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We outline a holographic recipe to reconstruct α0 corrections to anti–de Sitter (AdS) (quantum) gravity
from an underlying CFT in the strictly planar limit (N → ∞). Assuming that the boundary CFT can be
solved in principle to all orders of the ’t Hooft coupling λ, for scalar primary operators, the λ−1 expansion of
the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field
action. Furthermore, for the metric perturbations in the bulk, the AdS=CFT operator-field isomorphism
forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of
the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using
the expression of stress-tensor two-point function up to subleading order in λ−1.
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I. INTRODUCTION

In the absence of a fully nonperturbative formulation of
(super)string theory, it is pragmatic to think of the
Maldacena duality [1,2] as furnishing a manifestly holo-
graphic definition of quantum gravity in asymptotically
anti–de Sitter (AdS) spaces in terms of a conformal field
theory. This definition is in terms of a large-N conformal
field theory supported on the conformal boundary of the
AdS space. Now we have examples of AdS holography
which are neither supersymmetric, nor require ten or eleven
spacetime dimensions. This is the case for e.g. the duality
of higher spin gravity in AdS3 withWN minimal models in
two dimensions [3] and that of (Vasiliev) higher spin
gravity theory [4] in AdS4 with the OðNÞ vector model
in 2þ 1 dimensions [5]. Thus, we have come to realize that
AdS=CFT is more general than the original string theory
examples where it was first discovered, and that AdS=CFT
can be elevated to a constructive principle or a starting
point/definition for quantum gravity in asymptotically AdS
spaces in terms of CFT degrees of freedom. Although this
definition is manifestly background dependent, it is com-
pletely nonperturbative.1 For quantum gravity practitioners,

the task then becomes to extract the quantum gravitational
degrees of freedom from the boundary CFT Hilbert space.2

In a series of papers [9–11], a reformulation of the
Lorentzian version of the AdSdþ1=CFTd correspondence
[12,13] was worked out in the leading semiclassical (super)
gravity approximation, N → ∞; λ → ∞. This reformula-
tion was based on mapping normalizable bulk fields

Φðz; xÞ with asymptotic falloffs, Φðz; xÞ ∼z→0zΔϕ0ðxÞ, to
local CFT operators OΔðxÞ with scaling dimensions Δ
[14]. Namely,

ϕ0ðxÞ ↔ OΔðxÞ:

Here the boundary is located at z → 0 and the boundary
coordinates have been collectively denoted by x. The central
aim of this reformulation was to recover approximate
locality in the bulk in the most transparent manner—by
mapping on-shell bulk insertions to a delocalized (smeared)
boundary (CFT) operator with compact support on the
boundary,

ϕðz; xÞ ↔
Z

dx0Kðx0jx; zÞOΔðx0Þ:

This was an improvement over earlier attempts
[13,15,16], which generally involved representation of a
local bulk insertion in terms of a nonlocal CFT operator
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1Perhaps this is the paradigm in constructing quantum gravity

in general, i.e. background dependence (through its asymptotic
symmetries) is an essential ingredient akin to the choice of a
global symmetry group in an ordinary quantum field theory.
Perhaps, just as it does not make much sense to talk about
quantum field theories with different (global) symmetry groups in
the same Hilbert space, it does not make sense to talk of an
arbitrarily background-independent formulation of quantum
gravity. See [6] for similar arguments.

2However, the more prevalent use of this duality has been to do
with the exact obverse, i.e. extract CFT observables (correlation
functions) from semiclassical gravity using the GKPW prescrip-
tion [7,8], for example, applications of AdS=CFT in condensed
matter or QCD.
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with support over the entire boundary and hence required
delicate cancellations to recover bulk locality at leading
order in 1=N expansion. The smearing function immedi-
ately reproduces the bulk correlators in terms of the
boundary correlators, for example, via

hΦðx1z1ÞΦðx2; z2Þi

¼
Z

dx01dx
0
2Kðx01jx1; z1ÞKðx02jx2; z2ÞhOΔðx01ÞOΔðx02Þi:

