linear functionals on £. We need to see that every function in H(K) is

of this form.
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By the Riesz Representation theorem, each bounded linear functional f : £ — C is uniquely

determined by a vector w € L, so that f = f,, where

Juw(v) = (v, w).

Note that, given a scalar A € C, the linear functional A\f,, = f5,,, i.e. the space of bounded linear

functionals is conjugate linearly isomorphic to £ and is itself a Hilbert Space in the inner product

<fw17fw2> - <'1.U2,'LU1>.

Let H = {fw : w € L} be the Hilbert Space of bounded linear functionals on L. For each z € L,
the evaluation map E, : H — C, given by E,(fw) = fuw(zx) satisfies |E.(fu)| = |z, fu)| < |z full;-
So every evaluation map is bounded on H and so #H is an RKHS. For each x € X and each f,, € H,
we have

fuw(@) = (@, w) = (fw, [z)-
So the kernel function for evaluation at x is k, = f,. Hence, for z,y € X, the kernel function for H
is
Kn(w,y) = ky(x) = fy(2) = K(z,y).
Thus, K3y = K and the result followed by the uniqueness of the RKHS determined by a kernel

function.

Note 4.2.16. If we define C' : L — H(K) by C(y) = ky, then C(\y) = kyy = Mky. As the
inner product is conjugate linear in the second variable, C' is the usual conjugate linear identification

between a Hilbert space to its dual.

O
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Chapter 5

Interpolation and approximation

5.1 Interpolation in an RKHS

One of the primary applications of the theory of reproducing kernel Hilbert spaces is the problems

of interpolation and approximation.

Definition 5.1.1. Let X and Y be two sets and {x1,22,....,2n} C X be a collection of distinct
points, and {Ai, A2y ....; An} € Y. We say that a function g : X — Y Interpolates these points
provided that g(x;) = A, for alli=1,2,....,n.

Note 5.1.2. Gwen a finite set F' = {x1, .....,xn} C X of distinct points, we will denote the subspace
spanned by the kernel functions {kg,,.....,kz, } as Hrp C H.

Theorem 5.1.3. The dim(H(F)) < n and this is strictly less if and only if there is some nonzero
equation of linear dependence among these functions.

Proof. Suppose that Z?zl ok, = 0, then for every f € H,

0=(f, > ajks,) = > a;f ().
j=1 j=1

We see that dim(Hp) < n if and only if the values of every f € H at the points in I satisfy
some linear relation. This is equivalent to the fact that the linear map T% : H — C™ defined by
Tr(f) = (f(x1), f(22), ..., () 18 not onto. Since any vector (ay, ...., ay,) expressing an equation

of linear dependence would be orthogonal to the range of 1.

Thus, if dim(H(F')) < n then there exist Ag,....., A, € C which cannot be interpolated by any
feH. O

Note 5.1.4. We've seen that it is possible for there to be such equation of linear dependence between
the kernel functions, and sometimes when we construct a RKHS this can be desirable property. This
was the case for the Sobolev space, where the boundary condition of the differential equation is
f(0) = f(1) = 0 requires kv = ko = 0. Changing the boundary conditions to f(0) = f(1) would

require ki = ko.
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Let Pr be the orthogonal projection of H onto Hp.
Note that g € Hz if and only if g(z;) = (g, ks,) = 0, for all i = 1,2, .....,n. Hence, for any h € H,
we have
Pr(h)(x;) = h(x;),i=1,....,n

Proposition 5.1.5. Let {x1, %o, .....,xn} be a set of distinct points in X and {A1, A, ..., A\n} C C.
If there exists g € H that interpolates these values, then Pp(g) is the unique function of minimum
norm that interpolates {A1, Ao, ..., An }.

Proof. Let S = {f : F' — Y|/ interpolates these values} where F = {z1,22,.....,2,} and Y =
{A, A2, s A} If g1,92 € S then g1(2;) — go(x;) = 0 for all 4 € 1,2,....,n. This implies that
g1 — g2 € H' by the previous statement.

Thus, all possible solutions of the interpolation problem are of the form g+ h € H' and Pr(g)
belongs to this set.

Note that for any h € H* we have Pr(g) = Pr(g+h). Hence || Pr(g)| = ||Pr(g+h)|| < |lg+ Al

and so Pr(g) is the unique vector of minimum norm that interpolates these values. O

Definition 5.1.6.
Null space of A: N(4) :={w € C"*: Aw = 0}
Range space of A: R(A) := {Aw : w € C"}.

