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Abstract

Solid oxide fuel cells (SOFCs) offer a clean, low pollution technology to electrochemically

generate electricity at high efficiency. An SOFC consists of a dense solid electrolyte and two

porous electrodes in contact with an interconnect on either side. The control of an SOFC

stack becomes important in order to ensure adequate and disturbance free electric power.

As several controlled/constrained variables are not directly measured in a stack, state

estimators can be used in order to study the dynamic behaviour of SOFC stacks as well as

to design effective SOFC controllers. In this thesis, A zero dimensional model represented

by a set of ordinary differential equations is derived for dynamic modeling. The model

consists of molar balances and an energy balance coupled with a simplified description of

the fuel cell electrochemistry. The chemical species considered are H2 and H2O for fuel

side (anode side) and O2 and N2 for air side (cathode side) and the electrochemical model

accounts for ohmic, concentration and activation losses. Considering the estimation part,

the state vector which is to be estimated consists of partial pressure of chemical species and

temperature, with voltage as the measurement. Estimation of states for linear systems can

be done by Kalman Filter. States of nonlinear systems can be estimated using Extended

Kalman Filter(EKF), Unscented Kalman Filter (UKF). We choose UKF for non linear

state estimation. UKF is a derivative free state estimator for non linear systems. This

work investigates the use of non linear state estimator UKF to estimate the states of SOFC

system. This method can be applied to estimate states in any type of fuel cells (PEMFC,

AFC etc.) by very slight modifications.
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Nomenclature

ṅini inlet molar flow rate of species i (mols−1)

ṅouti outlet molar flow rate of species i (mols−1)

ṅri reactive molar flow rate of species i (mols−1)

pH2 partial pressure of H2 (atm)

pO2 partial pressure of O2 (atm)

pH2O partial pressure of H2O (atm)

Ts Temperature of stack (K)

R Universal Gas Constant (J mol−1 K−1)

F Faraday Constant (C mol−1)

Van Anode channel volume (m3)

Vcat Cathode channel volume (m3)

KH2 Valve molar constant for H2

KO2 Valve molar constant for O2

KH2O Valve molar constant for H2O

Vs Stack Voltage (V )

I Stack Current (amp)

No Number of Cells

ηohm Ohmic Loss (V )

ηact Activation Loss (V )

ηcon Concentration Loss (V )

β transfer coefficient

ηact,c Cathodic Activation Loss (V )

ηact,a Anodic Activation Loss (V )

ηcon,c Cathode Concentration Loss (V )

ηcon,a Anode Concentration Loss (V )

io exchange current density (amp cm−2)

ias anode limiting current density (amp cm−2)

ics cathode limiting current density (amp cm−2)
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Nomenclature of state estimation

x State Vector (States of system)

y Measurement vector

t time

Φ State transition matrix

x̂(t) Estimate of state vector

E[X] Expectation of random variable X

E[X|Y ] Conditional Expectation

R set of Real numbers

B(R) Borel’s set on R
P error covariance matrix

Q state covariance matrix

R measurement covariance matrix

Wi Weight associated with ith point

χ Sigma points

f process model

g observation model

Abbreviations

EKF Extended Kalman Filter

UKF Unscented Kalman Filter
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Chapter 1

Introduction

A futuristic view of energy supply is based on hydrogen rather than the fossil fuels . Also

increasing demands on pollution reduction is driving innovation on clean energy sources.

Among these Fuel Cells (FCs) are regarded as one of the most promising technologies, due

to their efficiency, compactness and reliability. Though fuel cells are now commercially

available , to make the technology cost effective research is still going throughout the

world to deal with the engineering problems associated with them. Considering the wide

availability of Hydrogen from many renewable sources fuel cells can be a feasible, attractive

alternative to fossil fuels reducing the dependence on fossil fuels. Greenhouse gases like

carbon monoxide are responsible for increasing temperature of planet leading to climate

changes. In an attempt to slowdown the consequence of climate changes, many countries

are serious about pollution reduction standards. The interest in hydrogen fuel is not just

because of dependence on fossil fuels and green house gas effects, certain other factors like

economic and political dependence on oil rich countries also account for this.

1.1 Fuel Cells

Fuel Cells are electrochemical devices that convert the chemical energy of a reaction di-

rectly into electrical energy . In a typical fuel cell, gaseous fuels are fed continuously to

anode (negative electrode) compartment and an oxidant (i.e., oxygen from air) is fed con-

tinuously to the cathode (positive electrode) compartment, the electrochemical reactions

take place at the electrode-electrolyte interface to produce an electric current. A fuel cell

is a device that uses hydrogen as a fuel to produce electrons, protons, heat and water.

Fuel Cell technology is based on simple combustion reaction given in Eq. (1.1)

H2 +
1

2
O2 � H2O (1.1)
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Fuel Cells are different types based on the type of electrolyte used for conducting the

ions.[1] They are

1. Polymer Electrolyte Membrane Fuel Cell (PEMFC)

2. Alkaline Fuel Cell (AFC)

3. Phosphoric Acid Fuel Cell (PAFC)

4. Molten Carbonate Fuel Cell (MCFC)

5. Solid Oxide Fuel Cell (SOFC)

The electrochemical principle of operation is same for all the above fuel cells. Fuel is

oxidized into electrons and protons at the anode and oxygen is reduced to oxide species

at the cathode. The protons or the oxide ions are transported through the electrolyte and

combines with oxide or protons to generate water and power. The major difference is they

operate at different temperatures, employ different materials for construction and differ

in fuel tolerance and performance.

1.2 Solid Oxide Fuel Cells

The Solid Oxide Fuel Cells (SOFC) are high temperature fuel cells with an operating

temperature range of 600−1000◦C. SOFC like other fuel cells is an electrochemical device

for the conversion of chemical energy of a fuel into electricity and heat. Now the oxide

ions pass through the electrolyte to the fuel rich porous anode where oxide ions react with

hydrogen, giving up electrons to external circuit. The reactions are as follows

H2(g) +O2− → H2O(g) + 2e− (1.2)

The liberated electrons pass through an external circuit to arrive at the cathode (air

electrode) where they reduce oxygen (present in air) to oxide ions .

