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Abstract 

 

Atherosclerosis is a life-threatening disease of the human circulatory system. It can 

lead to blockage of arteries leading to heart attacks. It is characterized by plaque 

formation at the walls of the artery lumen. The progression of plaque formation can 

lead to complete blockage of the artery. The diagnosis of atherosclerosis is very 

important. So, the study of parameters affecting atherosclerosis is important. We 

study the effect of percentage blockage and non-Newtonian nature of blood on 

hydrodynamic factors in an artery that is partially blocked by atherosclerotic plaque. 

ANSYS Fluent software is used to study these cases. We obtain the velocity profile 

and wall shear stress profile for 10%, 25%, 50%, and 75% blockage. We also study 

the effect of various blood models like Newtonian, Power law, Carreau, and Cross 

models on the fluid dynamic factors. Results show that the percentage of stenosis 

affects the wall shear stress (WSS) the most. WSS is minimum for 10% stenosis, 

and maximum for 75% stenosis. The fluctuation of WSS, downstream of the 

stenosis, is also maximum for the case of 75% stenosis and minimum for the case of 

10% stenosis. There is formation of a recirculation zone, downstream of the 

stenosis, for all models at 50% stenosis. 
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Nomenclature 

η = Viscosity              Pa.sec 

η0 = Viscosity at zero shear rate            Pa.sec 

η∞ = Viscosity at infinite shear rate           Pa.sec 

 ̇ = Shear rate                 sec
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Contents 

 

Declaration .......................................................................................................................... ii 

Approval Sheet .................................................................................................................. iii 

Acknowledgements............................................................................................................ iv 

Abstract .............................................................................................................................. vi 

Nomenclature .......................................................................................................... vii 

1 Motivation and Introduction…………………………………………………….1 

2 Use of ANSYS FLUENT 13.0 ................................................................................3 

2.1 Creation of geometry in ICEM CFD ....................................................................... 3 

2.2 Simulation in FLUENT ............................................................................................ 5 

3 Simulation Results ..................................................................................................8 

3.1 Effect of % Stenosis  .............................................................................................. 8 

3.2 Effect of Non-Newtonian model ............................................................................. 10 

4 Conclusion .............................................................................................................14 

References .................................................................................................................15 

 

 

 



1 

Chapter 1 

 

Motivation and Introduction 

 
Motivation 

Atherosclerosis is a major disease of the human circulatory system. High cholesterol 

levels, Hypertension and Smoking are risk factors for atherosclerosis. 

Atherosclerosis is known to follow injury to the endothelium. Subsequently, there is 

accumulation of lipoproteins, adhesion of monocytes and platelets. This is followed 

by smooth muscle cell proliferation, and production of extra-cellular matrix 

followed by lipid accumulation. The end result is the appearance of a lipid-filled 

plaque that protrudes into the vessel lumen and obstructs the flow of blood (see 

Kumar et al. 2010)  

The study of parameters which affect the progress of atherosclerosis is very 

important. For instance, it is known that wall shear stress influences the progression 

of atherosclerosis (see Gibson et al. 1993). To obtain the wall shear stress, we 

should simulate the flow of blood in artery geometry and calculate the stress using 

an appropriate material model for blood. The main subject of this project is the 

simulation of blood flow in stenosis, and the documentation of parameters which 

affects the progress of atherosclerosis.  

 

Introduction 

The circulatory system of the human body consists of two main sub-branches, 

namely (i) Systemic circulation, and (ii) Pulmonary circulation. We will focus on the 

systemic circulation. 
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The Systemic circulation consists of the arteries, arterioles, capillaries, venules, and 

veins which supply oxygenated blood to the various parts of the human body. The 

artery diameters range from 20mm to 5mm. At the end of the arteries the pulsatile 

nature of blood flow is lost, and the flow becomes steady. The diameter of 

capillaries ranges from 0.5mm to .005mm (van de Vosse & van Dongen 1998). The 

number of capillaries is approximately a million times that of the number of arteries 

and veins. This helps in the efficient exchange of solutes with body tissues. The 

diameter of the veins is in general smaller than that of arteries, but the volume of 

blood contained is approximately twice that contained in the arteries (see van de 

Vosse & van Dongen 1998). This is due to the low pressure gradient in the veins. 

 

The rhythmic pumping of the heart induces a pulsatile arterial pressure that varies 

between 120mm Hg and 80mm Hg. This pulsatile nature is lost when the blood 

enters the arterioles and the average pressure gradually decreases. The pressure in 

the capillaries is 35 mm Hg, while it is 10 mm Hg in the venules. Eventually, the 

pressure becomes near zero in the vena cava. 

