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Abstract
The objective of this research work is to develop efficient, scalable, and distributed meth-
ods to meet the challenges associated with the processing of immense growth in visual data
like images, videos, etc. The motivation stems from the fact that the existing computer
vision approaches are computation intensive and cannot scale-up to carry out analysis on
the large collection of data as well as to perform the real-time inference on the resource-
constrained devices. Some of the issues encountered are: 1) increased computation time for
high-level representation from low-level features, 2) increased training time for classifica-
tion methods, and 3) carry out analysis in real-time on the live video streams in a city-scale
surveillance network. The issue of scalability can be addressed by model approximation
and distributed implementation of computer vision algorithms. But existing scalable ap-
proaches suffer from the high loss in model approximation and communication overhead.
In this thesis, our aim is to address some of the issues by proposing efficient methods for re-
ducing the training time over large datasets in a distributed environment, and for real-time
inference on resource-constrained devices by scaling-up computation-intensive methods
using the model approximation.

A scalable method Fast-BoW is presented for reducing the computation time of bag-
of-visual-words (BoW) feature generation for both hard and soft vector-quantization with
time complexities O(|h| log2 k) and O(|h| k), respectively, where |h| is the size of the hash
table used in the proposed approach and k is the vocabulary size. We replace the process
of finding the closest cluster center with a softmax classifier which improves the cluster
boundaries over k-means and can also be used for both hard and soft BoW encoding. To
make the model compact and faster, the real weights are quantized into integer weights
which can be represented using few bits (2 − 8) only. Also, on the quantized weights,
the hashing is applied to reduce the number of multiplications which accelerate the entire
process. Further the effectiveness of the video representation is improved by exploiting
the structural information among the various entities or same entity over the time which
is generally ignored by BoW representation. The interactions of the entities in a video
are formulated as a graph of geometric relations among space-time interest points. The
activities represented as graphs are recognized using a SVM with low complexity graph
kernels, namely, random walk kernel (O(n3)) and Weisfeiler-Lehman kernel (O(n)). The
use of graph kernel provides robustness to slight topological deformations, which may
occur due to the presence of noise and viewpoint variation in data. The further issues such
as computation and storage of the large kernel matrix are addressed using the Nystrom
method for kernel linearization.

The second major contribution is in reducing the time taken in learning of kernel sup-
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port vector machine (SVM) from large datasets using distributed implementation while
sustaining classification performance. We propose Genetic-SVM which makes use of the
distributed genetic algorithm to reduce the time taken in solving the SVM objective func-
tion. Further, the data partitioning approaches achieve better speed-up than distributed
algorithm approaches but invariably leads to the loss in classification accuracy as global
support vectors may not have been chosen as local support vectors in their respective par-
titions. Hence, we propose DiP-SVM, a distribution preserving kernel SVM where the
first and second order statistics of the entire dataset are retained in each of the partitions.
This helps in obtaining local decision boundaries which are in agreement with the global
decision boundary thereby reducing the chance of missing important global support vec-
tors. Further, the task of combining the local SVMs hinder the training speed. To address
this issue, we propose Projection-SVM, using subspace partitioning where a decision tree
is constructed on a projection of data along the direction of maximum variance to obtain
smaller partitions of the dataset. On each of these partitions, a kernel SVM is trained in-
dependently, thereby reducing the overall training time. Also, it results in reducing the
prediction time significantly.

Another issue addressed is the recognition of traffic violations and incidents in real-time
in a city-scale surveillance scenario. The major issues are accurate detection and real-time
inference. The central computing infrastructures are unable to perform in real-time due to
large network delay from video sensor to the central computing server. We propose an ef-
ficient framework using edge computing for deploying large-scale visual computing appli-
cations which reduces the latency and the communication overhead in a camera network.
This framework is implemented for two surveillance applications, namely, motorcyclists
without a helmet and accident incident detection. An efficient cascade of convolutional
neural networks (CNNs) is proposed for incrementally detecting motorcyclists and their
helmets in both sparse and dense traffic. This cascade of CNNs shares common represen-
tation in order to avoid extra computation and over-fitting. The accidents of the vehicles
are modeled as an unusual incident. The deep representation is extracted using denoising
stacked auto-encoders trained from the spatio-temporal video volumes of normal traffic
videos. The possibility of an accident is determined based on the reconstruction error and
the likelihood of the deep representation. For the likelihood of the deep representation, an
unsupervised model is trained using one class SVM. Also, the intersection points of the
vehicle’s trajectories are used to reduce the false alarm rate and increase the reliability of
the overall system. Both the approaches are evaluated on the real traffic videos collected
from the video surveillance network of Hyderabad city in India. The experiments on the
real traffic videos demonstrate the efficacy of the proposed approaches.
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Chapter 1

Introduction to large-scale visual computing

In today’s digital world, visual information plays a crucial role in various fields such as
video surveillance systems, multimedia analysis, virtual reality, robotics, scientific visu-
alization, communication systems, oceanography, analysis of natural life, etc [54]. The
application such as video surveillance in a smart city consists thousands of video cam-
eras and needs to analyze a large amount of video footage in order to locate various inci-
dents such as violation of traffic rules, accident incidents, abnormal activities, etc. In such
a large video surveillance network, maintaining surveillance facilities using conventional
techniques is a tedious and time-consuming task. The existing automated systems for the
detection of potential security problems are unable to be used in such a large-scale because
of their high computational complexities [19]. Also, conventional standalone machines and
sequential modeling algorithms are highly incompetent to harness the benefits of the large
visual data for learning a model in reasonable time as visual computing methods are both
data and computation intensive. Thus, there is a need for scalable and distributed methods
to perform such tasks in real-time at such a large-scale.

1.1 Visual computing

Visual computing involves processing and analyzing of visual data such as images and
videos to find semantic patterns that are useful for interpretation. The visual computing
methods provide solutions to variety of applications but are extremely complicated and
computationally complex. A visual computing framework generally consists of two ma-
jor tasks, namely, feature representation and modeling. A brief introduction of them is
provided here:

1



1.1.1 Feature representation techniques

An appropriate representation of visual data lead to more accurate decision making by sub-
sequent modeling processes. The basic representation of visual information is pixel. Pixel
representation is for human to perceive things in similar manner he/she perceive them in
real world. In order to make decision on such information, we need to extract appropriate
features (or properties) which have some correlation to the target problem. Data represen-
tation has a direct impact on the performance of machine learning techniques. There have
been variety of representation techniques proposed till now, which can be categorized as
hand engineered feature representation and data driven feature representation techniques as
discussed below.

Hand engineered feature representation

Hand engineered feature representation techniques are based on the perception of human
experts to extract relevant information. They are based on well-established theories. The
widely used techniques such as histogram of oriented gradients (HOG) [26], histogram of
optical flow (HOF) [17], scale-invariant feature transform (SIFT) [70], and space-time in-
terest points (STIP) [59] along with a bag-of-visual-words (BoW) approach had achieved
a good performance for variety of vision tasks. The hand engineered feature represen-
tation techniques can be categorized into flow-based features (like optical flow, particle
flow, streak flow), local spatio-temporal features (like spatio-temporal gradients, motion
histogram), and trajectory/tracklet.

Data driven feature representation

Data driven feature representation techniques are based on deep nets and automatically
learn abstract and complicated representation of the data in a hierarchical manner by pass-
ing the data through multiple layers of nonlinear transformations [81]. Some existing auto-
matic feature representation techniques are auto-encoder [36], convolution neural network
(CNN) [18], and restricted Boltzmann machine (RBM) [18].

The performance of the representation techniques changes drastically with the domain
and nature of application. Finding a better representation of visual data which is also
computationally efficient is a big challenging task.

1.1.2 Modeling Techniques

Modeling techniques learn different parameters from the data generated by representation
techniques. These parameters are later used for making the decision on the unknown data.
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Various machine learning techniques [109, 6, 47, 11, 30] are already existing in the litera-
ture for modeling. Generally, they are classified into three categories, namely, 1) supervised
learning techniques (e.g., support vector machine, neural network, decision tree, Bayesian
network, Fisher’s linear discriminant analysis etc.) which require knowledge of ground
truth, 2) unsupervised learning techniques (e.g., k-means, k-medoids, etc.) which do not
require any ground truth, and 3) semi-supervised learning techniques which require ground
truth for few samples. The widespread applications of machine learning are subjected to
overcome major issues such as the need of large data sets, the need of ground truth, concept
drift in a dynamic environment, and computational complexity.

1.1.3 Challenges in large-scale visual computing

The visual computing presented above suffer from the issues such as computation intensive-
ness, increased training time of modeling techniques, real-time inference on the resource-
constrained devices, high loss in model approximation, high communication overhead, and
handling city-scale surveillance network.

Computation intensiveness

The high space and time complexities of the feature representation and modeling tech-
niques make the visual computing applications a computation intensive task because of
involvement of large amount of data. The use of such algorithm further makes the situation
worse for the applications involving large datasets.

Sequential modeling techniques

Researchers in the past mainly focused only on improving the performance of the vision
task and used the sequential algorithms with high space and time complexities. Some
existing approaches cannot be implemented in parallel/distributed manner. Those easy to
be implemented in parallel/distributed manner are computation intensive and require a pool
of computing resources or take longer time to compute thus unable to be used in real-time.

Real-time inference on the resource-constrained devices

The best performing visual computing models are extremely large in size (millions of pa-
rameters) and thus need significant computing resources which make them unfit for real-
time usage on the resources-constrained devices such as smart phones and embedded cards.
In order to fit them on limited memory devices for real-time speed, it is important to com-
press and accelerate the model.
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High loss in model approximation

Model approximation is applied to scale the sequential and computation intensive algo-
rithms using some kind of surrogate functions that mimics the functionality of the original
function but are comparatively less computationally complex. However, existing model
approximation approaches suffer from a high loss in the effectiveness. Thus it is highly
important to reduce the loss occurred because of model approximation in order to retain
the performance.

High communication overhead

The existing distributed learning algorithms suffer from the large flow of the data on the
communication network thus making the entire process a time-consuming task. Also, the
high congestion near the central computing nodes may lead to a single point of failure.
Thus it is expected to design such algorithms which transfer minimal data over the com-
munication link.

Handling city-scale surveillance network

The city-scale video surveillance networks involve thousands of cameras generating giga-
bytes of data per second. Using a centrally computing facility are not a good choice for
performing vision task because of the two reasons. First, the transmission of the data from
the camera to central facility will increase the latency. Second, the congestion near the cen-
tral facility will increase the frame dropping rate. Also, both the cases increase the overall
response time.

1.2 Issues addressed in this thesis

The existing computer vision approaches suffered from one or more of the above issues.
In this thesis, we explore various ways to build scalable and distributed methods for large-
scale visual computing that address one or more of the these issues using model approxi-
mation and distributed implementation of computer vision algorithms. A scalable method
Fast-BoW is propose for reducing the computation time of bag-of-visual-words (BoW) fea-
ture generation for both hard and soft vector-quantization with time complexities O(|h| log2 k)
and O(|h| k), respectively. The process of finding the closest cluster center is approximated
using a softmax classifier accelerated by reducing the number of multiplications through
weight sharing which can be used for both hard and soft BoW encoding. Further, we in-
crease the effectiveness and efficiency of video activity representation by exploiting the
structural information in a video activity among the various entities or same entity over the
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time which is generally ignored by BoW representation. The interactions of the entities in
a video are formulated as a graph of geometric relations among space-time interest points.

The long training time of kernel SVM from large datasets is reduced by using the dis-
tributed genetic algorithm for the fast optimization of the SVM objective function on a
GPU enabled cluster. The effect of the distribution preserving data partitioning approach is
investigated to obtain local decision boundaries in close agreement with the global decision
boundary. It is found that retaining first and second statistics reduces the chance of missing
important global support vectors. Further, to reduce both training and prediction time, we
propose a subspace partitioning, where a decision tree is constructed on a projection of
data along the direction of maximum variance to obtain smaller partitions of the dataset.
On each of these partitions, a kernel SVM is trained independently thereby reducing the
overall training time. Also, it results in reducing the prediction time significantly.

Also, we explore edge computing based framework for deploying large-scale visual
computing applications to reduce the latency and the communication overhead in the cam-
era network. Two most desired surveillance applications, namely, detection of motorcy-
clists without a helmet and accident incident detection are designed and implemented us-
ing this framework. Efficient model are designed for detecting accidents and motorcyclists
without helmet in real-time on edge devices. The overall computation is distributed to the
edge device and the central servers to minimize the data transmission over the network
while strengthened the overall performance.

1.3 Organization of the thesis

The thesis is organized as follows. The Chapter 2 presents a review of existing large-scale
methods for visual computing and highlight the relevant research issues. The first approach
for scaling bag-of-visual-words (BoW) generation is discussed in Chapter 3. In Chapter 4
a novel graph representation of local feature descriptors is presented for abnormal activity
recognition. A distributed genetic algorithm is presented in Chapter 5 for fast training
of the kernel SVM on GPUs. A distribution preserving partitioning based approach is
investigated in Chapter 6 for distributed training of the kernel SVM over a cluster. Also, a
subspace partitioning based approach for distributed kernel SVM from large-scale dataset
is presented in Chapter 7. An edge computing based framework is presented in Chapter 8
for city-scale traffic monitoring along with robust and computationally efficient methods
for detection of helmet-less motorcyclists and accident detection. Finally, in Chapter 9, a
summary of the research work carried out as part of this thesis is presented with directions
for future work.
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Chapter 2

Review of scalable and distributed methods for
visual computing

The challenges in the large-sale visual computing presented in previous chapter have been
studied in the vision and big data communities. The main issues encountered are computa-
tion intensiveness, increased training time of modeling techniques, real-time inference on
the resource-constrained devices, high loss in model approximation, high communication
overhead, and handling city-scale surveillance network. The challenges can be broadly
split into three major tasks: 1) challenges associated with large-scale feature representa-
tion, 2) challenges associated with the large-scale modeling and prediction, 3) challenges
associated with the system architecture for large-scale surveillance network.

The rest of the chapter is organized as follows. Various feature representation tech-
niques are discussed in Section 2.1. We describe the various modeling techniques used in
visual computing in Section 2.2. The various system architectures are discussed in the Sec-
tion 2.3. Section 2.4 presents the existing work on the various large-scale visual computing
applications. Finally, the observations arising from the literature review are presented in
Section 2.5 and the summary is presented in Section 2.6.

2.1 Large-scale feature representation

In computer vision, the success of a task highly depends on the feature representation tech-
nique used. On the bases of technique used, the existing feature representation methods
are generally classified into two categories, namely, traditional feature representation and
deep feature representations. On the basis of level of granularity, the feature representa-
tions are classified into two categories, namely, low-level and high-level feature represen-
tations. The high-level features derived from the whole chunk of visual data and thus can
be used directly by the modeling techniques. While the low-level features are generally
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extracted from a small region of the entire image/videos. For example, scale invariant
feature transform (SIFT), space-time interest points (STIPs), and improved dense trajecto-
ries. All these features extract 2D or 3D interest points in image and videos, respectively,
and then in the close vicinity of the interest points, they extract appearance and/or motion
based histogram called local feature descriptors. The number of interest points extracted
from different chunk of visual data are different thus leads to variable length code. Before
applying any modeling technique, first we need to learn an aggregate representation from
the low-level feature descriptors. Some of the techniques for aggregate feature represen-
tation are bag-of-visual-words (BoW), Fischer vector (FV), vector of locally aggregated
descriptors (VLAD), sequential models, dictionary learning and sparse coding, etc. Bag-
of-visual-words (BoW) approach is one of the widely used aggregate feature representation
technique because of its simplicity. The performance of the BoW features increase when
increasing the vocabulary size. However, large vocabularies increase the time taken for
BoW feature generation and thus make them unfit for real-time usage specially on the
resource-constrained devices.

2.2 Large-scale modeling

Training a model from large collection of data is not a trivial task as iterative computations
in most of the machine learning algorithms are computation intensive and often extremely
difficult to be parallelize or distribute. Here, we highlight current research efforts and
related challenges in scalable machine learning models widely used for large-scale visual
computing, namely, support vector machine (SVM), k-nearest neighbour (kNN) and neural
networks (NNs).

2.2.1 Support vector machines (SVM)

Support vector machines are well-known for their excellent generalization capability and
widely used in variety of pattern recognition applications. Learing a SVM corresponds
to solving a quadratic programming optimization whose space and computational require-
ments increase with an increase in number of training samples. Thus, in order to train SVM
on large scale data, it requires a distributed version with trade-off between computational
accuracy and communication overhead. Many parallel and distributed implementations of
SVM have been proposed in the literature [53, 124]. Broadly, we can group them into four
categories, namely, parallel [137], distributed [12, 72], heterogeneous (MapReduce based)
[14, 130, 111, 6], and GPU based [39]. In [82], Vazquez et al. proposed a distributed
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support vector machine in which local support vectors (LSVs) are calculated on each sub-
set. The set of global support vectors (GSVs) is the union of all the LSVs. Then the GSVs
are merged with each training subset and the process is repeated until convergence (i.e. no
change in the empirical risk). However, the size of the subsets increases with the number
of iterations which contributes to increased learning time. Also, at each time, LSVs are
collected from each node to form the GSVs and then these GSVs are broadcasted to all
the nodes which further increases the communication overhead. This also results in high
redundancy among LSVs across all the nodes. Similar approaches have been proposed
by Lu et al. [72] for strongly connected networks (SCNs). Catak et al. [14] proposed a
MapReduce-based implementation of the same methodology in the cloud environment in
order to improve scalability and parallelism of training phase by splitting training dataset
into smaller subsets as shown in Fig. 2.1.

Figure 2.1: Schematic of cloud SVM architecture [14].

In [32], Graf et al. proposed cascade SVM, where the training samples are divided
hierarchically into subsets and the training starts at the top nodes where each subset is then
trained a sequential SVM (referred to as a subSVM). The support vectors of two smaller
subSVMs are then passed down as input to next level subSVM and this process is repeated
until we reach the final SVM at the bottom where the global SVM model is obtained as
shown in Fig. 2.2. Sun et al. [111] implemented the same cascade SVM architecture with
the help of MapReduce and Twister. A similar approach is taken by Vazquez et al.’s [82],
where the size of training data at each node increases with each subsequent iteration causing
high communication overhead. The communication overhead is the amount of data transfer
over the communication network from one node to another during the training process.

Hsieh et al. [40] instead propose a divide-and-conquer (DC-SVM) approach to solve
the kernel SVM problem. DC-SVM is similar to cascade SVM with two major differences:
1) It uses K-means clustering to partition the dataset instead of sequential or random par-
tition. 2) It passes all of the training vectors and solutions from one level to next level,
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Figure 2.2: Training flow of cascade SVM [32].

instead of only SVs. However, the disadvantage of DC-SVM is that at the last level, it
operates a single SVM on the whole training dataset which is essentially quite slower and
non-scalable for larger datasets. A similar approach is also proposed by Alham et al. [6] for
large scale image annotations using MapReduce. The entire training data is partitioned into
smaller subsets and each of these subsets are allocated to separate Map tasks. Each Map

task optimizes the partition in parallel. The outputs, Lagrangian multiplier α arrays and
bias b values, obtained from each Map task are then joined in the Reduce task in order to
produce the global Lagrangian multiplier α array and the average bias b. Even though this
model reduces training time, the blind partitioning of the sample dataset results in different
classification performance with different initialization for the partitions.

To reduce the communication involved in the methods discussed above, You et al. [132]
proposed a communication avoiding SVM (CA-SVM) for shared memory architecture by
combining several approaches like the cascade SVM, DC-SVM etc. Basically, a divide and
conquer filter selects the LSVs and their corresponding Lagrange multipliers α values from
one level in order to initialize next level Lagrange multipliers α in cascade SVM which
results in faster convergence. The partitions are obtained as the clusters resulting from a
balanced k-means clustering algorithm. This approach performs better when the dataset
contains well-separated clusters and each cluster contains points from the corresponding
classes. However, its performance degrades in the case of overlapping clusters and also if
a cluster contains examples belonging to only one class.

Yu et al. [134] make an attempt to train the SVM on a large dataset which is suitable
only for well separated low dimensional data. This method uses a hierarchical clustering
based tree called CF-tree where data at the root of the tree is first used to train an initial
model which is refined successively. This refinement is carried out at each subsequent
lower level by considering the clusters near to the decision boundaries in the upper level to
train an SVM from the beginning. This is in stark contrast to our proposed approach where
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the Lagrangian multipliers of the SVM in a lower level are initialized from the upper level
Lagrangian multipliers that is empirically shown to help in the faster convergence of the
SVM.

2.2.2 K-nearest neighbours (k-NNs)

In computer vision, k-nearest neighbors (k-NN) method is used widely for classification
and retrieval tasks because of their simplicity and interpretability. For a large number of
samples, the k-NN classifier asymptotically converges to Bayes optimal classifier [29]. Es-
pecially, the k-NNs achieve the best classification accuracy and retrieval performance for
a large number of labels. Since k-nearest neighbors method needs to store all samples
and the prediction involves searching into these samples, making it unsuitable for large
databases. To date, several approximate nearest neighbor search techniques have been pro-
posed to reduce the space and time complexity of the nearest neighbor search. The existing
techniques can be grouped into three categories, namely, tree-based approaches [10, 131],
hashing/binary embedding approach [61, 101], and vector quantization approach [49]. The
approaches in each category have their advantages and limitation and generally applied in
an unsupervised setting.