1

2
O2(g) + 2e− → O2− (1.3)

Water vapor is produced at the anode diluting the fuel. The hydrogen oxidation

reaction and the oxygen reduction reaction occur at the triple phase boundary (TPB)

where the electrode, electrolyte and the gas phase are in contact. The performance of the

SOFC is highly dependent on the partial pressure of hydrogen, oxygen and the temperature

of the cell. By stacking several cells in series or parallel, the voltage and power sought

in an application can be attained. It requires another component, interconnect which is

for electrical connection between the cells and gas separation within the cell stack. The
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Figure 1.1: Solid Oxide Fuel Cell17

entire build up of individual cells and interconnect is called the stack. Insufficient supply

of reactants results in starvation of the cell which leads to degradation of voltage , so

to avoid this and to extend stack life , air and fuel flows , partial pressure of gases and

temperature must be controlled properly.

Figure 1.2: SOFC Stack (www.seca.doe.gov)

1.3 Motivation

Considering the control of fuel cells one major aspect is that we employ sensors to measure

the partial pressures of reactants. Sensors are costly and sensitive in real applications.

Constraints on usage of these sensors results in lack of reliable measurements of partial

pressures. So, with consideration to the importance of these variables and difficulties

in measuring these variables, interest in need of estimator design is encouraged. An

active control model development of SOFCs to achieve satisfactory performance during

load variations and also in meeting the dynamic constraints of operation is possible only

when states of system are known. This motivates the use of estimators to find the partial

pressures of hydrogen and oxygen at anode and cathode respectively. The estimators must

be able to incorporate the non linear model, as fuel cell behavior is highly non linear and

account for noise in the measurements.
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1.4 Thesis Objective

The main focus of the thesis is to investigate the use of Unscented Kalman Filter to

estimate the partial pressures of H2, O2 and H2O and temperature of SOFC system

considered.
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Chapter 2

Literature Review

Given a physical system whether it may be an aircraft, chemical process an engineer first

attempts to develop a mathematical model that represents the behavior of the system.

Through physical insight, fundamental laws we can establish the interrelationship among

the system variables i.e, inputs to system and outputs from system. To observe the

actual system behavior, measurements and states of system are the important information

available to study.

A great number of experimental and modeling studies have been carried out to ex-

plore the performance, problems and efficiency of fuel cells with ultimate goal of extensive

commercialization of the fuel cells. By developing an accurate dynamic model of fuel cell

system, one can understand the physics of the system and to control the system effectively

and systematically. A comprehensive review of publications on mathematical modeling,

steady state and dynamic behavior and control of PEMFC and SOFC is presented by [2].

Considering the control applications in mind and feasibility to implement the models in

real time process control reduced order linear models for anode supported tubular SOFC

are developed [4]. A linear parameter varying model structure is developed to obtain a

control oriented dynamic model for SOFC stack and also a MPC controller is designed

and implemented based on reduced order models [5]. A limited number of variables and

parameters can be measured in a typical fuel cell, information on unmeasured variables

can be obtained using an observer/estimator. SOFC systems are nonlinear systems, so

the estimators that are to be used in SOFC state estimation are non linear.

A dynamic lumped model of a SOFC combined with a gas turbine to study the control

of the system is developed by Kandepu et al [7], they implemented a PI controller and

studied a comparision of implementation of Extended Kalman Filter (EKF) and Unscented

Kalman Filter (UKF) on the SOFC-GT system in estimation of states. Murshed et al [8] [9]

described the application of nonlinear model predictive control applied on fuel cell system

by utilizing the estimated states from Unscented Kalman Filter (UKF). Vijay et al [10]

7



designed a non linear adaptive observer for estimating the temperature inside the hydrgoen

fed planar SOFC. They designed an observer based on the lumped parameter model of

the SOFC. They also reported that the developed observer could track the temperature

and species concentration profiles in the planar SOFC during step changes in cell current.

Das and Mukherjee et.al [11], Lin and Hong et al [12], Mueller et al [13], are few

other groups who worked on development of observers and estimators for control relevant

models of SOFC.

8



Chapter 3

System Model

Knowledge of transient and steady state response of solid oxide fuel cell system is important

for studying the fuel cell performance and also for designing the controller. A model can

vary from a simple zero dimensional model to a 3-D model. Model should comprise a set

of linear or nonlinear ODEs to predict the transient behavior of the fuel cell.It should be

able to predict all the important variables like partial pressures and temperature. So we

consider the electrochemical, thermal and reactant flow model to meet all the modeling

characteristics in minimum. In this chapter we consider the derivation and development

of lumped model in which we assume uniform temperature throughout the cell including

both solid phase and gas phase. A detailed explanation of the derivation of equations of

lumped model will be considered in the further sections of this chapter.

3.1 Introduction

A knowledge of mathematical modeling is necessary to study static and dynamic behavior

of fuel cells,designing the cells, studying control strategies and designing experiments. In

a fuel cell system many processes like heat and mass transfer take place. One should

understand the physics of these processes to analyze and describe them in the form of

mathematical equations.Fuel cell systems can be modeled by considering temporal effects

and spatial changes. With respect to spatial changes it can be zero-dimensional (lumped

model), 1-D, 2-D, 3-D. The simplest approach to dynamic modeling of fuel cells is to

ignore spatial changes and to consider changes with time only. In lumped modeling we

consider the study of transient behavior of system accounting for electrochemical processes,

voltage losses caused by ohmic, activation, concentration and polarization, mass balance

and energy balance of system.

The voltage output of a real fuel cell is less than thermodynamically predicted voltage

output due to irreversible losses. The more current that is drawn from the cell, the greater

are the losses. There are three major types of fuel cell losses. The losses are

9



1 Activation losses (losses due to electrochemical reaction)

2 Ohmic losses(losses due to ionic and electronic conduction)

3 Concentration losses (losses due to mass transport)

The real voltage output for a fuel cell can thus be written by subtracting the voltage

drops due to various losses from the thermodynamically predicted voltage output.

V = Ethermo − ηact − ηohmic − ηconc (3.1)

We discuss in detail in the next section the lumped model considered in the modeling.

3.2 Lumped Model

The lumped model of the stack model solid oxide fuel cell which is fed with hydrogen and

air is developed on the basis of the following assumptions.

1. The gases are ideal.

2. Channels that transport gases along the electrodes have a fixed volume , but their

lengths are small , so that it is only necessary to assume pressure is constant in the

channel.

3. The exhaust of each channel is via a single orifice. Ratio of pressures between the

exterior of channel is large enough to consider orifice choking condition.

4. Uniform temperature distribution for the entire stack.

5. Ideal mixing of gas inside the channel so exit temperature of fuel and air are same

as inside temperature.

6. Negligible heat losses to surroundings.

7. All the voltage losses are considered.

3.2.1 Material balance

Change in concentrations of each species that appears in SOFC can be written generally

in terms of material balance equation.

