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Abstract

The work for this dissertation is two-fold, first to understand the Standard
Model(SM) and then looking for physics of Dark matter(DM) which is beyond
the Standard model. We discuss Standard Model as a gauge theory where abelian
and non-abelian gauge theory are thoroughly discussed. Then we move to elec-
troweak sector where we discuss the interaction of intermediate vector bososns
and fermions. Also we show how using Electroweak symmetry breaking and Higgs
mechanism, we can give mass to SM particles. After this first part we move to
our second part which is DM physics. We derive the DM relic density in the ex-
panding universe using Boltzmann equation. Then we concentrate our work on
the direct detection of DM where we calculate the DM-nucleus scattering cross
section, which is used in the terrestrial laboratories for the detection of DM.
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Chapter 1
The Standard Model

1.1 Introduction

Everything in the universe is found to be made from a few basic building blocks
called fundamental particles, governed by four fundamental forces. Our best
understanding of how these particles and three of the forces are related to each
other is encapsulated in the Standard model of particle physics. It has successfully
explained almost all experimental results and precisely predicted a wide variety of
phenomena. But still some of the unsolved questions of particle physics can’t be
explained using SM, one of them is DM. Now we know that the Standard model is
a non-abelian gauge theory with the symmetry group SU(3)c® SU(2),®@U(1)Y,
where SU(3)¢ describes the rotation in color space, SU(2), describes the rotation
in weak isospin space and U(1)Y describes the rotation in hyper-charge space.

1.2 Gauge Theory

In particle physics, gauge theories are successful field theories explaining the dy-
namics of elementary particles. A gauge theory is a theory where the action is in-
variant under a continuous group symmetry. When the symmetry group depends
on space time, it is called a local symmetry. The continuous symmetry is called a
gauge group and this transformation is called a gauge transformation.Symmetry
has a very important role in the development of physics. From the space time
symmetry of special relativity up to internal and gauge symmetry, it has mapped
out the route to most of the physical theory. Noether’s theorem[5][7] tells us that
symmetries imply conservation laws. Taking the motivation from this we can
ask a question that, upon imposing to a given Lagrangian the invariance under a
certain symmetry, would it be possible to determine the form of the interaction
among the particles? In fact, this happens in Quantum Electrodynamics (QED),



where the existence and some of the properties of the gauge field( the photon)
follow from a principle of invariance under local gauge transformations of the
U(1) group. Then this principle was generalized to describe other interactions.

1.2.1 Abelian gauge theory
principle

In electrodynamics, the gauge principle[6] provides a method to transform a La-
grangian that is invariant with respect to global symmetry from U(1) group(abelian)
into a Lagrangian that is invariant with respect to a local symmetry or gauge
invariant. It involves replacing all conventional derivatives u by covariant deriva-
tive D, = 0, + ieA, and adding a kinetic term —iFWFW.

1

L= (0ud(2), ¥(@)) = LD (@), P(2)) = L FuF™,

A, is called the gauge field that transforms like A, — A) = A, + %6“04 and the
strength tensor F,, = 0,4, — 0,A,. After local gauge transformation, the final
lagrangian for QED(7] is given by:

— — 1 y
L= w(Z’Y“au - m)w - 67?%%“ - Z MZ/FM .

The hypothetical mass term for the gauge field (A,) , L™ = %mQA“AH would not
be invariant under the gauge transformation.

1.2.2 Non-Abelian gauge theory

Here we will generalize the gauge principle to the non-abelian groups, which has
first been workout by YANG and MILLS in 1954,[7] by developing the SU(2)-
isospin gauge theory. Then we will make generalization to other gauge groups.
As suggested by Heisenberg in 1932, under nuclear interactions proton and
neutrons can be degraded as degenerated since their masses are quite similar and
electromagnetic interaction is negligible.
Then any arbitrary combination of their wave function would be equivalent

v=()

Under local gauge transformation,

b(x) = ¢'(x) = G(w)(x)



with G(z) = exp(%) is an element of SU(2) group where, 7%,a = 1,2, 3, are
Pauli matrices. Introducing one gauge field for each generator and defining the
co-variant derivative[6]

D, =10, +1i9B,

10
where, I = (O 1

) and B,, is defined by 2 x 2 matrix

1 1/ B b — il
_ l.apa _ = I " 1
B =35m0 2(b5+z’b;§ —bf;)

where, three gauge fields are b% = (b, b2, b%) . Since the covariant derivative

transforms just like the matter field i.e. D, — G(D,), to hold this, gauge
field transforms like

’ [ —
B, =GB+ G 10,6)]G™

or, in infinitesimal form i.e.G ~ 1 +i%-a%(7)

1
b;ﬁ = bL — ijlOékbl — Eﬁuozl.

Then we wish to find a field strength tensor that transforms under local gauge
transformation G as F},, = GF,,G™".

To satisfy this, for SU(2) gauge group theory a candidate field-strength tensor of
the form[6]

1
F;w - Q[Dw Du] = 8MBV - aVBM + ig[Bl“ Bl’]'

The gauge invariant K.E term would be

1
~Str(Fu F™),

Hence the Yang-Mills lagrangian

. 1
Lyy =Y(iy" D, —m)y — §tr(FWF“”).

A mass term %mZB“BH is also incompatible with local gauge invariance as in
electromagnetism.

To generalize other gauge groups , the levi-civita symbol €j;; will be replaced by
the anti-symmetric structure constant f;z; in the expression

l ! ! i 1k

ij = 6Mby - @Vb“ + g(—ijklb‘iby.
So far the gauge bosons are massless. To be consistent with experiment, gauge
theories need massive gauge fields. So how can we introduce masses without

destroying the gauge invariance of Lagrangian ? The answer is that mass terms
are induced by spontaneously broken symmetry.

