
 
 

                                                 

 

Optical Properties of CuAlX4 (X: Cl, Br): A First Principles 

Study 

 

SATYANDER SINGH 

 

 

 

A Thesis Submitted to 

 

Indian Institute of Technology Hyderabad 

 

In Partial Fulfillment of the Requirements for 

 

The Degree of Master of Physics 
 

 

 

 

 

 

 

 

 

 

 

 

Department of Physics 

 

 

April 2019







 
 

 

 

 

Acknowledgements 

 

I would like to express my sincere gratitude to my advisor Dr. V. Kanchana who has 

given an opportunity for me to work under her guidance without which the thesis would 

not have been possible. I am indebted to her for constant support, motivation and fruitful 

discussions. 

 

I also would like to express my heartful thanks to my fellow labmates Mrs. Sreeparvathy 

P.C, .Mr..P. Rambabu, Mr. Vineet Kumar Sharma, Ms. Karthika Menon and Ms. B. 

Anuroopa, research scholars working under my supervisor for their help in 

computational programming and feedback regarding my work. I am extremely thankful 

to my friends Mr. R. Vaisakh, Mr. Anuj Maurya, Mr. Nishant Singh, Mr. Tony Narzary 

and Mr. Risheek Marwah for their inspiring words and positive vibes which lead me to 

stay pleasant during my work. 

 

I would like to thank the thesis committee members for their constructive comments 

and suggestions which motivated me to get an insight into the subject area of research.  

 

 



 
 

 

 

 

                                                  Abstract 

 

We report the electronic structure and optical properties of Copper based halides within the 

frame work of Density Functional Theory (DFT). The optimized parameters are in good 

agreement with experimental values. These systems are found to be semiconductor. It is 

evident from the band structure plots. The calculated optical properties reveal that the 

investigated systems would have future applications which can be explored. 
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Chapter 1  

Introduction  



 
 

Scintillators exhibit fast scintillation [1] via various mechanisms which include core-

valence (CV) transition, inter-configuration transitions, exciton luminescence [2, 3, 4, 5, 

6]. Core valence luminescence may be observed due to radiative transition between valence 

band to core valence band, and this transition is mainly observed in Ba, Cs, Rb-based 

fluorides, chlorides and bromides [7]. Apart from fast decay time, these core-valence 

luminescence materials exhibit high thermal stability, and relatively high light yield [8].  

Inter-configuration transition can occur in the case of activator compounds with allowed 

transition between states of 5d-4f particularly in rare earth ions Ce3+, Pr3+ and Nd3+ [9]. 

Exciton luminescence is observed in pure compounds also, particularly self-trapped 

luminescence. This transition is mainly observed in alkali earth fluorides with high light 

output. Among them, cross luminescence is one of the important criteria for fast 

scintillation [10].  The compounds which exhibit cross luminescence or core valence 

luminescence (CVL) are very interesting because of their fast decay and high thermal 

stability.  The radiative transition of electrons from valence band to core valence band will 

lead to cross luminescence (also called Auger free luminescence) [11, 12, 13, 14, 15, 16, 

17, 18].  The general requirement for CVL is that energy difference between top of the 

valence band and top of core valence band (EVC) should be less than the band gap (Eg) of 

the compound.  The compounds which exhibit CV luminescence are called L -type because 

of Eg > EVC.  In the case of compounds like SrI2 and CaF2, the transition is observed from 

conduction band to valence band and is called Auger luminescence [19]. These are called 

A -type compounds where Eg < EVC, whereas in CsI, it is observed that, Eg > EVC - ∆Ev , it 

is called AL -type and they exhibit fast scintillation. 