2.2.3 Neural networks (NNs)

The neural network is also a popular and widely used classification technique. In the past
few decades, neural networks have emerged to be powerful computational models to ad-
dress complex pattern classification, medical imaging, and speech recognition [140]. The
deep neural network plays an important role in visual computing. In deep learning, neural
networks are trained with multiple layers where each layer represents some kind of low-
level representation. Neural networks are well-known for their adaptation capability and
give good accuracy when they are trained on large scale data. Since neural networks require
huge computational resources, the conventional uni-processor or high-speed computers are
failed to meet the required speed and storage capacity. Distributed implementation can be
a solution directive to overcome time and space limit of neural networks. Several attempts
have been made in this direction. Z. Liu et al. [69] have trained a back-propagation neural
network with Ada-boosting using the map-reduce framework in order to increase the effi-
ciency and precision of mobile data classification having natural properties like large-scale,
inter-class similarity and noisiness. A similar approach is also developed by H. Zhang et

al. [140] for parallel implementation of multilayer neural networks based on map-reduce
over the cloud.
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The above discussed implementations show that scaling machine learning algorithms
become an important constituent to strengthen modeling. The distributed implementation
of machine learning is one of the possible solution to achieve learning on large-scale visual
data. In the early stage, researchers casually distributed tasks over multiple machines in
order to increase the performance. However, next step towards the distributed implementa-
tion require trade-off between computational accuracy and communication overhead in the
computing cluster.

2.3 System architecture for large-scale surveillance net-
work

Designing an effective system architecture for deploying large-scale visual computing
applications in a city-wide video surveillance network is a challenging task. Here, we
investigate existing visual computing framework proposed for deploying a variety of visual
computing applications and highlight their challenges.

Park et al. [84] presented Ubiquitous-city, a GIS image processing platform using cloud
computing in order to find and select optimal computing resources for applications and run
virtual machines to execute the applications. Ubiquitous-city enables citizens to access the
converged information anywhere and anytime using ubiquitous IT. Ubiquitous-city requires
a lot of computing power because large amount of data need to be processed in real-time. It
consists of OpenNebula, a cloud computing framework [95] and Haizea, a virtual machine
job manager (VMJM). The massive amount of data generated by parallel air pollution map
generation is processed efficiently using this platform.

Abdullah et al. [3] presented a framework for stream processing in cloud that is capable
of detecting vehicles from the recorded video streams for large-scale vehicular traffic mon-
itoring. This framework provides an end-to-end solution for video stream capture, storage,
and analysis using a cloud based graphics processor unit (GPU) cluster. It empowers traf-
fic control room operators by automating the process of vehicle identification and finding
events of interest from the recorded video streams. An operator only specifies the analysis
criteria and the duration of video streams to analyze. These video streams are then auto-
matically fetched from the cloud storage, decoded, and analyzed on a Hadoop based GPU
cluster without operator intervention. It reduces the latency in video analysis process by
porting its compute intensive parts to the GPU cluster.

An automatic license plate recognition system is presented by Chen et al. [19] using
cloud computing in order to realize massive data analysis, which enables the detection
and tracking of a target vehicle in a city with a given license plate number. It realizes a
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fully integrated system with a surveillance network of city scale, automatic large scale data
retrieval and analysis, and combination of pattern recognition in order to achieve contextual
information analysis.

Ryu et al. [96] have presented an extensible video processing framework over apache
Hadoop framework in order to do parallel video processing in a cloud environment. This
framework employs ffmpeg for a video coder, and opencv for an image processing engine.
To optimize the performance, it exploits map-reduce implementation which helps to min-
imize video image copy. The ffmpeg source code is then modified and extended to access
and exchange essential data and information with hadoop effectively. For demonstration,
face tracking system is then implemented on top of this framework which traces the con-
tinuous face movements in a sequence of video frames.

Zhang et al. [139] have proposed a hybrid cloud model for video surveillance system
with mixed-sensitivity video streams. The hybrid cloud is used to address the security
issues by keeping sensitive data in the private cloud, while relieving seasonal workload
by pushing computation to the public cloud. To enhance usability and reduce the cost,
a middle-ware is used that seamlessly integrates the private cloud with public cloud and
scheduled the tasks effectively. A stream processing model in this hybrid cloud optimizes
overall monetary cost to be incurred on the public cloud with the constraints of resources,
security and Quality-of-Service (QoS).

The visual computing framework mentioned above make use of centralized or cloud
systems in order to overcome the problem of storage and computing resource intensiveness
of visual computing applications. However, the challenges such as high communication
overhead, congestion near the centralized nodes, and high latency due to low bandwidth
need to be overcome.

2.4 Large-scale visual computing applications

Digital video surveillance systems are ubiquitously deployed in public places to ensure
security and safety. According to the British security industry association, approximately 4
million to 5.9 million cameras are deployed in UK [3]. This widespread use of surveillance
systems in roads, stations, airports or malls has led to a huge amount of data that needs to
be analyzed for safety, retrieval or even commercial reasons [52]. Automation of various
task for a city surveillance system is very important for security applications, where it is
difficult even for trained personnel to reliably monitor scenes with dense crowd or videos
of long duration [52]. Here, we describe few large-scale visual computing applications.

13



2.4.1 Abnormal activity recognition

An anomalous event in a crowd is an event which do not confirm the normal appearance
or dynamics of crowd. An appearance-related anomaly would be, e.g. a bicycle passing
through a crowd. Moreover, sudden changes in velocity, like an abrupt increase of its
magnitude and the dispersion of individuals in the crowd indicates that something unusual
and potentially dangerous may have occurred [52]. In the past decade, a considerable
amount of literature is focused on the abnormal activity recognition in surveillance videos
[9, 13, 50, 92, 127, 98]. The detailed surveys in [63, 86] enlighten the progress on this topic
in last decades.

The most recent methods focus on both appearance and motion anomalies at local and
global scale. Space-time interest points have been explored recently for abnormal activ-
ity recognition in surveillance videos [20]. In [20], Cheng et al. detect local and global
anomalies via hierarchical feature representation using bag-of-visual-words (BoVW) and
Gaussian process regression. The extraction of normal interactions from training videos
is formulated as the problem of efficiently finding the frequent geometric relations of the
nearby sparse space-time interest points (STIPs). In [121, 122], Wang et al. use a stan-
dard bag-of-features approach to construct separate vocabularies of 4000 visual-words for
each type of low level descriptors. The low level descriptors encode information of tra-
jectory shape, appearance using HoG, local motion using HoF, and gradient of horizontal,
and vertical components of optical flow using motion boundary histograms (MBH). How-
ever, above methods use bag-of-words based approach that do not consider the geometric
relationships among salient points.

2.4.2 Helmetless motorcyclists detection

Since, motorcycles are an affordable and daily mode of transport, there has been a rapid
increase in motorcycle casualties due to the fact that most of the motorcyclists do not
wear the helmet which makes it an ever-present danger every day to travel by motorcy-
cle [25, 107, 116]. In the last couple of years alone, most of the deaths in accidents are
due to damage in the head [8]. Because of this fact, wearing a helmet is mandatory accord-
ing to the traffic rules, violation of which attracts hefty fines. Inspite of this fact, a large
number of motorcyclists do not follow the traffic rules. The manual strategies to identify
these violators have several drawbacks such as interrupted traffic flow, unpleasant weather
conditions for police personnel, etc. Existing video surveillance based methods are passive
and require significant human assistance. In general, such systems are infeasible due to
involvement of humans, whose efficiency decreases over long duration. Automation of this
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process is highly desirable for reliable and robust monitoring of these violations as well
as it also significantly reduces the amount of human resources needed. Presently, all ma-
jor cities across the world already deployed extensive video surveillance network at public
places to keep a vigil on a wide variety of threats. Thus the solution for detecting violators
using the existing infrastructure is also cost-effective.

To date, several researchers [21, 22, 102, 89, 103, 25, 107, 116] have tried to tackle
the problem of detection of motorcyclists without helmet by using different methods from
computer vision. But they have not been able to accurately identify motorcyclists with-
out helmets under challenging conditions such as occlusion, illumination, poor quality of
video, varying weather conditions, etc. Some of the reasons for the poor performance of
existing approaches are: (i) the use of not so efficient handcrafted features for object clas-
sification, (ii) the consideration of irrelevant objects against the objective for the detection
of motorcyclists without helmet, and (iv) most of the existing methods are computationally
complex and thus not suitable to be used in real-time.

2.4.3 Accident detection

The growing size of cities and increasing population mobility have determined a rapid in-
crease in the number of vehicles on the roads, which has resulted in many challenges for
road traffic management authorities. Among them, road accidents require immediate atten-
tion to reduce the loss of life and properties. Traffic accidents caused an estimated 1.2 mil-
lion deaths in 2004, with 50 million people injured [28]. Over the recent years, researchers
from both industry and academia have been working to develop automatic detection meth-
ods using computer vision and pattern recognition techniques, but the level of current tech-
nology is still limited to apply them in the real world. Devising vision-based algorithm for
this task is very challenging. In practice, the performance of computer vision based traf-
fic accident detection algorithms can be challenged by many factors [135, 128, 91]. These
factors include imaging conditions (varying illumination and changing weather conditions),
environments (urban, highways), as shown in Fig. 2.3.

As also pointed out by Yun et al. [136], the existing methods for traffic accident detec-
tion developed till date can be categorized into three approaches:

• Modeling of traffic flow patterns: In this category, the typical law-full traffic
patterns (namely, go-straight, U-turn, right-turn, etc.) are modeled as baseline [113,
41] and any deviation from this model is considered as an abnormal traffic event.
This approach will work only when the normal traffic pattern appears at a fixed region
repeatedly, thus unable to detect collisions which are essential to accident detection.
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Figure 2.3: The sample video frames, showing various difficulties in the collected video
dataset for accident detection.

• Analysis of vehicle activities: The methods in this categories first detect the moving
vehicles and then extract motion features such as the distance between two vehicles,
acceleration, direction, etc. of a vehicle from moving vehicles’ tracks [42, 60, 97, 5,
44, 55, 41]. However, unsatisfactory tracking performance in crowded traffic scenes
becomes their bottleneck and limits their usage.

• Modeling of vehicle interactions: These methods have been inspired by sociologi-
cal concepts and model the interaction among vehicles and detect accidents [75, 110].
However, a large number of training data and use of speed change information alone
limit the performance of these methods.

These existing methods make use of motion or track of moving objects and simply try
to define a normal baseline (many time using pre-decided threshold only) and any unknown
event not obeying this baseline is simply declared as an accident. Although, the deviations
in motion parameters give useful pre-collision information but do not sufficient for accident
detection.

2.5 Observations from the review

The entire review of large-scale visual computing for various surveillance applications
presents three aspects of the visual computing which are large-scale feature representa-
tion, large-scale modeling techniques, and system architecture for large-scale surveillance
network. Within feature representation approaches, aggregated descriptors using bag-
of-visual-words (BoW) representations with large-vocabularies are shown to be effective
for representing image and videos but computationally time consuming because of high-
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dimensional local-descriptors and large number of visual words in the vocabulary. For fast
BoW generation for large vocabularies, existing approaches use tree hierarchy of the vocab-
ulary elements which results into a significant fall in the effectiveness of the BoW features
thus hypothesize to predict the cluster index efficiently instead of a searching the closest
cluster hence propose for fast generation of BoW features while sustaining the effectiveness
of the generated features. Also, we hypothese for a noval feature representation which is
not only effective in recognition but also helps in better localization of the action/activities
in a video.

Many of the modeling technique presented in the review like kernel SVM are hard to
parallelize or distribute and cannot leverage the benefit of distributed computing systems
while learning from large-scale datasets. Existing approaches for distributed kernel SVM
training suffer from high loss in accuracy and the communication overhead. The core issues
listed in the distributed learning of SVM are the use of sequential minimal optimization
(SMO) algorithm, loss of global support vectors because of random partitioning, increased
training time because of non-separable and complex distribution of the class data, and
increased prediction time because of large number of support vectors.

Apart from scaling individual methods used in visual computing, an efficient distributed
system architecture is also equally important to deploy visual computing methods in a
city-wide surveillance camera network because a centralized system suffers from the high
communication overhead and hinders their real-time performance.

2.6 Summary

In this chapter, the existing literature on the large-scale visual computing is reviewed cov-
ering large-scale feature representation, large-scale modeling, and system architecture for
large-scale surveillance network. Most traditional representations are based on aggregated
descriptors of local features that holistically describe actions. However, such representa-
tions are using large vocabularies which increase their computation time. The deep repre-
sentations are supervised and computation intensive thus require a large number of labeled
example and a pool of computing resources enabled with GPUs. Also, many classification
techniques such as kernel support vector machine are hard to compute in a distributed envi-
ronment. Visual computing brings automation in various areas of applications but always
suffer from data intensiveness and lack of computing resources. This review provides an
overview of existing methods for large-scale visual computing, investigates their challenges
and identifies opportunities to enhance existing visual computing methods for large-scale
applications.
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Chapter 3

Fast-BoW: Scaling bag-of-visual-words (BoW)
generation

As discussed in the last chapter, the bag-of-visual-words (BoW) is a widely used method
for unsupervised representation of visual data based on the local feature descriptors [43, 46,
141, 142, 74, 66, 105] but it is not suitable for large vocabularies because of its high com-
putational complexities. In this chapter, we present Fast-BoW, a scalable method for BoW
generation for both hard and soft vector-quantization with time complexities O(|h| log2 k)
and O(|h| k), respectively, where |h| is the size of the hash table used in the proposed ap-
proach and k is the vocabulary size. The process of finding the closest cluster center is
replaced with a softmax classifier which improves the cluster boundaries over k-means and
also can be used for both hard and soft BoW encoding. Further, to make the model compact
and faster, the real weights of the softmax classifier are quantized to integer weights which
can be represented using few bits (2−8) only. Then a hash table of the quantized weights is
maintained to reduce the number of multiplications which makes the process further faster.
The proposed approach is empirically evaluated on several public benchmark datasets. The
experimental results outperform the existing hierarchical clustering tree-based approach by
≈ 12 times.

The BoW generation process involves two phases, 1) vector quantization for vocab-

ulary generation that is typically performed by k-means clustering algorithm, and 2) fre-

quency histogram generation using nearest neighbour search. During the vector quantiza-
tion, the goal is to construct a vocabulary V with a small average quantization error. Lets
L = {F1, · · ·,Fn} be the set of local feature descriptors Fi = {f1, ..., fmi

}, fi ∈ Rd for n
training videos, where d is the dimension of the local feature descriptor. The input to the
vector quantization algorithm is a set of m vectors Q = {f1, ..., fm}, fi ∈ Rd where Q ⊆
{F1∪···∪FN}. The output of the algorithm is a set of k vectors V = {µ1, ...,µk}, µi ∈ Rd,
where k � m. The set V is called the vocabulary. We say that V is a good vocabulary for Q
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if for most f ∈ Q there is a representative µ ∈ V such that the Euclidean distance between
f and µ is small. The average quantization error of V with respect to Q is defined as

J(V ,Q) =E
�
min
1≤j≤k

�F − µj�2
�
=

1

m

n�

i=1

min
1≤j≤k

�fi − µj�2, (3.1)

where � · � denotes Euclidean norm and the expectation is over F drawn uniformly at
random from Q. The k-optimal set of visual words is defined to be the vocabulary V of size
k for which J(V ,Q) is minimized. Typically, k-means algorithm is used for this whose per
epoch computational complexity is O(mdk). The average quantization error for a general
sets of unit diameter in Rd, is roughly k−2/d for large k [33]. For high dimensional local
feature vectors where d is high, it becomes too time consuming. For instance, if d = 100,
and A is the average quantization error for k1 visual words, then to guarantee a quantization
error of A/2, one needs a vocabulary of size k2 ≈ 2d/2k1: that is, 250 times as many visual
words just to halve the error. In other words, vector quantization is susceptible to the same
curse of dimensionality that has been the bane of other non-parametric statistical methods.

However, increasing the vocabulary size k increases the time to generate the frequency
histograms which requires O(d k) real valued vector-vector multiplications per local fea-
ture descriptor in a video. As in real-world application, this computation is performed on
the fly and thus it effects their real-time performance. The typical solution to this prob-
lem is to maintain tree hierarchy of the clusters. The use of a tree leads to O(d log2 k)

but invariably results in significant fall in the effectiveness of the generated BoW features.
Dasgupta et al. [27] proposed a set of hierarchical random projection trees for vector quan-
tization and subsequent search of the right subspace by traversing each tree and finally
making a consensus. This approach reduces the time complexity in tree construction in
comparison to other tree methods. But the use of several trees increases the time of BoW
generation. Also, due to hard splitting criteria, the projection tree-based algorithms suffer
from the high loss in classification accuracy. The proposed Fast-BoW addresses both is-
sues, namely, loss in accuracy and computational time by learning probability distribution
of the clusters at each level of the tree and then applying quantization and hashing to reduce
the vector operations.

The remainder of the chapter is organized as follows. Section 3.1 presents the proposed
Fast-BoW for fast generation of the BoW. Section 3.2 discusses the experimental setup,
dataset, and performance of Fast-BoW. Finally, we conclude in section 3.3.
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3.1 Fast cluster prediction using softmax with quantized
weights

As shown in the Fig. 3.1, the proposed approach first uses the clustering algorithm (like
k-means) for vector quantization of the training vector space into the pre-defined number
of clusters. Then to learn the probability distribution of each cluster, we train a soft-max
classifier. The class labels for the soft-max are the cluster index of each point received from
the clustering algorithm. Also, the large weight matrices have a significant redundancy
that can be avoided by applying model compression techniques. We exploit this fact to
reduce the memory and computation time by applying weight quantization and hashing.
The weight quantization reduces the number of levels (i.e. unique floating point numbers)
in a weight matrix and the hashing reduces the number of floating point multiplications
needed for a matrix-vector or vector-vector multiplication.
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Figure 3.1: Scaling the process of BoW generation.

3.1.1 Learning probability distribution of the clusters

First, we learn k clusters using k-means on the local feature descriptors. As the cluster
learning from a large number of local feature descriptors is time-consuming, we first use a
small sample to learn the initial clusters {µ1, · · ·,µk} and later refinement the centers using
the remaining points only once as suggested by Raghunathan et al. [88]. Let, for ith local
feature descriptor fi, µi

j be the closest center then it updates the µi
j as

µi
j = (1− η)µi

j − 1 + ηfi, (3.2)

where, η = 3k log3 m
m

gives the best results. After successfully learning the means of the k

clusters, the next task is to learn the probability distribution for soft/hard cluster assignment.
This can be achieved using a Gaussian mixture model (GMM). However, GMM’s training
and prediction are time-consuming and also speed-up of them is also not so easy. Thus, we
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learn a softmax classifier on the given data where the labels of each vector are the cluster
index previously given by the k-means. Doing so helps in learning the soft boundaries
for the clusters that can be applied to both types of hard and soft BoW generations. The
probability of a local feature descriptor fi belongs to jth cluster is

p(yi = j|fi;θ) =
eθ

T
j fi

�k
j=1 e

θT
j fi

. (3.3)

The θ is learned by maximization of the class cross entropy. The object function for
the softmax classifier along with regularization is

J(θ) =− 1

n

�
n�

i=1

k�

j=1

I(j = yi) log

�
eθ

T
j fi

�k
j=1 e

θT
j fi

��
+

λ

2

k�

i=1

d�

j=1

θ(i, j)2. (3.4)

The loss function in Equation (3.4) is solved using scaled conjugate gradient[78].

3.1.2 Weight quantization and hashing

The parameter θ contains (k.d) real numbers and the computation of p(yi = j|fi;θ) re-
quires computation of k inner product of d-dimensional real-valued vectors. Although, its
cheaper than the k-means and GMM, it still poses significant challenges. Also, a known
fact is that the θ contains significant redundancy and the operations on real numbers (gen-
erally represented using 32-64 bits) are much more complex than the integer-real numbers.
In order to exploit these facts, first we apply quantization on the values of the parameter θ
and then maintain a hash table h where the quantization and hash functions are defined as
follows:

Definition 3.1. The quantization function q : R → Z on a real scalar parameter θ ∈ R is

defined as

z =q(θ) =

�
θ

max(abs(θ))
× L

�
, (3.5)

Definition 3.2. The hash function h : Z → Z∗ on a integer key z ∈ Z is defined as

h(z) = z + L, (3.6)

where, �·� denotes the nearest integer and L is a free parameter such that |h| = 2L+ 1

is the size of the hash table. The Algorithm 3.1 provides the pseudocode of the procedure
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of the learning softmax parameters, quantization, and generation of hash table.

Algorithm 3.1 Fast-BoW: Gen_Vocabulary
Input: Q : Set of local feature descriptors for vocabulary generation, m : Cardinality of
the Q, i.e., |Q|, k : Size of the vocabulary i.e., |V|
Output: θ∗ : Softmax parameters, h : Hash table
gen_vocabulary
[V , idx] = k-means(Q, k);
model = softmax(X = Q, Y = idx);
θ = model.θ;
H = Unique values in the range of q(θ);
θ∗ = h(q(θ)); {Replace the values of the θ with its hash value (i.e. indexes in h)}

Once, we get h and θ∗, then the BoW histogram is generated using Algorithm 3.2 where
for each local feature descriptor, it first groups and then does summation of its values in a
hash bucket �s� according to similar parameter indexes in respective θ∗

j ’s then do the multi-
plication of the real values vector �s� and the quantized integer-valued vector h which can
be represented using less number of bits. Doing so reduces the number of multiplications
to less than |h| which also contains one operand as short integer thus speeds up the entire
process and the complexity reduces to O(|h| k) from the O(d k).