This boundary-to-bulk map or the smearing function
Kðx0jx; zÞ has been constructed not just for (spinless) scalar
fields, but also for massive and massless (vector) gauge
fields, as well as the spin-two graviton [17] and free higher
spin fields [18]. Generically, the smearing functions are
nonvanishing only for points on the boundary which are
spacelike separated3 from the local bulk insertion. Further,
perturbative quantumgravity corrections, i.e. 1=N nonplanar
effects to the smearing picture, were worked out sub-
sequently [19–21]. All this was done in the supergravity
(SUGRA) approximation λ → ∞, where the gravity action is
just the cosmological Einstein-Hilbert action. In the original
string theory examples, the Regge slope α0 is related to the
inverse powers of λ, and such α0 corrections are expected to
give rise to “stringy” higher derivative corrections to the
(cosmological) Einstein-Hilbert action. However, in the
generic case, these 1=λ corrections, i.e. “stringy” corrections
to the AdS gravity, are yet to be worked out from the CFT.
The aim of this paper is to exactly supply that.
The outline of the paper is as follows. In Sec. II and

Subsection II A,we introducemassive scalar fields in the bulk
interactingwith higher curvature terms in a fixed background.
We point out how the concept of a “string length” emerges
from the λ-corrected anomalous dimensions of the corre-
sponding boundary primary operators. This makes clear the
connection between the higher curvature terms in the bulk
and the 1=λ corrections at the boundary. Section III and
subsequently Subsection III A deal with the higher derivative
corrections towards the usual Einstein-Hilbert action. We
point out that the equality of the components of the bulk fields
and the number of degrees of freedom of the dual operator in
theCFT forces these corrections to beof theLovelock type. In
Sec. IV we solve for the metric perturbation equation
obtained in the previous section in order to construct the
first subleading order (in 1=λ expansion) smearing function
for the gravitons. Finally, we conclude in Sec. V. AppendixA
collects some important formulas.

II. MATTER CORRECTIONS BEYOND
(SUPER)GRAVITY

The standard lore in AdS=CFT is that field operators
Φðz; xÞ in the quantum gravity side are described using a

bulk (AdS) Langrangian (action) with parameters deter-
mined by the anomalous (conformal) dimension Δ of the
dual operator in the CFT,OΔðxÞ. In particular, in the planar
limit, i.e. N → ∞, only connected correlators survive,
which generates purely quadratic terms in the bulk
(AdS) lagrangian,4

L ¼ −
1

2
∂MΦ∂MΦ −

1

2
m2ðλÞΦ2:

When nonplanar corrections are included, then even in the
leading planar limit, anomalous dimensions of CFT oper-
ators receive corrections from the marginal coupling, N,
which could be both perturbative and nonperturbative in
nature.Of course, for supersymmetricCFTs there are special
cases of BPS-operators which are protected against such
corrections, but since we are considering generic CFTs or
even non-BPS operators in a supersymmetric CFT, we will
not restrict ourselves to such special or protected operators.
Computing such anomalous dimensions of gauge-invariant
operators, at finite values of the coupling, is the fundamental
problem in gauge field theories. In general, accomplishing
this solution requires fundamentally new insights or new
methods into solving gauge field theories nonperturbatively.
However, for the case of large-N gauge theories, it might be
that the field theory is integrable in the planar limit, for
example, as is the case for the N ¼ 4 Super Yang-Mills
theory or the ABJ(M) theory [22,23].
In a generic large-N CFT we have two parameters, a

(planar) factorization parameter N and an exactly marginal
coupling λ. AdS=CFT isomorphism demands an equality of
dimensionless parameters on either side. In the (super)
gravity limit, the emergent AdS spacetime has two dimen-
sionful parameters, the AdSdþ1 radius R and Newton’s
gravitational constant GN . Their ratio constitutes a single
dimensionless parameter which is defined to be

Rd−1

bðdÞGN
≡ N2: ð1Þ

Here bðdÞ is a numerical constant dependent on the
spacetime dimensionality.
For example, in the most extensively explored case of the

duality between type IIB strings on AdS5 × S5 and N ¼ 4
SYM [1], the bulk-boundary dictionary between the string
coupling gs, string length ls and Yang-Mills coupling gYM
is (omitting all numerical factors which are dependent on
the spacetime dimensions),

gs ¼ g2YM;

�
R
ls

�
4

∼ Ng2YM ¼ λ: ð2Þ

3For bulk gauge field insertions, the support is over lightlike
separated points on the boundary.