Copper based compounds are well-known for catalysis applications due to their ability to 

readily bind small molecules such as olefins, aromatics and carbonyls [20, 21, 22, 23, 24, 

25, 26].  A family of materials based on the structural relationship between ZnCl2 and SiO2 

[27] called as halozeotypes are developed. Synthesis utilizing the Cu (I) and Al (III) 

tetrahedral cations yield a family of materials of general formula CumAlmCl4m, which are 

structural analogs of aluminophosphates [28]. These framework materials are constructed 

from Lewis acidic and redox active building blocks which are known to be reactive toward 

small molecules and the polymerization of olefins and aromatics. The condensed nature of 

this framework provides a sufficiently ridged lattice that, in the absence of guest molecules, 

the isolated Cu (I) centers exhibit brilliant photoluminescence under UV and X-ray 

excitation. A diverse range of materials in which copper (I) serves as the luminescent 

activator exhibit emissions across the visible spectrum. When doped into silicate glasses3 

or zinc chalcogenide phosphors a blue to green luminescence is observed, whereas a red to 

orange emission is observed for Cu4I4L4 clusters (L=alkylamine) [29]. Similarly, models 

used to describe Cu(I) luminescence vary widely. Mechanisms including metal-centered 

d10—d0 ’s absorption, halide to metal charge transfer (XMCT), and the presence of extrinsic 

or cluster defects, are most relevant to understanding of the luminescence of CuAICI4.  

 

 

The structure of a-CuAlCI4, in which CuCl4/2 tetrahedral units reside in ordered lattice sites 

that are isolated by corner-sharing to AICI4 tetrahedral, make this system particularly well 



 
 

suited to investigation of the luminescence of the Cu (I) center [30, 31]. Furthermore, the 

ability to form a complete chloride/bromide solid solution, α- CuAIC14-xBrx, provides a 

measure for the role of the halide ligands in the photoluminescence mechanism [32].  A lot 

of research has been done materials based on Boron family and halides in the area of optical 

applications. The present study on compounds CuAlX4 are in line with former studies. The 

present thesis arranged as follows, second chapter deals with the methodology, third 

chapter discusses the results part and followed by conclusion.  
 

Chapter 2 

Theoretical Background 

The branch of physics which deals with the study of solids is the Condensed Matter 

Physics. It is concerned with the properties of solids. All the properties of the solids can be 

obtained by solving the Schrodinger wave equation. The complete information about the 

state of a system is contained in the wave function Ψ. In order to understand the physical 

properties of a system, the time independent Schrodinger wave equation needs to be solved 

which is given by: 

       𝐻̂Ψ𝑖(𝑥⃗1, 𝑥⃗2 … , 𝑥⃗𝑁 , 𝑅⃗⃗1, 𝑅⃗⃗2 … . , 𝑅⃗⃗𝑀) = 𝐸𝑖Ψ𝑖(𝑥⃗1, 𝑥⃗2 … , 𝑥⃗𝑁, 𝑅⃗⃗1, 𝑅⃗⃗2 … . , 𝑅⃗⃗𝑀)                (2.1)                 

For a one electron system, the solution to this equation is straightforward. But for a system 

having more than one electron the complexity involved in the solution is more. The 

electron-electron interaction term makes the solution difficult because of the inherent wave 

nature in electrons. 

The time independent Schrodinger wave equation for a system consisting of M nuclei and 

N electrons written in atomic units is given by: 
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                                                                                                                                        (2.2) 

The Hamiltonian of the system consists of five terms. The first terms represent the kinetic 

energy of the electrons. The second term represents the kinetic energy of the nucleus. The 

attractive electrostatic electron-nucleus interaction is represented by the third term. The 

forth term and fifth term respectively represents the repulsive interactions between 

electron-electron and nucleus-nucleus interactions. 

The analytical solution to this many body Schrodinger equation is a complex task. 

Numerical methods should be used for the solution. Many approximations must also be 

used to solve this equation. Density functional theory (DFT) is developed for getting an 



 
 

approximating solution to this Schrodinger equation. DFT implemented through various 

software such as VASP, WIEN2k, CASTEP etc. is very efficient in getting the ground state 

properties of solids. 