Algorithm 3.2 Fast-BoW: Gen_Histogram
Input: F = {f1, · · ·, fm} :Set of m local feature descriptors of a video, h :Hash table,
θ∗ :Hash values of parameters, k :#Clusters, d :#Dimensions
Output: x :Global BoW feature descriptor
gen_BoW

for i = 1 : m do
max_idx = −1; max_sum ← −∞;
for j = 1 : k do
s ← 0; sum ← 0;
for l = 1 : d do
Sθ∗jl += fil;

end for
for l = 1 : |h| do
sum += sl × hl;

end for
if sum > max_sum then
max_sum ← sum; max_idx ← j;

end if
end for
xmax_idx += 1;

end for

23



3.1.3 Hierarchical tree for hard BoW generation

In the hard BoW generation, we need to find most probable cluster only unlike soft BoW
where we need to compute the probabilities with all the clusters. Thus to further speed
up and sustain the classification accuracy of the simple hierarchical trees, we apply similar
techniques as discussed above. At each internal node, we learn and maintain a hash table
of softmax classifier’s parameters with k = 2. Thus, the final complexity of finding a
cluster reduces to O(|h| log2 k) from O(|h| k) for soft clustering and O(d log2 k) for simple
hierarchical trees.

3.2 Experiments and results

All the methods are implemented in C++. The experiments are conducted on a machine
with Intel(R) Xeon(R) CPU E5620@2.40GHz processor and 32GB RAM. We conducted
experiments on various large-scale and challenging video datasets for human action recog-
nition, namely, KTH [100], HMDB51 [58] and UCF101 [108]. The space-time interest
points (STIP) [59] are used as the local features descriptors for the generation of the BoW
per video clip. Table 3.1 provide the details of the datasets used in the experiments.

Table 3.1: Details of the datasets used
Dataset Classes Train Test Avg.Length

Videos Videos (Desc.)
KTH 6 383 216 4 sec. (849)
HMDB51 51 3,567 1,530 5 sec. (1456)
UCF101 101 9,535 3,782 7.21 sec. (1574)

The sequential BoW generation (Seq-BoW) and tree-based BoW generation (Tree-
BoW) approaches are used as the baseline for both the effectiveness (classification ac-
curacy) and the computational time. To measure the effectiveness of the generated BoW
features, we use the linear SVM with default hyper-parameters for all the existing and
proposed approaches because the objective of this research work is to scale the process
of BoW generation while preserving the effectiveness of the generated features instead
of improving the state-of-the-art on these datasets. However, one can use a scalable kernel
SVMs [106, 104] with a suitable kernel to further improve the classification accuracy. Also,
we keep the train and test split as described in the respective dataset. In case of multiple
train-test splits, the performance is the averaged for the splits. The performance of both
the existing and the proposed approach are compared for various sizes of the vocabularies
(i.e. k = {128, 1024, 8192, 65536}). Fig. 3.2 illustrates the challenge of the rapid increase
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in the computation time for the sequential BoW with an increase in the vocabulary size on
the KTH action dataset. It shows that large vocabulary based BoW increases the classifica-
tion performance but also increases the time taken in the BoW generation rapidly and after
certain vocabulary size, it becomes impractical to be used in real-time. For example for
the vocabulary sizes k = 8192 and k = 65536, the time taken by Seq-BoW is 3.295 and
31.076 seconds, respectively for the video of 4 second duration.
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Figure 3.2: Effect of the vocabulary size on classification accuracy and BoW generation
time.

Table 3.2: Comparison of the classification performance (%) of the proposed Fast-BoW
approach with the existing Seq-BoW and Tree-BoW approaches

Number of Clusters (k)
Dataset+Method 128 1024 8192 65536
KTH+Seq-BoW 85.19 90.28 93.06 95.37
KTH+Tree-BoW 79.17 88.89 86.11 90.74
KTH+Fast-BoW 82.41 89.81 89.96 90.74
HMDB51+Seq-BoW 08.17 13.99 15.16 15.37
HMDB51+Tree-BoW 06.54 11.11 13.40 11.50
HMDB51+Fast-BoW 07.19 13.59 13.79 14.38
UCF101+Seq-BoW 16.13 30.88 36.20 39.66
UCF101+Tree-BoW 12.14 27.10 32.84 32.18
UCF101+Fast-BoW 14.99 27.47 35.69 37.82

Table 3.2 shows the performance of the classification for existing and proposed methods
on various sizes of the vocabularies. The results demonstrate that the proposed approach
Fast-BoW is significantly reduced the loss in the effectiveness of the generated BoW in
comparison to the hierarchical clustering based tree approach. The results in Table 3.3
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illustrate that the Fast-BoW outperform all the existing approaches with ≈ 4000× and
≈ 12×, respectively.

Table 3.3: Comparison of time (milliseconds) taken in BoW generation per test video.
Number of Clusters (k)

Dataset+Method 128 1024 8192 65536
KTH+SeqBoW 33 345 3295 31076
KTH+TreeBoW 3 4 5 7
KTH+FastBoW 0.24 0.32 0.39 0.57
HMDB51+SeqBoW 40 585 5152 35805
HMDB51+TreeBoW 5 6 9 13
HMDB51+FastBoW 0.37 0.49 0.71 1
UCF101+SeqBoW 129 219 9265 18470
UCF101+TreeBoW 14 15 20 26
UCF101+FastBoW 1 1 2 2

Values greater than 1 ms are rounded to nearest integers.

Figure 3.3 gives the comparison of the loss in the classification performance of the
existing Tree-Bow and the proposed Fast-BoW with respect to the sequential approach Seq-
BoW. The figure clearly shows that the loss in the proposed Fast-BoW is significantly lower
than the loss in the Tree-BoW for various vocabulary size across all three datasets. Thus,
the proposed Fast-BoW preserves the effectiveness of the BoW features in comparison to
the existing Tree-BoW approach.
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Figure 3.3: Comparison of the classification loss in existing tree based approach and the
proposed Fast-BoW approach with respect to sequential BoW.

Figure 3.4 illustrate the speed-up gain by the proposed Fast-BoW with respect to the
existing Seq-BoW and Tree-BoW approaches. It can be observed from the figure that the
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Figure 3.4: Scaling factor of Fast-BoW with respect to sequential BoW approach and the
existing tree based approach.

proposed Fast-BoW gains several orders of speed-up over the existing approaches. For
sequential approach, it is ≈ 100× faster for the vocabulary size k = 128 and this scale
increase with the increase in the vocabulary size. Also, it achieves ≈ 12× speed up over
the Tree-BoW approach when keeping the |h| =

√
d, where d = 162 is the dimensions

of the STIP descriptors. As the reducing the |h| (for example |h| = log2 d) results into
further speed-up but increases the loss in the classification performance. Also, the proposed
approach takes ≤ 2 milliseconds only for each video of duration 4 − 7.21 seconds. Thus
making the BoW approach practical to be used in real-time with increased vocabulary sizes
and increased effectiveness.

3.3 Summary

The proposed Fast-BoW scales the computational complexity of hard and soft bag-of-words
generation to O(|h| log2 k) and O(|h| k) from O(d log2 k) and O(d k), respectively. While
it preserves better the effectiveness of the generated features than the existing hierarchical
clustering tree-based approach. The use of softmax for predicting the cluster probabilities
for a local feature vector not only improves the clustering performance but also provides the
flexibility to further scaling by applying quantization and hashing. The experimental results
show that the choosing |h| =

√
d gives almost no loss to the final classification accuracy

while choosing |h| = log2 d results into a mild loss. Thus the proposed Fast-BoW shows
the efficacy to be used in real-time applications with large vocabularies.
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Chapter 4

Graph representation for abnormal activity
recognition

Abnormal activity recognition is a challenging task in surveillance videos. In order to de-
tect abnormal activities in surveillance videos or crowd behavior analysis, various kinds of
activity modeling are proposed in the literature [9, 13, 50, 63, 86, 67, 68]. The widely used
bag-of-words (BOW) approaches [20, 121, 125] show excellent performance in action and
activity recognition. A bag-of-words (BOW) approach computes an unordered histogram
of visual words occurrences that encodes only the global distribution of low level descrip-
tors, while it ignores the local structural organization (i.e. geometry) of the salient points
and corresponding low level descriptors. However, use of such local structure of salient
points and corresponding low level descriptors may lead to discriminative video repre-
sentation which further leads to better recognition of video activities. In this chapter, we
propose an approach for abnormal activity recognition based on graph formulation of video
activities and graph kernel support vector machine.

The interactions of entities in a video are formulated as a graph of local actions which
includes appearance and motion information along with geometric relationships among
various interactions of the entities in a video activity. The vertices of the graph are spatio-
temporal interest points and an edge represents the relation between appearance and dy-
namics around the interest points. The edges of the graph are determined using a fuzzy
membership function on the basis of closeness and the similarity of the entities associated
with the interest points. If two points are close to each other, then there is a high probabil-
ity that some interactions take place between the corresponding entities. In order to keep
track of the objects, we also incorporate the appearance and motion of the entities using
histogram of oriented gradients (HOG) and histogram of oriented optical flow (HOF). Once
the activity is represented using a graph, then for classification of the activities into normal
or abnormal classes, we use a support vector machine with graph kernel. These graph ker-
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nels provide robustness to slight topological deformations in comparing two graphs, which
may occur due to the presence of noise in data. We demonstrate the efficacy of the pro-
posed method on the publicly available standard datasets viz; UCSDped1, UCSDped2 and
UMN. The experiments demonstrate the superiority of the proposed work over the exist-
ing methods which are based on dense trajectories and bag-of-words with various feature
descriptors.

The rest of the chapter is organized as follows: Section 4.1 describes the proposed
approach for abnormal activity recognition. Section 4.2 discusses the experimental setup,
datasets and results. The summery of the chapter is provided in section 4.3.

4.1 Graph formulation of activities in a video

The proposed framework for abnormal activity recognition in surveillance videos is pre-
sented in this section. The block diagram of the proposed framework is shown in Fig. 4.1.
The proposed framework consists of three steps. In the first step, the incoming video feed
is split into video clips of size T and space-time interest points in each video clip are ex-
tracted. In the second step, a set of undirected graphs of local activities is generated. The
vertices of the graphs are space-time interest points and an edge represents a possible in-
teraction. In the third step, each activity is classified into normal or abnormal categories.
Which is further classified into local abnormal activity recognition and global abnormal ac-
tivity recognition. For local activity classification a max-margin classifier is trained using
graph kernel support vector machine from training videos. For global activity recognition,
bag-of-graphs (BoG) feature vectors are generated for a set of local activity graphs and a
support vector machine model trained from BoG feature vectors from training videos is
used to declare the global behavior. Each of these steps are discussed in detail below:

4.1.1 Detection of space-time interest points

The space-time interest points [59] are salient points, which are the regions in f : R2 ×
R → R having significant eigenvalues �1,�2, and �3 of a spatio-temporal second-moment
matrix µ, which is a 3-by-3 matrix composed of first order spatial and temporal derivatives
averaged using a Gaussian weighting function g(.; σ2

i , τ
2
i ) with integration scales σ2

i (spatial
variance) and τ 2i (temporal variance). The value of µ is computed as
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Figure 4.1: Block diagram of the proposed framework for abnormal activity recognition in
surveillance videos.

µ = g(.; σ2
i , τ

2
i ) ∗

� L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

�
, (4.1)

where Lx, Ly, and Lt are first-order derivatives with respect to x, y, and t of the linear
scale-space representation L : R2 × R × R2

+ → R of f constructed by convolution of f
with an anisotropic Gaussian kernel g(.; σ2

l , τ
2
l ) with local scales σ2

l (spatial variance) and
τ 2l (temporal variance). The value of the L is computed as

L(.; σ2
l , τ

2
l ) = g(.; σ2

l , τ
2
l ) ∗ f(.). (4.2)

These interest points are detected using Harris3D corner function (H) for the spatio-
temporal domain by combining the determinant (det) and the trace of µ (trace) as follows:

H = det(µ)− k trace3(µ)

H = �1 �2 �3 − k(�1 +�2 +�3)
3, (4.3)

where k is a constant. Then around each salient point p(w, h, t), 72-dimensional HOG [26]
and 90-dimensional HOF [17] descriptors are extracted, which together represent an in-
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terest point in the 3D space by a 162-dimensional feature vector f = R162 called STIP
descriptor. In this way, the STIP feature descriptors include the appearance information
using HoG and motion information using HoF around the salient points. Next we present
the process of graph generation.

4.1.2 Graph formulation of a video

In previous step, we obtain a set of space-time interest points P = {p1,p2, · · · ,pn} where
pi ∈ (x, y, t) represents a 3D point and their respective feature vectors F = {fi}ni=1 for a
given video. In this step, we represent the video as a graph G(P,E), where P is the set of
space-time interest points detected from previous step and E is the set of edge. An edge
between two points pi and pj is decided based on µij , which is the edge existence score
and is computed as

µij =
K(fi, fj)

||pi − pj||2
, (4.4)

where, K(fi, fj) is the similarity measure between the feature vectors fi and fj extracted at
points pi and pj , respectively. Any geometric kernel function can be used as a similarity
measure like linear kernel, polynomial kernel, RBF kernel, or sigmoid kernel. This similar-
ity is high if feature vectors fi and fj are belonging to similar events and/or similar object.
This shows that these points are either too close to each other and share a significant infor-
mation during feature extraction or object at point pi moved to point pj over the time. The
later case is significant for modeling an activity, so geometric distance ||pi−pj||2 between
points pi and pj is in the denominator. In this way, a high value of µij shows significance
towards the existence of an event between these points. The adjacency matrix A of the
graph G is computed as

Aij =




0, ifµij < µT Threshold

1, otherwise
(4.5)

4.1.3 Activity recognition

Once the video activities are represented using graphs, then the next task is to classify them
as normal activity or abnormal activity. This section presents framework for detecting both
local and global activities.
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Recognition of local abnormal activities

A surveillance video may contain multiple local activities occurring simultaneously. Each
local activity can be represented using a graph. A one-class SVM classifier is trained from
the graphs of local activity from the training videos. Then this classifier is used to predict
the behaviour of the local activities in the test videos. The anomaly score γ for a given
graph of local activity G is computed from one-class SVM as below:

γ = f(G) =
m�

i=1

αiK(Gi, G)− ρ, (4.6)

where, {Gi, · · · , Gm} are the m support graphs with their respective Lagrange multipliers
αi, ρ is the threshold value. If the weighted density of the test graph with support graphs
is above a threshold ρ then the activity associate with the graph is classified as normal and
abnormal otherwise. The values of these parameters are computed by solving below dual
problem for n training graphs {Gi, · · · , Gn}:

max
ᾱ

1

2

n�

i=1

n�

j=1

αiαjK(Gi, Gj) s.t.
n�

i=1

αi = 1 and 0 ≤ αi ≤
1

υn
, (4.7)

where υ ∈ (0, 1) control the penalty imposed on the nonzero slack variables, C is the box
constraint parameter, and K(Gi,Gj) is a graph kernel function used for computation of the
similarity between two graphs. A wide range of graph kernels are proposed in the literature
like shortest path kernel and random walk kernel. We used random walk kernel because it is
computationally efficient than other graph kernels. The random walk kernel [31] compares
two graphs by counting number of common random walks between them. The number of
common random walks of length k are calculated by taking direct product graphs because
random walk on direct product graph is equivalent to simultaneous random walk in the two
graphs [31]. The kth power of adjacency matrix of the resultant graph after direct product
gives the number of common walks. The direct product graph of two graphs is defined as
given below:

Definition 4.1 (Product Graph). Let G1(V1, E1) and G2(V2, E2) are two graphs, then G×(V×, E×)

is the direct product graph where the node and edge set of the direct product graph are de-

fined as

V× = (vi1, v
r
2) : v

i
1 ∈ V, vr2 ∈ V

�

E× = ((vi, v
�
r), (vj, v

�
s)) : (vi, vj) ∈ E ∧ (v

�
r, v

�
s) ∈ E

�

Using the definition of direct product graph, Gartner et al. in [31] defined random walk
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kernel as follows:

Definition 4.2 (Random Walk Kernel). Let G1 and G2 be two graphs. Then for product

graph G×, let V× be the node set of G× and A× be the adjacency matrix for the graph

product. With start probability p×, end probability q×, and a sequence of weights (decay-

ing factor) λ = λ1,λ2, ..., (λi ∈ R,λi ≥ 0 ∀i ∈ N), the random walk kernel is defined

as

K(G1, G2) =
∞�

k=1

λkq
T
× �Ak

×p×, (4.8)

where �A = AT [I.(AT .e)]−1 is the normalized matrix.

The kernel in Equation (4.8) is a valid positive semi-definite (p.s.d.) kernel. This can
be proved with the help of following technical lemma:

Lemma 4.3. ∀k ∈ N : �Ak
×p× = vec[( �Ak

2p
�
)( �Ak

1p)
T ].

Lemma 4.4. If X ∈ χn×m, Y ∈ Rm×p, and Z ∈ χp×q, then

vec[ �XY �Z] = [ �ZT ⊗ �X]vec(Y ) ∈ Rnq×1

where ⊗ represents Kronecker product and vec represent the vectorization. The proofs of
Lemma 4.3 and Lemma 4.4 can be found in [118]. Using Lemma 4.3 and Lemma 4.4, we
can write

qT
× �Ak

×p× = qT
×vec[( �Ak

2p2)( �Ak
1p1)

T ] Using Lemma 4.3

= (q1 ⊗ q2)
Tvec[( �Ak

2p2)( �Ak
1p1)

T ] Because q× = q1 ⊗ q2

= vec[qT
2
�Ak
2p2( �Ak

1p1)
Tq1] Using Lemma 4.4

= (qT
1
�Ak
1p1)

T (qT
2
�Ak
2p2) (4.9)

Each individual term of Equation (4.9) equals Φk(G1)
TΦk(G2) for some function Φ, and

is therefore a valid positive semi-definite kernel. The time complexity of computation of
Equation (4.8) is O(n6). A fast random walk kernel is proposed by Vishwanathan et al.

in [117] which reduces the time complexity to O(n3) with the help of Sylvester equation
and conjugate gradient (CG) methods to solve the system of equations,

K(G,G
�
) = qT

×(I− λA×)
−1p×. (4.10)
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Recognition of global abnormal activity

The global activities are the set of multiple local activities. The local activities in a global
abnormal activity need not be abnormal. The co-occurrence of several normal local activity
can lead to an abnormal behaviour. After formulating all the local activities as graphs
representing geometric relations of interactions of entities, we build a high level vocabulary
V = {Gj}nj=1 of graphs using k-median clustering over the set of all graphs G = {Gi}ni=1

by solving the objective function:

arg,min
Gj∈V

�

Gi∈G
K−1(Gi, Gj). (4.11)

Then vocabulary V of graphs of local activities is used to generate, a high level bag-of-
graphs (BoG) representation for global activities. After this, a one-class SVM with a
standered vector kernel is used to classify the global activities into normal or abnormal
categories.

4.2 Experiments and results

The experimental setup, benchmark datasets, and the outcomes of the experiments are dis-
cussed in this section. The value of the λ in Equation (4.10) is set to 1/d2, where d is the
maximum degree in the entire graph dataset. The value of box constraint C in SVM is
set to 1. Three datasets, namely, UCSDped1 [73], UCSDped2 [73], and UMN are used to
validate the proposed approach. Fig 4.2 shows samples of one normal and one abnormal
activities from each of the three datasets and their corresponding graph formulation. We
compare the proposed approach with other existing state-of-the-art methods like bag-of-
visual-words (BoW) using STIP/SIFT and dense trajectory based approaches.

The UCSD anomaly detection dataset is a well-known publically available dataset for
video anomaly detection. The videos of pedestrian are captured using a camera mounted at
an elevation where the abnormal events include the circulation of non-pedestrian entities in
the walkways or anomalous pedestrian motion patterns such as fast motion, zig-zag motion,
etc. The crowd density in the walkways ranges from sparse to very crowded. This dataset
have two subsets, namely, UCSDped1 and UCSDped2. UCSDped1 dataset contains videos
captured in vertical view i.e. groups of people walking towards and away from the camera,
and there is some amount of perspective distortion. It contains 34 training and 36 testing
videos. The performance of classification on UCSDped1 dataset using the proposed ap-
proach is 97.14%, where as the performance of existing bag-of-words approach using STIP
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Figure 4.2: Illustration of normal and abnormal sample and corresponding graphs from all
datasets.

features is 82.00% on the same dataset. The performance of existing other bag-of-words
approaches using SIFT and dense trajectories give 80.00% and 85.71%, respectively, on
the same dataset. UCSDped2 dataset contains the scenes of pedestrian movement parallel
to the camera plane. It contains 16 training video samples and 12 testing video samples.
The performance of classification on UCSDped2 dataset using the proposed approach is
90.13%, where as the performance of existing bag-of-words approach using STIP fea-
tures is 75.82% on the same dataset. The performance of existing other bag-of-words
approaches using SIFT and dense trajectories give 77.62% and 88.86%, respectively, on
the same dataset.