Accumulation = Inflow +Generation− Consumption−Outflow (3.2)

dni
dt

= ṅini − ṅouti + ṅri (3.3)

10



where

ṅini is inlet molar flow rate of ith species.

ṅouti is outlet molar flow rate of ith species.

ṅri is reactive molar flow rate of ith species.

3.2.2 Charcaterization of exhaust of channels

According to [14], an orifice that can be choked, when fed with a mixture of gases of

average molar mass M and similar specific heat ratios, at a constant temperature, assumes

the following form:
W

Pu
= K
√
M (3.4)

where, W is mass flow [kg/s], K is valve constant, and Pu is pressure upstream [atm] Now

according to the above equation we can assume molar flow of any gas through the valve

is proportional to its partial pressure inside the channel, then according to [?]

qH2

PH2

=
Kan√
MH2

= KH2 (3.5)

qH2O

PH2O
=

Kan√
MH2O

= KH2O (3.6)

where qH2O are molar flow rates of hydrogen and water respectively, through anode valve.

KH2 and KH2O are valve molar constants for hydrogen and water respectively.

3.2.3 Species Balance

Let us consider the species balance for H2 , Consider the equation of material balance

(3.3)

dnH2

dt
= ṅinH2

− ṅoutH2
+ ṅrH2

(3.7)

Since we assume ideal gas

nH2 =
pH2Van
RTs

(3.8)

where Van is the volume of anode channel and ṅinH2
, ṅoutH2

and ṅrH2
are inlet, outlet and

reactive molar flow rates of H2 respectively, pH2 is partial pressure of H2 in the stack, Ts

is temperature of the stack

ṅrH2
= 2KrI (3.9)

ṅoutH2
= KH2pH2 (3.10)

11



where Kr = No
4F , I is stack current, No is number of cells associated in series in stack,

KH2 is valve molar constant.

Now we rewrite the species balance equation as

dpH2

dt
=
RTs
Van

(ṅinH2
− ṅoutH2

+ ṅrH2
) (3.11)

dpH2

dt
=
RTs
Van

(ṅinH2
−KH2pH2 − 2KrI) (3.12)

Similarly the species balance equations for O2 and H2O are

dpO2

dt
=

RTs
Vcat

(ṅinO2
−KO2pO2 −KrI) (3.13)

dpH2O

dt
=

RTs
Van

(ṅinH2O −KH2OpH2O + 2KrI) (3.14)

3.2.4 Energy balance

According to assumptions mentioned for lumped modeling, there is no temperature vari-

ation inside stack all components possess same temperature at any instance. Also it is

assumed that heat capacity of gases inside channels is assumed negligible compared to

solid compartments of cell. then dynamic model of cell temperature, Ts is given by energy

balance around entire stack

msC̄ps
dTs
dt

= Σṅini

∫ Tin

Tref

Cp,i(T )dT − Σṅouti

∫ Ts

Tref

Cp,i(T )dT − ṅrH2
∆Ĥ0

r − VsI (3.15)

where ms and C̄ps are mass and average specific heat of fuel cell materials excluding gases,

Cp,i is specific heat of fuel or air gas , ∆Ĥ0
r is the specific heat of reaction and Vs is stack

voltage.

3.2.5 Stack Voltage

Applying Nernst’s equation and considering ohmic, activation and concentration losses,

the stack voltage is given by

Vs = No (V0 − ηohm − ηact − ηcon) (3.16)

Open Circuit Voltage

Thermodynamic potential or the reversible cell voltage is the maximum voltage attained

by fuel cell at thermal equilibrium . It is given by Nernst Equation as below

12



V0 = N0∆E = N0

[
∆E0 +

RTs
2F

ln
pH2p

0.5
O2

pH2O

]
(3.17)

where N0 is Number of Cells, ∆E0 is standard cell potential is given by

∆E0 = −∆G0

2F
(3.18)

where

∆G0 = GH2O − 0.5GO2 −GH2 (3.19)

GH2O, GO2 , GH2 are Gibbs free energy of formation

Ohmic Loss

Voltage which is lost due to resistance to flow of electrons through electrodes and various

interconnections and resistance to flow of ions through electrolyte is known as Ohmic Loss

and is obtained by using the conductivity expression given by [15].

σel = σoexp

(
−Eel

RT

)
(3.20)

where Eel = 8× 104J/mol

R = ρ
l

A

σ =
1

ρ

R = RoTexp

(
Eel

RT

)
(3.21)

where Ro = 0.02525Ω , Ohmic Loss is given by

Vohm = I ×R (3.22)

Activation Loss

Electrochemical reactions like chemical reactions involve energy barriers which must be

overcome by the reacting species . This energy barrier is called the activation energy and

results in activation or charge transfer polarization, which is due to transfer of charges be-

tween electronic and ionic conductors. It is the extra potential necessary to overcome the

energy barrier of the rate determining step of the reaction to a value such that electrode

reaction proceeds at desired reaction rate.

13



Activation loss is normally expressed by the well known Butler Volmer equation

i = io

{
exp

(
β
neFηact

2RT

)
− exp

(
−(1− β)

neFηact
2RT

)}
(3.23)

where β is the transfer coefficient and io is the exchange current density . When β = 0.5

i = 2iosinh

(
neFηact

2RT

)
(3.24)

ηact =
2RT

neF
sinh−1

(
i

2io

)
(3.25)

Activation loss now for both anode and cathode is given by the following equations

ηact,a =
2RT

neF
sinh−1

(
i

2ioa

)
(3.26)

ηact,c =
2RT

neF
sinh−1

(
i

2ioc

)
(3.27)

Concentration Loss

In fuel cells reacting species are gaseous at anode and cathode. Hence, rate of mass

transport to reaction sites in porous electrodes of a SOFC can be described by diffusion

of gases in pores [?]. Gases have to diffuse through the gas filled pores of electrode in

order to reach the reaction-sites. When the current is being drawn gas partial pressure at

reaction site will be less than that in bulk of gas stream. So decrease of gas concentration

in gas filled pores of electrode may result in voltage loss which is concentration loss.

The equations for concentration loss at both electrodes are given by the following.

Cathode concentration loss

ηcon,c =
RT

4F
ln

(
1− i

ics

)
(3.28)

Anode concentration loss

ηcon,a =
RT

4F
ln

(
1− i

ias

)
− RT

2F
ln

(
1 +

pH2i

pH2Oias

)
(3.29)

where ias, ics are anode and cathode limiting current densities respectively.
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3.3 Lumped model with nonchoking assumption

We also considered the lumped model with non choking assumption for the flow gases

through the orifice from the channel manifolds to the exhaust.

