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ABSTRACT

In the present work we start with a basic discussion of CFT that only focuses on two

point operator in CFT and then we move to basics of AdS/CFT including different

coordinate charts, solution of scalar wave equation in different coordinate systems,

normalizability and Breitenlohner-Freedman (BF) bounds.
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Chapter 1

Background

1.1 Introduction and aim of the project

AdS/CFT duality offers a fully non-perturbative formulation of quantum gravity

in asymptotically anti de Sitter spacetime in terms of a conformal field theory. A

conformal field theory (CFT) is a quantum field theory with some extra symmetries.

Any quantum theory of gravity must resolve the black hole information paradox -

the apparent loss of unitarity during Hawking evaporation. AdS/CFT postulates

the Hawking process is just another unitary process in quantum field theory. Thus,

in principle, AdS/CFT implies no information paradox. But this is only in principle,

and attempts are underway to understand this in a lot more detail. The aim of this

project is to understand the basics of AdS space and CFT.

1.2 CFT and conformal algebra

Conformal field theory is a quantum field theory that’s invariant under conformal

transformations. The conformal group is group of the transformations that leave the

metric invariant up to a scaling factor, gµν → ζ2gµν where ζ2 is the scaling factor.

Those transformations are, the Lorentz transformation (Mµν), scaling transforma-

tion (D), translation (Pµ) and special conformal transformation (Kµ). The scaling

transformation is defined as, xµ → λxµ and special conformal transformation is

given by,

yµ =
xµ − bµx2

1− (2b · x)− b2x2
. (1.1)
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This group also follows the conformal algebra.

[Mµν , Pρ] = −i (ηµρPν − ηνρPµ) ; [Mµν , Kρ] = −i (ηµρKν − ηνρKµ) ;

[Mµν ,Mρσ] = −iηµρMνσ ± permutations; [Mµν , D] = 0; [D,Kµ] = iKµ;

[D,Pµ] = −iKµ; [Pµ, Kν ] = 2i [Mµν − ηµνD] ,

with all other commutators being zero. In the next section we compute the two

point function in CFT.

1.3 Operators in CFT

In a conformal transformation, x→ y, a quasi-primary transforms as,

Õ(y) =
∣∣∣y
x

∣∣∣−∆
d
O(x), (1.2)

where ∆ is the scaling dimension of the O and d is the spacetime dimension of the

space. Then, for a two point function, we have,

〈O1(x1)O2(x2)〉 =

∣∣∣∣y1

x1

∣∣∣∣
∆1
d
∣∣∣∣y2

x2

∣∣∣∣
∆2
d 〈

Õ1(y1)Õ2(y2)
〉
. (1.3)

If we take the scaling transformation x→ λx, we have,

〈O1(x1)O2(x2)〉 = λ∆1+∆2

〈
Õ1(y1)Õ2(y2)

〉
Lorentz and translational invariance require that the correlation function must be a

function of the separation between the points. And the above condition constraints

it to be, for some constant C12,

〈O1(x1)O2(x2)〉 =
C12

|x1 − x2|∆1+∆2
. (1.4)

It also has to be invariant under special conformal transformation which is given by

(1.7).

Under this transformation, the separation distance transforms as,

|y2 − y1| =
|x2 − x1|

(1− (2b · x1)− b2x2
1)(1− (2b · x2)− b2x2

2)
.

Then the two point function transforms as, with β = 1− (2b · x)− b2x2,

C12

|x1 − x2|∆1+∆2
=

C12

|x1 − x2|∆1+∆2

(β1β2)
∆1+∆2

2

β∆1
1 β∆2

2

. (1.5)

Only if ∆1 = ∆2, is this constraint satisfied, otherwise it vanishes. So, we finally

have,

〈O1(x1)O2(x2)〉 =
C12

|x1 − x2|2∆
. (1.6)
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Chapter 2

Introduction to AdS

AdSd+1 space is a solution to vacuum Einstein equations with negative cosmological

constant. It is maximally symmetric and has a negative curvature. AdS space

is commonly introduced as the covering space of a related object called the AdS

hyperboloid. The AdS hyperboloid is a hypersurface embedded inside of a higher

dimensional Minkowski space. This preserves the number of isometries or killing

vectors of the original AdS space and also gives us the embedding coordinates to

describe this hyperboloid. Then, with l defined as the AdS radius and X’s as the

embedding coordinates, one can write,

−X2
−1 −X2

0 +
d∑
i=1

X2
i = −l2. (2.1)

Next we introduce global and local coordinate charts to parameterize this hyper-

boloid.