The proposed approach is able to extract significant evidence with discriminative abil-
ity in order to detect abnormal activities efficiently because of incorporation of geometric
structure along with motion and appearance information. There is a significant improve-
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ment in the performance of the proposed approach on both the datasets due to the deviation
in the geometrical structure of the graphs generated during normal walking and the graphs
corresponds to the fast motion, zig-zag motion, and appearance of vehicles as can be shown
in fig 4.2.

UMN datset is also a publically available benchmark dataset from the University of
Minnesota for video anomaly detection containing normal and abnormal crowd videos.
The initial part of each video consist normal behavior while ends with sequences of the ab-
normal behavior. The dataset contains 11 training and 11 testing video scenes in different
environments where a crowd of people walking normally and after some time, they sud-
denly start running. Fig. 4.2 shows that the geometrical structure of the graphs generated
during normal walking (dense and bigger graph) are deviating from the graphs generated
during running (sparse and small graph). In this way, the evidences obtained using the
proposed approach contains significant information in order to detect abnormal activities
efficiently. The performance of classification on UMN dataset using the proposed approach
is 95.24%, where as the performance of existing bag-of-words approach using STIP fea-
tures is 85.00% on the same dataset. The performance of existing other bag-of-words using
SIFT and dense trajectories give 85.00% and 81.00%, respectively, on the same dataset.

It is observed that the proposed approach achieves better performance when compared
to other bag-of-words approached using various descriptors like STIP (HoG+HoF), SIFT,
and dense trajectories on UCSDped1, UCSDped2, and UMN datasets. Table 4.1 gives the
performance comparison of the proposed approach with existing methods.

Table 4.1: Comparison of classification performance (%) of proposed approach with exist-
ing bag-of-words (BoW) approaches using STIP, SIFT and dense-trajectories (DT)

Dataset SIFT+BoW STIP+BoW DT+BoW Proposed
UCSDped1 80.00 82.00 85.71 97.14
UCSDped2 77.62 75.82 88.86 90.13
UMN 85.00 85.00 81.00 95.24

Table 4.2 presents the performance comparison of proposed approach with the existing
state-of-the art methods. It can be observed from the Table 4.2 that the proposed method
achieves consistent performance on all the three datasets used. Also, the proposed ap-
proach on UCSDped1 and UCSDped2 datasets outperforms the state-of-the-art methods
and achieves a comparable performance on UMN datasets. This may be due to the fact that
the performance of abnormal activity recognition depends on the nature/type of anomaly
present in the dataset. Overall, the proposed method achieves better performance across
datasets as it is able to detect a wide variety of abnormal activities in videos.
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Table 4.2: Performance comparison (%) of proposed approach with existing methods
Reference Method UCSDped1 UCSDped2 UMN

Adam et al. 2008 [4] Adam 61.10 54.20 -
Mehran et al. 2009 [75] SF 63.50 65.00 87.40

Kim et al. 2009 [56] MPPCA 64.40 64.20 -
Mahadevan et al. 2010 [73] MDT 75.00 75.00 96.30

Wu et al. 2010 [127] Chaotic Invar. - - 94.70
Cong et al. 2011 [23] Sparse 81.00 - 97.20

Raghavendra et al. 2011 [87] PSO 79.00 - -
Antic et al. 2011 [7] BVP 82.00 - -

Saligrama et al. 2012 [98] LSA 84.00 - 96.60
Roshtkhari et al. 2013 [93] Roshtkhari 85.00 - -

Lu et al. 2013 [71] 150fps 85.00 - -
Li et al. 2014 [65] H-MDT 82.20 81.50 96.30

Kaltsa et al. 2015 [52] Swarm 72.98 73.08 97.01
Chang et al. 2015 [20] GPR 76.30 - -

Proposed Graph 97.14 90.13 95.24

4.3 Summary

In this chapter, we present a novel framework for abnormal activity recognition in surveil-
lance videos. The graph formulation of activities captured in surveillance videos contain
significant discriminative ability to determine the behaviour of activities. The motion of
the objects/entities, their co-relation, and interactions to each others is subsequently repre-
sented by graphs. Finally, the graph formulation of the video activities convert the problem
of anomaly detection into a graph classification problem for this, we exploit support vector
machine together with graph kernel. The use of graph kernel for measuring similarity be-
tween two graphs provides robustness to slight deformations to the topological structures
due to presence of noise in data. The experimental results outperform the existing widely
used methods like dense trajectories, bag-of-visual-words etc., which proves the efficacy
of the proposed approach.
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Chapter 5

Distributed QP solver for kernel SVM using
genetic algorithm

Support vector machine (SVM) is a powerful tool for classification and regression prob-
lems due to its generalization capabilities. However, the time and space complexities of
the existing SVM solvers make it unsuitable for large datasets. In this chapter, we present
Genetic-SVM, an evolutionary computing based distributed approach to find optimal solu-
tion of quadratic programming (QP) for kernel support vector machine. In Genetic-SVM,
novel encoding method and crossover operation help in obtaining the better solution. In
order to train a SVM from large datasets, we distribute the training task over the graphics
processing units (GPUs) enabled cluster. It leverages the benefit of the GPUs for large
matrix multiplication. The experiments show better performance in terms of classification
accuracy as well as computational time on standard datasets like GISETTE, ADULT, etc.

The core of SVM is in solving a quadratic programming (QP), a computationally com-
plex problem which separates support vectors from the rest of the training data. The time
complexity for a standard SVM training is O(n3) and the space complexity is O(n2), where
n is the size of training dataset [114]. It is thus computationally infeasible on very large
data sets. Sequential minimal optimization (SMO) is the state of the art QP solver which is
used in LIBSVM, an implementation of SVM. But this method is sequential, so we can not
leverage the benefit of high performance distributed computing environments like high per-
formance cluster (HPC), cloud cluster, GPU cluster etc. Stochastic gradients decent (SGD)
method can be distributed in order to train on large scale datasets. But this method works
only for linear kernels. There is no existing true parallel or distributed algorithm to solve
the constrained quadratic programming problem used to separate the support vectors from
the training data for kernel SVM. In order to improve the training speed of SVM, many
approaches have been proposed in the literature. These approaches can be categorized into
decomposition based approaches and partitioning based approaches. The decomposition
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based approaches efficiently address the space complexity, however, time complexity re-
mains a challenge. The partitioning based parallel and distributed SVM methods partition
the data into smaller partitions and train SVM over them independently and later combine
them to produce final support vectors. But, the partitioning based distributed SVM ap-
proaches [111, 6, 40, 132] are prone to loss of accuracy and high communication overhead.

In [38], Herrero-Lopez et al. accelerate SVM training by integrating graphics pro-
cessing unit (GPU) into MapReduce clusters. It distributes the matrix multiplication tasks
during the sequential update of the Lagrangian multipliers, however, it does not allow the
desired level of acceleration due to the sequential nature of the SVM. The evolutionary
computing shows success in order to find a solution near to the optimal solution quickly for
NP hard problems and the computations are easy to perform independently in a distributed
environment. Also, the execution of genetic algorithms can be accelerated by utilizing the
massive parallelization power of the GPU cluster for training over large datasets. GPU-
based parallel genetic algorithm are also proposed by [80, 83, 119, 123] for various appli-
cations. Several researchers also use genetic algorithm for parameter tuning, i. e. selecting
the best performing parameters for SVM training [127].

However, in this work, we aim to exploit the evolutionary computing based optimiza-
tion ability of the genetic algorithm to perform distributed computation in finding the opti-
mal solution for the SVM i. e. support vectors and their respective α coefficients. Merz et

al. [76] use genetic algorithm for binary quadratic programming (BQP) problem, but this
is not applicable for the real valued QP problem in SVM. Herrera et al. [37] implement
genetic algorithm based support vector regression. It represents the real numbers into bi-
nary strings and apply traditional genetic algorithm. Also, it does not explore the automatic
tuning of the various parameters used in kernel SVM like regularization parameter C, what
is considered an open research area. In [102], Silva et al. implement least square SVM
(LS-SVM) using genetic algorithm. The disadvantages of these methods are: 1) Sparsity
is not incorporated, due to which all vectors in the training dataset become support vectors
(SVs), and 2) Generation of large number of invalid solutions reduce the computational
efficiency. Apart form these limitations, all the above discussed methods use sequential
computation only. We propose an evolutionary computing based quadratic programming
(QP) solver for distributed training of kernel SVM known as Genetic-SVM.

The rest of the chapter is organized as follows: The proposed Genetic-SVM is discussed
in section 5.1. Section 5.3 describes the experimental setup, evaluation method and results.
We summarize in section 5.4.
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5.1 Operations of Genetic-SVM

This section presents the proposed Genetic-SVM for the optimization of quadratic pro-
gramming (QP) problem for support vector machine (SVM).

Let D = {(x1, y1), ..., (xn, yn)} be the dataset with n feature vectors, xi ∈ Rd be the d

dimensional feature vector and yi ∈ {−1,+1} be the class label. Then the QP problem for
SVM is to maximize:

J(α) = αTe− 1

2
αTQα, (5.1)

where qij = yiyjK(xT
i ,x) and αi ∈ α are the Lagrangian multipliers. A valid solution

must satisfy following constraints:
αTy = 0, (5.2)

0 ≤ αi ≤ C, ∀αi ∈ α. (5.3)

Here, C is a regularization parameter. Solving Equation (5.1) gives α and the value of bias
b. All non-zero αi ∈ α are called support vectors. Let m be the number of support vectors.
Then the decision of a vector x is predicted using support vectors and their corresponding
αi values using the following decision function:

f(x) = sign

�
m�

i=1

αiyiK(xT
i ,x) + b

�
. (5.4)

As discussed earlier, existing sequential minimal optimization (SMO) solves Equation
(5.1) sequentially and also result in a solution that is not necessarily optimal. In the sub-
sequent section, we propose a solver for Equation (5.1) using genetic algorithm in order
to obtain the better solution. Also, we propose a distributed framework which performs
distributed computation over GPU enabled cluster in order to reduce the time for SVM
training.

Here, we propose a genetic algorithm based solver for QP in Equation (5.1). The solu-
tion for Equation (5.1) is the optimal set of Lagrangian multipliers α = {αi}ni=1,αi ∈ R.
As shown in Fig. 5.1, it generates random solutions i.e. αj and represents each solution
using its n values of αi, called random key representation. For evaluating the fitness of
each solution, we use objective function in Equation (5.1) as fitness function. Reproduc-
tion operations are performed directly on the random keys of two candidate solution in
order to generate new solutions. The details of the operations performed in proposed ge-
netic algorithm based QP solver for searching the best solution is given here. As shown in
Fig. 5.1-(A), the steps in a genetic algorithm include:
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Figure 5.1: Genetic-SVM operations. (A) The flow diagram of the steps in genetic algo-
rithm. (B) The process of the solutions representation using random key encoding. (C) The
process of crossover operation for reproduction of new candidate solutions.

5.1.1 Random key encoding

The proposed approach uses random key encoding in order to represent the candidate so-
lutions. The candidate solutions are the positive real valued α ∈ Rn, where n is the
number of vectors in the training set. The encoding should satisfy the constraints given in
Equation (5.2) & (5.3). The Algorithm 5.1 generates α ∈ Rn which satisfies both the con-
straints. Let np be the number of positive class vectors and nn be the negative class vectors.
As shown in Fig. 5.1-(B), it generates two random vectors αp and αn of size np and nn

with sparsity sp and sn, respectively. Hence, output vectors αp and αn have only sp and
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sn non zero values, respectively. In order to satisfy constraints given in Equation (5.2) &
(5.3), the vector αp and αn are normalized with factor fp and fn, respectively, as follows:

αp ← αp × fp; where fp ←
n× C

4× eTαp
, (5.5)

αn ← αn × fn; where fn ← n× C

4× eTαn
. (5.6)

Then the final solution is represented by α as follows:

α ← [αp,αn]. (5.7)

Algorithm 5.1 Random Key Encoding genAlpha(np, nn, d)

Require: np :Number of positive class samples in training dataset.
nn :Number of negative class samples in training dataset.
d :Number of dimensions of sample vector.

1: n ← np + nn;
2: C ← rand_int(d, 1); {random integer in the range 1 to d}
3: sp ← rand_int(np, 1);
4: rp ← rand_int(np, sp); {sp random integers in the range 1 to np}
5: αp

r ← |N (sp × 1)|;
6: fp ← n×C

4×eTαp ;
7: αp ← αp × fp;
8: sn ← rand_int(nn, 1);
9: rn ← rand_int(nn, sn);

10: αn ← |N (sn × 1)|;
11: fn ← n×C

4×eTαn ;
12: αn ← αn × fn;
13: α ← [αp,αn];
14: return α;

5.1.2 Initial population generation

We generate initial population A of size m using Algorithm 5.2.

A ← {αj}mj=1 (5.8)
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Algorithm 5.2 Initial Population Generation
Require: m :Size of the initial population, np :Number of positive class samples in train-

ing dataset, nn :Number of negative class samples in training dataset, d : Number of
dimensions of sample vector.

1: Initialize A[m];
2: for j = 1 → m{ in parallel} do
3: αj ← genAlpha(np, nn, d);{using Algorithm-5.1}
4: A[j] ← αj;
5: end for
6: return A;

5.1.3 Fitness evaluation

In order to evaluate the fitness of a solution α, the objective function J(α) in Equation (5.1)
is used as the fitness function. The fitness value fj for jth solution αj is given by

fj = αT
j e−

1

2
αT

j Qαj. (5.9)

Equation (5.9) gives the fitness of single candidate solution only. In order to utilize the
GPUs efficiently, we can calculate the fitness of all m, αj ∈ A as:

f ← A× e− 1

2
((A×Q).A)× e. (5.10)

5.1.4 Selection operator

For selection, roulette wheel selection is used, however other methods such as rank selec-
tion can also be used. The fitness value of each αj ∈ A is used to associate a probability
of selection. Let fj be the fitness of αj , then its probability of being selected is given by

pj =
fj

Σm
k=1fk

. (5.11)

5.1.5 Reproduction operator

For reproduction, we use only crossover. The crossover operation is a random r-site crossover
in which two parents generate four children. As shown in Fig. 5.1-(B), it randomly selects
two solutions α1 and α2 from mating pool and separates them into αp

1, αn
1 , αp

2, and αn
2 .

Random key crossover is applied separately on pairs i.e. αp
1, αp

2 and αn
1 , αn

2 . The random
key crossover generates random integer indices kp and kn in the range 1 to np and 1 to nn,
respectively. And the values of αp

1 and αn
1 are exchanged with αp

2 and αn
2 at the respective
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indices in kp and kn. However, αp
1, αp

2, αn
1 , αn

2 may violate the constraint in Equation (5.2)
due to exchange of values. So, in order to meet the constraint in Equation (5.2), the error
i.e. the difference in the sum of values exchanged is calculated and adjusted. Then, we get
the updated values of αp

1, αp
2, αn

1 , αn
2 which will result into four new solutions:

c1 = [αp
1,α

n
1 ], (5.12)

c2 = [αp
1,α

n
2 ], (5.13)

c3 = [αp
2,α

n
1 ], (5.14)

c4 = [αp
2,α

n
2 ]. (5.15)

The complete procedure of the new solution generation using random r-site crossover is
given in Algorithm 5.3.

5.1.6 Elitism

Lets us consider the initial population size m = 100. Then, the population at (g+1)th gen-
eration retains 4-best solutions from gth generation. And 92 new solutions are reproduced
using 23(= 92/4) crossover operations using Equation (5.3) and the remaining 4 are the
new solutions generated using Algorithm 5.1 as generated in the initial population.

The proposed Genetic-SVM solves the QP problem in Equation (5.1) with results com-
parable to SMO. However, time taken on a single processor is too high. In order to reduce
the training time, we perform distributed computations in cloud environment as presented
in the next section.

5.2 Distributed execution of Genetic-SVM

The proposed genetic algorithm based QP solver is able to get the best solution for Equa-
tion (5.1) but the time taken is too high. However, unlike sequential minimal optimization
(SMO), the proposed solver is easy to distribute. For Genetic-SVM, we can utilize dis-
tributed environments like GPU enabled HPC or cloud clusters etc. Here, we present two
distributed frameworks for Genetic-SVM over the GPU enabled cluster. The proposed
frameworks work according to the available resources and size of the dataset. The first
distributed Genetic-SVM framework, run multiple instances of the algorithm and share the
best solution among each others in order to achieve fast convergence. The second frame-
work further distribute the task of a single instance of the algorithm for a large dataset.
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Algorithm 5.3 Random r-Site Crossover
Require: α1 :First Parent, α2 :Second Parent, np :Number of positive class samples in

training dataset, nn :Number of negative class samples in training dataset.
1: r ← rand_int(np, 1);
2: kp ← rand_int(np, r);
3: αp

1 ← {αp
1i}

np

i=1; α
p
2 ← {αp

2i}
np

i=1;

4: tp1 ← {αp
1i}k

p
r

i=kp1
; tp2 ← {αp

2i}k
p
r

i=kp1
;

5: {αp
1kpi

← tp2i}ri=1; {αp
2kpi

← tp1i}ri=1;

6: � ← eT tp1−eT tp2
2

7: if � > 0 then
8: l ← rand_int(np, 1);
9: αp

1l ← αp
1l + �;

10: while � �= 0 do
11: l ← rand_int(np, 1);
12: if αp

2l ≥ � then
13: αp

2l ← αp
2l − �; � = 0;

14: else
15: αp

2l ← 0; � ← �− αp
2l

16: end if
17: end while
18: else
19: � ← |�|;
20: l ← rand_int(np, 1);
21: αp

2l ← αp
2l + �;

22: while � �= 0 do
23: l ← rand_int(np, 1);
24: if αp

1l ≥ � then
25: αp

1l ← αp
1l − �; � = 0;

26: else
27: � ← �− αp

1l; α
p
1l ← 0;

28: end if
29: end while
30: end if
31: Similarly calculate αn

1 and αn
2 .

32: c1 = [αp
1,α

n
1 ]; c2 = [αp

1,α
n
2 ]; c3 = [αp

2,α
n
1 ]; c4 = [αp

2,α
n
2 ];

33: return {c1, c2, c3, c4};

5.2.1 Distributed Genetic-SVM

The first framework is applicable when one virtual machine (VM) is able to store the data
in physical memory but training time is too high. Here, we are considering availability of
virtual resources provisioned over cloud environment. As shown in Fig. 5.2, we launch
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multiple instance of the GPU enabled virtual machines (VMs). One VM acts as master
VM and all others act as worker VMs. Here, we maintain a global pool, AG = {α(k)}Nk=1

at master VM and a local pool Ak
L = {αj}mj=1 at kth worker VM, k = 1, 2, ..., N . The

kernel matrix Q is copied to all the worker VMs. Each worker VM generates the initial
population, then do the fitness evaluation and send the best solution to the master VM.
Master VM collects all the local solutions in the global pool AG, then it selects the global
solution from the local solutions, and then broadcasts the best solution to all worker VMs.
Further, each worker VM prepares the next generation which consists of global best so-
lution, local best solution (if not winner worker VM), reproduced children solutions from
previous generation solutions, and randomly generated solutions. This process is repeated
until convergence. The fitness value (f) is calculated using Equation 5.10. Also, in this
process, the N worker VMs send only best solution, thus, total N messages are passed over
the network after each generation. This leads to very low communication which is of the
order of O(N). The sharing of best solutions leads to fast convergence.

Figure 5.2: Proposed architecture of distributed Genetic-SVM

5.2.2 Distributed Genetic-SVM for large dataset

The first distributed framework i.e. Distributed Genetic-SVM is not applicable for large
dataset. Because the size of kernel matrix increases quadratically O(n2) with an increase
in dataset size n. Thus, for a large dataset it is not an efficient way to store kernel matrix
in one worker VM and execute the task. Thus in this framework for distributed Genetic-
SVM, we distribute the kernel matrix Q into L sub-worker VMs with GPU support, while
worker VMs do not require GPU support as shown in Fig. 5.3. Each sub-worker VM with
identifier l = 1, 2, ..., L contains Ql = {{qij}ni=1}

ln
L

j=
(l−1)n

L

, a part of kernel matrix Q, having

size n× n
L

. The partial fitness f l is calculated at each sub-worker machine as follows:

P ← A×Ql, (5.16)

47



Al ← {{aij}mi=1}
ln
L

j=
(l−1)n

L

, (5.17)

P ← P.Al, (5.18)

f l ← (Al × e+
1

2
P× e). (5.19)

Finally, the fitness value f is calculated as

f ←
L�

l=1

f l. (5.20)

Figure 5.3: Proposed architecture of distributed Genetic-SVM for large dataset

5.3 Experiments and results

The genetic algorithm is implemented in C/C++, CUDA, and OpenMPI over a GPU cluster
running Ubuntu 14.04. The cluster contains two machines with specifications: 1) First
machine has 2 Intel Xeon processors with 12 core each, 64GB physical memory and 6
Nvidia Tesla K20Xm GPUs with 5GB device memory each. 2) Second machine has 2
Intel Xeon processors with 24 core each, 128GB physical memory, 2 Nvidia Tesla K20c
GPUs with 6GB device memory each. The large matrix multiplications are accelerated
using GPUs. We have also successfully tested Genetic-SVM on HPC with 512 nodes and
on the Amazon Elastic Compute Cloud (EC2) using StarCluster [77]. StarCluster is a tool
for dynamically creating, managing cluster on Amazon EC2 for testing MPI programs.
Table 5.1 provides the details of the datasets used in the experiments.