7



1.3 Spontaneous Symmetry Breaking

A necessary condition for the Higgs mechanism to take place is the non-triviality
of vacuum expectation value.

Let us analyze the simple example of a scalar self-interacting real field with
lagrangian ,[6]

1
£ = 50,60"6 =V (9)

V(6) = 516 — (A6 A >0

L is invariant under the discrete transformation ¢ — — ¢ .
The minimum of V(&) will be

Go(1? + M) = 0.

For (a) p? > 0, we have just one vacuum at ¢y = 0 and it is invariant
under the discrete transformation. However for (b) p? < 0, we have two vacua
states corresponding to ¢f = =+ _T“Q = #£v in which symmetry is spontaneously
broken. Defining a new field ¢’ = ¢ — v, the Lagrangian becomes

1 1 1
£:§ M¢/8M¢/_§( _2U2)2¢/2_)\V¢/3_1)\¢l4'

This lagrangian describes a scalar field ¢’ with real and positive mass My =

\/—2p2 but it lost the original symmetry due to ¢ term.
When we study the case of charged self-interacting scalar field where a contin-
uous symmetry is spontaneously broken, a new interesting phenomena happens.

L=0,0"0"¢p—V(¢"9)

with .
1+ i

V2

Following the previous procedure we can show that the new lagrangian becomes

V(6") = 1*(¢"0) + \(¢79)*, ¢ =

1 1 1
r— 3 &, 0" — 5(_2/})2 2+ §8u¢’28“¢'2 + interaction.

Now we identify in the particle spectrum a scalar field ¢} with real and positive
mass and a massless scalar boson ¢4, which is a Goldstone boson.



1.4 Higgs Mechanism

Here the massless gauge fields correspond to each broken generator become mas-
sive by absorption of a Goldstone field. This is accomplished by requiring that
the Lagrangian is also invariant under local gauge transformations.

1.4.1 Abelian case

Let us apply the local phase transformation ¢ — exp(iga(z))¢ to the charged
self-interacting scalar Lagrangian.
parameterizing [7]the new field ¢/,

I A LA S -
6= exp("2)(PL) (0 v+ i)

1 / / 1 / 1 / / 1 v q2y2 /
L= 5 u¢1au¢1_§(_2#2)2 12+§au¢28M¢2_ZF“ W+TAMA“+QI/AM8“¢2
We can choose the gauge parameter a(z) = —qiy 5(x). Hence

o P gy Phtvy 1,
6 = explial 2] exp(“22) (L) = —(6) + 1)

With this choice of gauge(unitary gauge) the Goldstone boson disappears and we
get the Lagrangian,

1 Y'Y 1 22/21;“/ q2V2/,u 12/ I Al AW
£:§ 910 ¢1_§(_2H) 1 _ZF Fuu+_2 A,uA +§q (¢1+2V)¢1AHA
A
- Z¢/13(¢/1 +4v).

As we can see, the corresponding degree of freedom of the Goldstone boson was
absorbed by the vector boson that acquires mass(M, = qv). The Goldstone
turned into the longitudinal degree of freedom of the vector boson.

1.4.2 Non-Abelian case

Now can generalize the results for a non-abelian group G of dimension Ng and
generators T*[5]. Introduce Ng gauge bosons, such that Op — D, = du—igT*By,.
After spontaneous symmetry breaking , a sub group g of dimension n, remains
as a symmetry of vacuum. Hence we could expect the appearance of (N, — n,)
Goldstone bosons.



We would follw the same procedure of abelian case and parameterize the

original field as
ipapT*”

¢ = (¢ 4+ v) exp( )

where T are the (N, —ng,) broken generators that do not annihilate the vacuum.
Then choose the gauge parameter a®(z) in order to eliminate ¢cp. This will give
rise to (Ny, — ny) massive gauge bosons. The total number of degrees of freedom
both before and after the spontaneous symmetry breaking will be same.

1.5 Electroweak Theory Of Leptons

The suggested the gauge group for this theory is SU(2), x U(1)y , where U(1)Y
is associated to the leptonic hypercharge (Y ) that is related to the weak isospin
(T) and the electric charge through the analogous of the Gell-Mann—Nishijima
formula @ = T3 + 2[6].

We introduce the left-handed isospin doublet (T' = 3),

_ (VL
r= ()
where, v, = 3(1 — v5)v and I, = (1 — 75)l, [ is any lepton flavour(l = e, u, 7).
Since there is no right-handed component for neutrino,the right-handed part of

charged lepton is a singlet.
R= lR

where lp = (1 + 75)L.

From Gell-Mann Nishijima formula the weak hyper-charge of the doublet (Y, =
—1) and of the lepton singlet (Yz = —2).

The next step is to introduce gauge fields corresponding to each generator, that
is,

SU12) — W, W2 W}
U(l) = B,
Defining the strength tensors for the gauge fields|[5]
W, =0.W, — 9,W, + ge*"WIW}
B, =90,B,-0,B,
We can write free lagrangian for gauge field|[5]

1 7 Nz 1 v
Lonsge = =7 Wi, W — 1B B, (1.1)
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For the leptons, we write the free Lagrangian,
Licpton = Riy"0,R + Lin"0,L = liy* 0,1 + viy",v. (1.2)

The next step is to introduce the fermion—gauge boson coupling via the covariant
derivative, i.e.[6]

9 i 9
L: D“ = QL +Z§T W,u +Z§YB#
g/
R:D,=0,+ i§YBu
where , g and ¢’ are the coupling constant associated to the groups SU(2); and

U(1)y respectively.
Therefore, the lepton Lagrangian (2) becomes

/ /
Licpion = Llgon + LV (i5Y By)L + Rin(i5Y B,)R. (1.3)
On simplifying we can write the charged part of equation(3) as
+ _ g — + 7 _
‘Clepton - _ﬁ[l/’yﬂ(l - ,}/5)qu + l’yu(l - 75)1/Wu ] (14)

where, the definition of charged gauged bosons as W,jt = \%(W,} F zWi)
When we compare this equation with the Fermi lagrangian for leptons, we get

9 _ (M%/GF)%
2v2 V2
The neutral part of equation (3) contains both right and left fermion components
ie. p
‘C?epton = _g‘]gWi - Ej}lij (15)

where, the currents
1 —
Ji = 5(%7”% — ")

Ty = —(Ury"ve + Iy*l + 21y IR).