 

Blood Rheology 

Blood is a Non-Newtonian fluid, and exhibits shear thinning (Charm & Kurland 

1965) and viscoelastic behavior (Thurston 1972). The apparent viscosity of blood 

decreases by 25 to 30 times as the shear rate increases from .01 sec
-1

 to 200 sec
-1

. 

High viscosity of blood at low shear rate is due to RBC aggregation (Chien et al 

1967a), whereas low viscosity at high  shear rate is due to RBC disaggregation and 

deformation (see Chien et al 1967b).  

 

Due to the complexity of its rheological behavior, it has been very difficult to 

develop a proper three-dimensional model. Non-Newtonian models proposed by 

earlier scientists include the Casson model, the Cross model and the power law 

model (see Cho & Kensey 1984). The first viscoelastic model for blood was 

developed by Phillip & Deutsch (1975). Later, Yeleswarapu et al. (1998) developed 

a generalized Oldroyd-B model with a shear thinning viscosity function to describe 

blood flow. Recently, this model was improved by Anand & Rajagopal (2004). 
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Chapter 2 

 

Use of ANSYS FLUENT 13.0 

 

2.1. Creation of geometry in ICEM CFD 

The ICEM CFD 13.0 software is opened by using the ANSYS 13.0 software, 

Meshing folder. Once ICEM CFD is opened, the procedure given below is used to 

create the geometry. 

 

Preliminary Steps: 

a) Select create point in the Geometry Toolbar. Select „Create point‟ function in 

the Geometry toolbar, and then „XYZ‟. Create the following point numbers 

(with corresponding coordinates): 1(0,0,0), 2(120,0,0), 3(120,20,0), 

4(0,20,0), 5(55,0,0), 6(60,5,0), 7(65,0,0), 8(65,20,0), 9(60,15,0), 10(55,20,0). 

b) Join the following pairs of points- (1,5), (7,2), (2,3), (3,8), (10,4), (4,1)- 

using the function „Create/Modify curves‟. Select the desired pair of points 

in the main window with the mouse to create the lines. Now use the sub-

function „Create Arc‟, and select the three-point sequences (5, 6, 7) and (10, 

9, 8). This results in the semi-circular stenosis arcs being created. 

c) Now, the lines should be named. To do this, go to „Parts‟ in the General 

Window, and Right click „Parts‟. Select the sub-function „Create part‟, and 

now give part name by selecting the required part. Press apply, and repeat 

the procedure to create the next part. In this manner, the parts „input‟, 

„output‟, „stenosis‟, and „wall‟ are created. 

 



4 

Now that the geometry (of artery with semi-circular stenosis) been created, and the 

parts have been labeled, we now proceed to “block” the geometry prior to meshing. 

Steps for Blocking: 

a) Select the geometry in the Display window. Go to the General Window, and 

replace the block “Interior” with “Fluid”. Now select the option “2D Planar”, 

and click “Initialize”. This completes blocking. 

b) Select “Split block” in Toolbar. Select a line that is tangent to the stenosis 

and parallel to the top and bottom wall. Split the top and bottom walls at the 

beginning and end of the stenosis. 

c) Use the function „Delete Block‟ in the Toolbar, and delete the block numbers 

corresponding to the outer annulus of the pipe. The block numbers are 

4,10,23,21,18,16 in ICEM CFD version 13.0. 

d) In the General Window, select the option „Block Associate‟ and „Point 

Association‟. Now, associate the vertices (in the core annular region) with 

the points. 

e) In the General Window, select the option „Edge associate‟ and associate the 

edges of the block with the curves of the geometry (including the stenosis). 

This completes the creation of the shape of artery with semi-circular stenosis. 

Now that the block of the required geometry has been created, we can now generate 

the mesh inside the block. 

Steps for Meshing: 

a) Go to the icon “Mesh” in the Toolbar. Select „Curve mesh setup‟. In the 

General window, set maximum element size = 0.1. Now select the curve in 

the Display Window, and click on “All visible objects” 

b) Go to the option “Blocking” in the General Window, select the option „Pre-

Mesh Parameters‟ and enable the option „Update All‟. 
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c) Go the option “Blocking” in the General Window, select the option „Pre-

Mesh‟, say „Yes‟ to the question „Recompute‟.  

d) Go to the option „Pre-Mesh‟, Right-click, and select „Convert to 

Unstructured Mesh‟. This creates the required mesh on the artery inner flow 

domain. We are now ready to save the geometry with the mesh. 