4Also the strictly planar limit in the CFT implies the vanishing
bulk Newton’s constant limit GN → 0, so the matter fields do not
back-react on the AdS geometry. Thus one can safely operate in
the probe approximation for matter fields.
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Also, we have the following relation between Planck length
(related to ten-dimensional Newton’s constant), string
coupling and string length:

l8p ¼ g2sl8s ð3Þ

Combining (2) and (3), we have

R8

l8p
∼ N2: ð4Þ

Ten-dimensional Newton’s constant is l8p, but after dimen-
sionally reducing the S5 directions, the five-dimensional
(AdS) Newton’s constant becomes ~l3p ¼ l8p=R5. Substituting

l8p ¼ ~l3pR5 into (4), we thus obtain

R3

~l3p
∼ N2;

modulo factors depending on dimensionality of the AdS
spacetime.
The dependence on the coupling of the dual CFT λ is

much more nontrivial to deduce for an arbitrary CFT, i.e.
understanding the second dimensionless parameter or the
emergence of a third length scale. However, as in (2), it
turns out that in the well-known examples of string theory/
CFT dualities, λ corresponds to string length (squared) α0.
The existence of a dual (super)gravity theory is obtained
when the limit λ → ∞ is taken. However, from the
perspective that AdS=CFT is much more general and
examples are known which do not require the existence
of supersymmetry or ten spacetime dimensions, the equal-
ity of “fundamental” parameters on the CFT side and
gravity side tells us that for each marginal coupling λ there
should be a new length scale ls in the bulk, which captures
effects of extended classical probes of the bulk geometry:

l2s ∼
R2

λα
:

Here α is determined by the dimensionality of the CFT. In
the case of d ¼ 4, α ¼ 1=2 as has been derived from
methods exploiting planar integrability—the anomalous
dimensions of operators, such as the Konishi operator,
receive their first corrections to be of the order 1=

ffiffiffi
λ

p
[24].

Since we are reconstructing the bulk/gravity side from the
CFT, our work intends to take as an input the expressions of
anomalous dimensions of some operator in arbitrary order
of 1=λ (obtained by some pure CFT method) and as an
output determines the form of the correction terms to be
added to the dual bulk field action. However, in practice
what we do in the following is to make an educated guess of
the bulk correction terms (curvature corrections) and then
use the HKLL dictionary to relate the coefficients of these
correction terms to the dimensionless coefficients appear-
ing in the expression for scaling dimensions or some other

dimensionless coefficients of the correlation functions of
the dual boundary operators. Once this relation is estab-
lished, they uniquely determine the coefficients of the bulk
terms in terms of the boundary correction. Thus, we are
reverse-engineering the CFT data to constrain the correc-
tion terms added to the bulk action.5

A. Defining a string length

Here we revisit the case of a bulk scalar, Φ ↔ OΔ.
Duality relates mass m of scalar field in bulk to conformal
dimension Δ of boundary primaries. If the bulk Lagrangian
is given by

L ¼ −
1

2
gMN∂MΦ∂NΦ −

1

2
m2ðΔÞΦ2; ð5Þ

then it is well-known that at N; λ → ∞

Δ∞ ¼ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2R2

r
:

Stringy corrections can sense the curvature, so on general
grounds including 1=λ effects, we can write down a
modified bulk Lagrangian for the scalar which includes
higher curvature corrections,

L¼−
1

2
gMN∂MΦ∂NΦ−

1

2
m2Φ2

þ l2sðaRMN∂MΦ∂NΦþbRgMN∂MΦ∂NΦþcm2RΦ2Þ:
ð6Þ

Here RMN and R are, respectively, the Ricci tensor and
Ricci scalars for the background and a, b, c are constant,
dimensionless coefficients which do not depend on any
bulk parameters.6 Also in what follows, the capitalized latin
indices will denote bulk coordinates and we will reserve the
greek indices μ, ν etc. to denote the boundary coordinates.
Around pure AdS, which is maximally symmetric,

RAB ∝ gAB

and the above modified scalar action simplifies to (on
restoring the canonical normalization of the kinetic term)

5Note that the smearing functions can also be extracted purely
from the boundary data in some simple cases just from symmetry
considerations. See e.g. [25–29]. This is also true in HKLL
construction in some sense, where the smearing function is the
unique kernel one can write down which will satisfy AdS
covariance [17,20,21].