In order to obtain the right combination of fields that couples to the electro-

magnetic current, let us make the rotation in the neutral fields, defining the new
fields A and Z by[6],

A\ [ cosB, sinb, B,
Z,)  \—sinb, cosb, Wj’
where, 60, is the Weinberg angle and the relation with SU(2) and U(1) coupling
constant hold,
/

g

11

sinf, =



9
No=ve

In terms of new field equation (5) becomes,

cosb,, =

/
L) ion = —(gsinf, J§ A, + 0089 JyA,) + (— gcos@wJé‘—i-%sz’anJ{})Zu.

We can easily identify the EM current coupled to the photon field A, and
hence electric charge e = gsinf,, = ¢'cosb,,.
Upto now we have 4 massless gauge fields W*,Z,, A, in the theory.

1.5.1 Higgs Mechanism and the W and Z mass

In order to apply the Higgs mechanism to give mass to W+ and Z° let us introduce

the scalar doublet|[6]
ot
o= (%)

Localar = 0,P10"D — V(010)
where V(®T®) = 120T® + A\ (D)2,

We can choose the vacuum expectation value of the Higgs field as[5],

0
<P >p= (L)
V2

;where v = \/:)’f—Q In order to make this explicit, let us parametrize the Higgs

doublet as ,
T x5 0
o = exp(z;;) (l,\%q) :

Now, if we make a SU(2), gauge transformation with a; = % (unitary gauge)|5]

Now,

9 i -9 0 2 (v + H)?
£scalar = |(au+’6§7' Wu‘f'Z;YBN) (%) | — U B — )\ 4

From the first Jerm of this lagrangian v&ge get,
19, HOMH + % (v + HPWHIW 4 Stogy v + H)?Z, 20,

Now the mass terms for charged and neutral gauge boson are g—( )2 Wiw-—

12



and ﬁyzZuZ“ respectively. There is no quadratic in A, appears and hence
photon remains massless.
The Standard Model predictions for the W and Z masses are[5]

gv e?v?

M2 — — ~ 2
W 4 4(sinb,)? (80Gev)

M2 — g% 0212
5 =

dcos?0, 4(sin,,c080,,)?

~ (90GeV)?

where, experimental value for sin?6,, = 0.22.

1.5.2 Lepton masses

Spontaneous symmetry breaking will generate lepton mass, if we add a Yukawa
interaction of lepton and & fields, which is renormalizable and invariant under
SU(2)r ® (1)y gauge transformations.

Ly ukawa = Y[R(®TL + (Z(I))R]

_ y<”$§H> (e (0 1) (zl) D) (g) Le)

\[mf

From this we have the mass term for lepton,

Yv
V2

m; =

Higgs lepton coupling strength is

Y my
Oy = —= ="
IlH \/5 v

The neutrinos can’t acquire mass or coupling to H field since there are no right
handed neutrino vy field in the SM. The similar technique can also be extended
to the quark sector to generate the masses of quarks.

13



Chapter 2

Search for Dark Matter

2.1 Introduction

A central task of modern cosmology is to determine what universe made of. Mea-
surements by PLANCK and WMAP demonstrate that nearly 85% of universe’s
matter density is dark. Identifying the nature of dark matter (DM) remains one
of the primary open questions in physics.The standard model of particle physics
alone cannot explain the nature of this (DM), suggesting that the model must
be extended. All evidence in favor of particle DM thus comes from observations
of its gravitational effects on baryonic matter. While we have collected impor-
tant clues from these results, many open questions remain: what is DM mass?
what is the strength of its interactions with visible matter? How is it distributed
throughout the galaxy? Fortunately, we are in the midst of a data-driven era
in astroparticle physics that holds great promise towards addressing these ques-
tions. A wide variety of experiments are currently going on searching for DM
interactions in the lab and sky.

2.1.1 Evidence

There are lot of evidences in support of the existence of invisible mass or DM.
Some of them are

Rotation curves

The most convincing and direct evidence for dark matter on galactic scales comes
from the observations of the rotation curves of galaxies, namely the graph of
circular velocities of stars and gas as a function of their distance from the galactic
center. From standard Newtonian gravity, we know that star’s rotational velocity

14
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o(r) = \/@

where M is the enclosed mass, r is the radial distance, and G is the gravitational
constant. For distances that beyond the galactic disk(r > Rys) ,Gauss’ law
tells us that M should remain constant assuming all the mass is concentrated in
the disk, and v oc 7~'/2. Instead, observations find that circular velocity curve
flattens out at these distances, implying thatM (r) oc r. This suggests that there
is an additional ’dark’ component of matter beyond the visible matter in the
disk.From rotation curves, we infer that DM mass density distribution is

M(r) 1

p(r) o«

3 r2
The average velocity of DM in the halo can be obtained using virial theorem

GMhalo

halo

<V >=

~ 200km/s

Importantly notice that the DM is non-relativistic, this will end up playing an
important role in predicting observational signatures.