In this case we do not consider ṅouti directly proportional to the partial pressure of

respective species in stack, Choked flow is a limiting condition which occurs when the mass

flow rate will not increase with a further decrease in downstream pressure while upstream

pressure is fixed.

Instead of choked flow if we consider normal flow through orifice, calculation of ṅouti

is as follows.

ṅouti = yiṅ
out (3.30)

=
Pi

P
ṅout (3.31)

=
Pi

P

ṁout

Mavg
(3.32)

=
Pi

ΣPiMi
ṁout (3.33)

The ṁout is calculated by the equation of mass flowrate for flow of gases through

orifice given by

ṁout = CA2Y
√

2ρ(P1 − P2) (3.34)

where

C is Orifice flow coefficient, dimensionless

A2 is Cross-section area of orifice hole, m2

ρ is gas density, kg/m3

P1 is Upstream gas pressure, Pa

P2 is Downstream gas presssure, Pa

Y is Expansion factor
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3.4 Model Parameters

Table 3.1: Model Parameters and constants

Parameter Value Unit

Number of Cells, N0 92

Cell Area, Ac 0.055 m2

r0 0.02525 Ω

Activation energy for ion transport, Eel 8e4 J/mol

C̄ps 400 J/kg/K

Heat of Reaction, ∆Ĥ0
r -0.2418e-6 J/mol

Faraday Constant, F 96485.3365 As/mol

Anode thickness , la 500 µ

Electrolyte thickness 5 µ

Cathode thickness. lc 50 µ

R, Universal Gas Constant 8.314 J/K/mol

3.5 Implementation of UKF

To implement the Unscented Kalman Filter in order to estimate the states for the lumped

model, we consider the model in concise form as below

ẋ = f(x, I, Vs) (3.35)

Vs = g(x, I) (3.36)

where x is vector of states of SOFC system i.e, the partial pressures and temperature

of the system. I is the current, Vs is the stack voltage. Using the voltage as measurement

equation and set of derived ordinary differential equations in the earlier section as the

state equations we investigate the implementation of UKF for this system.
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Chapter 4

State Estimation

In general processes are accompanied with uncertainities like uncertainity in measurements

and noise sources or unknown disturbances acting on the system. Information about the

state variables and operating parameters must be available for control relevant model de-

velopment for any model. State estimation plays an important role in reconstruction of

important state variables which are not measurable.

Estimation problem can be formulated as follows , Current state xk is determined

using available measurements y1:k , initial guess xo in an optimal and recursive manner .

The discrete time dynamic model of system can be formulated as

xk = f(xk−1, uk, vk) (4.1)

yk = g(xk, wk) (4.2)

where xk ∈ Rn, where n is dimension of state vector. yk ∈ Rm, where m is dimension of

measurement vector, f : Rn → R, g : Rn → Rm, vk ∈ Rn represents state noise, wk ∈ Rm

represents measurement noise. In general any recursive estimation can be executed in two

stages at any time instant as below

• Prediction: Given the previous estimate using the system model the next state is

predicted.

• Updation: Given the current measurement , we estimate the current state

4.1 Kalman Filter

Kalman filter is optimal if the system is linear and the process noise is Gaussian . Kalman

filter is executed in two steps , Prediction(Time update equation) where apriori estimates
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for next step are calculated using the current state and error covariance and correction

(measurement update equation) where an improved aposteriori estimate is obtained by

incorporating new measurement into priori estimates. In state space form the linear model

is represented as

xk+1 = Axk + vk (4.3)

yk = Bxk + wk (4.4)

Aand B are the transition matrices for the system model and measurement model .

The algorithm for Kalman filter is shown below in the figure.

Figure 4.1: Kalman Filter Algorithm

4.1.1 Derivation for Kalman Filter

Introduction

Consider the dynamic model [21]

x(t+ 1)n×1 = Φ(t+ 1; t)n×nx(t)n×1 + u(t)n×1 (4.5)

y(t)p×1 = M(t)p×nx(t) (4.6)

where u(t) is an independent Guassian random process of ‘n’ vectors with zero mean, x(t)

is an n-vector, y(t) is a p- vector, Φ(t+ 1; t), M(t) are n×n and p×n respectively whose

elements are non random functions of time. Given the observed values of y(t0), .......y(t)

find an estimate X∗(t1|t) of X(t1) which minimizes the expected loss
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Optimal Estimate

Firstly, our idea is to get best estimate of x(t) given all measurements y(1), y(2).............y(t),

which is Minimum Mean Squared Estimate. Let x̂(t) be the best estimate.

Theorem 4.1.1. The best estimate is conditional expectation x(t) given Y(t) ie., x̂(t) =

E[x(t)|Y(t)]

Proof. The criterion that are to be satisfied are

(i) x̂(t) is σ(y(1), y(2), .........y(t)) measurable.

(ii) E[(x̂(t)− x(t))2] should be minimum.

Our claim is that the best estimate satisfying the above is x̂(t).

This claim satisfies criteria (i) directly as it is one of the property by definition of con-

ditional expectation. Now we have to check if the criterion (ii) is satisfied. By Tower

Property of Conditional Expectation [22] we know that if H is a sub σ-algebra of Σ then

E[E(X|Σ)/H] = E[X|H]a.s

We can say σ(y(1), y(2), .......y(t)) ∈ Σ. By Double Expectation property we can write.

E[(x̂(t)− x(t))2] = E[E[x̂(t)− x(t))2|σ(y(1), y(2), .......y(t))]].

R.H.S = E[E[(x̂(t)− x(t))2)|σ(y(1), y(2), .......y(t))]]

In the inner term between x̂(t) and x(t) we add and substract another term

E[x(t)|y(1), y(2), ...y(t)] then

R.H.S = E[E[(x̂(t)− E[x(t)|y(1), y(2), ......y(t)]

+E[x(t)|y(1), y(2), ......y(t)]− x(t))2σ(y(1), y(2), .......y(t))]]

Consider the inner part of the above expression in R.H.S

= E[(x̂(t)− E[x(t)|y(1), y(2), ......y(t)] + E[x(t)|y(1), y(2), ......y(t)]

−x(t))2|σ(y(1), y(2), .......y(t))]

E[(x̂(t)− E[x(t)|y(1), y(2), ......y(t)])(2)|Σ1] + E[E[(x(t)− E[x(t)|Σ1])
2]/Σ1]+

E[[(x̂(t)− E[x(t)|Σ1])(x(t)− E[x(t)|Σ1])]/Σ1]

where Σ1 = σ(y(1), y(2), .......y(t)).We can observe that the third term in the summation
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in L.H.S reducs to zero and the first two terms remain in the summation Now, the

E[Innerpart] = E[E[[x̂(t)− E[x(t)|Σ1]]
2|Σ1] + E[E[[x(t)− E[x(t)|Σ1]]

2|Σ1]

By Double Expectation Property this further reduces to

R.H.S = E[[x̂(t)− E[x(t)|Σ1]]
2|Σ1] + E[(x(t)− E[x(t)|Σ1])

2|Σ1]

x̂(t) = E[x(t)|Σ1] minimizes the above.