2.1 Coordinate charts

This section and the next section follows [3].

Global coordinates

Global coordinates cover the entire AdS space. These are defined as, for simplicity

when d = 2,

X−1 = l coshu sin t;X0 = l coshu cos t

X1 = l sinhu cos θ;X2 = l sinhu sin θ.
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So the metric is written as,

ds2 = l2
[
− cosh2 u dt2 + sinh2 ρ dθ2 + du2

]
. (2.2)

Here 0 ≤ u ≤ ∞, 0 ≤ θ, t ≤ 2π. Further defining sinhu = tan ρ, one can write, with

0 ≤ ρ ≤ π
2
,

ds2 = l2
[
− sec2 ρ dt2 + tan2 ρ dθ2 + sec2 ρ dρ2

]
.

It can then be generalized to any higher dimension with arbitrary d, so,

ds2 = l2
[
− sec2 ρ dt2 + tan2 ρ dΩ2

d−1 + sec2 ρ dρ2
]
. (2.3)

Here notice that 2π and 0 are the same point for time t. This is a closed timelike

curve and hence it violates causality. So we need to unwrap the t circle to preserve

causality, as a result t then ∈ (−∞,∞).

Poincare Coordinates

Poincare coordinates cover only half of the AdS hyperboloid. These are defined as,

for simplicity when d = 2,

X−1 =
1

2r
(l2 + x2 + r2 − t2);X0 = l

t

r

X1 = − 1

2r
(−l2 + x2 + r2 − t2);X2 = l

x

r
.

So the metric becomes,

ds2 =
l2

r2
(−dt2 + dx2 + dr2). (2.4)

Here t, x range between (−∞,∞) and 0 ≤ r ≤ ∞. we can easily generalize this to

any arbitrary d with the following substitution; dx2 becomes dx2, and dx2 = dx ·dx

is the flat metric on Rd−1.

BTZ coordinates

Again we consider d = 2. We divide the hyperboloid into three regions. Then each

region is parameterized.

For region I,

X−1 = ±s cosh θ;X1 = s sinh θ

X0 =
√
s2 − l2 sinh

t′

l
;X2 = ±

√
s2 − l2 cosh

t′

l
.
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Then the metric is,

ds2
I = −

(
s2

l2
− 1

)
dt′

2
+

ds2

s2

l2
− 1

+ s2dθ2. (2.5)

For region 2,

X−1 = ±s cosh θ;X1 = s sinh θ

X0 = ±
√
l2 − s2 cosh

t′

l
;X2 =

√
l2 − s2 sinh

t′

l
.

For region 3,

X−1 = r sinh θ;X0 = ±s cosh θ

X0 = ±
√
s2 + l2 cosh

t′

l
;X2 =

√
s2 + l2 sinh

t′

l
.

The metric then becomes,

ds2
II/III =

(
±s

2

l2
− 1

)
dt′

2 − ds2

± s2

l2
− 1

+ s2dθ2. (2.6)

So one has 12 patches to cover the entire AdS3 hyperboloid.

2.2 Trajectories of particles

For a radial null geodesic one has, ds2 = 0. Then from (2.2) we get the following

relation,

dt =
du

coshu
.

Integrating both sides we have,

t = tan−1(sinhu) + c. (2.7)

Putting the limits of u, that is 0 to ∞, we have, t = π
2
. With reflecting boundary

conditions, it will reflect and will take equal time to return. So it takes then total

4t = π time to come back to the original position. From [5], the massive particle

also shows an analogous trajectory, that is, it also has periodic solution. However it

never reaches the spatial infinity and turn back and after a time of π, it reaches its

origin.
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2.3 Scalar field in AdS

As particles, and light are considered in the previous section, in this section, scalar

field is considered. The equation describing scalar field is given by,

(2−m2)Φ = 0. (2.8)

The operator 2 in global coordinates is,

l22 = − cos2 ρ ∂2
t + cos2 ρ ∂2

ρ + (d− 1) cot ρ ∂ρ + cot2 ρ∇2
Sd−1 . (2.9)

In Poincare coordinates, the expression is,

l22 = −r2∂2
t + r2∂2

r − (d− 1)r ∂r + r2 ∇2
Rd−1 . (2.10)

∇2
Sd−1 is the Laplacian operator for Sd−1, where S means the sphere. Similarly∇2

Rd−1

is the Laplacian for a (d− 1) dimensional flat space. The solution of Klein−Gordon

equation in these coordinates is discussed in the following subsections.