 

2.1 Approximation Methods used in Solution 

2.1.1 Born-Oppenheimer Approximation 

The nuclei are more massive than electron. Therefore, it can be naively approximated that 

the nuclei are almost at rest and the electrons are in a potential which is produced by the 

electrostatic field of nuclei. The basic assumption behind this approximation is that the 

motion of electrons and nuclei can be made independent. With this assumption, the 

Hamiltonian is reduced to three terms. 
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The Schrodinger wave equation will be solved with this electronic wave function alone. 

The nucleus-nucleus interaction energy will be a fixed value. This energy will be added to 

the electronic energy to obtain the total energy of the system.  

                                                  Ĥ𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐 = 𝐸𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐                                                (2.4)                               
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Even though the complexity of the equation has reduced, still more approximations are 

needed to solve the many body problem. Several approximation methods were proposed 

before the advent of DFT. They will be discussed in the next section.  

2.1.2 The Hartree approximation 

In this method, the electron is considered to be distinguishable and independent. The total 

Hamiltonian is written as the product of single particle equation which is given by: 

                                         Ψ(𝑟𝑖) = 𝐶𝑁  ∏ Φ𝑖(𝑟𝑖)𝑛
𝑖                                                            (2.6) 

Each electron moves independently and it feels an average electrostatic field created by all 

other electrons. In fact, electron motion will be correlated. Also, electron is a fermionic 

particle. These facts are not taken care in this approximation i.e., the exchange and 

correlation effects are not taken care in this method. 

2.1.3 Hartree-Fock Method 



 
 

The fermionic nature of electron is taken care in this method. The wave function is 

expressed in this method as Slater determinant and then solved using variational principle 

to get the ground state energy. Each electron is considered to move in an average field 

created by all the other electrons. This is known as mean field approximation. As in the 

Hartree method, here also the wave function is expressed as the product of single particle 

orbitals. The single particle orbital is consisting of position vector and spin vector. The 

antisymmetric nature of the wave function is implemented through Slater determinant. The 

wave function can be represented as: 

                          Ψ𝐷(𝑟) =
1

√𝑁!
[
𝑥1(𝑟1) ⋯ 𝑥𝑛(𝑟1)

⋮ ⋱ ⋮
𝑥1(𝑟𝑛) ⋯ 𝑥𝑛(𝑟𝑛)

]                                                     (2.7) 

If two rows in this determinant is same, which means two electrons having same spin are 

positioned in the same location. This is not possible according to Pauli’s exclusion 

principle. Since by the property of determinant, if two rows are same, then the determinant 

will evaluate to zero which implies that the Slater determinant is the manifestation of 

Pauli’s exclusion principle. Also, if two rows are interchanged, the sign of the determinant 

will be negated which manifest that the Slater determinant takes care of the exchange 

interaction also. 

Hartree-Fock method employs solving the Schrodinger wave equation by considering wave 

function in the form of Slater determinant. Since in this model also, the electrons are 

considered to be independent, the correlation effect is not considered in this model. This is 

the major drawback of this model.                        

                                        

2.2 Density Functional Theory 

The density functional theory evolved as a technique to solve the many body Schrodinger 

equations.  The idea behind DFT is that the wave function can be replaced by density. The 

electrons are moving in an electrostatic potential of the nucleus. The electrons can’t be 

localized due to Heisenberg uncertainty principle. The exact position of an electron can’t 

be located. The probability of an electron at a particular location can only be specified. The 

corresponding probability is given by the square of the wave function. The electrons are 

moving in a potential which is generated by the electron as well as all the other electrons. 

In DFT studies, the quantity of interest is the electron density rather than wave function. 

Here Energy is expressed as a function of density which itself is a function of position. 

Since energy is a function of a function, the theory is called as the density functional theory. 

The idea that density can be used instead of wave function was first put by Thomas and 



 
 

Fermi through their statistical model of homogeneous electron gas and then Hohenberg 

and Kohn were the one who verified it through their theorems.  

The advantage of this method over other conventional method to solve the many body 

problem is that it is computationally efficient. The electron wave function is a function of 

3N variables where N is the number of electrons in the system. But irrespective of the 

number of electrons, the electron density is a function of only three variables x, y and z.  