Therefore, the MMSE condition is satisified i.e, E[(x̂(t)− x(t))2] = 0 .

Orthogonal Projection is Conditional Expectation

Suppose xn, y1, y2, ......yn are Multivariate Gaussian and xn ∈ L2

Y = span (y1, y2, ........, yn) = {
∑n

i=1 aiyi|∀ai ∈ R
Y is a Hilbert space.

Theorem 4.1.2. The orthogonal projection of xn on Y space is Ê[xn|Y] = E[xn|σ(y1, y2, .........yn)]

is the optimal estimate and is the conditional expectation if the process is gaussian

The above theorem can be proved if Ê[xn|Y] it satisfies all the three propeties below

for it to be conditional expectation by definiton.

(i) Ê[xn|Y] should be σ(y1, y2, .....yn) measurable.

(ii) E[|Ê[xn|Y|] is finite.

(iii)
∫
B Ê[xn|Y]dP =

∫
BxndP ∀B ∈ B(R).

Since the proof evolves to be another big section it is avoided presenting here.

One of the main ideas in the Kalman Filter is that geometric tools like orthogonal

projection are used to solve Probabilistic problems. Random variables are thought of as

points in an abstract Hilbert space. This is the core idea in derivation of Kalman filter

which is discussed in detail in the paper by Kalman

4.1.2 Implementing Kalman Filter

We consider a stochastic linear system with some noise input. The state space form

x(t+ 1) = A(t)x(t) + w(t)y(t) = C(t)x(t) + v(t) (4.7)
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where w(t) is state noise , v(t) is measurement noise

We rewrite the above state space equation in discretized form as

Xk = AXK−1 + wk−1 (4.8)

Yk = CXk−1 + vk (4.9)

We will be given the observations Y1, Y2, .......Yk.... and we implement the kalman filter in

two steps

• Prediction step

• Updation step

First, Consider the Prediction step So from the knowledge of Kalman Filter derivation we

know that

E[Xk|σ(Y1, Y2, .......Yk)] = Ê[Xk+1|Yk]

= Ê[Xk+1|Yk−1] + Ê[Xk+1|Zk]

= AÊ[Xk + Ê[Xk+1|Zk]

An important step here is Ê[Xk+1|Zk] = ∆∗(Ỹ k|k−1)

from definiton of Ỹ k|k−1) we substitute the expression for it and we obtain the prediction

step equations

X̄k+1|k = AX̄k|k−1 + ∆∗[Yk − Ê[Yk|Yk−1]

X̄k+1|k = AX̄k|k−1 + ∆∗[Yk − CÊ[Xk|Yk−1]− 0]

X̄k+1|k = (A−∆∗kC)X̄k|k−1 + ∆∗kYk

where ∆∗k = APk|k−1C
T (CPk|k−1C

T )−1

and Pk+1|k = (A−∆∗kC)Pk|k−1(A−∆∗kC)T +Q+ ∆∗kR∆∗k
T

Here Q and R are state and measurement Covariance Matrices. Now, the equations for

updation part

X̄k|k = X̄k|k−1 + Ê[Xk|Zk] (4.10)

We know from kalman filter derivation that Ê[Xk|Zk] = Λ∗k Ỹ k|k−1 Now, considering

the condition E[(Xk − Λ∗kỸ k|k−1)Ỹ
T
k|k−1 = 0 we solve for Λ∗k In the above expression we

substitute Xk = Xk|k−1 + X̃k|k−1 and also

Ỹ k|k−1 = Yk − Ȳk|k−1 = CXk + vk − CX̄k|k−1 − vk = CX̃k|k−1 (4.11)
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Now we substitute expression for Ỹ k|k−1 then by further simplifying we get

Λ∗k = Pk|k−1C
T [CPk|k−1C

T ]−1 (4.12)

The final update equation is

X̄k|k = X̄k|k−1 + Λ∗kỸ k|k−1

= X̄k|k−1 + Pk|k−1C
T [CPk|k−1C

T ]−1CX̃k|k−1

= X̄k|k−1 + Λ∗[CXk|k−1 − CX̄k|k−1]

X̄k|k = X̄k|k−1 + Λ∗[Yk − vk − CX̄k|k−1] (4.13)

4.2 Simulation Results

A MATLAB program has been written to implement the KALMAN filter for a linear

stochastic system, In this program , the input is

• No.of states ,n

• No. of Measurements, p

• State Noise covariance, q

• Measurement Noise Covariance, r

• Time, T

Here are a few results of the simulation
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Figure 4.2: Predicted state vs True State
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4.3 Extended Kalman Filter

4.3.1 Introduction

In case of kalman filter we know it is applicable to the Linear systems in general, but if the

system is non linear then we use the concept of extended kalman filter wher we linearize

the non linear function value at an estimate Consider the non linear dynamics

Xk+1 = f(Xk) + wk (4.14)

Yk = g(Xk) + vk (4.15)

Here, f(Xk) , g(Xk) are nonlinear functions. Also, f : Rn → Rn, g : Rn → Rp where wk,vk

are gaussian random processes with zero mean and covariance matrices Q and R respec-

tively. As discussed in the Kalman filter here also we proceed with two steps Prediction

and Updation. But in the prediction step we need to know about the linearization of non

linear function at a point and also about the evaluation of the jacobian. The next section

describes about these.

4.3.2 Linear Approximation and Multivariable function Derivates

f : Rn → Rm is a general multivariable function Derivative of such an ′f ′ at a point ’a’ is

defined as , Consider

lim
h→0

||f(a+ h)− f(a)−Df(a)(h)||2
||h||2

= 0 (4.16)

Note here that Df(a) : Rn → Rm and is linear. Such Df(a) is called the derivative of f at

a. when h is very small, then

||f(a+ h)− f(a)−Df(a)(h)|| = 0

f(a+ h) ' f(a) +Df(a)(h)

Note that this is possible only if Df(a) exists.