Galaxy clusters

A cluster of galaxies gave the first hints of DM (in the modern sense). In 1933,
F.Zwicky inferred from measurements of the velocity dispersion of galaxies in the
coma cluster, a mass-to-light ratio of around 400 solar masses per solar luminosity,
thus exceeding the ratio in the solar neighbourhood by two orders of magnitude.
Today most dynamical estimates are consistent with a value €, = 0.2 — 0.3[3]
on cluster scales. The mass of a cluster can be determined viaseveral methods,
including apllication of the virial theorem to the observed distribution of radial
velocities, by weak gravitational lensing, and by studying the profile of X-ray
emission that traces the distribution of hot emitting gas in rich clusters.

Gravitational lensing

One of the consequences of general relativity is that massive objects( such as a
cluster of galaxies) lying between a more distant source and an observer should
act as a lens to bend the light from this source. By measuring the distortion
geometry, the mass of the intervening cluster can be obtained.In dozens of cases
where this has been done, the mass-to-light ratios obtained correspond to the
dynamical DM measurements of clusters.

15



Cosmic Microwave Background(CMB)

The existence of background radiation originating from the propagation of pho-
tons in the early universe(once they decoupled from matter) was predicted by
George Gamow and his collaborators in 1948 and discovered by Arno Penzias
and Robert Wilson in 1965. After many decades of experimental effort, the CMB
is known to be isotropic at the 107> level and to follow with extraordinary pre-
cision the spectrum of a blackbody corresponding to a temperature T=2.726 k.
The CMB anisotropy was first discovered by COBE in 1992.From the analysis
of the WMAP data alone, the following values are found for the abudance of
baryons and matter in the universe €,h? = 0.0244£0.001 and €,k = 0.14£0.02
[3]. The observed CMB angular power spectrum provides powerful evidence in
support of dark matter, as its precise structure is well fitted by the Lambda-CDM
model.

2.1.2 Thermodynamics in the Expanding Universe

The key to understand the thermal history is the comparison between the rate
of interactions I' and the rate of expansion H. When I" >> H, then the time
scale of particle interactions is much smaller than the characteristic time scale of

expansion,
1

te

1
r <=y
At early times, thermodynamical properties of universe were determined by local
equilibrium. However, it is the departure from equilibrium that make life inter-
esting. As the universe cools, the rate of interactions may decrease faster than
the expansion rate. At time t, ~ tp, the particles decouple from the thermal
bath. Different particle species may have different interaction rates and so may
decouple at different times.

We consider the most popular candidate of DM that is weakly interacting
massive particles(WIMP) and try to explain its thermal evolution and relic den-
sity.

Decoupling and Freeze-out

To understand the world around us, it is therefore crucial to understand the
deviations from equilibrium that led to freeze-out of massive particles. Below the
scale of electroweak symmetry breaking T' < 100GeV, the gauge bosons of weak
interactions,W* and Z, receive masses My ~ M. The cross section associated
with processes 2 <> 2 scattering mediated by weak force becomes o ~ G277 |

16



is the fermi constant.

whereGp ~ N%’v

I' =nov
where, n is the number density ,o is the interaction cross section, v is average
velocity of particle.

' =nov~ T3 x %N@T

Hubble rate H ~ where My, is the Planck mass=10"GeV.
' o*MyT? ( T
H My, 1MeV

Mpl 9

)3

where we have used o ~ 0.01 for numerical estimate.
Particles that interact with primordial plasma only through weak interaction
therefore decouple around 1MeV.

Inelastic Elastic
X X \ / X

X

-
T Sy X/ »

An illustration of the inelastic yx — XX (left) and elastic xX — x X (right)
scattering)

X

g
s

Figure -1 shows two possible 2 — 2 interaction diagrams that are allowed with
x the DM particle and X a standard model particle. As the universe expands,
it becomes increasingly harder for a DM particle to find a partner to annihilate
with and the forward reaction shut off. The freeze-out time occurs when the
annihilation rate I';,.q4stic 1S in the order of Hubble rate, H:

Finelastic =N, <0V >~ H

Cold dark matter is non-relativistic at freeze-out with n, ~ T3 exp%, hot DM is
relativistic at freeze-out with n, ~ T°[4] where T the temperature of DM species.
Warm DM falls somewhere in between these two cases.

2.1.3 DM Relic Density

The evolution of the phase space density f(p*, z*) of a particle species is described
by the Boltzmann equation which can be written as[4]

L{f] = C[f] (2.1)



where, L is the Liouville operator giving the net rate of change in time of particle
phase space density f and C is the collision operator representing the number
of particles per phase space volume that are lost or gained per unit time under
collision with other particles.

The co-variant, relativistic generalization of the Liouville operator is[4]

0
op~
Note, as expected, gravitational effects enter the equation only through the affine
connection. For the Friedmann-Robertson-Walker(FRW) model, the phase space

density is spatially homogeneous and isotropic:f = f (|?|,t) or equivalently
f(E,t). In this case the Liouville operator becomes

COf a,0f
L[f] = EE - E|?|28_E

Using the defination of number density in terms of phase space density

9 3
) = s [ 1B

A

0
_ a B
L=p"5 5 — 1500

Using Boltzmann equation(1), we can write
9 Of s g / DI of , g /C[f] 3
—d’p — H —d’p = ——=d
(27)3 / " (2n) E 08" Y™ (2n)p P
Upon integration by parts,

dn g Clf]

where, H = ¢ is the expansion rate of the Universe and a is the scale factor.
Hence we can write

#/L[f]dgp = li(na:s) =2 4 3Hm (2.2)
When there is no number changing DM interactions that is C[f]=0, then equa-
tion(2) simply shows that na® is constant in time.