2.3.1 Solution in Poincare coordinates

For a scalar of mass squared m2

l2
, we can write the following form for Φ,

Φ = e−iωt+i
~k.~xr

d
2χ(r), (2.11)

where χ(r) satisfies the following property,

r2∂2
rχ+ r∂rχ−

(
(m2 +

d2

4
) + (~k2 − ω2)

)
χ = 0.

Then for q2 = ~k2 − ω2 > 0, we have the following solution,

Φ = e−iωt+i
~k.~xr

d
2Kν(qr), (2.12)

for ν =
√
d2 + 4m2. For q2 < 0, and ν is not an integral, we get two independent

solutions,

Φ± = e−iωt+i
~k.~xr

d
2J±ν(|q|r). (2.13)

For an integral ν, the above solution is only for Φ+ and the other is given by,

Φ− = e−iωt+i
~k.~xr

d
2Yν(|q|r). (2.14)

For ν = 0, we have,

Φ− ∼ r
d
2 ln r. (2.15)
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2.3.2 Solution in global coordinates

For global coordinates, with the same scalar mass, we have the following solution,

Φ = e−iωtYl,(m)(Ω)χ(ρ), (2.16)

where Yl,(m)(Ω) is determined from the following relation,

∇2
Sd−1Yl = −l(l + d− 2)Yl, (2.17)

with l ≥ 0. Using this, we get the following equation for χ,

1

(tan ρ)d−1
∂ρ
(
(tan ρ)d−1∂ρ

)
χ+

[
ω2 − l(l + d− 2) csc2 ρ−m2 sec2 ρ

]
χ = 0.

To solve this, we substitute χ as,

χ(ρ) = (cos ρ)2p(sin ρ)2qf(ρ),

with x = sin2ρ, we get,

x(1− x)∂2
xf +

[
2q +

d

2
− (2p+ 2q + 1)x

]
∂xf −

[
(p+ q)2 − ω2

4

]
f = 0, (2.18)

and with x′ = cos2 ρ, we have,

x′(1−x′)∂2
x′f+

[
2p+ 1− d

2
− (2p+ 2q + 1)x′

]
∂x′f+

[
(p+ q)2 − ω2

4

]
f = 0, (2.19)

where p and q satisfy the following conditions,

p

(
p− d

2

)
=
m2

4
; 2q(2q + d− 2) = l(l + d− 2).

Both p and q have two solutions,

p± =
d±
√
d2 + 4m2

4
,

q =
l

2
,
1

2
(2− d− l).

(2.17) will have two independent solutions that correspond to two solutions for

indicial equation of q. For even d, one gets a logarithmic solution. Similarly, (2.18)

will have two independent solutions corresponding to the indicial equation of p. One

solution will be logarithmic if ν is an integer.
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2.4 Normalizable and non-nomralizable modes

Norm of a scalar field is defined as,

(φ1, φ2) = i

∫
Ω

√
ggttφ1(x)

←→
∂t φ2(x)ddx, (2.20)

where t is orthogonal to spacelike surface Ω. We found the solutions in Poincare

coordinates as, for q2 = ~k2 − ω2 > 0,

Φ = e−iωt+i
~k.~xz

d
2Kν(qz),

for ν = 1
2

√
d2 + 4m2. For q2 < 0, and ν is not an integral, solutions are,

Φ± = e−iωt+i
~k.~xz

d
2J±ν(|q|z).

For an integral ν, the above solution is only for Φ+ and the other is given by,

Φ− = e−iωt+i
~k.~xz

d
2Yν(|q|z).

For integral ν, and ν > 1, the expansion of Φ+ is.

Φ+ = e(ik·x)z
d
2

∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m

. (2.21)

Using the formula (2.20) and using only the first term in the above expansion, we

have, for some constant a,

(Φ+,Φ+) = a

∫
z2ν−3dz

=
1

2ν − 2
z2ν−2

So as z → 0, this norm remains finite. Second term in the expansion is 2 orders

higher than the first and the third, 4 and so on. So they go to zero as z → 0.

However Yν doesn’t have a finite norm. For z → 0, Yν goes as, up to some constant

z−ν . Then doing the same calculation, we obtain, for some constant b

(Φ−,Φ−) = bz−2−2ν ,

which blows up as z → 0. So, norm is not finite. Same conclusion is also obtained in

global coordinates as well. Normalizable modes can be quantized straightforwardly.