The results in Fig. 5.4-(A) show the fitness values of candidates in the pool after 2400
epochs and the results in Fig. 5.4-(B) reflect the improvement to the fitness index over the
epochs. The presented experiment is conducted on the GISETTE dataset of OCR published
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Table 5.1: Details of datasets used to evaluate the performance of Genetic-SVM
Dataset Dimensions Training Size Test Size
GISETTE 5000 6000 1000
ADULT (A1A) 123 1605 30956
ADULT (A2A) 123 2265 30296
ADULT (A3A) 123 3185 29376
ADULT (A4A) 123 4781 27780
ADULT (A5A) 123 6414 26147
ADULT (A6A) 123 11220 21341
ADULT (A7A) 123 16100 16461
ADULT (A8A) 123 22696 9865
ADULT (A9A) 123 32561 16281
MUSHROOMS 112 5000 3124
SVMGUIDE1 4 3089 4000

during a NIPS challenge. The results show that the classification performance of the pro-
posed approach is very close to sequential SVM. The results in Table 5.2 show the good
classification ability of the proposed algorithm with a negligible loss of accuracy which can
be further reduced by running algorithm for more number of generations.
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Figure 5.4: Performance of classification for Genetic-SVM on the GISETTE dataset after
2400 epoch.

Fig. 5.5 shows the performance of classification while running the Genetic-SVM al-
gorithm multiple times. The results show very low standard deviations when running 10
times. Also, Fig. 5.5 shows that the proposed approach obtains the significant improve-
ments in first few hundred iterations only, which shows the suitability of the encoding
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method and crossover operations used for generating new solutions. Fig. 5.6 shows the
time taken by 100 worker VMs. Finally, when running the complete pipeline of the al-
gorithm on various datasets, the Genetic-SVM algorithm performs approximately 10-20
times faster than the LIBSVM as shown in Table 5.3.

Table 5.2: Performance of classification (%) of the Genetic-SVM and comparison with
SMO using LIBSVM

DataSet SMO Genetic-SVM Accuracy
Used Accuracy (%) Loss (%) Accuracy (%)
GISETTE 97.60 97.60 0.0
ADULT (A1A) 83.59 83.19 -0.4
ADULT (A2A) 83.98 83.28 -0.7
ADULT (A3A) 83.84 83.54 -0.3
ADULT (A4A) 83.96 83.26 -0.7
ADULT (A5A) 84.17 83.37 -0.8
ADULT (A6A) 84.17 83.27 -0.9
ADULT (A7A) 84.58 83.78 -0.8
ADULT (A8A) 85.01 84.31 -0.7
ADULT (A9A) 84.82 84.52 -0.3
MUSHROOMS 97.09 96.39 -0.7
SVMGUIDE1 66.93 66.33 -0.6

Table 5.3: Training time (seconds) of the Genetic-SVM and comparison with sequential
SVM

Dataset Sequential SVM Genetic-SVM (Mean±Var.) Scaling
Used (Seconds) (Seconds)
GISETTE 214 9.2091±1.3368 ≈ 20×
ADULT (A7A) 11.84 0.8013± 0.1307 ≈ 15×
ADULT (A8A) 22.97 1.4556± 0.2023 ≈ 15×
ADULT (A9A) 45.85 2.5473± 0.7359 ≈ 18×

The proposed Genetic-SVM performs better than existing partitioning based distributed
SVMs approaches in terms of classification accuracy and time taken in training a SVM
model. The proposed approach successfully achieves a comparable accuracy to sequential
SVM for GISETTE dataset. Along with improvement in accuracy, proposed approach also
performs approximately 3 times faster than the approach by You et al. [132]. Also, it can be
observed that the loss of accuracy is less than 0.9% on other datasets, which demonstrates
the efficacy of the proposed approach.
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Figure 5.5: Performance of genetic algorithm based optimization of QP problem for 10 runs
using population size 1000 and pool size 2000 at each slave process and using population
size 100 and pool size 1000 at master process.
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Figure 5.6: Time taken by each process for 10 generations, each for population size 1000
and pool size 2000 at work VMs.

5.4 Summary

The partitioning based distributed SVMs have generally proven to be faster than sequen-
tial SVMs on large datasets. However, classification performance still lags behind. In the
proposed Genetic-SVM, we aimed at providing a distributed SVM approach which retains
or improves the classification performance of sequential SVM while having the computa-
tional time gains as of distributed approachs on a large dataset. The Genetic-SVM shows
success in order to find the better solution quickly and also the computations are efficiently
distributed over GPU cloud cluster to leverage the benefit of the GPUs for large matrix mul-
tiplication. The experiments show better performance in terms of classification accuracy as
well as computational time.
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Chapter 6

DiP-SVM : Distribution preserving distributed
kernel SVM

The Genetic-SVM proposed in the previous chapter relies on the availability of large pool
of computational resources thus cannot scale much because of resource constraints. In
this chapter, we propose a data partitioning based approach for scaling the training of
kernel SVM. In data partitioning approaches, the task of learning a support vector ma-
chine for large datasets has been performed by splitting the dataset into manageable sized
“partitions” and training a sequential support vector machine on each of these partitions
separately to obtain local support vectors. However, this process invariably leads to the
loss in classification accuracy as global support vectors may not have been chosen as local
support vectors in their respective partitions. We hypothesize that retaining the original
distribution of the dataset in each of the partitions can help solve this issue. Hence, we
propose DiP-SVM, a distribution preserving kernel support vector machine where the first
and second order statistics of the entire dataset are retained in each of the partitions. This
helps in obtaining local decision boundaries which are in agreement with the global deci-
sion boundary, thereby reducing the chance of missing important global support vectors.
We show that DiP-SVM achieves a minimal loss in classification accuracy among other
distributed support vector machine techniques on several benchmark datasets. Also, few
of the existing approaches [40] do not rely on local support vectors and instead transfer
all the data points to next level which leads to very high communication overhead. We
further demonstrate that our approach reduces communication overhead between partitions
leading to faster execution on large datasets and making it suitable for implementation in
distributed environments.

The rest of the chapter is organized as follows. The details of the distribution preserv-
ing partitioning are presented in section 6.1. Section 6.2 presents the process of distributed
learning in a cluster. Section 6.3 discusses the experimental setup and results. We summa-
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rize in section 6.4 with future directions.

6.1 Distribution preserving partitioning

The proposed DiP-SVM approach operates in two distinct phases, namely, distribution pre-

serving partitioning (DPP) phase and distributed learning phase. In this section, we present
a detailed discussion of the distribution preserving partitioning phase which aims for the
balanced partitioning of data points while preserving the statistical properties of the entire
dataset. Let D = {(xn, yn)}Nn=1 is the dataset consisting of N data points with mean µD

and variance ΣD. In this phase, we divide D into P balanced partitions {D1,D2, ...,DP},
each of size Np =

�
N
P

�
such that the pth partition can be expressed as

Dp = {(xπ(n), yπ(n))}Np

n=1, (6.1)

with mean µDp
and variance ΣDp . The mapping function π(n) gives the corresponding

index in D of a point at index n in Dp. These partitions are created in such a manner that
the first and second order statistics (mean and variance) of each partition is approximately
close to the given dataset D which can be expressed as the following objective functions:

min
P�

p=1

||µDp
− µD|| and min

P�

p=1

||ΣDp −ΣD||. (6.2)

Also, we want each partition to retain the ratio of the number of points in each class as
in the complete dataset D. So, we use the partitioning approach separately on each of the
constituent classes Dc instead of D. To formalize this idea more clearly, we represent D
as a collection of C classes:

D = {Dc}Cc=1, (6.3)

where the cth class contains Nc data points. The research work proposed in [138] attempts
to achive similar objective, however, this method is highly dependant on the initial sets
chosen and thus may lead to partitions whose distribution may not be balanced. In order
to solve the objective functions stated in Equation 6.2, we employ K-means clustering on
each of the classes separately whose objective is defined as

argmin
Dc

K�

k=1

�

x∈Dck

�x− µck�2 , (6.4)

where K is the number of clusters, Dck is the kth cluster of the cth class and µck is the
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mean of points in Dck. From each cluster Dck having Nck points, P balanced partitions
{Dp

ck}Pp=1 are created, each containing Np
ck =

�
Nck

P

�
points selected according to uniform

distribution. This is carried out for all the C classes using Algorithm 6.1.

Algorithm 6.1 Distribution Preserving Partitioning (DPP)
Input: D: {(xn, yn)}Nn=1, xn ∈ Rd, yn ∈ {c = 1, 2, ..., C}, N : #instance (vectors)
in D, d : #dimensions, C : #classes in the dataset, P : #partitions, K : #clusters,
U(Np

ck, Nck) : generate Np
ck random indexes in range [1−Nck].

Output: {Dp}Pp=1: partitions.
1: {Dc}Cc=1 ← groupClasswise(D, K); //where Dc is the set of points belongs to cth

class.
2: for c = 1 → C do
3: {Dck}Kk=1 ← kmeans(Dc, K); //where Dck is the kth cluster of the cth class.
4: for k = 1 → K do
5: for p = 1 → P do
6: Np

ck ←
�
Nck

P

�
;

7: Dp
ck ← Dck[U(Np

ck, Nck)]
8: Dp ← Dp ∪Dp

ck;
9: Dck ← Dck −Dp

ck;
10: Nck ← Nck −Np

ck;
11: end for
12: end for
13: end for
14: return {Dp}Pp=1;

Fig. 6.1, illustrate an example of full dataset D and one of its partition Dp obtained
by using Algorithm 6.1 for the MNIST dataset. It can be observed that partition Dp is a
sparse representation of the full training data set D. Also, the statistical properties of the
partitions {Dp}Pp=1 are approximately close to the statistical properties of entire dataset D.
From the maximum likelihood estimation (MLE), it is intuitive that mean and variance of
the entire dataset D containing N samples (N is very large) will be approximately close
to mean and variance of its partition Dp for sufficiently large size Np, i.e. µDp

� µD and
ΣDp � ΣD. In order to justify this statement, we empirically show that for K number
of clusters (K is large), mean and variance of partitions obtained using Algorithm 6.1
are approximately close to the entire dataset. Table 6.1 presents a comparison between
the mean and variance of the partitions formed using the proposed approach and random
partitioning approach [111, 6] on the kddcup99 dataset (K = 1000 and P = 100). It can be
seen that the partitions formed using DPP are up to 103× closer to the mean and variance
of the entire dataset than the random partitions.
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(A) (B)

Figure 6.1: (A) MNIST [120] dataset containing 60,000 samples. (B) A sample partition
generated using Algorithm 6.1. Colors represent various classes.

Table 6.1: Distortion in the distributions of partitions for random partitioning vs. proposed
distribution preserving partitioning on kddcup99 dataset

Min Mean±Deviation Max
Random ||µD∗

p
− µD|| 1.76e-06 1.21e-05±9.15e-06 4.84e-05

Random ||ΣD∗
p
−ΣD|| 1.14e-05 4.63e-05±2.78e-05 1.83e-04

Proposed ||µDp
− µD|| 7.53e-08 1.10e-07±1.99e-08 1.60e-07

Proposed ||ΣDp −ΣD|| 1.02e-06 1.32e-06±1.90e-07 1.78e-06

6.2 Distributed execution of DiP-SVM

After data partitioning, we use a modified cascade SVM for distributed learning of support
vectors. For each partition Dp obtained using Algorithm 6.1, a sequential SVM model
is trained independently using Equation 6.5 at level l (=0 initially) which results in local
support vectors S(l)

p . At level l for pth partition, SMO solves the following dual objective
function as defined in [24]:

max
α

(l)
p ,b

(l)
p

Np�

i=1

αi −
1

2

Np�

i=1

Np�

j=1

αiαjyiyjK(xT
i ,x), s.t.

Np�

i=1

αiyi = 0, and 0 ≤ αi ≤ C, (6.5)

where αi ∈ α
(l)
p , {(xi, yi)}Np

i=1 ∈ D
(l)
p , and b

(l)
p is the bias. At pth virtual machine (VM), the

local support vectors S(l)
p are those points having αi > 0 i.e.

S(l)
p = D(l)

p {α(l)
p > 0} and α(l)

p = α(l)
p {α(l)

p > 0}. (6.6)
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The distance γxi
of each point (xi, yi) ∈ D

(l)
p from the hyperplane is calculated as

γxi
=

�

(x,y)∈S(l)
p ,α∈α(l)

p

�
αyK(xT ,xi) + b(l)p

�
. (6.7)

All those points having γxi
> Tγ are considered as relevant vectors R(l)

p .

R(l)
p = D(l)

p {γ(l)
p ≥ Tγ} and α(l)

p = α(l)
p {γ(l)

p ≥ Tγ}. (6.8)

Here, Tγ is the threshold on distance from the local hyperplane. For Tγ = 1, only
vectors which are on or within the margin are selected. If Tγ < 1, the number of points
transferred over the network reduces but it may increase the loss of accuracy as some key
points may be missed. For Tγ > 1, more points than the points which are on or within the
margin are passed over the network which may reduce the loss of accuracy incurred.

These relevant vectors R(l)
p at level l are then collected and used as training data to learn

an SVM model in the next level. The training data for partition p at level l+1 (D(l+1)
p ) and

the Lagrangian multipliers α(l+1)
p are calculated as follows:

D(l+1)
p = {R(l)

p , R
(l)
p+�P/2�} and α(l+1)

p = {α(l)
p ,α

(l)
p+�P/2�}. (6.9)

This process is repeated L− 1 times. Finally, at level l = L, it produces the final model
which constitutes the global support vectors S, global Lagrangian multipliers α, and bias
b. This is explained in Algorithm 6.2. We make adjustments to Tγ to achieve a trade-off
between communication overhead and loss of accuracy.

6.2.1 Empirical evaluation

To show that the LSVs obtained from DiP-SVM are very close to the global support vec-
tors in comparison to other recent methods for partitioning in [132, 40], we consider two
cases that can arise: 1) data that can be well clustered and 2) data that has considerable
overlap. In the first case, we use a synthetic dataset, which is a mixture of four 2D Gaus-
sian distributions and is well separable into two clusters. In Fig. 6.2, we can see the two
clusters obtained by the methods in [132, 40] contain data from both the classes. The local
support vectors obtained from both the partitions are dissimilar causing the local decision
hyperplanes to completely contradict each other. The final global decision hyperplane also
shows high deviation from the decision hyperplane produced using a sequential SVM. On
the other hand, the proposed DiP-SVM method produces local and global decision hyper-
planes which show high correspondence to each other as well as to the decision hyperplane

57



Algorithm 6.2 DiP-SVM Learning
Input: D : {(xn, yn)}Nn=1, xn ∈ Rd, yn ∈ {−1,+1}, N : #instance (vec-
tors) in D, d : #dimensions, P : #partitions, K : #clusters, Tγ :Threshold,
params : {KernelFunction,KernelParameters}.
Output: S : Global support vectors, α : Global lagrangian multipliers.

1: {Dp}Pp=1 ← DPP (D, P, K);

2: Level l ← 0;α(l)
p ← 0;

3: while true do
4: for p = 1 → P{Parallelly over cluster} do
5: {α(l)

p , b
(l)
p } ← svm_train(D(l)

p ,α
(l)
p , params);

6: S
(l)
p ← D

(l)
p {α(l)

p > 0};
7: if P = 1 then
8: S ← S

(l)
1 ;

9: return S;
10: else
11: γ

(l)
p ← svm_score(S(l)

p ,α
(l)
p , b

(l)
p , D

(l)
p );

12: R
(l)
p ← D

(l)
p (γ

(l)
p ≥ Tγ);

13: if p > �P/2� then
14: Send {R(l)

p ,α
(l)
p } to V Mp−�P/2�;

15: else
16: Receive {R(l)

p+�P/2�,α
(l)
p+�P/2�} from VMp+�P/2�;

17: D
(l+1)
p ← combine(R

(l)
p , R

(l)
p+�P/2�);

18: α
(l+1)
p ← combine(α

(l)
p , α

(l)
p+�P/2�);

19: end if
20: end if
21: end for
22: P ← �P/2�; l ← l + 1;
23: end while

of sequential SVM (cosine similarity ≈ 1). This shows the suitability of the DiP-SVM over
the existing clustering-based methods in [40, 132] for well-separated clusters.

The case for DiP-SVM grows stronger in a case of overlapping clusters as it not only
produces decision boundaries at the local level which are in strong agreement among
themselves but also preserves the LSVs which contribute to the global decision boundary.
Fig. 6.3 demonstrates the suitability of the DiP-SVM over the existing clustering-based
methods in [40, 132] for overlapping clusters using Gaussian kernel. In order to show the
effectiveness of the selected local SVs at any level we use the relevant SV index defined as

Relevant SV Index =
|Sl ∩ Sl+1|

|Sl| .
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Figure 6.2: Comparison of DiP-SVM with the existing clustering based methods in
[40] [132] for local and global solutions on well separable clusters having points from
both the classes. (Best viewed in colors)

This index measures the number of SVs at level l which are also considered as SVs at
level l + 1. In this experiment, we use a synthetic dataset, which is a mixture of four 2D
Gaussian distributions. We compare the relevant SV index of the local SVs produced by
various clustering based approaches with the GSVs produced at the last step as shown in
Fig 6.3. It can be seen in Fig 6.3(B),(C) and (D) that a large number of LSVs produced
by the existing clustering based SVMs [132, 40] are not included in GSVs. This makes
the relevant SV index between final GSVs and the LSVs quite low (< 0.5). On the other
hand, the LSVs produced by DiP-SVM as shown in Fig 6.3(E),(F) and (G) are in close
agreement. A high relevant SV index of � 1 confirms this proposition. Further, the GSVs
produced in Fig 6.3(G) is closer to the sequential SVM based SVs (relevant SV index of
� 1) than the GSVs produced in Fig 6.3(D).

6.3 Experiments and results

In literature, most of the existing distributed SVM implementations are based on Open-
MPI [34] or Hadoop. In our approach, we use OpenMPI architecture which is a default
standard for distributed computing. The local SVMs as well as the global SVMs were
trained using LIBSVM [15]. In order to evaluate the proposed approach, we conducted
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Figure 6.3: Comparison of DiP-SVM with the existing clustering based methods in
[40] [132] for local and global solutions using non-linear kernel. (Best viewed in colors)

experiments on several real-world datasets from the domains like computer vision, cyber
security, economics, text classification, etc. Table. 6.2 gives the statistics for each of these
datasets.

Table 6.2: Details of the datasets used
Dataset Application Domain #Dim. #Train #Test
gisette [132] Digit Classification 5000 6000 1000
adult [132] Economics 123 32561 16281
ijcnn1 [132] Text Classification 22 49990 91000
cifar [40] Visual Recognition 3072 50000 10000
webspam[40] Spam Detection 254 280000 70000
covtype [40] Forest Classification 54 464810 116202
kddcup99[40] Intrusion Detection 123 4898431 311029
mnist8m [40] Digit Classification 784 8000000 100000
url URL Classification 2396130 3131961 100000

Table 6.3 gives the performance comparison of DiP-SVM with Sequential LIBSVM,
DC-SVM [40], CA-SVM [132] on the datasets as listed in Table. 6.2. All results are calcu-
lated in a cluster of 11 virtual machine where one virtual machine acts as a master node and
remaining 10 virtual machines act as worker nodes. The SVM parameters C and γ for each
dataset are selected using grid evaluation. It can be observed from the experiments that the
DiP-SVM achieve better performance consistently irrespective of the distribution of the
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data. The performance is evaluated in terms of loss of accuracy with respect to sequential
SVM. Each dataset shows the only small change in the accuracy which is comparable to
sequential SVM (less than 0.5%), and better than existing methods DC-SVM [40] and CA-
SVM [132] as shown in Fig. 6.4. However, many times, it also shows small improvements
too. This reduction in loss of accuracy is because of the proposed distribution preserving
partitioning approach. Fig. 6.5 presents the training time performance which shows that the
time take in training on various datasets by proposed DiP-SVM is comparatively less than
the sequential SVM and existing distributed implementations of SVM. The results show
that the training of DiP-SVM is approximate 9× faster than the training of sequential SVM
for each dataset.