However, the evolution of DM density is non-trivial if collision term exists.
To see this explicitly, consider interactions of the form 1+ 2 <> 3 + 4.
The collision term for particle 1 is then[4]

(297;)3 /%{]dgpl - _Z/[f1f2<1 + f3)) (1 £+ fa)|[Mizssa® — fsfa(l £ f1)(1 £ f2)

spin

|M34—>12|2] X (27r)454(p1 + pa — p3 — pa)dIl; dllydlI5dl1,
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where, ¢g; and f; are the spin degrees of freedom and phase space densities re-
spectively for particle i and M,_,, is the matrix element for the reaction z — y.
Factors of form (1 £ f) represents Pauli blocking and Bose enhancement, the
minus sign applies to fermions and plus sign to bosons. These terms tell the fact
that it is easier(harder) for a boson(fermion) to transition to a state that already
contains a boson(fermion).

The above equation contains a delta function that enforces the energ%/ and mo-
mentum conservation, and the phase space integration factor,dIl; = (Q)W The
above equation is quite complicated; however, it reduces to a more manageable
form after making the following assumptions:

1. The temperature of each species satisfies 7% < (E; — ;), where p; is its
chemical potential, so that they follow the Maxwell-Boltzmann distribution.
In this case, the statistical mechanical factors in the calculation can be
ignored and (1 £ f) ~ 1.

2. The kinetic equilibrium is maintained and the standard model particles in
the interaction are in thermal equilibrium with the photon bath.

Using the standard definition relating the cross section to the matrix element,
we get

Z/ |sz—>kl| (27)454(172 +Dj — Dk —py)dlldIl; = 49:9;04; \/(pzpj) (mimj)z

spin

where, 0;; is the cross section for the scattering process.
Substituting this into the collision term gives

(;;1)3 / Cﬁg{] d3p1 = — /[(Uvm@l)mdnldng — (Uvmgl)34dn3dn4]

where, the Moller velocity[4] is defined as

_ V(pip;)? — (mim;)?
E.E,

(O"Umgl)

Because ov,,4 varies slowly with changes in the number density of the initial and
final state particles, it can be factored out of the integrand to give

N1+ 3Hn, = — < 0V >12 PNa+ < OUpgr >34 N3Ny (23)

Note that the velocity that is used in the cross section average is not the relative
velocity, vy, of incoming particles. This is important as (o, );;nin; is lorentz
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invariant where v,n;n; is not.
For simplification of notation write v,,z; — v.

Let us now return to the specific inelastic process illustrated in fig-1. In this
case, particle 1 and particle 2 are identical with number density n and particle 3
and 4 are standard model particles in thermal equilibrium with the photon bath.

When the DM is also in equilibrium with standard model final states, then
detailed balance says that

< 0V > nzq =< ov >34 0570y’

which can be used to rewrite the second term of equation(3) in terms of DM
density and the cross section for forward reaction.
The Boltzmann equation reduces to

n+3Hn =<ov > (ngq —n?)

The DM number density n, decreases with the expansion of the universe(in ad-
dition to any number changing effects from the collision term) and it is useful to
scale out this effect by defining the quantity Nx = =, where s is the total entropy

density of the universe and s = % Gxs(T)T3,g,s counts the number of relativistic
degrees of freedom.

Using the conservation of entropy per co-moving volume (sa?

that 7 + 3Hn = sN, and equation (5) becomes

dN,
dt

Since most of the interacting dynamics will take place when the temperature is
of order of particle mass T' ~ M,, it is convenient to define a new measure of
time, x = MI. To write the Boltzmann equation in terms of x rather than t, we
note that

= const), it follows

= —s<ov> (N?— (N%9)?) (2.4)

dx d M, 1dT
dt dt(T):_TE‘T He,

where we have assumed that T oc a~!. We assume radiation domination so that
H = HO%)

The eqtﬁat10n(2.4) becomes the so called Riccati equation
dN, A
= =5 INg = (Ng*)7] (2:5)

dx 2

— 2m? M3<ov>
where we have defined \ = %5 9 I

We will treat A as a constant. Unfortunately even for constant A, there are no
analytic solution to equation(2.5).
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xT
(figure 2: An illustration of the DM density Nx as a function of x. Before
freeze-out (v < xy), the density tracks the equilibrium expectation (dashed
black). After freeze-out, the density remains nearly constant as a function of
time, as indicated by the solid black line. Graph taken from the article[4])

As expected at very high temperature,x < 1, we have N, ~ N¢ ~ 1. How-
ever, at low temperature, x > 1, the equilibrium abundance becomes exponen-
tially suppressed, N, ~ exp (—z). Numerically, we find that freeze-out happens
at about x ~ 10.This is when the solution of Boltzmann equation starts to deviate
significantly from the equilibrium abundance.

The final relic abundance determines the freeze-out density of DM. Let us
estimate it’s magnitude as a function of \. After freeze-out, N, will be much
larger than N$9. Thus at later times, we can drop N¢? from the Boltzmann
equation(z > xy),

dN; AN?Z
de 22
Integrating from x¢ to o = oo, we find
1 LA
N NIy
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where NI = N, (zy).
Typically N > N so a simple analytic approximation is

.Tf
N ~ —= 2.6

Of course, this still depends on the unknown freeze-out time(or time)z;

WIMP Miracle:

It just remains to relate the freeze-out abundance of DM relics to DM density
today.

Pz,0
Q, =
Perit,0

o Mxnx,() o MJ:NJ:,OSO o MxNgoSO
SMZHZ ~ BMEHZ  BMLI?