To ensure that these derivatives exist there are two theorems. [23]

Theorem 4.3.1. If f : Rn → Rm is differentiable at a, then Djf
i(a) exists for 1 ≤ i ≤ m,

1 ≤ j ≤ n and Df(a) is the m× n matrix .Here,Djf
i(a) is the jth partial derivative of f i

at a .

Theorem 4.3.2. If f : Rn → Rm then Df(a) exists if all Djf
i(a) exist in an open set

containing ’a’ and if each function Djf
i is continuous at a.
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So, if all Djf
i(x) exist in an open set containing ’a’ and if each function Djf

i is

continuous at a, then Df(a) exists according to the above theorems.

4.3.3 Prediction step of EKF

We, first linearize f at the X̂k|k

f(Xk) = f(X̂k|k + h)

f(X̂k|k + h) = f(X̂k|k) +Df(X̂k|k)h

f(Xk) = f(X̂k|k) + +Df(X̂k|k)[Xk − X̂k|k]

Note that Df(X̂k|k) has to exist for this. Refer previous section on Linear Approximation.

f(Xk) = [f(X̂k|k)−Df(X̂k|k)X̂k|k] +Df(X̂k|k)Xk

Xk+1 = [f(X̂k|k)−Df(X̂k|k)X̂k|k] +Df(X̂k|k)Xk + wk

Now, X̂k+1|k = E[Xk+1/Yk]

X̂k+1|k = Df(X̂k|k)E[Xk|Yk] + f(X̂k|k)−Df(X̂k|k)X̂k|k + E[wk|Yk]

= f(X̂k|k)

E[Xk+1|Yk+1] = Ê[Xk+1/Yk] + Ê[Xk+1/Zk+1]

Ê[Xk+1/Zk+1] = ∆k+1[Yk+1 − Ck+1X̂k+1|k −Gk+1]

we know the condition that

E[Xk+1 − Ê[Xk+1/Zk+1]]Ỹ
T
k+1|k = 0 (4.17)

E[Xk+1Ỹ
T
k+1|k] = ∆k+1E[ Yk+1|k Y

T
k+1|k] (4.18)

substitute Xk+1 = X̂k+1|k + X̃k+1|k in the above equation where Ỹ k+1|k = Yk+1 −
Ck+1X̂k+1|k −Gk+1 , we solve for ∆k+1|k .

∆k+1|k = (Pk+1|kC
T
k+1)(Ck+1Pk+1|kC

T
k+1 +R)−1

where Pk+1|k = E[X̃k+1|kX̃
T
k+1|k] and to estimate Pk+1|k we know X̃k+1|k , Xk+1− X̂k+1|k

Substituting we get

Pk+1|k = AkPk|kA
T
k − Fk +Q (4.19)

26



4.3.4 Updation step in EKF

The updation step is

X̂k+1|k+1 = X̂k+1|k + ∆k(CkX̃k+1|k) + ∆kvk)

X̃k+1|k = (Ak −Ak∆kCk)X̃k|k−1 −Ak∆kvk

Pk+1|k = (Ak −Ak∆kCk)Pk|k(Ak −Ak∆kCk)T +Ak∆kR∆T
kA

T
k

Finally the updation step would be

X̂k+1|k+1 = f(X̂k+1|k) + ∆k+1(Yk+1 − Ck+1X̂k+1 −Gk+1) (4.20)

and also after obtaining the X̂k+1|k+1 we can get the updated estimate covariance as

Pk+1|k+1 = AkPk|kA
T
k +Q+ ∆k+1Ck+1Pk+1C

T
k+1∆

T
k+1 + ∆k+1R∆T

k+1. (4.21)

4.3.5 Overall steps to Implement EKF

The following four steps are invovled in implementing Extended Kalman Filter

Overall steps to Implement EKF The following four steps are involved in implementing

Extended Kalman Filter

Step1: Prediction Estimate

x̂k+1|k = f(x̂k+1|k) (4.22)

Step 2: Predicted Estimate Covariance

Pk+1|k = AkPk|kA
T
k +Q (4.23)

where

Ak = Df(x̂k+1|k) (4.24)

where Df is the Jacobian

Step 3: Updated State Estimate

x̂k+1|k+1 = f(x̂k+1|k) + ∆k+1(Yk+1 − Ck+1X̂k+1 −Gk+1) (4.25)

∆k+1|k = (Pk+1|kC
T
k+1)(Ck+1Pk+1|kC

T
k+1 +R)−1 (4.26)

Step 4: Updated Estimate Covariance

Pk+1|k+1 = AkPk|kA
T
k +Q+ ∆k+1Ck+1Pk+1C

T
k+1∆

T
k+1 + ∆k+1R∆T

k+1 (4.27)
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: Prediction Estimate

X̂k+1|k = f(X̂k+1|k) (4.28)

Step 2: Predicted Estimate Covariance

Pk+1|k = AkPk|kA
T
k +Q (4.29)

where

Ak = Df(X̂k+1|k) (4.30)

Step 3: Updated State Estimate

X̂k+1|k+1 = f(Xk+1|k)+∆k+1(Yk+1−Ck+1X̂k+1−Gk+1)∆k+1|k = (Pk+1|kC
T
k+1)(Ck+1Pk+1|kC

T
k+1+R)−1

(4.31)

Step 4: Updated Estimate Covariance

Pk+1|k+1 = AkPk|kA
T
k +Q+ ∆k+1Ck+1Pk+1C

T
k+1∆

T
k+1 + ∆k+1R∆T

k+1 (4.32)

4.3.6 Implementing EKF for Van Der Poll Oscillator

A MATLAB program is written to implement the Extended Kalman Filter for the Van

Der Pol Oscillator.

Van Der Pol Oscillator is a non conservative oscillator with non linear damping. The

system is described by the following second order differential equation.

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0 (4.33)

x is position coordinate , µ is scalar parameter indicating non linearity
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Figure 4.6: Van Der Pol Oscillator State Estimates by Implementing Extended Kalman

Filter
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Figure 4.7: Van Der Pol Oscillator State Estimates by Implementing Extended Kalman

Filter
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4.4 Unscented Kalman Filter

Extended Kalman Filters are widely used for non linear systems where the non linear

states are linearized and calculated Jacobian matrices are substituted in Kalman filter

equations. Extended Kalman Filter (EKF) has some limitations

• If the error propagation is approximated by a linear function then only the linear

transformations are reliable. If this is not followed linearization approximation will

be poor and results in estimate divergence.

• Linearization can be applied only if Jacobian matrix exists. Some systems contain

singularities and discontinuties.

• Calculating jacobian matrices can be difficult and also error prone process.