Proposition 5.1.7. Let X be a set, H be an RKHS on X with kernel K and {z1,x2,.....,xn} C X
be a finite set of distinct point. If w = (a1, 2, ......,an)" is a vector in the nullspace of (K (x;,x;)).

then the function, [ = Zj ajkg, is identically 0. Consequently. if wy = (ay,....,on)" and wy =
(B1s v, Br)t are two vectors satisfying (K (xi,z;))wr = (K (24, 2;))ws, then

> ajke,(y) = Bika, (y)
j=1 j=1

Sfor every y € X.

Proof. We have that f = 0 if and only if || f|| = 0. Now

AP =" @ac (ks  ba) = D @ioy K (i, 25) = (K (24, 25))w, w)en =0
i i

, and the result follows.
To see this last remark, note that wy; — w, is in the nullspace of the matrix and so the function

>ii (g — Bj)ks, is identically 0. O

Theorem 5.1.8 (Interpolation in an RKHS). Let H be an RKHS on X with reproducing kernel K,
F =A{z1,z9,....;zn} C X be distinct points, and {\1,....., A\n} C C. Then there exists g € H that
interpolales these values if and only if v = (M,..., A\)" is in the range of the matriz (K (z;,z;)).
Moreover, in this case if we choose a vector w = (a1, ..., )t whose image is v, then h = > ik, s

the unique function of minimum norm in H that interpolates these points. Moreover, ||h||? = (v, w).

Proof. First, assume that there exists g € H such that g(x;) = X;, for all i = 1,....,n. Then the

solution of minimal norm is Pr(g) = Zj Bjks,; for some scalars, £, ....,8,. Since A\; = g(x;) =
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Pr(g)(z;) = Zj Bjke, (x;), we have wy = (B, ..... Bn)" is a solution of v = (K (x;, x;))w.

Conversely, if w = (a1, ...,a,)" is any solution of the equation v = (K (2, 2;))w and we set

h=3%" ;0 kg, then h will be an interpolating function.

Note that w — w; is in kernel of the matrix (K (x;,;)) and by the Proposition 5.1.7, Pr(g) and
h are the same functions. Hence, h is the function of minimal norm that interpolates these points.
Finally,
1 = Ao K (2, 25) = (K (21, 25) Jw, w) = (v, w).
2]

O

Corollary 5.1.9. Let H be a RKHS on X with reproducing kernel K and F = {z1,...,x,} C X
be distinct. If the matriz (K(x;, x;)) is invertible, then for any {Ai,.... A} C C there exist a
function interpolating these values and the unique interpolating function of minimum norm is given
by the formula, g = 3, ajks; where w = (a1, ...,an) is given by w = (K(z;,2;)) v, with v =
(A1 ey An)te

5.1.10 Strictly positive kernels
Given a set X, a kernel function K : X x X — C is called Strictly Positive if and only if, for every
n and every set of distinct points {z1, ....,2,} C X, the matrix

(K (4, 5))

is strictly positive definite, i.e.

n
Z @iOéjK(il‘i,l‘j) > 0,
i,5=1

whenever {ay, ..., an} C C are not all 0.
Theorem 5.1.11. Let X be a set and K : X x X — C be a kernel. Then the following are equivalent:

1. K is strictly positive;

2. For any n and set of distinct points {x1, 2, ...., pn}, the kernel functions ky,, ...., kg, are lin-

early independent;

3. For any n, the set of distinct points {x1,...,xn}, and the set {aq,...,an} C C that are not all
0, there exists f € H(K) with

arf(z1) 4 oo + an fay) #0;

4. For any n and the set of distinct points {x1,Z2,....,xn}. there exists functions, gi,.....,gn €
H(K), satisfying
1 i=j
gi(xj) = o
0 i#j
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Proof. Since szzl o K (2, 25) = || E?zl ks, ||?, the equivalence of (1) and (2) follow.

T

Note that ayky, + ..... + Gy ks, = 0 if and only if (f, Y1 | a;ks,) = 0 for all f € H if and only
it ay f(z1) +..... + @nf(zy) =0 for all f € H. Hence, (2) and (3) are equivalent. Thus, (1),(2) and

(3) are equivalent.
To see that statement (4) implies (3), assume that a; # 0 and note that we can choose f = g;.

Finally, if (1) holds, then for each ¢ applying Corollary 3.7.9 to the set of numbers a; = 0,5 # i
and a; = 1, yields the function g;. O

A set of functions satisfying statement (4) is often called a Partition of Unity for the 1, za, ..., Tp.
Note that if one has a partition of unity for x,zs,....,x, then one gets f € H(K) satisfying
f(z;) = A; simply by setting, f = X191 + ... + AnGn.

Definition 5.1.12. An RKHS H on X that satisfies any of the equivalent conditions of the above
theorem is called Fully Interpolating.