                𝜌(𝑟) = N ∫ 𝑑3𝑟2𝑑3 … 𝑑3𝑟𝑁Ψ(𝑟1,𝑟2 … 𝑟𝑁)Ψ∗(𝑟1,𝑟2 … . . 𝑟𝑁)                               (2.8) 

There are two important theorems in DFT which was formulated by Hohenberg and Kohn. 

The first theorem states that there is a one to one correspondence between external potential 

and the electron density. The external potential is nothing but the attractive electrostatic 

interaction between nucleus and electron. Since every atom has different number of 

electrons, external potential will be different for different atoms and so there will be a 

unique density associated with that potential. The second theorem states that the density 

which minimize the total energy is the exact ground state energy of the system. The two 

theorems together state that the knowledge of density of a system can predict the ground 

state energy of the system. 

  

2.2.1 Kohn-Sham Method  

Density functional theory has set up its functionality by Kohn Sham method. The theorems 

put forward by Hohenberg and Kohn has been practically implemented through Kohn-

Sham method. Here the original system which is consisting of interacting electrons is 

mimic through non interacting system of electrons. This non-interacting system will have 

exactly the same density as that of the non-interacting system of electrons. As the solution 

stems on just one unknown quantity electron density rather than a large number of 

unknown wavefunctions, the method is computationally cheaper.  The total energy of this 

system is given by the equation: 

         𝐸 = 𝑇𝑜[𝜌] + ∫ 𝑉𝑒𝑥𝑡𝜌(𝑟)𝑑𝑟 +
1

2
∫

𝜌(𝑟)𝜌(𝑟′⃗⃗⃗⃗ )𝑑𝑟𝑑𝑟′⃗⃗⃗⃗

|𝑟′−𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|
+ 𝐸𝑥𝑐[𝜌]                                      (2.9) 

The first term corresponds to the kinetic energy of the non-interacting electrons, the second 

term is the external potential which is same as the Hartree potential, the third term 

corresponds to the Coulomb interaction between the electrons and the forth term is the 

exchange correlation energy which consist of two energies exchange energy and 

correlation energy.  The above energy functional corresponds to the energy as a function 

of density for each of the single particle wave equation. The first three terms of this 

equation can be calculated exactly. The important part of this equation is the exchange 

correlation energy which takes care of the interaction energy between electrons which was 



 
 

left out as the system is assumed to be made up of non-interacting electrons.  The exchange 

energy is same as calculated in the Hartree-Fock method and the correlation energy is the 

difference between the exact energy of the system and the exchange energy. The exchange 

energy deals with interaction of electrons having opposite spin and correlation energy the 

interaction energy between electrons of the same spin. As in the mean field approximation, 

the electrons are not in an average field, the spatial position of each electron relative to the 

other electron must be properly considered for obtaining the true ground state energy of 

the system. The Kohn Sham method of solving for the ground state property has been 

shown in the flowchart below. 

 

 

 

 

Each of the system has a unique external potential which basically makes DFT as an ab 

initio method in which the atomic number is the only input which is given for calculation. 

The initial guess of the electron density is obtained by superposing the atomic densities of 

neutral atoms placed at their proper position. With this charge density the effective 

potential will be calculated. The obtained effective potential will be used in the Kohn Sham 

equation and the new charge density will be calculated. If this new charge density is equal 

to the initial guessed charge density, then this is the true charge density of the system 

otherwise the iteration will be continued until the required convergence meets. The true 



 
 

ground state energy can be calculated with this charge density. This is the method of 

solution implemented in DFT. 

 

The interaction between electrons is not known accurately and therefore the true functional 

form of the exchange correlation potential cannot be explicitly understood. The exchange 

correlation functional should be chosen effectively for the efficient account of this 

interaction between the electrons. Several approximation methods are there which 

calculates this interaction like Local Density Approximation (LDA), Generalized Gradient 

Approximation (GGA) etc. Each of these approximation works well according to the 

system we have chosen. 