Substituting N° = =L and sg = so(Tp), we get
H(Ma:) Ty g*s(TO)Tg)
M2 < ov> ge(M, M} H;

— moxy <g*S(MI)>§ g*S(TO) T(:)3
9<ov> 10 Gus(My) Mngoz

Q, =

1
™ gxs(Mz\ 3 MS
where we have used H(M,) ~ I (2255 7

Finally we substitute the measured values of Ty,Hy and g,s(M,) = g.(M,):
ﬁ)( 10 | 1107%GeV 2

107 g, (M, < ov >

This reproduces the observed DM density if /< ov ~ 107*GeV ! ~ 0.1y/GF¢

The fact that a thermal relic with a cross section characteristic of weak interaction
gives the right dark matter abundance is called the WIMP miracle.

Q.h* ~ 0.1(

2.2 Direct Detection of Dark matter

2.2.1 Introduction

Direct detection experiments appear today as one of the most promising technique
to detect particle DM. The idea is very simple; if our galaxy is filled with DM,then
we expect a 'DM wind’ coming towards us on the earth because the sun is moving
through the Milky way’s DM halo. These experiments operate underground(
to minimize background) and search for DM particles via their scattering with
atomic nuclei in the detector(by recording the recoil energy of nuclei).
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2.2.2 Ingredient

The key ingredients for the calculation of the signal in direct detection experi-
ments are the density and the velocity distribution of DM in the solar neighbour-
hood and the DM-nucleon scattering cross section . With this information, it is
then possible to evaluate the rate of events expected in an experiment per unit
time, per unit detector material mass.

The number of expected events per unit time, the event rate

R o« Nrnwvo

where, Nyr=Number of target nuclei per unit mass

n = L =Number density of DM particles of mass M,
v= average velocity DM velocity w.r.t detector
o=DM-nucleus cross section.

But real detector never measure the total rate but it measures only a lim-
ited window of recoil energy Eg(in particular they always have a lower energy
threshold). DM velocity is not unique,in fact DM particles are described by a
local velocity distribution f(¥/,t), where ¥ is DM velocity in the reference frame
of detector. Hence we need to integrate to all possible DM velocities.

The differential rate per unit detector mass is given by

dR Pz Ymaz do

= Nr d>vv f (v, t)dER

dEn T (2.7)

Umin

2.2.3 Scattering Classifications

The type of scattering processes considered can be classified by two impor-
tant characteristics: elastic or inelastic scattering and spin-dependent or spin-
independent scattering.

Elastic and inelastic scattering: The elastic scattering of a DM particle off
a nucleus in a detector is simply the interaction of the DM with a nucleus as a
whole, causing it to recoil enough to measure the recoil energy spectrum in the
target. Inelastic scattering, on the other hand, is not observed by the recoil of
a target nuclei. Instead, the DM particle interacts with orbital electrons in the
target either exciting them or ionizing the target.

spin-dependent and spin-independent scattering: These two scatterings

are commonly discussed in the context of two classes of couplings. First,axial-
vector(spin- dependent) interactions result from couplings to the content of a
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nucleon. The cross sections for spin-dependent scattering are proportional to
J(J41) rather than the number of nucleons, so little is gained by using heavier
target nuclei. However, we will see for scalar(spin-independent) interaction, the
cross section increases dramatically dominates over spin-dependent scattering in
current experiment which use heavy atoms as targets.

2.2.4 Dark Matter Elastic Scattering off of a Nucleus

Let us consider the elastic scattering of a dark matter particle having mass m;
moving with a non-relativistic velocity v; and a stationary nucleus having mass
mo.

. . / . . I
Scattering in the Lab frame V. Scattering in the CM frame v c
S Vs =0 - -
[SiNye o __ |lots Lo &
my m3 my m2 T —0

Before collision Before collision

7 After collision
2r ]F’-"'

(a) After collision (b) 2c

(figure 4: Elastic scattering of DM and stationary nucleus in the Lab and CM
frames)

If r37, and r9¢ denotes the position of my in lab frame and CM frame respec-
tively, and if R denotes the position of centre of mass with respect to the lab
frame, then we have the relation ro;, = r9¢ + R. A time derivative of this leads
to Var = Vac + Vo
After collision,

Vop = Ve + Veu
From fig. we can infer the x and y components of the equation:
Vi cosby = —Vincos0 + Vo

Vo sinfy = =V, sinf.

In CM frame, the total momentum before and after scattering are separately

zero. From this we can write Vo = Voe = %%c and Vi, = Z_; o
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From conservation of kinetic energy, it is easy to show that Vic = V/, and

Voo = Vi We kn

We can derive the relation between angles in both the frames by dividing equation

(T)and (8),
b
tan92 = VQCLRQ
@ — COS
sinb 0
= —— =cot=
1 — cost 2

Therefore, 0, = ”T_e.

Recoil energy of Nucleus

The energy deposited in the nucleus by the DM is
1
Ep= EmQ(VEx + V)

1
= 57712[(‘/'2’L00592)2 + (Vi sinbs)?]
1

= 57712[(—1/2'00089 + Veu)? + (Vy,sin0)?)?]
1
= §m2V22C(2 — 2cosb)
ma 2
= —V 1— 0
mQ(ml—i-mz 10)° (1 — cosb)
2v2
= u(1 — cosb)
mo
where, p=reduced mass= "7

Hence the expression for recoil energy is

11202

E
R My

(1 — cos®)

where, My is the mass of nucleus.
. . . 2,2
The maximum recoil energy of nucleus is %\"%

(2.8)

The velocity dispersion of DM is v ~ 10~3c. Considering the mass of My is of
order of 10GeV and DM is similar mass or heavier so y ~ My.Then the typical
recoil energy should be in the range , Er ~ 1075My ~ 10keV. Hence to detect

such a very small recoil energy, our detector should be very sensitive.
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2.2.5 Differential scattering cross section

The scattering takes place in the non-relativistic limit. The cross section is there-
fore approximately isotropic.