We will now show that there is a way to compute a partition of unity it exists. Assume that
F = {x1,2,...,2,} and P = (K(z;,z;)) is invertible as in the above corollary and write P~ =

(bi,;) = B. Let e;,j = 1,.....,n be solutions to e; = Pw;. Thus, if we set
9= bijka,.
i

then g;(x;) = d; j,where ¢; ; denotes the Dirac Delta function. Thus, these functions are a partition

9= X9y
J

then ¢ is the unique function in H  satisfying g(z;) = A\;,4 = 1,2, ....,n. Hence, g is also the function

of unity for F. Moreover, we consider

of minimum norm interpolating these values. Thus, this particular partition of unity gives an easy
means for producing the minimum norm interpolant for the given set.
For this reason, this particular partition of unity is well worth computing and is called the

Canonical Partition of Unity for F.

5.1.13 Best least squares approximants

If H is an RKHS on X, F = {x1,%2,....,x,} is a finite set of distinct points and {A1,....,\,} € C,
and the matrix (K (z;,;)) is not invertible, then there might not exist any function f € H with
S(x;) = X, for all i. In these cases one is often interested in finding a function such that the Least

Square Error,

J(f) = Z |f(xs) — Nl

is minimized and then, among all such solutions, find the function of minimum norm. As we shall

see there is a unique such function and it is called the Best Least Squares Approximant.
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The following theorem proves the existence of the best least squares approximant and gives a

formula for obtaining this function.

Theorem 5.1.14. Let H be an RKHS on X with kernel K, {x1,....,xn} C X be a finite set of distinct

points, v = (A1, ..., A\p)" € C" and Q = (K(z;,2;)). Then there exists a vector w = (o, ....,an)"
such that (v — Qw) € N(Q). If we assume

g=o1ky + ...+ anks, .

then g minimizes the least square error and among all functions in H that minimize the least square

error, g s the unique function of minimum norm.

Proof. Note that for any function f € H there exists a vector w € C™ such that Quw = (f(z1), ..., f(zn))".
Hence we have

J() =D 1f @) = Xil* = [|Qu — v||>.
=1

This is minimized for any vector w = (o, .....,a,)" such that Quw = Pr(g)(v) = v; where R(Q)
denotes the range of the matrix @ and Pg(q) denotes the orthogonal projection onto R(Q).

If we choose a different vector w’ = (af,...,a}) that solves v; = Qu’ then we will have
S kg, = Y abky,, since w — w' € N(Q). Since projecting a function f onto the span
of the kernel functions ky, , ...., kg, decreases the norm and does not change the value of f at points

L1y ey xy, we see that g is the unique minimizer of J of smallest norm. O
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5.1.15 The elements of H(K)

We will now use the interpolation theory to give a general solution to the reconstruction problem for
kernels. We will characterize the functions f : X — C that belong to the RKHS H(K) determined
by a kernel K.

Definition 5.1.16. A Directed Set is any set with a partial order that has the property that, given
any two elements of the set, there is always at least one element of the set that is greater than or
equal to both.

Given a set X, we let Fx denote the collection of all finite subsets of X. The set Fx is a directed
set with respect to the partial order given by inclusion. Setting F; < Fy if and only if F} C Fy
defines a partial order on Fx. Given any two finite sets, F1, F», there is always a third finite set G

that is larger than both. In particular, we could take G = F; U F5. Thus, Fx is a directed set.

Definition 5.1.17. A net is a generalization of the concept of a sequence, but it is indexed by
an arbitratry directed set. So, if (F,<) is a directed set,then a net in a Hilbert Space H is just a
collection of vectors grper C H. Convergence of nets is defined by analogy with convergence of
sequences. The net gppex is said to converge to g € H, provided that for every ¢ > 0 there is
Fy € F such that whenever Fy < F, then ||g — gr|| < e.

Proposition 5.1.18. Let H be an RKHS on the set X, let g € H and for each finite set FF C X,
let gr = Pr(g), where Pr denotes the orthogonal projection of H onto Hp. Then the net gr per,
converges in norm to g.

Proof. Let K(x,y) denote the reproducing kernel for H and let ky(.) = K(.,y). Given € > 0,
by Proposition 4.1.1, there exists a finite collection of points, Fy = {z1,22,.....,x,} and scalars
{a1,....;ap}, such that ||g — 3=, asky, || < e

Since g, is the closest point in Hp, to g, we have that ||g — gr,|| < €. Now let F' be any finite
set, with Fy C F'. Then Hp, C Hr and since gr is the closest point in Hp to g and gr, € Hr, we
have that [|g — gr|| < |lg — gr,|| < €, for every Iy C F, and the result follows. a

Proposition 5.1.19. Let P > 0 be an n X n matriz, and let = (x1, T2, .....,on)" be a vector in
C". Ifxx* = (2,2;) < cP, for some scalar, ¢ > 0, then x € R(P). Moreover, if y is any vector such
that x = Py, then 0 < (z,y) < c.