So overcome the limitations of implementing EKF for non linear systems, Julier et.al [17]

developed a new linear estimator which yields performance equivalent to Kalman filter for

linear systems, yet generalizes elegantly to non linear systems without linearization steps

required by EKF.

The principle of unscented transformation as illustrated below in figure

Figure 4.8: The principle of the Unscented Transformation 16

30



Figure 4.9: EKF and UKF (www.azimuthproject.org)

We generate a set of points whose sample mean and sample covariance are x̂(k|k)

and covariance Σ(k|k) respectively. The non linear function is applied to each of these

points in turn to yield a sample and predicted mean and covariance are calculated from

the transformed sample. Though it resembles a Monte Carlo method samples are not

drawn at random.

The n-dimensional random variable x(k) with mean x̂(k|k) and covariance Σ(k|k) is

approximated by 2n+1 weighted samples or Sigma points selected by the algorithm

χo(k|k) = x̂(k|k)i = 0 (4.34)

Wo = κ/(n+ κ) (4.35)

χi(k|k) = x̂(k|k) +
(√

(n+ κ)Σ(k|k)
)
i
i = 1, 2, ..n (4.36)

Wi = 1/2(n+ κ) (4.37)

χi+n(k|k) = x̂(k|k) +
(√

(n+ κ)Σ(k|k)
)
i
i = 1, 2, ..n (4.38)

(4.39)

where κ ∈ R,
(√

(n+ κ)Σ(k|k)
)
i

is the ith row or column of the matrix square root

of (n+ κ)Σ(k|k), Wi is the weight associated with ith point.

4.5 Applying the Unscented Transformation

As discussed in the paper [16] , The UKF consists of the following steps

1 Predict the new state of the system µ̂n and its associated covariance K̂n. This
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prediction must take into account the effects of process noise.

2 Predict the expected observation ŷn and the innovation covariance Ŝn. This predic-

tion should include effects of observation noise.

3 Predict the cross covariance matrix K̂xy
n .

In the Unscented Kalman filter these states are augmented with the process and noise

terms to give an augmented vector and that augmented vector is used in the algorithm of

filter. The process model is given by

Xk = f(Xk−1) + vk (4.40)

The observation model is given by

Yk = g(Xk) + wk (4.41)

The augmented vector is

X̄a
n−1 =

Xn−1

vk

wk

 (4.42)

The process and observation models are written as functions of X̄a
n

X̄a
n = fa[X̄a

n]

Yn = ga[X̄a
n]

But the unscented transformation actually uses the Sigma Points that are computed from

the augmented mean and covariance as below

µa,n =

µn0
0

 (4.43)

and

Ka,n =

Kn 0 0

0 Q 0

0 0 R

 (4.44)

4.5.1 General formulation of KF using Unscented Transformation

As discussed in the paper by Simon Julier et. al it involves the following 9 steps.

1 The set of sigma points are generated by the Sigma Point Algorithm as discussed in

earlier section to the augmented system .
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2 Instantiation of each point through the process model gives the transformed set of

points

X̂(i)
a,n = f [X̂a,n]

3 Predicted mean is computed as

µ̂a,n =

p∑
i=0

W (i)X̂(i)
a,n

4 Predicted Covariance is computed as

K̂a,n =

p∑
i=0

W (i)
(
X̂(i)

a,n − µ̂a,n
)(

X̂(i)
a,n − µ̂a,n

)T
5 Instantiation of each of the prediction point through the observation model.

Ŷ (i)
a,n = g[X̂(i)

a,n]

6 Predicted Observation is calculated by

Ŷa,n =

p∑
i=0

W (i)Ŷ (i)
a,n (4.45)

7 The innovation covariance is calculated by

Ŝn =

p∑
i=0

W (i)
(
Ŷ (i)
n − Ŷn

)(
Ŷ i
a,n − Ŷn

)T
(4.46)

8 Cross Covariance matrix is determined by

K̂xy
n =

p∑
i=0

W (i)
(
X̂(i)

n − µ̂n
)(

Ŷ (i)
n − Ŷn

)T
(4.47)

9 Finally the update can be performed using the normal Kalman filter equations

µn = µ̂+Wnνn (4.48)

Kn = K̂xy
n −WnŜnW

T
n (4.49)

νn = Yn − Ŷn (4.50)

Wn = K̂xy
n Ŝ−1n (4.51)

At the end of step 9 when the updated mean and covariance are obtained the steps 1 to 9

are executed again in the loop for next time steps. This completes the algorithm for the
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Unscented Kalman Filter.

4.5.2 Implementing Unscented Kalman Filter

A MATLAB program is written to implement the unscented kalman filter . The problem

is A vehicle enters the atmosphere at high altitude and at a very high speed [17]. The

position of the body is tracked by a radar which measures the range. The vehicle state

dynamics are given by the following equations.This is a higly non linear system.

ẋ1(k) = x3(k)

ẋ2(k) = x4(k)

ẋ3(k) = D(k)x3(k) +G(k)x1(k) + v1(k)

ẋ4(k) = D(k)x4(k) +G(k)x2(k) + v2(k)

ẋ5(k) = v3(k)

where

D(k) = −β(k)exp

(
R0 −R(k)

H0

)
V (k)

G(k) = −Gm0

r3(k)

β(k) = β0exp (x5(k))

R(k) =
√
x21(k) + x22(k)

V (k) =
√
x23(k) + x24(k)

Here is a result of simulation ,
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Figure 4.10: The reentry problem implemented by UKF, result showing state x(1)
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Chapter 5

Results

5.1 Implementation of UKF for SOFC system

In the earlier two chapters the model development is explained and the theory and deriva-

tion of KF, EKF algorithms are discussed with some examples. Also the Unscented

Kalman Filter (UKF) algorithm is discussed in detail in the Chapter 4 last section which

with an example. We now implemented the UKF algorithm in estimating the states for

SOFC system. The lumped model with choked flow assumption is simulated and we im-

plemented UKF to estimate the states of the system. It is observed that UKF estimates

the states of system only with very low covariance values. The estimates of states and the

polarization loss are shown in this section. It is observed that UKF is able to estimate

the states for lumped model of SOFC . For the modified lumped model with non-choked

flow the estimation by UKF is to be investigated. In the lumped model we considered the

feed in anode side with fuel composition as 97.5% H2 and 2.5% H2O and cathode side is

air. We assumed that anode and cathode channel pressures to be 3 atm and inlet temper-

ature is 1073 K and draw current value as input. The dynamics of the system is obtained

by solving using ode solver in MATLAB and then that model is simulated by writing a

program to simulate the system in MATLAB for time of 300 sec. The time step consid-

ered is 0.01. A program in MATLAB has been written to obtain the estimates by using