Steps for saving: 

a) Go to „Output‟ in the Toolbar, and select the options „Solver‟,„FLUENT v6‟ 

and „ANSYS‟.  

b) Scroll the buttons one by one, and select „No Scaling‟, and „2D‟ 

c) Save the meshed geometry under an appropriate name using „Save‟ 

The above procedure results in the creation of a rigid-walled stenosed artery with  

length = 120mm length, and diameter = 20mm. The stenosis is at the middle of 

artery: it has a semi-circular shape, and occupies 50% of the cross sectional area of 

the artery. The % stenosis is varied when we want to study the effect of % stenosis 

in our simulation. 

 

2.2. Simulation in Fluent: 

We have created the meshed geometry in ICEM CFD using the procedure given 

above. We are now ready to perform the simulations in FLUENT.  

 

We open ANSYS 13.0, and select FLUENT in the Fluid Dynamics folder. We select 

the values „2D‟, „Double precision‟ and „Serial” for the variables Dimension, 

Options, Processing Option, respectively. 

 

Steps to input the meshed geometry: 

a) Read the meshed geometry file using „File‟, „Read‟, and selecting the already 

created mesh file (.msh extension) 
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b) Scale the mesh to 120 mm x-axis and 20mm y-axis. Select „mesh was 

created in mm’ and „length is viewed mm’ options, and click „Scale‟. 

Now that the meshed geometry has been imported, we follow a sequential procedure 

involving the options in the General window of FLUENT as given below. 

 

Steps to Set-up the simulation: 

a) Go to option „Models‟, and click „viscous model‟; then select „laminar‟: a 

viscous laminar model is enabled. 

b) Go to option „Materials‟ in the General window. The default material 

parameters are for air: these values are replaced by those of blood, and then 

renaming „air‟ as „blood‟. The properties of blood are density = 1050 kg/m
3
, 

select model as „Newtonian‟ (for example) and viscosity = 0.00345 

kg/(m.sec). Click „Create /change‟: this will write the properties of blood 

into a new material named as „blood‟. Note that the viscosity has to specified 

in a different manner for Power-Law, Carreau, and Cross models. 

c) Go to option „Cell zone conditions’ in the General window. Change „Cell 

zone name‟ to „fluid‟, and select the material as „blood‟ (the material blood 

has already been created in the previous step) 

d) Go to option „Boundary conditions‟. We give „Input type‟ as „velocity-

inlet‟ and „velocity magnitude‟ as 0.447m/s. The „Output type‟ is given as 

„Pressure-Outlet‟ and gauge pressure is given as 0. 

 

Steps to Run the simulation: 

a) Go to option „Solution‟. The „Solution Methods‟ is given as „SIMPLEC‟ 

with the default coupling scheme. Now select the values as „Least square 

cells based‟/„Standard‟/„First-order upwind‟ for the options „Spatial 

discretization for gradient‟/„Pressure‟/„Momentum‟, respectively. 

b) Go to option „Solution controls’. The default under-relaxation factors are 

given for pressure (= 0.3), density (=1), body forces (=1), and momentum 

(=0.7). We change the under-relaxation factor for momentum to 0.5 or 0.6 as 

needed to ensure convergence. 
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c) Go to option „Monitors‟. Select the residuals convergence criteria as 0.001 

for x- and y-momentum, and continuity. 

d) Go to option „Solution Initialization‟. Click „Initialize from input‟ after 

selecting the option „Calculate from all zones‟ 

e) Go to option „Run calculations‟. Enter the „Number of iterations‟ as „500‟. 

Click the calculate tab. This initiates the simulations, and the convergence of 

the solution is shown in the Display window. Typically the solution will 

converge for all the cases we have examined in less than 500 iterations. 

We are now ready to view the results of our calculations. 

 

Steps for Display of results: 

a) Go to option „Graphics and Animations‟. Go to „Contours set up‟ and 

selecting „Contours of velocity‟. Then select options to „Fill‟ the node 

values, and to use „Global range‟ for the display. Now click „Display‟ to get 

the velocity contours for flow of the blood model in the stenosed geometry. 

Repeat the procedure with appropriate options to display the wall shear 

stress. 
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Chapter 3 

 

Simulation Results 

 

The effect of % stenosis, and the choice of non-Newtonian model are studied for 

flow of blood in an artery with stenosis using ANSYS FLUENT 13.0 software.. The 

inlet velocity of blood is a steady state value of 0.447 m/s. 

 

3.1 Effect of % Stenosis 

We obtain the velocity profile for a power-law fluid model (Non-Newtonian) in an 

artery with 10%, 25%, 50% and 75% stenosis. The results are given in Figure 1. We 

observe that, as the size of the stenosis increases, the velocity disturbance increases 

around the stenosis. We also see that the magnitude of the velocity at the throat of 

stenosis increases as the size of the stenosis increases: it is the highest for 75% 

stenosis and least for 10% stenosis. Additionally, the velocity increases as the flow 

moves through the stenosis, and reaches a maximum at the throat of the stenosis as 

seen in Figure 2. 