Proof. For any matrix A we have N'(A*) = R(A)L. Since P = P* we have N (P) = R(P)*. Thus,
we may write x = v + w with v € R(P) and w € N(P).

Now, {(z,w) = (w,w), and hence |w||* = (w,z){z,w) = 20 Tjwjziw; = (T4, Z;)w,w) <
{cPw,w) = 0, since Pw = 0.

This inequality shows that w = 0 and hence, x = v € R(P). Now if we write x = Py, then
(z,y) = (Py,y) > 0. As above, we have that (z,9)> = (y,z)(z.y) = ((2:,%;)y,y) = c(z,y).
Canceling one factor of (z,y) from this inequality yields the result.

O

We are now able to prove a theorem that characterizes the functions that belong to an RKHS in

terms of the reproducing kernel.
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Theorem 5.1.20. Let H be an RKHS on X with reproducing kernel K and let f : X — C be a
function. Then tbe following are equivalent:

1. feH

2. There exisls a constant, ¢ > 0, such that for every finite subset, F = {x1,%o,......xn} C X,
there exists a function h € H with ||h|| < ¢ and f(x;) = h(x;),i=1,.....n;

3. there exists a constant, ¢ > 0, such that the function, 2K (x,y) — f(z)f(y) is a kernel function.
Moreover, if f € H then || f|| is the least ¢ that satisfies the inequalities in (2) and (3).

Proof. (1) implies (3): Let F = {x1,.....,xn} C X, let a1, ....,ap be scalars and set g = Zj ajky,.
Then

Zo‘ziajf(ﬂfj)m = IZ@J(I@')F =1L < ISIPNgI? = 117 Y @iy K (2, 2)).

4]

Since the choice of the scalars was arbitrary, we have that (f(2;)f(z;)) < ||f||*(K(2s,2;)) and so
(3) follows with ¢ = || f]|-

(3) implies (2): Let I' = {x1,.....,2,} C X be a finite set. Apply Proposition 5.1.19 to deduce
that the vector v whose entries are \; = f(«;) is in the range of (K (z;,2;)). Then use the Interpola-
tion Theorem to deduce that there exists h = Y, a;ky, in Hp with h(x;) = f(x;). Let w denote the
vector whose components are the «;’s and it follows that ||h|> = (v,w) < ¢? by applying Proposition
5.1.19 again.

(2) implies (1): By assumption, for every finite set F' there exists hp € H such that |hp| < ¢
and hp(z) = f(x) for every « € F. Set gr = Pr(hp), then gp(x) = hp(xz) = f(x) for every x € F
and ||gr|| < [lhrll < c.

We claim that the net {gp}F € Fx is Cauchy and converges to f.

To see that the net is Cauchy, let M = sup ||gr|| < ¢ and fix € > 0. Choose a set Fy such that

M — & < ||gr,|| and hence, ((gr — gr,), gr,) = 0. Hence, |lgr|]* = llgr |I* + lgr — g, [I*, and so
M — e <|lgr |l < llgr| < M.
Therefore, 0 < |lgr|| — llgr || < €, and we have that ||lgr — gr, |1 = |lgrll® — llgrnl? =

gzl +llge Dlgell = llgr,|l) < 2Me?. Thus, |lgr — g || < V2Me and so for any Iy, Fy € Fx with
Fy C Fy, Fy C Fy, it follows that ||gr, — gr,|| < 2v2Me and we have proven that the net is Cauchy.

Thus, there is a function g € H that is the limit of this net and hence, ||g|| < M < ¢. But since
any norm convergent net also converges point wise,we have that g(z) = f(z) for any 2. Thus, the

proof that (2) implies (1) is complete.

Finally, given that f € H we have that the conditions of (2) and (3) are met for ¢ = ||f||. So the

least ¢ that meets these conditions is less than || f||. Conversely, in the proof that (3) implies (2), we



saw that any c that satisfies (3) satisfies (2). But in the proof that (2) implies (1) we saw || f]| < c.
Hence many ¢ that meets the inequalities in (2) or (3) must be greater than || f]|. a

Corollary 5.1.21. Let f : D — C be a function. Then f is analytic on D and has a square
2

summable power series if and only if there exists ¢ > 0 such that K(z,w) = — f(2)w is

kernel function on D.

1—zw
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