Unscented Kalman Filter (UKF) with an input of initial state conditions as mean. The

initial error covariance for first three states (partial pressures) is 0.00000001 and fourth

state (temperature) is 0.01 . Similar values are considered for State noise covariance. The

measurement noise covariance is considered to be 0.0001. It is observed that if the noise

covariance are increased than the earlier mentioned values UKF is not able to estimate

the states because the states (i.e. the partial pressures) can become negative. So this

limitation brings into picture the use of constraints in implementation of UKF to be able

to estimate states.
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Figure 5.1: Estimate of pH2 by UKF
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Figure 5.2: Estimate of pO2 by UKF
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Figure 5.3: Estimate of pH2O by UKF
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Figure 5.4: Estimate of Ts by UKF

38



Figure 5.5: Polarization Loss-Cell
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Chapter 6

Conclusion and Future Work

Considering the practical benefits of fuel cells, it is important to develop control models

for SOFC which will benifical to the commercialization of this technology. The perfor-

mance if the cell depends on the partial pressures and temperature of the stack which must

be properly controlled. So this motivated to work on the Implementation of Unscented

Kalman Filter(UKF) on SOFC system. As it is good to start the model development with

less complex model like lumped model and to employ it in state estimation, we proceeded

this way. It is observed that UKF with proper initialization is able to estimate the states

of system.

In the lumped model, by modifying few assumptions a much better model can be

developed and that mathematical model coupled with other models can be used to design

control relevant models for SOFC systems. A more sophisticated method of estimation

using Particle filters, which are alternative to UKF can be considered for estimation of

states in systems like SOFC. Application of Particle filters with constraints for non linear

state estimation in systems like SOFC is one which can be further investigated.

40



References

[1] Ryan O’Hayre, Suk Won Cha, Whitney Colella, Fritz B. Prinz. Fuel Cell Fundamentals,

John Wiley Sons 2nd edition, 2009

[2] Mona Bavarian and Masod Soroush, Mathematical Modeling, Steady State and Dy-

namic Behavior, and Control of Fuel Cells: A Review, Ind. Eng. Chem. Res 49,

7922-7950, 2010

[3] Debangsu Bhattacharyya and Raghunathan Rengaswamy, A Review of Solid Oxide

Fuel Cell (SOFC) Dynamic Models Ind. Eng. Chem. Res 48, 6068–6086, 2009.

[4] Andrew M. Colclasure, Borhan M. Sanandaji, Tyrone L. Vincent , Robert J. Kee,

Modeling and control of tubular solid-oxide fuel cell systems. I: Physical models and

linear model reduction Journal of Power Sources 196,197-207, 2011

[5] Borhan M. Sanandaji, Tyrone L. Vincent ,Andrew M. Colclasure and Robert J. Kee,

Modeling and control of tubular solid-oxide fuel cell systems: II. Nonlinear model

reduction and model predictive control Journal of Power Sources 196,208-217, 2011

[6] M. Secanell , J. Wishart , P. Dobson, Computational design and optimization of fuel

cells and fuel cell systems:A review Journal of Power Sources 196, 3690-3704, 2011

[7] M. Kandepu R, Imsland L, Foss B, Stiller C, Thorud B, Bolland O. Modeling and

Control of a SOFC-GT-based autonomous power system. Energy 32(4), 406-417,

2007

[8] A K M Murshed, Biao Huang, K Nandakumar. Control relevant modeling of planar

solid oxide fuel cell system. Journal of Power Sources 163, 830-845, 2007

[9] A K M Murshed, Biao Huang, K Nandakumar. Estimation and control of solid oxide

fuel cell system. Computers and Chemical Engineering 34, 96-111, 2010

[10] Periasamy Vijay, Moses O tade. An adaptive non linear observer for the estimation of

temperature distribution in the planar solid oxide fuel cell. Journal of Process Control

xxx, xxx-xxx, 2012 ( Article in Press )

41



[11] Das, T.; Mukherjee, R. Observer design for a steam reformer based solid oxide fuel

cell system with anode recirculation. Proceedings of the ASME, IMECE; Seattle, WA,

2007; American Society of Mechanical Engineers: New York, 2007

[12] Lin, P.-H.; Hong, C.-W. Cold start dynamics and temperature sliding observer design

of an automotive SOFC APU. J. Power Sources 187 (2), 517–526. 2009

[13] Mueller, F.; Jabbari, F.; Brouwer, J.; Junker, S.; Ghezel-Ayagh,H. Linear quadratic

regulator for a bottoming solid oxide fuel cell gas turbine hybrid system. J. Dyn. Syst.,

Meas., Control 131,051002, 2009

[14] J. Padulles, G.W. Ault , J.R. McDonald . An integrated SOFC plant dynamic model

for power systems simulation. Journal of Process Sources 86, 495–500, 2000.

[15] Huayang Zhu, Robert J. Kee, Vinod M. Janardhanan,Olaf Deutschmann and David

G. Goodwin,An integrated SOFC plant dynamic model for power systems simulation.

Journal of The Electrochemical Society 152(12), A2427-A2440, 2005.

[16] Simon J Julier and Jeffrey K Uhlmann, Unscented filtering and nonlinear state esti-

mation. Proceesings of IEEE 92(3), 401-422, 2004.

[17] Simon Julier, Jeffrey Uhlmann and Hugh F Durrant Whyte. A New method for

nonlinear transformation of means and covariances in filters and estimators. IEEE

transactions on Automatic Control 45(3), 477-482, 2000.

[18] Robert J. Kee,Huayang Zhu and D. G. Goodwin, International Symposium on Com-

bustion july 2004

[19] Huayang Zhu, Robert J. Kee, Vinod M. Janardhanan, Olaf Deutschmann, and David

G. Goodwin, Modeling Elementary Heterogeneous Chemistry and Electrochemistry in

Solid-Oxide Fuel Cells, Journal of The Electrochemical Society 152 (12), A2427-A2440,

200

[20] S.H. Chan , K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel

cell and its sensitivity to the change of cell component thickness Journal of Process

Sources 93, 130–140, 2001.

[21] R.E.Kalman , A New Approach to Linear Filtering and prediction Problems, Trans-

actions of ASME Journal Of Basic Engineering 82, 35-45, 1960.

[22] Probability With Martingales by David Williams, Cambrige University Press, 1991.

[23] Calculus on Manifolds by Michael Spivak, Perseus Book Publishing, 1965.

[24] www.seca.doe.gov

42