 

The length-wise variation of the wall shear stress (WSS) for the flow of a power law 

model in an artery with  10%, 25%, 50%, and 75% stenosis is given in Figure 3. We 

can observe maximum wall shear stress at the throat of stenosis, and this value 

increases as % stenosis increases. At the length of the wall where there is no 

stenosis, the shear stress is constant. The WSS increases after the entrance of the 

stenosis, and reaches a maximum at the throat  of  stenosis. It then decreases to 

minimum at the end of the stenosis. After that, it increases again and, after a certain 

length, reaches its pre-stenosis constant value. 
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Figure 1. Axial Velocity magnitude for power-law fluid (various % stenosis) 

 

Figure 2. Axial Velocity magnitude for power-law fluid (75% stenosis) 
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Figure 3. WSS: Length-wise variation for power-law fluid (various % stenosis) 

 

 

3.2 Effect of Non-Newtonian models 

We now study the effect of choice of Non-Newtonian model on the magnitude of the 

velocity, and the wall shear stress for 50% stenosis with the same inlet velocity. We 

consider the Newtonian model, power law model, Carreau model, and Cross model 

as possible choices for blood, and use the material parameters given in Cho & 

Kensey (1984). The expression for the viscosity (η) in these models is given below. 

 

Newtonian model: 

                (1) 

Here η = 0.00345 Pa. sec. 

 

Power-Law model: 

      ̇           (2) 

Here m = 0.042 Pa.sec
n
, n = 0.61. 
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Carreau model: 

    

     
 *   (   ̇ ) +

   

     (3) 

Here, η0 = 0.056 Pa.sec, η∞ = 0.00345 Pa.sec, λ = 3.313 sec, n = 0.3568. 

 

Cross model: 

    

     
 

 

*  (   ̇ )  +
  ,    (4) 

Here, η0 = 0.056 Pa.sec, η∞ = 0.00345 Pa.sec, k = 1.007 sec, n = 1.028. 

 

The results for the magnitude of axial velocity are shown in Figure 4 below. The 

velocity is highest for the Newtonian fluid (due to lowest viscosity = 0.00345 

Pa.sec), and lowest for Cross model. The effect of the stenosis (either in disturbing 

the flow, or recirculation zones) is felt the most when the viscosity is minimum (i.e. 

for the Newtonian model) and is felt the least for Cross model. Recirculation zones 

are prominent in the Newtonian model, and they become increasingly less prominent 

as we consider the power-law, Carreau, and Cross models in that order. However, as 

we see in Figure 5, a recirculation zone, though small, is still present even for the 

Cross model. 
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Figure 4. Axial Velocity magnitude of various blood models (50% stenosis) 

Figure 5. Axial Velocity magnitude of Cross model (50% stenosis) 
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We now consider the length-wise variation of wall shear stress (WSS) for these 

models: see Figure 6. Peak WSS is highest for the case of Cross model (which has 

the maximum average viscosity, and a gradual variation of viscosity). However, 

peak WSS is aproximately same for the Newtonian, Power law and Carreau models. 

After the end of the stenosis region, there is a sudden drop in WSS corresponding to 

the presence of the recirculation zone. The WSS recovers its original value at a 

certain distance away from the end of the stenosis: this distance is maximum for the 

Newtonian model due to its viscosity being the lowest. 

Figure 6. WSS: Length-wise variation of various blood models (50% stenosis) 
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Chapter 4 

 

Conclusions 

 

The simulation results show that, for a given fluid model for blood, the magnitude of 

the velocity and the peak WSS increase as % stenosis is increased. Both parameters 

reach a maximum at the location of peak stenosis. A recirculation zone is formed 

downstream of the stenosis at all values of % stenosis, and the extent of the 

recirculation zone increases as the % stenosis increases. 

 

The study using different Non-Newtonian models shows that, for a given % stenosis, 

the magnitude of axial velocity is maximum for the Newtonian fluid (which has the 

lowest viscosity) while it is minimum for the Cross model. The recirculation zone is 

largest for the Newtonian model and smallest for the Cross model. The peak WSS 

predicted by the Cross model is much higher than those predicted by the other 

models considered (Carreau, Power-Law, and Newtonian). Hence, using the Cross 

model in simulations of atherosclerosis progression will lead to prediction of slowest 

growth rate of stenotic plaque. 

 

The next step in this study should be a simulation of pulsatile flow of Non-

Newtonian fluid models in the stenosed artery. 
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