— Y onstant = 7
d(cost) constant = 5

1 — cosf

B = B (%)

dEr  ER*™
d(cost) 2
Therefore,

do do  dcost o 2

= _ — x —_—
dEr  d(cos®) dEg 2 Epe
For light nuclei, the DM particle sees the nucleus as a whole (without substruc-
ture) point like nucleus but for heavier nuclei we have to take into account a
suppression factor.

o — gy x F*(¢%)

where, F(¢*)? is the nuclear form factor, takes into account the finite size of
nucleus and encodes dependence on momentum transfer, and oy is the cross
section at zero momentum transfer(point-like). Now we can write

do 00

— F2 2 — F2 2 2
B~ By (¢%) oo (q%) (2.9)

2202

We generally use the Helm form factor which is approximately the Fourier
transform of the nucleus’ mass distribution, given by[4]

_e225m(qr,) — qracos(qry)
(grn)?

where effective nuclear radius is 72 = ¢ 4+ Zn%a® — 5% , with a ~ 0.52fm,s ~
0.9fm, ¢ = 1.23/3 —0.60 fm.
q is the momentum transfer=+/2My ERr

F*(q*) = 3¢

1. When momentum transfer is small, the DM doesn’t probe the size of nucleus
and coherently scatters off the entire nucleus. In this limit F'F?(¢?) — 1.

2. When momentum transfer increases,the DM becomes sensitive to spatial
structure of nucleus, F?(¢?) < 1. This effect is strong for heavy nuclei(I,Xe
etc.).

26



There are two relevant contributions to scattering cross section,one is spin-
independent(SI) and other is spin-dependent(SD). Later we will see that spin
dependent scattering cross section plays the dominant role in direct detection.
Hence we can write the expression for differential cross section

do M N

B = 5 (o8 F2 + 0§ FEp (2.10)

Spin-independent(SI) scattering

Now we derive the differential scattering cross section for the DM-nucleus interac-
tion,taking an effective operator approach. Let us assume that DM is a spin-1/2
Dirac fermion that interacts with quarks via a scalar or vector boson ¢ with mass
me.The scattering process is described by the effective four-fermion interaction:

Lepr = 9(¢*,mg) XTx XQIoQ

where @ represents the quark field, Ty o = {I ,75,7“,7“75,0“”,0“”75} and
g(¢*,my) is an effective coupling, proportional to m%} for contact interactions
(¢* < my). We then proceed as follows:

1. Map the quark operator to a nucleon operator and use this to obtain the
amplitude for DM-nucleus scattering.

2. Take non-relativistic limit of the scattering amplitude, M,,.
3. Relate this to the differential cross section by averaging/assuming initial
and final state spins:
dR  2My

dEq — w02 < M >

The spin-independent contribution can arise from scalar couplings if DM to
quarks, which occurs through the operator (X X)(QQ),

£scoblm" = g(bXXQQ

To write the quark fields in terms of nucleon fields (labeled n,p), we must evaluate
of form < n|QQ|n >. These terms are related to nucleon mass using the trace
of QCD energy momentum tensor- for further details see[2]. The fraction the
proton mass accounted for by a particular quark flavour is defined as m,, fr, =<
p|m,QQp > and the coupling of the DM to the proton or neutron is given by|3]

o 9e DN 2 DN [
Jom = Z mp,nﬁquq +ﬁfTG Z mp,nﬁq

q=u,d,s q=c,b,t
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where, fhn = 1— 3 ., for, b, = 0.020 £ 0.004, f5, = 0.026 % 0.005,
B, = 0.11840.062, f7, = 0.01440.003, £, = 0.03640.008, f2, = 0.118=0.062.

The mass fractions f%’q” are determined experimentally, so f,, are constants
of the theory once g¢ is set. The scattering amplitude is therefore

M = £,XXpp+ fuX Xiin

Because pp and nn give the proton and neutron count respectively, and taking
account of the suppression factor due to size of nucleus, it is straight forward to
rewrite M in terms of the fields for nuclei.

M= |Zfp + (A~ Z)f,| XXNNF()

Now we want to find out the non-relativistic limit of amplitude. Remember that
Dirac field is given by
No () — \/p-qfs)

where, s is the spin index and £° is the two component spinors satisfying Zsmn £51¢s =
1.

In non-relativistic limits, p° = My and /p.c ~ My — p.o ~ , /MN(l — QZZfN).

The same applies for the X fields, expect with appropriate substitutions for mass
and momenta. Therefore

N (pr)N*(p) = (N*(p1))'7°N*(p)
- (e e (0 3) (%)
=& (Vo + Ve
~ 2MN£8/T£S

where s(s') is the spin index for incoming(outgoing) nucleus.

Similarly XX ~ 2Mx£™1€" in the non-relativistic limit, where r(r/) is the spin
index for incoming(outgoing) DM particle. Dropping the factors of 2My and
2Mx, which are the relativistic normalization, gives

Mo = |Zfe+ (A= D) Fle)ETEEe

The differential scattering cross section is thus

1 2 SIT ¢S Tl ¢T
(M) = G Timse 7T 2 |20+ (A= D8] P@eePire

spin
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where, J(s,) is the nuclear(DM) spin.
Note that

1 , 1 1
- 'rT'r2:_ tr r/rlT'r‘rT:_tT]_:l
QSXT;QK & QSXW;Q gremieeT] = Str(1)
A similar result applies to the spinor product of £°, leaving us with

do 2MN 2
- 2lesa-oFe e

There are some important points to note here,

1. when f, = f, then the differential cross section proportional to A% In this
case, DM couples coherently to the entire nucleus and the strength of the
scattering interaction increases with the mass number of the nucleus.