 

2.2.2 Local Density Approximation (LDA) 

In the LDA treatment the system of electron actually being an inhomogeneous system is 

considered to be a homogeneous system like electron gas. Since the system of 

homogeneous electron gas has solution, similar method can be adopted here also. The 

exchange correlation energy is written as  

                        𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝑟) ∈𝑋𝐶 [𝜌(𝑟)]𝑑𝑟                                                         (2.10) 

Here 𝜖𝑥𝑐[𝜌(𝑟)] is the exchange-correlation energy per particle of a uniform electron gas of 

density (𝑟).Since the system of unifom gas can be solved with conventional methods such 

as Monte Carlo approach, LDA employs this approach for obtaining exchange correlation 

energy. 

The exchange correlation energy is split into exchange and correlation energy. 

                                  ∈XC [ρ(r⃗)] =∈X [ρ(r⃗)] +∈C [ρ(r⃗)]                                          (2.11) 

The LDA is more suitable for homogeneous systems. It has several disadvantages as well. 

It does not predict the properties of strongly correlated systems. The band gap prediction 

with this method is not fairly accurate. It does not give accurate results for systems with 

Vander Waals attraction.  

                                                

2.2.3 Generalized Gradient Approximation (GGA) 

The main problem with the Local density approximation is that it considers the system as 

homogeneous in spite of the fact that the real systems are not homogeneous. There will be 

a finite variation in the density. This needs to be considered. GGA method considers this 



 
 

finite variation in electron density. The exchange correlation energy in this method is given 

by: 

                                      𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌] =  ∫ 𝜀𝑥𝑐

𝐺𝐺𝐴[𝜌(𝑟), ∇𝜌 (𝑟)]𝑑𝑟                                             (2.12)                                                                                                                                    

GGA method gives fairly better results compared to LDA in terms of ground state energy 

calculation, prediction of band gaps etc. 

Chapter 3  

Results and Discussion 

Structural and Electronic Properties 

The investigated compounds CuAlX4(X: Cl, Br) crystallize in tetragonal structure with 

space group P4̅2c (112).  The crystal structure is shown in Fig. 1(a).  We have optimized 

the lattice parameters of the investigated compounds by using experimental parameters as 

inputs, and given in Table 1. For both the compounds, our optimized parameters are in 

good agreement with the experimental values. The band structure of the investigated 

compounds is shown in Fig. 1(b, d). These compounds found to be a wide band gap 

semiconductor with band gap around 2.4 eV.  The band gap nature is found to be indirect 

for both the compounds.  The bands are more dispersive in conduction band compared to 

valence band. From the band structure it is evident that, the difference between valence 

band and next deeper core valence band is lesser than band gap, and this might provide 

scintillating properties. Further we have analyzed the total and partial density of states of 

both the investigated compounds and presented in Fig. 1(c, e).  Cu and halides (Cl, Br) 

states are contributing more to total density of states in valence band near Fermi level and 

deeper core valence band both.  Halides (Cl, Br) are contributing most in conduction band.  

We can see that p – orbital of Cu and (Cl, Br) atoms are contributing most near Fermi level 

as well as deeper core valence band.  Next, we have checked effects of spin orbit coupling 

on the electronic properties, but we could not find any change. 

Table1: The optimized parameter along with experimental values. 

Compound Experiment (Å)  Optimized parameter (Å) 

   a     b     c      a      b     c 

CuAlCl4 5.55 5.55 10.084 5.64 5.64 9.98 

CuAlBr4 5.72 5.72 10.59 5.72 5.72 10.59 
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                                                   (d)                                                                                (e) 

Fig. 1. (a) Crystal structure, (b) The electronic structure of CuAlCl4 (c) Total DOS along with partial density 

of states of CuAlCl4 (d) The electronic structure of CuAlBr4 (e) Total DOS along with partial density of 

states of CuAlBr4 

 