Table 6.3: Comparison of classification performance (%) and average runtime (sec.)
Method LIBSVM DC-SVM CA-SVM Proposed Change
Dataset Acc. Time Acc. Time Acc. Time Acc. Time Acc. Scale
gisette 97.70 125 97.60 299 96.00 81 97.90 29 +0.20 4×
adult 85.08 761 84.79 78 83.00 121 84.01 58 −1.07 13×
ijcnn1 98.69 20 98.53 318 90.16 121 98.61 3 −0.08 7×
cifar 89.50 13892 80.15 22330 63.94 2143 89.49 2378 −0.01 6×
webspam 99.28 15056 99.28 10485 99.11 3093 99.15 1942 −0.13 8×
covtype 96.01 31785 95.95 17456 75.04 34025 93.07 3919 −2.94 8×
kddcup99 99.57 37684 99.49 23346 NA NA 99.53 3170 −0.04 12×
mnist8m 99.91 ≈ 106 99.91* NA NA NA 99.99 99874 +0.08 11×
url 96.75 486559 NA NA NA NA 96.88 53374 +0.13 9×

Acc.-Accuracy (%), Change-with respect to LIBSVM, NA - Not Available, *taken from [40]

Fig. 6.6 shows the performance of the DiP-SVM (Levels L = 10 with binary splitting)
on kddcup99 dataset having ≈ 5 million records. It can be observed from the figure that
a large portion of the irrelevant data (≈ 96%) is eliminated at first layer itself as shown
in Fig. 6.6-(A)&(B). Thus from the second layer onwards the amount of data remaining is
quite less for calculating the global decision boundary which leads to low communication
overhead. After the first level, very less data is eliminated as most of the data points in hand
turn out to be support vectors in the subsequent levels as shown in Fig. 6.6-(C). Fig. 6.6-
(D) shows that the data in all the nodes is evenly divided at each layer. Fig. 6.6-(E)&(F)
show the amount of data transferred over the network at each level during training phase on
respective datasets. This shows that the amount of data transferred decreases as the levels
increase. Fig. 6.6-(G) shows the cumulative data transferred. The total data transferred
is ≈ 8% of the entire dataset. Fig. 6.6-(H) shows the time taken to train SVM model
at each level for respective datasets. This figure shows that as the SVs are combined at
each successive level, the computation time increases on an average. However, the top
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level shows a reduction in the training time for this two possible reasons are 1) the use
of Lagrangian multipliers from the previous level due to which it converges into fewer
iterations only, or 2) the size of training data is less in comparison to the previous level.
Fig. 6.6-(I) shows the cumulative time taken to train SVM model at each level. The entire
training takes ≈ 30 minutes for training on the kddcup99 dataset.
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Figure 6.4: A comparison of the loss in classification accuracy (%) of DC-SVM, CP-SVM
and proposed distributed SVM with respect to LIBSVM on publicly available datasets.
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Figure 6.5: A comparison of the training time (seconds) of LIBSVM, DC-SVM, CP-SVM
and proposed distributed SVM on publicly available datasets.

Further, the partitions generated using the proposed distribution preserving partitioning
(DPP) approach are suitable for mini-batch training of DiP-SVM algorithm. In order to
train SVM on a large dataset, mini-batches are generated using DPP. The initial SVM
model is trained using first mini-batch. Then, the distance from the decision boundary
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Figure 6.6: Computational and communication efficiency of the proposed approach on the
dataset kddcup99 consisting of ≈ 5M records.

is calculated for each point in the second mini-batch using Equation (6.7) and only points
closer to the decision boundary are selected and merged with the support vectors obtained in
the previous step. For these new points, the Lagrangian multipliers are set to zero whereas
for the existing support vectors, the old values are retained. Fig. 6.7 presents the results of
classification performance for the mini-batch training of DiP-SVM, in which labels 1-10
on the x-axis correspond to 10 mini-batches, label 11 corresponds to distributed training
of DiP-SVM and label 12 corresponds to the sequential SVM. It can be observed from the
figure that using DPP, even the first mini-batch produces results which are quite close to
the final classification results. Also, the accuracy increases as new points are introduced in
incremental training. The use of previous Lagrangian multipliers and advanced elimination
of irrelevant points before including them into the dataset for next SVM training also result
in improved training time.

All the experiments performed with DiP-SVM confirm its suitability in comparison to
existing approaches for distributed SVM training both in terms of scaling to large datasets
and the performance of classification.

6.4 Summary

While distributed SVMs have generally proven to be much faster than sequential SVMs
on large datasets, loss of classification performance and high communication overhead are
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Figure 6.7: Performance of classification for mini-batch training of DiP-SVM.

still challenging issues. Through DiP-SVM, we aimed at solving both these issues by in-
troducing a distribution preserving kernel SVM approach for a distributed environment.
It was empirically shown that preserving the first and second order statistics of the entire
dataset in each of the partitions helped in obtaining local support vectors which were shown
to be in agreement with the global decision boundary. This also helped the proposed ap-
proach to achieve comparable classification performance to a sequential SVM while having
the computational gains of a distributed approach on benchmark datasets. A comparison
with state-of-the-art distributed approaches revealed that owing to the better distribution of
data, DiP-SVM performs at-par or better on all the datasets tested. We also showed that
the communication overhead between partitions was greatly reduced making it suitable for
distributed environments.
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Chapter 7

Distributed kernel SVM using subspace
partitioning

As discussed in the previous chapter, data partitioning approaches hardly achieve a linear
scale, suffer from high loss in accuracy, and generate high communication overhead in a
distributed system due to the exchange of a large amount of data over the communication
network. The existing tree-based subspace partitioning approaches like DTSVM [16] scale
better than data partitioning approaches but suffer from high loss of accuracy due to the use
of single attribute only for subspace partitioning. Another issue encountered in kernel SVM
is that the large number of support vectors increase the prediction time. In this chapter, we
propose Projection-SVM, a distributed implementation of kernel support vector machine
for large datasets using subspace partitioning. In subspace partitioning, a decision tree is
constructed on projection of data along the direction of maximum variance (i.e., dominant
eigenvector) to obtain smaller partitions (i.e., subspaces) of the dataset. On each of these
partitions, a kernel SVM is trained independently over a cluster thereby reducing the overall
training time. Also, it results in reducing the prediction time significantly as the prediction
is performed by the SVM classifier with less number of support vectors. We demonstrate
the efficacy of the proposed approach on eight standard large datasets from various appli-
cation domains where Projection-SVM is on an average 150 times faster than sequential
SVM while maintaining the classification accuracy. The experimental results show the su-
periority of the Projection-SVM over the state-of-the-art approaches for distributed kernel
SVMs, such as DCSVM, CASVM, and DTSVM.

The rest of the chapter is organized as follows. Section 2 discusses related work. The
proposed distributed kernel SVM approach is discussed in section 3. Section 4 describes
the experimental setup, evaluation method, and results. We conclude in section 5 with
references at the end.
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7.1 Subspace partitioning using decision tree and domi-
nant eigenvector

The proposed approach works in two steps: training and testing. In the first step, a
decision tree is constructed using training data. The master node partitions the entire dataset
into smaller subsets. For partitioning the dataset, it computes the dominant eigenvector
of the entire dataset using an iterative procedure. The entire dataset is projected on the
dominant eigenvector. The spread of the projection is partitioned into B bins, where B

is the maximum number of branches at any node in the decision tree. A child node is
created for each non-empty bin and the data of the bins is assigned to their respective child
nodes. Similarly, at each child node, a sub-tree is constructed, recursively. The decision
tree partitions the data at each node along the direction of maximum variance in the data as
described in next section.

In this work, we partition the entire data space into smaller subspaces. Let D =

{(xi, yi), i = 1, 2, ..., n} be the entire dataset, where xi ∈ Rd is a d-dimensional data
point with class label yi ∈ {−1,+1}. The direction of the maximum variance is given by
the dominant eigenvector of the dataset D. In theory, we can use any eigen decomposition
method like singular value decomposition (SVD) or eigenvalue decomposition for this pur-
pose. However, we use iterative power method for computation of dominant eigenvector to
achieve better computational and spatial efficiency. The computational complexity of SVD
is O(nd2+d3), which is appropriate for computing all d eigenvectors. As our objective is to
compute only dominant eigenvector, we use power method with time complexity O(nd2)

for finding dominant eigenvector efficiently.
Definition 7.1 (Power method for dominant eigenvector). The power method begins with

an initial vector v0 which has a non-zero component in the direction of the dominant eigen-

vector. Then dominant eigenvector w is given by following recurrence relation after t iter-

ations:

w = vt =
Σvt−1

||Σvt−1||
, (7.1)

where Σ is the covariance matrix of the dataset D and is computed as

Σ = cov(D) =
1

n− 1

n�

i=1

(xi − µ)(xi − µ)T , (7.2)

where µ, (µ = 1
n

�n
i xi) is the means of the dataset D.

Equation (7.1) is solved iteratively, multiplying vt−1 by Σ and then normalized. Ini-
tially, v0 is set to e (i.e. the vector with all its values set to one) which guarantees non-zero
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component in direction of dominant eigenvector. Once the dominant vector w is computed,
then the projection of a data point xi on the w is given by

x̂i = wTxi. (7.3)

Fig. 7.1 shows an example of the projection of all the points in D on the dominant eigen-
vector. The entire spread of the projection is partitioned into B bins. According to these
bins, the dataset D is partitioned into B subsets. The following equation assigns the bin b

for a data point xi:

b =





1, if r ≤ 0,

�r� , otherwise,

B, if r > B.

(7.4)

r =
x̂i − x̂min

x̂max − x̂min

× B, (7.5)

where, x̂min and x̂max are the minimum and maximum values of the spread of projection
of data points on the dominant eigenvector, respectively.

-a
xi

s 

𝑥1-axis 

Figure 7.1: Proposed approach for data partitioning using decision tree along the direction
of maximum variability.

Finally, the entire dataset D is divided into B smaller datasets D1,D2, ...,DB. Each
dataset Db contains nb data points. If all the points at a node belong to the same class, then
that node is declared as a leaf node labeled with the corresponding class. Otherwise, data
space at a node is partitioned recursively until it reaches maximum level.
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7.2 Training and prediction in distributed environment

The above partitioning method partitions the entire data space into subspaces. In the deci-
sion tree, for a leaf node, following two scenarios can occur while partitioning: i) all points
in the subspace belong to the same class, or ii) subspace contains data points from both
classes. As discussed earlier, node in case (i) is a leaf node with label same as data points.
However, for case (ii), a kernel SVM model is trained using data points in that subspace.
The smaller kernel SVM models on subspace data are independent and thus enable the pro-
posed approach to be trained in a distributed system. Let D1,D2, ...,DP represent the data
in P subspaces which have data points from both the classes. Then the master node sends
the data of these subspaces to P compute nodes. Each node with identifier p trains a SVM
model on its data as follows:

min
αp

1

2

np�

i=1

np�

j=1

αp,iαp,jyp,iyp,jK(xp,i,xp,j)−
np�

i=1

αp,i, (7.6)

where, αp is the set of Lagrangian multipliers for the data of pth subspace. The final SVM
model SMp constitutes

SMp =




SVp = Dp(αp > 0)

α∗
p = αp(αp > 0),

(7.7)

where SVp are the support vectors and α∗
p are the corresponding non-zero Lagrangian

multipliers. Once training is completed at a compute node, then it sends the trained SVM
model SMp back to the master node. The master node creates a leaf node in the decision
tree at the respective branch which contains the returned SVM model SMp. Algorithm 7.1
gives the pseudo-code of complete procedures of data partitioning and distributed SVM
training for the proposed distributed SVM approach. After successful training, the final
tree model looks like a sample tree shown in the Fig. 7.2. A non-leaf node contains 1)
dominant eigenvector w, and 2) x̂min and x̂max are the minimum and maximum values of
the spread of projection of data points on the dominant eigenvector, respectively. A leaf
node contains either a class label or an SVM model.

7.2.1 Prediction using proposed distributed SVM

In order to test an unknown data point on proposed distributed SVM, we traverse the de-
cision tree from root to leaf; if leaf node has a class label, then this is the predicted label.
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Figure 7.2: Block diagram of the Projection-SVM training over the cluster. Master node
contains a sample tree model. The job scheduler evenly distribute the task of training SVMs
to compute nodes

If a leaf node has an SVM model, then the classification label is predicted using that SVM
model. Let x ∈ Rd be a test data point, and tree be the trained model. When traversing the
tree, at any node, there are three possibilities:

1. Internal Node: If the current node is an internal node, then based on the parameters
(w, x̂min, x̂max), it computes the bin index using Equations (7.3),(7.4) & (7.5) and
selects the corresponding branch. According to the selected branch, it visits a child
node, and this procedure is continued until it reaches a leaf node.

2. Leaf Node with Class Label: If the current node is a leaf node with a class label, then
it assigns the class label of the leaf node as the predicted class of the test point x and
the procedure is terminated.

3. Leaf Node with SVM Model: If the current node is a leaf node with a trained SVM
model SM, then it that SVM model to predict the class of the test point x.
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Algorithm 7.1 Training of proposed distributed SVM
Input: D: {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {−1,+1}, n : #data points in D, d :
#dimensions, B : #branches (max) at each internal node, h : Maximum height of the
tree, � : tolerance for evaluating dominant eigenvector, P : #partitions and also #node
processors
Output: tree: final tree model for prediction
train_SVM(D, h)

1: if ∀yi ∈ D, yi = 1 then
2: return Leaf(1);
3: else if ∀yi ∈ D, yi = −1 then
4: return Leaf(−1);
5: else if h = 0 || n < min_size then
6: return Leaf(svm_train(D));
7: else
8: µ = 1

n

�n
i xi;Σ = 1

n−1

�n
i=1(xi − µ)(xi − µ)T ;

9: t ← 0;v0 ← e;
10: while ||vt − vt−1|| > � do
11: vt ← Σvt−1; t = t+ 1;
12: end while
13: w ← vt;
14: Db ← φ, b = 1, 2, ..., B
15: x̂i ← wTxi, i = 1, 2, ..., n;
16: xmin ← min(x̂i);xmax ← max(x̂i)
17: tree ← Node(w, x̂min, x̂max)
18: for i = 1, 2, ..., n do
19: b ← min

�
max

��
x̂i−x̂min

x̂max−x̂min
× B

�
, 1
�
, B

�
;

20: Db ← Db ∪ (xi, yi);
21: end for
22: for b = 1, 2, ..., B{In parallel} do
23: tree.childb ← train_SVM(Db, h− 1);
24: end for
25: return tree;
26: end if

Algorithm 7.2 gives the pseudo-code of complete procedure of prediction using proposed
distributed SVM.

7.2.2 Time complexity analysis

The partitioning time at a node includes the time taken in computing the dominant eigen-
vector, projecting data points on the dominant eigenvector, and partitioning data to each
branch, i.e.
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Algorithm 7.2 Prediction using Proposed Distributed SVM
Input: x ∈ Rd :unlabeled data point, d : #dimensions, B : #branches (max) at each
internal node, tree: trained tree model
Output: y: predicted label for x
predict_SVM(tree,x)

1: if isLabel(tree) = true then
2: y ← tree.ClassLabel;
3: else if isSVM(tree) = true then
4: svm_model ← tree.svm_model;
5: y ← svm_model(x);
6: else
7: w ← tree.w;
8: xmin ← tree.xmin; xmax ← tree.xmax;
9: x̂ ← wTx

10: b ← min
�
max

��
x̂−x̂min

x̂max−x̂min
× B

�
, 1
�
, B

�
;

11: y ← predict_SVM(tree.childb,x);
12: end if
13: return y;

Tpartition = O(nd2 + nd+ n) ≈ O(nd2). (7.8)

For sequential decision tree construction, the total time is

Ttree =
�

h

Bh�

b=1

n

Bh
d2 = O(nd2h). (7.9)

However, for parallel construction of decision tree, the total time is

Ttree =
�

h

n

Bh
d2 = nd2

�

h

1

Bh
≈ O(nd2), (7.10)

since, 1 ≤ �
h

1
Bh ≤ 2. The best case for the proposed approach occurs when the data

on all children nodes after partitioning belong to one class only as shown in Fig. 7.3-(B).
Thus in best case, the training time includes only partitioning time as no SVM is trained.
The average case is when the decision tree makes the balanced partitions, and each class
contains data points from both the classes. Then for height h and maximum number of
branches B, the scaling factor (SF) is

SF =
n3

�
n
Bh

�3 = B3h. (7.11)
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The worst case corresponds to highly imbalanced partitioning and the scaling factor in
worst case depends on nmax, the size of biggest partition among all partitions at height h,
i.e.

SF =

�
n

nmax

�3

. (7.12)

7.3 Experiments and results

The proposed distributed SVM is implemented in C++ using libsvm [15], armadillo [99],
openmp and openmpi which are the de facto standards for scientific computing over the
high-performance cluster (HPC). The master node is responsible for data partitioning and
maintaining the tree model. The number of partitions (P ) are determined by P = Bh where
B is the number of branches and h is the height of the tree. The values of B and h depend
on the size of each dataset.

7.3.1 Sketches of correctness

Case-1: Each class as a single Gaussian distribution

If both classes are well separable, and projection of points on the dominant eigenvector is
producing two non-overlapping spreads for both classes as shown in Fig. 7.3(A), then it
splits the data into disjoint partitions containing data points from either class. In this case,
no SVM is trained as the data on each child node belongs to the same class as shown in
Fig. 7.3(B) for B = 2. The overall classification is similar to Fisher’s linear discriminant
analysis (LDA). However, if the projection of the two separable classes is slightly over-
lapping as shown in Fig. 7.3(C), then for each overlapping bins, it trains SVM as shown
in Fig. 7.3(D). In such cases, the overlapping bins contain data points of different classes
which are relatively close to each other. Now, the SVM model is trained with data points
which are more likely to be the support vectors resulting in a faster training of SVM. If
the projection of the points in both the classes on the dominant eigenvector produces two
completely overlapping spreads as shown in Fig. 7.3(E) & Fig. 7.3(G), then each bin will
contain points from both the classes. If classes are separable, then at some height, a de-
cision tree can discriminate the points of the two classes. For example, the tree shown
in Fig. 7.3(F) does it at h = 2 for the case shown in Fig. 7.3(E). However, if classes are
non-separable as shown in Fig. 7.3(G), then it needs to train an SVM model for each bin as
shown in Fig. 7.3(H).
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Figure 7.3: Illustration of the working of proposed distributed SVM for well separable
classes.

Case-2: Each class as a mixture of Gaussian distributions

Let’s consider a complex case where each class is composed of several distributions spread
non-uniformly in the space as shown in Fig. 7.4(A). In the first step, the proposed SVM
splits the complex set of data points into smaller subsets which are relatively less complex
as shown in Fig. 7.4(C). Here, the classification is relatively easier, faster, and may lead
to good performance because it focuses on the local data points only. However, it is also
possible that local boundaries are less regularized in comparison to global decision bound-
ary. Fig. 7.4(B)&(F)-(G) show the local decision boundaries corresponding to each subset.
The experiments on randomly generated data points show 2% − 10% improvement in the
classification performance in comparison to LIBSVM.

First, we conducted experiments on the synthetic data to show that the proposed method
works well for the data having complex distributions. For this, we generated a mixture of
K-Gaussian distributions, where K = 10, 20, 30, 40, 50, 60. The labels to each Gaussian
distribution are assigned +1 or −1 randomly. One such data which is a mixture of 50

Gaussian distributions is shown in Fig. 7.5(A). In the data, both the classes are spread over
the entire space with significant overlap of positive and negative examples. Fig. 7.5(B)
showed the comparisons of the classification performance for sequential SVM and pro-
posed method on the synthetic datasets. The proposed approach performs similar to se-
quential SVM for the low values of K, but for the high values of K, it achieved much
better performance than sequential SVM. Because finding a single separating hyperplane
using SVM for such a complex data distribution is very hard. However, proposed dis-
tributed SVM converts a complex large problem into multiple simple smaller problems and
then solves them independently.
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Figure 7.4: A comparison of the sequential SVM and the proposed distributed SVM on a
sample 2D-data which is a mixture of the 20-Gaussian distributions.
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Figure 7.5: A comparison of the classification performance (%) for sequential SVM and
proposed distributed SVM. (A) Sample dataset. (B) Performance at varius mixture of K-
Gaussian distributions. Class labels are assigned randomly. K = 10, 20, 30, 40, 50, 60,
Number of data points n = 2400.

7.3.2 Comparison with state-of-the-art methods

In order to evaluate the performance of the proposed distributed SVM, experiments are
conducted on various large scale high dimensional datasets from different application do-

74



mains. The datasets used for benchmarking are publicly available at [1, 2]. The datasets
used are same as in Table 6.2 of the previous chapter. The details of the hyper-parameters
(C,γ) for SVM along with values of B and h are given in Table 7.2.

Table 7.1: Performance of classification (%) of proposed distributed SVM and comparison
with LIBSVM, DC-SVM, CA-SVM and DT-SVM.

Method LIBSVM DC-SVM DT-SVM Proposed Change
Dataset Acc. Time Acc. Time Acc. Time Acc. Time Acc. Scale
gisette 97.70 125 97.60 299 97.60 355 97.50 43 −0.20 3×
adult 85.08 761 84.79 78 84.79 45 84.46 9 −0.62 85×
ijcnn1 98.69 20 98.53 318 94.33 27 98.82 1 +0.13 20×
cifar 89.50 13.9K 80.15 22.3K 75.82 540 87.11 193 −2.39 72×
webspam 99.28 15.1K 99.28 10.5K NA NA 98.81 28 −0.47 538×
covtype 96.01 31.8K 95.95 17.5K NA NA 95.77 119 −0.24 267×
kddcup99 99.57 37.7K 99.49 23.3K NA NA 99.02 40 −0.55 942×
mnist8m 99.91 562K 99.91 NA NA NA 99.77 6786 −0.14 166×

NA - Particular method is unable to calculate

Table 7.2: Various evaluation metrics for effectiveness & efficiency of the proposed dis-
tributed SVM.
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gisette 1 2e-4 2 1 97.03 98.00 97.51 0.9500 0.94 42.18 6.86
adult 32 2−7 2 2 87.00 93.65 90.20 0.5292 0.02 3.98 7.00
ijcnn1 32 2 2 5 94.69 92.80 93.74 0.9309 0.07 0.61 0.35
cifar 8 2−22 2 4 88.16 90.70 89.41 0.7295 10.30 183.19 111.27
webspam 8 32 2 10 99.45 98.59 99.01 0.9751 5.49 22.08 12.23
covtype 32 32 2 10 96.23 95.53 95.88 0.9153 3.71 115.20 4.37
kddcup99 256 0.5 2 10 97.13 98.43 97.78 0.9715 23.95 15.64 1.52
mnist8m 1 2−21 2 10 99.74 99.80 99.77 0.9954 1184.1 5602 123.56

The loss of classification accuracy with respect to sequential SVM as well as the ex-
isting distributed SVMs is used for comparison of performance. Table 7.1 shows the per-
formance of the classification and training time on all datasets. The details of various
evaluation metrics used for evaluation of the proposed approach is given in Table 7.2.
The proposed distributed SVM approach reduces the loss in the classification accuracy,
and the results are approximately equal to the results of the sequential SVM. On all the
datasets considered for evaluation, the proposed approach achieves the least drop in the
classification accuracy among existing approach (i.e. DCSVM [40], CASVM [133], and
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DTSVM [16]) as compared to sequential SVM as shown in Fig. 7.6. One possible reason
for this reduction in the loss of classification accuracy is that the proposed approach finds
the decision boundary in the smaller subspaces only, which may help in better classifica-
tion within the subspaces. The decision tree splits the large complex problem into smaller
simple problems which are then solved with more precision.
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Figure 7.6: A comparison of the loss in classification accuracy (%) of DCSVM, CASVM,
DTSVM, and proposed distributed SVM with respect to LIBSVM on various datasets.