So to move to quantum description, we need normalizable modes. Non-normalizable

modes on the other hand are described as non-fluctuating classical value of the field.
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2.5 Breitenlohner-Freedman bound

In the above section, the solution for non-integral ν is Φ±, and it’s expansion around

z = 0 is

Φ± = e(ik·x)z
d
2

∞∑
m=0

(−1)m

m!Γ(ν +m+ 1)

(z
2

)ν+2m

Expanding it, we have the first term proportional to, with ν = ∆− d
2
, z∆, the second

term, z∆+2, third term, z∆+4, and so on. The action in Poincare coordinates is,

S =
1

2

∫
dd+1x

√
g
[
gµν∂µφ∂νφ+m2φ2

]
(2.22)

=
1

2

∫
ddxdzz−(d+1)

[
−z2(∂tφ)2 + z2(∂xiφ)2 + z2(∂zφ)2 +m2φ2

]
(2.23)

Now we put the solution, term by term, so we take the first term which is, φ =

e−iωt+i
~k.~xz∆, and noting that q2 = k2 − ω2, we have the following form for action,

S(1) =
1

2

∫
dd−1xdtdzz−d−1

[
z2ω2φ2 − z2k2φ2 + z2(∂zφ)2 +m2φ2

]
(2.24)

=
1

2

∫
dd−1xdtdzz−d−1

[
z2(∂zφ)2 + (m2 − z2q2)φ2

]
(2.25)

=
1

2

∫
dd−1xdtdz(∆2 +m2 − z2q2)z2∆−d−1. (2.26)

We can then integrate z and in the limit z → 0, we would have, S proportional to

z2∆−d. This is the leading order divergence, the next order goes like, z2∆−d+2. If we

put higher orders of z, in the solution of φ, we get even higher orders of divergence,

such as z2∆+4−d and so on and so forth. So if we demand that 2∆ > d, then action

remains finite for all orders. But this condition renders ∆− as a non-normalizable

solution. To avoid this, we consider a modified action of the form,

Sm =
1

2

∫
dd+1x

√
gφ(−2 +m2)φ. (2.27)

In the chosen coordintes, 2 = −z2∂2
t + z2∂2

z − (d − 1)z ∂z + z2 ∇2
Rd−1 , and then

substituting the solution of φ, we have

S(1)
m =

1

2

∫
dd+1xz−(d+1)

[
(m2 + z2q2)φ2 − z2φ∂2

zφ+ (d− 1)zφ∂zφ
]

(2.28)

=
1

2

∫
dd+1x

[
∆(d−∆) +m2 + z2q2

]
z2∆−d−1. (2.29)

Since, ∆ = 1
2
[d ± +

√
d2 + 4m2],the first term term vanishes and leading divergent

term is proportional to z2∆−d+2. For higher order z in φ, the next divergent goes as
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z2∆−d+6 and so on. So if we take ∆ = d−2
2

, then action remains finite to all order in

z. In order to satisfy this condition, mass squared must satisfy,

−d
2

4
< m2 < 1− d2

4
. (2.30)

We see that both ∆± satisfy the bound. The bound for the negative mass squared

is the BF bound. As action remains finite, so does the generating functional. Gen-

erating functional is defined as, in Lorentzian picture,

Zeff (Φ) =

∫
DΦeiS[φ].

In Euclidean picture this changes to,

Zeff (Φ) =

∫
DΦe−S[φ].

So when S becomes infinite, this generating function goes to zero and thus the theory

is unstable. So to have a stable theory we must have a finite action. And from the

above analysis we can conclude that provided negative mass square remain within

the bound, tachyonic fields can be stable in AdS space.

2.6 Conclusion

In this final section we briefly summarize the contents of this thesis.

We started by introducing conformal algebra and two point operator in CFT.

We then turned our attention on AdS and started the chapter by introducing var-

ious coordinate systems. We then looked at the behaviour of particles in AdS.

Then next object of our attention was scalar fields and solution of Klein−Gordon

equation in different coordinate systems. We then discussed the normalizability

conditions where we found two independent solutions, namely normalizable and

non-normalizable. Normalizable solutions can be quantized while non-normalizable

solutions are non-fluctuating classical value of the field. We then discussed how

AdS space admits tachynoic solutions, that is fields with negative mass squared, an

inherently unstable theory in Minkowski space, provided the mass squared remain

within a bound called BF bounds.
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