Optical Properties 

In this section, we discuss the calculated optical properties of the compounds using GGA 

functional. Since optical property calculations need a dense mesh of uniformly distributed 

k-points, we use 44× 44 × 25 mesh with 3168 k in the Irreducible Brillouin Zone (IBZ) 

for the investigated compounds. The calculated absorptive part 𝜀2 and the dispersive part 

𝜀1 of the complex dielectric function ε (ω) as a function of the photon energy are shown in 

Fig. 2 (a, b). Imaginary part of dielectric function illustrates the optical transition 

mechanism. The real part 𝜀1of the dielectric function can be derived from the imaginary 

part using the Kramers - Kronig relations. The knowledge of both the 𝜀1 and 𝜀2 allows the 

calculation of important optical functions such as refractive index, reflectivity and 

absorption coefficients. The calculated dielectric functions of both compounds are shown 

in Fig.2[a, b], which is the sum of all transitions from valence band to conduction band. 

Imaginary part of dielectric function starts at a particular energy called threshold energy, 

and threshold energy is 3.5 eV for both compounds. The higher energy spectra are due to 

transition of electrons from core valence band to conduction band. The peak in the higher 

energy region of dielectric function indicate the transition of electrons from core valence 

band to conduction band creating hole in the core valence band which plays a major role 



 
 

in CVL, and this hole recombine with the electrons in the valence band giving rise to the 

cross luminescence with fast decay. We have predicted A - type luminescence to occur in 

compound CuAlCl4 because of the energy difference between top of the valence band to 

top of the core valence band is more than the band gap of the compound and the transition 

from valence band to core valence band is less probable. The peak near band gap in the 

spectra of imaginary dielectric function indicate the transition of electrons from valence 

band to conduction band. In case of CuAlBr4, the energy difference between top of the 

valence band to top of core valence band is less than the band gap of compound and the 

transition of electrons is possible from the valence band to the core valence band which 

may lead to the fast luminescence. The compound CuAlCl4 is found as A-type scintillator 

and the compound CuAlBr4 is found as L-type scintillator. Next, we have calculated the 

refractive index along two crystallographic directions and are shown in Fig.2[c, d]. We 

have found the optically isotropic nature of both compounds in long energy range. The 

investigated compounds are optically isotropic while these are structurally anisotropic 

which can be considered as the basic requirement for scintillators. The value of refractive 

index is around 2 for both the compounds.  The absorption coefficient of both compounds 

as a function of photon energy is calculated and are shown in Fig.2[e, f]. The absorption 

coefficient reveals the manner in which the compounds absorb the incident radiation. 

Absorption spectra together with the electronic structure permits a basic understanding of 

scintillating characteristics of materials. The imaginary part of the dielectric spectra is 

directly proportional to absorption spectra. In both compounds, below 2.5-3 eV, there is no 

response from these systems which indicate the optical gap of the compounds being around 

2.5 eV. Below this energy range these materials behave like transparent materials. The 

absorption spectra are observed in the range of 2.5-30 eV i.e., in the ultraviolet region for 

both compounds. We predict that both compounds studied are good scintillators. 

 

                                    (a)                                                                                                  (b) 



 
 

                                         (c)                                                                                   (d) 

 

 

 

 

 

                                  

 

 

                                     (e)                                                                                              (f) 

 Fig.2. The optical properties calculated, The dielectric function (a) CuAlCl4 (b) CuAlBr4, The 

absorption coefficient (c) CuAlCl4 (d) CuAlBr4 and Refractive index (e) CuAlCl4 (f) CuAlBr4  

 

Chapter 4  

Conclusions 

We have studied the electronic structure and optical properties of CuAlX4 (X: Cl, Br) 

within the frame work of Density Functional Theory using GGA functionals. Both the 

compounds are found to be indirect band gap semiconductor with band gap value around 

2.4 eV. The compound CuAlCl4 and CuAlBr4 are reported as A – type and L – type 

scintillators respectively. Both the compounds are optically isotropic while they are 



 
 

structurally anisotropic which project these compounds as better candidates for transparent 

ceramic scintillators.  
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