The proposed SVM approach reduces the training time as well as testing time signifi-
cantly as shown in Fig. 7.7 and Fig. 7.8, respectively. The reduction in training time can be
attributed to the distributed training of smaller independent SVMs. The proposed approach
uses decision tree for partitioning of the dataset which is computationally less expensive
as compared to kernel-clustering approach for very large datasets. Use of the dominant
eigenvector efficiently divides the entire space along the direction of maximum variance.
This partitioning leads to the reduction in the variance of the data points in subspace. As
there is no conquer step, so it further reduces the training time. This approach also reduces
the communication overhead significantly as it does not send the data from one level to
another after training as required in [40]. The proposed approach needs to communicate
twice, once to send data from the master node to worker nodes and later to receive model
parameters back from worker nodes to master node.

Finally, the tree model predicts the label at leaf nodes using leaf label or trained SVM.
There are three types of nodes in tree model: 1) Internal node which decides to which
subspace the test data point belongs. 2) Leaf node with a class label which directly predicts
the classification label for the test data point without any computation. 3) Leaf node with
SVM model which uses the trained SVM model to predict classification label. As these
SVMs are trained on smaller sub-datasets which generally will contain less number of
support vectors with respect to global SVM.
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Figure 7.7: A comparison of the training time (seconds) for LIBSVM, DCSVM, CASVM,
DTSVM, and proposed distributed SVM on various datasets.
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Figure 7.8: Comparison of the test time of sequential SVM and the proposed approach

7.4 Summary

In this work, a distributed SVM for big data using decision tree and dominant eigenvec-
tor is proposed. This distributed SVM approach trains the model faster and requires less
time in prediction for new data points. The use of dominant eigenvector and decision tree
for partitioning of the dataset is also computationally less expensive with a complexity of
O(nd2) in comparison to kernel k-means approach with a complexity of O(n2d) as pro-
posed in [40] [133]. The proposed approach also achieves good classification performance
with a small change in accuracy. The experimental results on eight standard datasets con-
firm that the proposed approach is on an average ≈ 150 times faster than sequential SVM
and ≈ 10 − 50 times faster than other existing distributed SVM approaches, namely, DC-
SVM, CA-SVM, and DTSVM while sustaining the accuracy.
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Chapter 8

Edge computing-based framework for city-scale
traffic incident detection

In the previous chapters, we proposed scalable and distributed methods for feature rep-
resentation and modeling techniques. However, deploying visual computing methods for
real-time detection of traffic rule violations and incidents in a city-wide surveillance net-
work is a challenging task because it needs to perform computationally complex analytics
on the live video streams of large number of cameras, concurrently. The desired objec-
tives for such a system include high accuracy of the detection task and real-time inference.
However, the existing robust models for object detection contain large number of parame-
ters and need significant computational resources for the real-time inference. Another issue
is the centralized infrastructure or cloud computing based frameworks for deploying such
systems suffer from high network latency due to congestion on the communication links
in transferring live video streams from cameras at site to the central server making them
inefficient for real-time deployment. In this chapter, we propose an efficient framework
using edge computing to deploy our two visual computing applications for active traffic
monitoring in smart city. To overcome the network latency issue, we placed the detector
module in the vicinity of the capturing devices on a embedded hardware called edge-node.
All the edge-nodes send their detected alerts to a central alert database where the end users
access these alerts through a web interface. The first application is the automatic detection
of bike-riders driving without helmet and second application is the automatic detection of
the accident incidents.

The rest of the chapter is organized as follows. Section 8.1 presents the proposed edge-
computing framework. We present the proposed approach for helmetless motorcyclists
detection in Section 8.2 along with empirical results. Section 8.3 presents the proposed
approach for accident detection along with empirical results. We summarize in Section 8.4.
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8.1 Edge computing framework for traffic monitoring

In a city-scale surveillance scenario, the central computing infrastructures are unable to
perform in real-time due to large network delay from video sensor to the central computing
server. For accurate and real-time detection of traffic violations and incidents in such a sce-
nario, we propose an efficient framework using edge computing for deploying large-scale
visual computing applications which reduces the latency and the communication overhead
in the camera network as shown in Fig. 8.1.

Figure 8.1: The proposed edge computing-based framework for traffic monitoring

The entire system architecture consists of three parts, namely, compute node, central
servers, and client interface. The compute nodes are the embedded devices placed in the
close vicinity of the cameras at the sites. The detector modules are placed on the computing
nodes where they process the live video footage from the cameras in real-time without any
delay and send their detected alert to a central alert database at the central server. As the
central servers have better computational resources, we further evaluate the received alerts
using a more reliable model. For example, in helmetless motorcyclists detection, the tiny-
YOLO is used at the detector module at compute nodes with a relatively low confidence
score for the detection of violators and full YOLO with a high confidence score is used at
the server for re-evaluation. Similarly, for the accident detection, at the detector module, the
accident score is generated based on the anomaly score only with a low threshold, while
on the central server, it also combines the intersection of trajectories. This re-evaluation
helps in the reduction of false alarms. The end users can access the detected alerts from the
central alert database through a web interface. We propose two applications of surveillance
video analysis which are discussed in details in the next subsections.
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8.2 Real-time detection of motorcyclists without helmet

As discussed in the chapter 2 existing methods for the detection of motorcyclists without
helmet are not been able to accurately identify motorcyclists without helmets under chal-
lenging conditions such as occlusion, illumination, poor quality of video, varying weather
conditions, etc. Some of the reasons for the poor performance of existing approaches are:
(i) the use of not so efficient handcrafted features for object classification, (ii) the consid-
eration of irrelevant objects against the objective for the detection of motorcyclists with-
out helmet, and (iv) most of the existing methods are computationally complex and thus
not suitable to be used in real-time. The deep networks have gained much attention with
state-of-the-art results in complex recognition tasks such as image classification [57], ob-
ject recognition [48], tracking [45, 51], detection, and segmentation [94, 126] due to their
ability to learn discriminatory features directly from raw data without resorting to manual
tweaking. The challenges in the existing recognition systems and the recent advancement
in deep learning motivate us to design an efficient framework for the detection of motor-
cyclists driving without helmet in real-time that can handle wide variation in viewpoints
and environmental conditions. Specifically, we design a robust and compact method for
detection of moving motorcyclists in real-time using convolutional neural network (CNN)
as shown in Fig. 8.2. The entire framework consists of four steps: (i) detection of motor-
cycles using a CNN based object detector, (ii) localization of the upper body part of the
person riding the motorcycle, (iii) prediction using HH-Net a CNN classifier trained for
binary classification of head and helmets, and (iv) temporal consolidation of the alert to
generate more reliable alerts. The details of the methods used in these steps are discussed
in the following subsections.

Object 
Detector

(Motorcyclist)

Classifier
(Head vs 
Helmet)

Person 
Localization

Decision

Figure 8.2: Block diagram of proposed framework for the detection of motorcyclists with-
out helmet.

8.2.1 Detection of motorcyclist using CNN based object detector

The first step of the proposed framework is the detection of motorcyclists in the incoming
live video stream. This problem falls into the broad category of object detection. The ex-
isting methods for object detection such as YOLO and SSD are showing much-improved
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detection accuracy but unable to perform in real-time on embedded cards with limited com-
putational resources because of the large number of convolutional operations. In this work,
we derive a compact CNN model from tiny-YOLO to detect the motorcyclists in the incom-
ing live video frames from a CCTV camera. As our objective is to detect motorcyclist only,
we restrict YOLO to a single class of motorcycle only. In this way, we get the bounding
boxes of all the bikes present in a frame. In order to accelerate the convolutional opera-
tions, we ternarize the weights in the convolutional layers of the pre-trained network into
{-1,0,+1}. The ternarization of the weights accelerates the detection because it reduces
the number of multiplication operations in convolutional layers. The ternarization of the
weights results into the loss of accuracy in comparison to the original network. However,
we recover this loss by fine-tuning the last fully connected layer and the softmax layer.

8.2.2 Localization of the rider’s head

The output of the previous step is a set of bounding boxes mbbox for each detection of
a motorcycle, we again search for its rider (i.e., a person) and if detected then extend its
height slightly up words to guarantee the complete coverage of the rider’s head. The upper
one-third part of this extended bounding box is the final location for the rider’s head and
the output will be a bounding box bbox(x, y, w, h), where (x, y) are the coordinates of the
center of the bounding box and (w, h) are the width and the height of the bounding box
where all values are the ratio with respect to the size of full input image.

8.2.3 Classification of head and helmet using CNN

The output of the previous step is a bbox(x, y, w, h) locating the region of image consisting
of the motorcyclist’s upper body part as shown in Figure 8.3.

The next task is to ensure whether the detected motorcyclist is wearing the helmet or
not. If the resulted faces are clearly visible then one can easily detect violators by apply-
ing methods such as Viola-Jones [115], HoG [26], SIFT [70], LBP [35], DeepFace [112],
VGG_face CNN descriptor [85], Deep Head Pose [79], etc. to classify them into face vs.
non-face categories. However, in spite of a good resolution camera, the faces are not clearly
visible due to the size of their appearance while covering the entire road. This makes the
task of detection of violators non-trivial and thus all the techniques as mentioned earlier
fail to address this task. The deep learning model like the convolutional neural network
can be applied to extract hidden information relevant for discriminating the heads from the
helmets. As mentioned earlier, most relevant pre-trained deep model VGG16 is also not
able to solve this task due to unclear face appearance and tiny images of the head/helmet.
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Figure 8.3: The sample images of the located motorcycle riders with and without a helmet
of various style in different viewpoints.

The other models have a large number of parameters and thus unable to give a real-time
performance and require a significant number of training samples. Also, the two large
CNNs in Vishnu et al. [116] increased their prediction time and may lead to overfitting as
they are trained from the scratch. To address above mentioned issues, we design a simple,
fast, and robust convolutional neural network classifier which can be trained from relatively
small number of training examples. As we know that the first few layers of the large CNNs
extract generic features and can be used for learning variety of tasks thereafter. Thus, we
leverage this fact and design a tiny network on top of the activation filters received from
the output of an intermediate layer of the detector network. Fig. 8.4 shows the architecture
of the proposed CNN model called HH-Net used for the classification of motorcyclist with
helmet and without a helmet.

CONV-ReLU
3x3x32
3x3x64
3x3x128

MAX_POOL
2x2-s2

128

FC SoftMax

22x22x128 11x11x128

28x28x192

Output:

Helmet

Head

Figure 8.4: Architecture of the proposed network HH-Net for head vs. helmet classifica-
tion.

The input to HH-Net is a tensor of size 28×28×192 which is croped from the output of
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the second covolutional layer of the detector network. Let bbox(x, y, w, h) be the bounding
box located the head of a motorcyclist as computed in the previous step and Ol(width ×
height × channels) is the output of the lth convolutional layer, then the input I to the
HH-Net is determined as1

I = Ol(width ∗ (x− w

2
) : width ∗ (x+

w

2
), (8.1)

height ∗ (y − h

2
) : height ∗ (y + h

2
), 1 : channels), (8.2)

I = resize(I, [28× 28× channels]). (8.3)

HH-Net consists of three convolutional layers with rectified linear unit (ReLU) as activa-
tion, followed by one 2×2 max-polling layer, and one fully connected layer of 128 neurons.
Finally, the network uses a softmax layer with two classes. The resulting activation of each
layer is shown in Fig. 8.5. It can be observed from the figure that the model gives high
activation values corresponds to the helmet while low activation values corresponds to the
head. Also, there is an increase in the intensities of the activation values for the deeper
layers.

Figure 8.5: The activations produced by the various layers of the proposed CNN classifier
after training for helmet (top) and head (bottom).

8.2.4 Temporal consolidation of the alerts:

From the previous phase, we obtain decision on each individual frame whether it contains
the violator(s) (motorcyclists without helmet) or not. As the proposed approach is applied
on continuous video stream, there are multiple alarms raised for a single violator in multiple
frames. However, the correlation between continuous frames is completely neglected in the
detector module. Thus, we consolidated the alerts generated from the detector module over

1the notation i:j represent the range for selection similar to MATLAB notation
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the continuous frames in order to generate less number of alerts with increased reliability
i.e. reducing the number of false alerts. Let yi be the label for ith frame which is either +1

(i.e. at-least one violator is detected) or 0 (i.e. no violator detected). Then for the n frames,
the violation alarm is triggered as

Alarm =




True, if 1

n

�n
i=1 yi > Tf ,

False, otherwise
(8.4)

where the threshold Tf is determined empirically. In our case, the value of Tf = 0.6 and
n = 5 are used.

8.2.5 Experiments and results

The experiments are conducted on a machine running Ubuntu 16.04 Xenial Xerus hav-
ing specifications Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz×48 processor, 128GB
RAM with NVIDIA Corporation GK110GL [Tesla K20c]×2 GPUs. The programs for
helmet detection are written in C & CUDA with the help of the various libraries such as
OpenCV − 2.4.13 for image processing and vision tasks. For training deep models, we
use darknet [90], an open source neural network framework written in C and CUDA. It is
fast, easy to install, and supports CPU and GPU computation.

Datasets used

The performance of the proposed approach is evaluated on two video datasets IITH_Helmet_1
and IITH_Helmet_2 containing sparse traffic and dense traffic, respectively. Both the
datasets are collected by us because there is no public dataset available till the date to the
best of our knowledge. The datasets are made public for future use by the research com-
munity2. The brief descriptions for both the datasets are as follows.

IITH_Helmet_1: This dataset is collected from the surveillance network at Indian In-
stitute of Technology Hyderabad, India (IITH) campus. It is a two-hour surveillance video
data collected at 30 frames per second. Fig. 8.6 presents sample frames from the collected
dataset. We have used the first one hour of the video for training and the remaining for
testing purpose. The training video contains 42 motorcycles, 13 cars, and 40 humans.
Whereas, the testing video contains 63 motorcycles, 25 cars, and 66 humans.

IITH_Helmet_2: This second dataset is acquired from the CCTV surveillance network
of Hyderabad city in India. It is a 1.5 hour video collected at 25 frames per second. The

2https://sites.google.com/site/dineshsinghindian/dataset/
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Figure 8.6: Sample frames from IITH_Helmet_1 dataset showing the various difficulties.

sample frames from this dataset are presented in Fig. 8.7. The first half an hour of the
video is used for training the model and the remaining for testing purpose. The training
video contains 1261 motorcyclists and 4960 non-motorcyclists. Whereas, the testing video
contains 2312 motorcycles, and 9112 non-motorcyclists.

Figure 8.7: Sample frames from IITH_Helmet_2 dataset showing the various difficulties.

Evaluation of classification accuracy

As explained in the section 8.2.1, the use of YOLO is proved to be more robust and reliable
for accurate detection of the motorcyclists irrespective of variations in their appearance and
environmental condition. The proposed model successfully detects all the motorcycles in
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the case of sparse traffic as the case in IITH_Helmet_1 dataset while using a low thresh-
old of 0.3 on the confidence score without a single false detection. While the performance
of motorcycle detection using GMM as used in [25, 116] is ≈ 98% on IITH_Helmet_1
dataset. Also on the dense traffic dataset IITH_Helmet_2, it did not raise any false alarms
even on a very low threshold of 0.2. However, due to high occlusion of various vehicles as
well as the size of their appearance, it missed few motorcyclist. This problem occurs since
the videos collected in the dataset are unconstrained and the cameras are not placed explic-
itly for such a task and thus can be solved easily by putting the camera in an appropriate
place.

However, the classification of the head vs. helmet is challenging as shown in Fig. 8.9
(A) & (C) depict the 2D visualization of the spread of the extracted train and test sam-
ples from IITH_Helmet_1 dataset, respectively. Here, the pattern classes correspond to
head, and helmets are overlapping each other showing that the patterns share high inter-
class similarity along with intra-class dissimilarities which make the classification task
more complex. Thus, the performance of the previously used methods GMM +HoG [25]
achieved only 93.80% on IITH_Helmet_1 dataset and while score a low performance of
57.78% on IITH_Helmet_2 dataset as shown in Table 8.1. However, the performance is
improved slightly using CNN [116] which achieved 98.63% on IITH_Helmet_1 dataset
and 87.11% on IITH_Helmet_2 dataset. However, the proposed deep CNN model as ex-
plained in section 8.2.3 addresses this problem more precisely in comparison to previously
used methods. Here, we present an extensive evaluation of the proposed approach.

The filters for various samples of both the classes as shown in the Fig. 8.8 reveals the
success of the proposed model. The learned hidden deep structures are of discriminating
in nature as well as self-explanatory. The feature maps across the various samples of class
helmet contain a consistently high activation values for the pixels corresponds to a helmet
in the input images. However, for the another class (i.e. head), this structure is clearly
different. As can be clearly shown from the two figures that instead of the head region it
produces high activation for the region corresponds to the solder.

The final observation is the transformation in the distribution of the train and test
datasets from the first input image to the final deep representation (i.e. the output of the
last fully-connected layer of the trained CNN model). Fig. 8.9 show the scatter plots of the
IITH_Helmet_1.

In both the figures the sub-figures (A) & (C) show the original (input raw pixels) dis-
tributions for train and test sets, respectively. Similarly, sub-figures (B) & (D) show the
distributions of the final deep representation for train and test sets, respectively. It can be
observed from the scatter plots that the proposed model learns the distribution of the two
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Figure 8.8: Sample images and their respective activation maps for the two classes, namely,
helmet (followers) and head (violators). [Best viewed in color]
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(A) Original distribution of train dataset. (B) Final distribution of train dataset.
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(C) Original distribution of test dataset. (D) Final distribution of test dataset.

Figure 8.9: Scatter plots IITH_Helmet_1 dataset showing distributions of the two
classes, namely, helmet (green dots) and head (red dots) in train and test datasets before
and after the training. [Best viewed in color]

classes and transforms them into space where they are easy to classify, and the learned
weight of the model also follows the same kind of distribution. Thus it can be concluded
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that the model transforms a complicated and hard to classify distribution of the two classes
into a distribution where the points from two categories are easy to identify. This transfor-
mation results in a high classification accuracy in comparisons to other approached.

The comparisons with the various recently proposed approaches on both the datasets
are presented in the Table 8.1. The proposed system outperforms the existing methods with
a margin of 4.90%, 0.07% on IITH_Helmet_1 and 36.38, 6.95% on IITH_Helmet_2
datasets, respectively.

Table 8.1: Comparison of classification performance of ‘helmet’ vs. ‘without helmet’
Method IITH_Helmet_1 (%) IITH_Helmet_2 (%)

GMM+HOG+SVM [25] 93.80 57.78
GMM+CNN+CNN [116] 98.63 87.11

Proposed Approach: 98.70 94.16

Evaluation of space & time requirement

The proposed approach for the detection of the motorcyclist without a helmet can process
a real-time stream at a speed of 22 fps on GPU (Tesla K20c) and take a total of 943MB

space in device memory. The space requirement on the device for weights of detector CNN
model is 889MB and an additional memory requirement of 54MB for input, intermediate,
and output variables. Similarly, the space requirement on the device for weights of HH-
Net classifier model is 8MB and an additional memory requirement of 1MB for input,
intermediate, and output variables. Thus the proposed framework is highly scalable for
processing multiple real-time cameras streams. To reduce the device memory usage, we
shared the weights of the models of size 952MB across all threads on a GPU card, and
each new thread requires an additional memory of 55MB for storing input, intermediate,
and output variables. Table 8.2 shows the space and processing speed when processing
multiple streams on a single GPU card.

Table 8.2: Space & time requirements of the proposed models.
Size of Model Processing Speed

#Streams Detector Classifier Detector Classifier Combined
(MB) (MB) (MS) (MS) (fps)

1 943 9 40 5 22
2 997 10 59 7 15
3 1051 11 81 10 11
4 1105 12 148 18 6
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8.3 Deep spatio-temporal representation for detection of
road accident

The course of accident can be divided into three stages: pre-collision, collision, and post-
collision. Each stage gives us a significant amount of information but also involves several
difficulties as discussed below.

Pre-collision: The pre-collision case is the most vital information to explain an acci-
dent scenario. Also, this information may become a good evidence for crime scene in-
vestigation. The pre-collision situation is a clear violation of traffic rules by any/both the
vehicles, which include violation of traffic lane, violation of signals at intersections, vio-
lation of speed limit at congested roads, abrupt motion on the road, etc. Finally, we can
say that pre-collision stage is an unusual activity and thus can be easily detected by apply-
ing anomaly [64, 129] detection methods based on the various parameters, such as speed,
trajectories, position, etc.