2. The effective interactions are referred to as spin-independent because the
scattering cross section does not depend on the nuclear spin.

3. The scattering cross section is independent of the recoil energy and thus
the differential rate is a falling exponential.

2.2.6 Spin dependent(SD) scattering

It arises due to the interaction of a DM particle with the spin of the nucleus. It
can arises from the axial vector coupling of DM to quark field|[2].

Leps o X0 XQ"Y°Q (2.12)
with cross section
do . 16 M N
dEr w2
where A% = Zla, < S, > +a, < S, >]?, Gp is the fermi coupling constant, J is
the spin of nucleus, a,, is the effective coupling of DM to proton or neutron, and
< Spn > is the average spin contribution from the proton or neutron.

G2 J(J + 1A F?(¢%)

Notice that SD interaction is no longer coherent with the nucleus and does
not scale as A%. So it does not grow as rapidly with the size of the nucleus as the
SI interaction. As a result SD interactions are more challenging to observe ex-
perimentally and the current bounds are weaker than those from SI interactions.
Hence in direct detection experiment SI scattering is more significant than SD.
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Let us consider only spin-independent scattering process.We have our differ-
ential cross section

do MN T s1p2 2
dER‘SI ~ 222 ["0 Fsila )]

Comparing with equation(10) ,we have

o = 47M2 [pr + (A - Z)fN]2

To compare data from different direct detection experiment, which have different
target nuclei, it is convenient to consider the DM-nucleon cross section o,.

2
Op = ZJL%(fp)Q

Hence )
o |grera-2n]

99 = 0p 2 (_)2
fp IU/p
where, f1, is the reduced mass of DM and nucleon. Hence the final expression for
differential scattering cross section in spin-independent interaction,

2
do | _Myo, Zfp+(A- Z)fn} () 2.13)
dERlsr 202 p2 f2 St '

Figure 8 is a compilation of results from current direct detection experiments
(solid lines), as well as projections for future experiments. Notice that the bounds
become weaker at masses M, ~ 10GeV due to the energy thresholds of the
experiments. Across all experiments, the sensitivity is optimal ~ 50-100GeV/,
and then weakens towards higher DM mass.
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(figur 4: Summary of current (solid) and projected (dotted/dashed) bounds on
the spin independent WIMP-nucleon cross section. Shaded regions denote
experimental anomalies, all of which are in tension with the exclusion bounds.
The thick orange line denotes the cross section below which the experiments
become sensitive to coherent neutrino scattering off nuclei. Figure from[1] )

2.2.7 Estimating the total Rate

The differential rate per unit detector mass is given by

dR Pz [ do

—— = Np— a3 — 2.14

i vl vi) g, (2.14)
where,v,,;,, is the threshold velocity given by % and v,,4, is set by Galactic

escape velocity in frame of Earth. For calculation take v,,,, — oo. For most

w — A2
fp ’

substituting all the values in the above equation, we get

dR p op [ (v)
—— — N _UCAQFQ 2\ 7P / d3 JANT)
agp - N g, | ATy

of the case we take f, ~ f,. Hence the term Now after

For the purpose of illustration, consider a simple Maxwellian halo,

1 v?

3, _ 3
fv)d’v = Wexp (_v_g)d v
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where vy ~ 220km/s is the circular speed of the Sun and around the Galactic
center.
If one use this ( leaving out the motion of Sun and Earth), one would integrate
to get

2 1 v2

= d3 _ 2 = _ Zmin
| ds) = e (-

Hence the differential rate becomes

dR 1 o
L - NpMyA2—F
dEr — Jmve N 2Myu?

SR ()

Thus we expect to see a smooth, exponentially falling spectrum, multiplied by
the form factor squared. Taking low momentum transfer limit F?(¢?) — 1 and
integrating to get the total rate,

2 5 9p
= ﬁA Nr YR
For more accurate calculation, one need to include time dependence and asym-
metry velocity distribution as seen from Earth. This will change the event rate.

For a generic idea, consider a fiducial volume of 100 kg Xenon(atomic mass
132). Now question is, what WIMP-nucleon cross section do you need to see
levent /year for a 100GeV WIMP. Take p ~ 0.4GeV, Ny ~ N4 x 1000 = 6 x 10%.
If you do the calculation roughly it comes out to be

R

Vop (2.15)

R~ (10%0,/cm?) Jyr

From this we can say that DM is very very weakly interacting with SM particles.
The most sensitive experiments are currently starting to probe DM-nucleon cross
sections ~ 10~*em?2, which is in the range expected for DM that interacts with
the nucleus via the exchange of a Higgs boson.

2.3 Conclusion

Although we have several strong evidences for existence of DM, in fact majority
of the universe is non-baryonic but still our understanding of it’s nature and
distribution is incomplete. Well-motivated hypothesis, such as WIMPs, have
provided a starting point for experimental exploration and current experiments
are reaching the necessary sensitivities to discover or exclude these candidates.
However, weak-scale DM is not a guarantee, a broad range of interactions and
mass scales are allowed. The current situation is complicated by the claim of
a positive detection by the DAMA experiment, which has been contradicted by
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several other experiments. However, direct detection is not the only way to search
for particle DM, there are other methods like indirect detection in space, collider
searches at LHC etc. currently going on. Hopefully, these experiments will be
able to detect particle DM in future and provide us a chance to know more about
our universe.
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