Collision: The collisions are essential to accident detection, but it is very complicated
to detect and cannot be directly detectable by any general purpose computer vision tech-
nique. One way to detect a collision is to identify the joints of the trajectories of the vehi-
cles over spatiotemporal dimensions. However, the major challenge is the discrimination
between collision and occlusion. For this we use the trajectories over space-time interest
points [59] and improved dense trajectories [121, 122].

Post-collision: As stated above that the collision and occlusions are hard to classify
and may lead to false alarms. These false alarms further can be refined by considering
the post-collision scene. The two most common post-collision scenes include: 1) Fallen
objects at the collision point: As we stated that the intersection of the trajectories of two
vehicles might be a collision or an occlusion. However, after the intersection, if both the
trajectories are continued, and no abrupt or zig-zag motion resulted. Then, the intersection
is merely an occlusion, not a collision. However, if some abrupt motion or discontinued
trajectories have occurred, then the possibility of a collision is high. Measure the time
for which the object remains static. 2) Crowd attention towards the collision point: The
last and final stage of the accident is the crowded road or pedestrians running towards the
collision point.

As shown in Fig. 8.10 the proposed framework for automatic detection of accident in-
cident composed of abnormality detection using the deep representation of spatiotemporal
video volumes (STVVs) and collision detection using intersection points of trajectories.
The anomaly detection works in two steps, the first step is the automatic training of the
deep features and the second step is to determine the outlier score for unknown incidents.

90



The separately stacked denoising autoencoder (SDAE) trained over STVVs from the pre-
viously seen normal traffic video one for each representation is used to generate the deep
representation for the STVVs from the unseen traffic video. The possibility of an accident
is determined based on the reconstruction error and the likelihood of the deep representa-
tions for which outlier score is generated using one-class SVM. All these individual scores
(a.k.a. local score) are then fused to compute the final decision to declare an incident as an
accident. We present the detail description of these steps in the following subsections.
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Figure 8.10: The architecture of the proposed framework for accident detection. (A)
Overview of the framework. It consists of two streams, one for the generation of the colli-
sion score using the trajectories of the moving vehicles and the other one for generation of
abnormality score using deep representation. (B) A detailed diagram of abnormality detec-
tion using deep stacked autoencoder on three modalities, namely, appearance, motion, and
joint representation.

8.3.1 Spatio-temporal volume generation

In order to localize the accident incident, we divided the entire video into several smaller
size volumes called spatio-temporal video volumes (STVVs) similar to [62], with different
scales in both space and time as well as across the modalities such as appearance, motion,
and joint representations. Fig. 8.11 shows a STVV at a pixel p(x, y, z) in a 3D video
volume.

Definition 8.1 (STVV). Lets, v ∈ RW×H×T given continuous video sequence where point

v(x, y, z) ∈ R gives the intensity of the pixel (x, y, z) for all x ∈ [0,W ], y ∈ [0, H],

and z ∈ [0, T ]. Here, v(0 : W, 0 : H, z) represents the zth frame. The v(x − w−1
2

:

x+ w−1
2
, y− h−1

2
: y+ h−1

2
, z− t−1

2
: z+ t−1

2
) is a space-time video volume (STVV) of size
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Figure 8.11: The generation of the spatio-temporal video volumes (STVVs). The STVVs
are the pixels in the immediate vicinity of a point p(x, y, z) covered by a 3D sliding window
of size (w, h, t).

w× h× t around the pixel (x, y, z). These STVVs are then normalized and vectorized into

a vector x ∈ Rwht. Finally, we have a datasets X = {xi}, i = 1, 2, · · ·, n where n is total

number of such STVVs.

8.3.2 Stacked denoising autoencoder (SDAE)

A denoising autoencoder (DAE) is a simple one-hidden-layer neural network with unsuper-
vised learning using backpropagation algorithm. The objective of a DAE is to transform
given partially corrupted samples into a compressed representation to learn latent patterns
by minimizing the amount of distortion in reconstructed samples. The denoising autoen-
coder consists of two processes:

1. Encoding: The encoder takes a nonlinear mapping denoted as fe(xi|W,b) from the
partially corrupted input to a hidden representation. For a given corrupted input x̃i, a
compressed hidden layer representation hi can be obtained as below:

hi = fe(x̃i|W,b) = σ(Wx̃i + b). (8.5)

Typically, corrupted inputs are obtained by drawing samples from a conditional dis-
tribution p(x|x̃), for example the Gaussian white noise or salt-pepper noise.

2. Decoding: The decoder is used to map the hidden representation back to a recon-
struction representation through a similar transformation fd(hi|W�,b�). For a given
hidden representation hi, a reconstructed representation x̂ is computed as below:

x̂i = fd(hi|W�,b�) = s(W�hi + b�). (8.6)
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Here, < W, b >, and < W�, b� > denote the weights and the bias terms of the encoder
and decoder, respectively. The σ(·) and s(·) are activation functions. Typically, the sig-
moid function σ(z) = 1

1+e−z is used as the activation function. The network can learn a
more stable and robust representations of the input using this encoder/decoder structure.
An stacked denoising autoencoder (SDAE) is a cascade of several denoising autoencoders
(DAEs) as shown in Fig. 8.12.

Reconstruction Error

Intermediate Representation

Figure 8.12: The network topology of the proposed stacked autoencoder used to model the
baseline for the normal traffic. The network consists three decoder layers followed by three
decoder layers. The reconstruction error is the Euclidean distance of the input and output
layers. The output of the middle layers is the latent intermediate representation.

The parameters (W,W�,b,b�) are learned for a given training set X = {xi}ni=1 by
minimizing the following regularized least square optimization problem:

min
W,W�,b,b�

N�

i=1

�xi − x̂i�22 + λ(�W�2F + �W��2F ), (8.7)

where � · �F denotes the Frobenius norm. The first term
�N

i=1 �xi − x̂i�22 is the average
reconstruction error, while the second term (�W�2F + �W��2F ) is the weight penalty for
regularization. The importance of these two terms is balanced by parameter λ. Typically,
sparsity constraints are also imposed on the output of the hidden units to discover mean-
ingful representations from the data.

8.3.3 Detection of intersection points in trajectories

First, we detect moving objects by subtracting background images, and then the moving
objects are tracked. In an STVV, if two tracks are intersecting each other then it represents
either a collision or an occlusion as shown in Fig. 8.13. In the presented frame, we found
that the trajectories of the bike and car intersect each other. Also, the trajectories of several

93



other vehicles touch each other several time. Since the trajectories continue in the subse-
quent frames, they are simply considered as the occlusions, not collisions. But, there is no
further progress in the trajectories of the bike and car so this is considered as a collision.
The collision scores C of a STVV is the simple count of such points in that STVV.

Figure 8.13: The intersection of two trajectories during an accident. The trajectories of the
motorcycle and car intersect each other also there is no further progress in the trajectories
of the motorcycle and car, thus considered as a collision.

8.3.4 Accident score generation

We use one-class SVM to generate the outlier score γ of intermediate representation h for
a given STVV. One-class SVM requires only one class data and fits an outer boundary
around this data. In this case, we use only STVVs from normal traffic for building model.
The outlier score γ for a given h is computed from one-class SVM as below:

γ = f(h) =
m�

i=1

αiK(hi,h)− ρ, (8.8)

where, {hi, · · · ,hm} are the m support vectors with their respective Lagrange multipliers
αi, ρ is the threshold value. If the weighted density of a feature vector with support vectors
is above a threshold ρ then feature vector is classified as normal and abnormal otherwise.
The values of these parameters are computed by solving below dual problem for n training
points {hi, · · · ,hn}:
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max
ᾱ

1

2

n�

i=1

n�

j=1

αiαjK(hi,hj) s.t.
n�

i=1

αi = 1 and 0 ≤ αi ≤
1

vn
, (8.9)

where v ∈ (0, 1) control the penalty imposed on the nonzero slack variables.

For a STVV x the reconstruction error ξ is computed as below

ξ = �x− x̂�2F . (8.10)

where, x̂ is the reconstruction of the STVV x and �· �F is the Frobenius norm. The high
reconstruction error shows that the particular STVV is less likely drawn from the previously
seen patches and thus increases the likelihood that it may belong to an accident scene.

For each STVV v, we extract three representation: (i) appearance representation xA

based on still frames, (ii) motion representation xM based on optical flow, and (iii) joint
representation xJ by early fusion (concatenation) of both appearance and motion repre-
sentation. For each representation, we extract deep representation using stacked denoising
auto-encoder and compute anomaly scores γA, γM , γJ using Equation (8.8) and recon-
struction errors ξA, ξM , ξJ using Equation (8.10). Also, the collision score C is computed
as discussed in previous section. Finally, we use post-fusion of scores to get single final
score. We consider the linear combination to keep less number of parameters and reduced
computation in comparison to a non-linear combination. The computation of non-linear
transformation leads to a large number of parameters and increased computation time. The
final accident score s is given as below:

s = β1γ
A + β2γ

M + β3γ
J + β4ξ

A + β5ξ
M + β6ξ

J + β7C, (8.11)

where, β1, β2, β3, β4, β5, β6, and, β7 are free parameters to control false alarms. The final
decision of whether v corresponds to an accident or not is taken based on the threshold sT

which is given as.

Decision =




Accident, for s > sT

Normal, otherwise.
(8.12)

The parameters in Equation (8.11) are computed using linear regression on a small amount
of manually labeled data as follows. Let, X be the set of STVVs with corresponding
label set y, where yi = {−1,+1}, and S = [γA,γJ ,γM , ξA, ξJ , ξM ,C] be the set of
corresponding scores. Then the parameters set β = [β1, β2, β3, β4, β5, β6, β7]

T is given by

β = (STS+ λI)−1STy, (8.13)
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where λ = 10−6 is the regularization parameter. While the best performing threshold sT is
decided empirically.

8.3.5 Experiments and results

Since there is no public video dataset available for accident detection, we collected own
dataset from the CCTV surveillance network of Hyderabad City in India. Video clips
collected from City surveillance network are captured at 30 frames per second. Fig. 8.14
presents samples from the collected dataset. Each video clip starts few minutes before the
incident of an accident and contains several minutes after the incident. First few minutes
of video which contains normal situation are used for training the model and remaining
for testing. There are total 127138 normal frames, and 863 frames contain partial or full
accidents labeled manually. For training 94720 normal frames are used. For testing we
used 33280 frames 32417 normal and 863 accident frames. The dataset is made public for
the research community for further comparison 3.

Figure 8.14: Sample frames from the video dataset used to evaluate the performance of pro-
posed approach. The dataset contains videos of accidents during the various environmental
conditions such as high sunlight, night, early morning as well as from different cameras
and view angles.

The STVVs are generated at various scales in both space and time. For experiments,
we generate STVVs of spatial scale of 11×11, 13×13, and 15×15 pixels. For each spatial
scale, we generate three temporal scales of 3, 5, and 7 frames. Thus finally we generate

3https://sites.google.com/site/dineshsinghindian/iith_accident-dataset
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9 STVVs at each spatiotemporal point. The denoising stacked autoencoder projects high
dimensional data onto a lower dimension where it forms a manifold as shown in Fig. 8.15.
The projections of the unknown patterns which are drawn from the similar class patterns
from which the SDAE is trained are very close to the other points in the manifold and very
far otherwise. Thus the one-class-SVM with RBF kernel generates the score based on how
likely an unknown pattern is drawn from the normal traffic patterns. A high deviation score
confirms that the particular pattern belongs to some unusual/unseen/abnormal/outlier event,
which further increases the possibility of an accident as an accident is also a rare event.

Figure 8.15: The 2-D visualization of the distribution of the STVVs data generated from
a sample video. The STVVs during normal and accident are shown using the green cross
and red dot, respectively. [Best viewed in color]

Since the proposed method is an unsupervised method and the final classification is
based on a threshold. Changing the threshold results into a change in the performance.
Thus to find the optimal threshold we computed various performance scores on hundred
different threshold values. The trade-off between the sensitivity (i.e., true positive rate) and
the specificity (i.e., false positive rate) is shown via ROC curve. In a ROC curve, the red
dotted line shows the random prediction (50%) line, and the solid black line is the equal
error rate (EER) line. We analyzed the discrimination ability for all three representations
for reconstruction error at various layers of SAE as well as the outlier score of the corre-
sponding intermediate representations using one-class-SVM. Fig. 8.16 illustrates the ROC
curve for the experiments conducted for various thresholds (sT ) for reconstruction error
at different layers of the stacked denoising autoencoder. The area under the curve (AUC)
increases with an increase in the number of stacked autoencoders. But after stack of two
autoencoders, there is a very slight increment, and thus the performance (AUC) for them is
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not changing significantly than the performance of layer-2. The final performance (AUC)
of the accident detection based on the reconstruction error alone are 76.54%, 51.57%, and
76.28 for appearance, motion, and joint representations, respectively.
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Figure 8.16: ROC curve for accident detection using reconstruction error at various Layers.

A similar phenomenon is also seen for outlier score using one-class SVM on the in-
termediate representation. The performance increases with an increase in the number of
autoencoders. The final performance (AUC) of the accident detection based on the interme-
diate representation using one-class SVM is 77.54%, 62.87%, and 74.21% for appearance,
motion, and joint representations, respectively. Fig. 8.17 illustrate the ROC curve for the
experiments conducted for various threshold sT for reconstruction error, one-class-SVM,
and their combination for the stack of three auto-encoders. The AUC for the combined is
more than both reconstruction error and one-class-SVM alone.

However, the performance increases when we combine both the scores. Fig. 8.18 il-
lustrates the ROC curve for the experiments conducted for various threshold sT for re-
construction error, one-class-SVM, and their combination for the appearance, motion, and
their joints representations. The AUC using different modalities and methods is listed in
Table 8.3. The AUC for the combined is more than both reconstruction error and one-
class-SVM alone. The final performance of the accident detection based on the combined
representation is 77.60%, 62.91%, and 81.06% for appearance, motion, and joint represen-
tations, respectively.

Fig. 8.19 show the examples of the detected accident regions using the anomaly scores
from various samples from the collected dataset. The red region is the predicted accident
regions using a single score either by appearance, motion, or intersection of tracks while

98



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
r
u

e
 P

o
s
it

iv
e
 R

a
te

Random Line

EER Line

OneClass SVM

Reconstruction Error

Combined

Figure 8.17: ROC curve for accident detection using reconstruction error (RE), one class
SVM, and their combination.
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Figure 8.18: ROC curve for accident detection using reconstruction error, one class SVM,
and their combination for the appearance, motion, and their joints representations.

Table 8.3: Area under curve (AUC) for various modalities and methods
Representation Recon. Error OneClassSVM Combined
Appearance Representation 0.7654 0.7754 0.7760
Motion Representation 0.5157 0.6287 0.6291
Joint Representation 0.7628 0.7421 0.8106

the green box shows the region decided using final score. Here, the accident detection rate
using anomaly score is very high as it accurately detects almost all the regions which are
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declared accident manually (i.e. ground-truth). However, it also detects false accident in
several regions which are actually normal which leads to high false alarms rate. Although,
with the help of the complementary information from the trajectories of the moving vehicle
these alarms are further refined.

Figure 8.19: Accident detected using proposed approach for different videos. The red
region is the predicted accident regions using a single score either by appearance, motion,
or intersection of tracks while the green box shows the region decided using final score.

Finally, the proposed method can localize the accident events as we are using STVVs
instead of entire frame or full video clip. Also, on the collected video dataset of real
accidents which contains accidents in various lighting conditions as day, high sun and night
it is giving on average 0.775 detection rate at equal error rate (EER) of 0.225.

Comparision with the existing methods

Instead of a highly desirable task, there is a limited work done in this domain due to un-
availability of the public benchmark dataset. Since the existing methods use small private
collection of datasets and do not make them public, comparing them may not be fair at this
stage. But still, we listed the performance achieved by the existing methods on individual
datasets. ARRS [55] achieve 63% detection rate and 6% false alarms. RTADS [44] achieve
92% detection rate and 0.77% false alarms. The method of Sadek et al. [97] shows a recog-
nition rate 99.6% with false alarm rate at 5.2%. K. Yun et al. [136] achieves 0.8950 AUC.
However, all the above methods can easily lead to over-fitting for limited samples and do
not guarantee the same performance for new scenarios. While, our method is generalized,

100



robust to the over-fitting, and tested on the real traffic with various challenges in the videos.
The dataset is made public for the research community for further comparison.

8.4 Summary

The main goal of this chapter is to design a system framework to deploy various visual com-
puting based traffic monitoring applications in a city-scale surveillance camera network.
We propose a framework for real-time detection of motorcyclists driving without helmets
in diverse surveillance conditions. The proposed framework recognizes violators accurately
as compared to the existing methods. Further, there is a significant reduction in the number
of false alarms because of the use of cascaded CNNs. Even with such a high detection rate,
our approach process incoming video stream in real-time. Though the current model is able
to be work in real-time, the time performance can be further improved by applying model
compression techniques. The incorporation of convolutional auto-encoder for deep feature
representation in proposed framework for accident scene recognition outperforms the ex-
isting hand-crafted features based approaches. The method is further strengthened using
complementary appearance and motion information together. The dual measures of the
outlier scores and reconstruction error for detection of the accidents using complimentary
modalities based on appearance, motion, and joint representation increase detection rate of
the accidents. The incorporation of the collision of the intersection points of a vehicle’s
track reduce the false alarm rate, and thus enhances the reliability of the overall system.
Since we are using STVVs instead of entire frame or full video clip, it not only detects
the accident but also able to localize the accident events. The proposed method is able
to detect on average 77.5% accidents correctly with 22.5% false alarms on real accidents
videos captured under various lighting conditions. The experimental results are encour-
aging and show the efficacy of the proposed approach. However, challenges such as low
visibility at night, occlusions, and large variations in the normal traffic pattern still pose
significant challenges which need to be addressed in future. Also, the proposed framework
automatically adapts to new scenarios if required, with slight tuning. This framework can
be extended for detection of other rule violations as well as to detect and report number
plates of violators.

101





Chapter 9

Summary and future work

In this thesis, we presented scalable and distributed methods for various visual computing
tasks. We showed that the proposed methods were able to reduce the time complexity and
the loss in the effectiveness of the various feature representation and modeling techniques.
We reduce the computation time of BoW feature generation for both hard and soft vector-
quantization with time complexities O(|h| log2 k) and O(|h| k), respectively, by replacing
the process of finding the closest cluster center with a softmax classifier which is scaled
by applying quantization and hashing on its weights. Further to reduce the computation
time and increase the effectiveness of the video representation, we represented video ac-
tion/activities as a graph of local feature descriptors extracted at key space-time interest
points. This graph representation not only improves the recognition performance but also
helps in spatio-temporal localization of the action/activities.

Then, we proposed distributed implementation of kernel SVM while sustaining classi-
fication performance. First, we propose Genetic-SVM which makes use of the distributed
genetic algorithm for the fast optimization of the SVM objective function. Further, we
proposed DiP-SVM, a distribution preserving kernel SVM which reduces the chance of
missing important global support vectors by retaining the first and second order statistics
of the entire dataset in each of the partitions. The Projection-SVM reduces both training
and prediction time by avoiding the task of combining the local SVMs using subspace par-
titioning using a decision tree constructed on the projection of the data along the direction
of maximum variance.

Also, we designed compact methods for the detection of helmet-less motorcyclists and
accident incidents that are capable to infer in real-time on resource-constrained embedded
hardware. Further, we demonstrated that the use of edge computing based framework
reduces the network latency arise due to high communication overhead by placing edge
devices near the video cameras.
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9.1 Contributions of the thesis

1. Fast-BoW which scales the computational complexity of hard and soft BoW gener-
ation to O(|h| log2 k) and O(|h| k) from O(d log2 k) and O(d k), respectively, using
model approximation while sustaining the effectiveness of the generated features.

2. A novel graph representation of video activities for better recognition and localiza-
tion by leveraging the structural information among the various entities or same entity
over the time.

3. GeneticSVM, an evolutionary computing based distributed approach to find optimal
solution of kernel SVM. The novel encoding method and crossover operation help in
obtaining the better solution over the GPU cluster.

4. DiP-SVM, a distribution preserving kernel SVM which obtains local decision bound-
aries in close agreement with the global decision boundary by retaining first and sec-
ond order statistics of the entire dataset in each partition, thereby reducing the chance
of missing important global support vectors.

5. Projection-SVM, construct a tree on the projection of data along the direction of max-
imum variance recursively to obtain smaller subspaces and train a kernel SVM on
each subspace independently to reduce the overall training time which also reduces
the prediction time significantly.

6. Efficient methods for edge device and a system architecture for real-time detection
of traffic incidents such as traffic rule violation and accident detection in a city-wide
video surveillance networks.

9.2 Directions for Further Research

In future, we would like to extend our edge-computing framework for various other traffic
violations and incidents to strengthen the safety and security of road transportation. Also,
we would like to investigate generative adversarial networks to improve the abnormal ac-
tivity recognition and accident detection. For better storage and content based retrieval of
the visual data, we would like to design efficient binary hashing techniques using binary or
ternary weight only. We would also like to explore scalable and distributed kernel methods
for non-linear feature selection and modeling of high dimensional big bio-medical data.
Specifically, we would like to design an efficient non-linear least angle regression using
kernel tricks which is both data and computation intensive because of the involvement of
several large kernel matrices.
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