6Note that in what follows, we are neglecting terms such as
Φ∇R∇Φ for two reasons. First, we contain ourselves with only
higher curvature interactions and secondly, due to expansion
around pure AdS, for whichR is a constant, such terms drop out.
It can also be partially integrated out to give a term going as
Rð∂ΦÞ2, which we already considered.
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L ¼ −
1

2
gMN∂MΦ∂NΦ −

1

2
m2

�
1þ c̄

l2s
R2

þO

�
ls
R

�
4
�
Φ2;

ð7Þ

where c̄ is an dimensionless order-one constant dependent
on the spacetime dimensions and so are the coefficients a,
b, c appearing in the higher curvature correction terms in
(6). Thus, the overall effect is just a correction of the mass
parameter in leading order (infinite λ) Lagrangian (5). This
then immediately provides the change in the conformal
dimension through the asymptotic falloff

ΔðλÞ ¼ Δ∞

�
1þ c̄fðΔ∞Þ

l2s
R2

þ � � �
�
; ð8Þ

where fðΔ∞Þ is a function of only Δ∞ and is given by

fðΔ∞Þ ¼
ðΔ∞ − d

2
Þ2 − d2

4

Δ∞ðΔ∞ − d
2
Þ :

Note that it goes to an order-one constant as well, when
we consider conformal primaries with large operator

dimensions. In principle, this is what one expects by
directly working with the CFT itself, namely, one can
compute the conformal dimension as

ΔðλÞ ¼ Δ∞

�
1þO

�
1

λα

��
: ð9Þ

This is, for example, what was done for the Konishi
operator [24]. This is of course the holy grail of field
theorists, to solve the spectral dimension for arbitrary
coupling, λ. However, as quantum gravity practitioners,
we will assume that the CFT has been solved exactly and
the spectral dimensions are known to all orders in 1=λ.
Comparing the two expressions for the conformal dimen-
sions (8) and (9), we can identify “string length”

l2s
R2

≡ 1

λα
: ð10Þ

Thus, finally the smearing function in this case is simply
modified to (keeping the SUGRA and boundary normal-
izations the same as in [11])

Φðt; x; zÞ ¼ Γ½ΔðλÞ − d
2
þ 1�

πd=2Γ½ΔðλÞ − dþ 1�
Z
t02þy02<z2

dt0dd−1y0ð2σz0ÞΔðλÞ−dOΔðλÞðtþ t0; xþ iy0Þ; ð11Þ

for AdS covariant bulk-boundary distance

σðz; xjz0; x0Þ ¼ z2 þ z02 þ ðx − x0Þ2
2zz0

in e.g. Poincaré AdS.
As we mentioned before, at this point one should treat

the above smearing function as the prescription to reverse-
engineer the bulk fields and correlators from their boundary
counterparts.

III. GRAVITY ACTION FROM λ− 1
CORRECTIONS IN CFT

After getting an intuition behind the equivalence
between the boundary λ−1 corrections and bulk higher
curvature corrections, we now directly consider modified
gravity actions in the bulk. Here we will neglect contribu-
tions from any other matter fields and set the stage for
computing metric perturbation and hence the modified
graviton smearing function in the next sections.
The λ corrections in the bulk are better not thought of as

quantum corrections, but classical nonlocality induced con-
tributions due to extended probes of geometry. For example,
in theN ¼ 4 SYM/ type IIB case, these are classical stringy
nonlocal effects. Such effects are manifested in local

Lagrangian field theory by an infinite number of higher
derivative terms. Thus, one needs to turn them on in the
gravity action to precisely capture the nonlocalities arising
out of extended probes in the bulk

Ibulk ¼
1

16πGN

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2Λþ α1R2

þ α2R2
μν þ α3R2

μνρσ þ α4□Rþ � � �Þ: ð12Þ
In general, the parameters in the bulk action Λ and αi’s are
functions of the gauge theory parameters N and λ,7

αi
R2

∼
1

λα
þO

�
1

λ2α

�
;

ΛR2∼Λ0R2þ a
λα

þO

�
1

λ2α

�
; with Λ0R2 ¼−

dðd−1Þ
2

:

ð13Þ

These dependences are not arbitrary but constrained by the
following principles:
(a) The new higher derivative gravity action admits

an exact pure AdS solution. This is because the

7We will later see how to interpret αi’s as a purely boundary
quantity without making any reference to AdS radius R.
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symmetries should remain intact on both the AdS side
and CFT side. On the CFT side, since the conformal
symmetry of the vacuum does not get overhauled by
the λ−1 corrections, hence a pure AdS space must be a
solution to the λ−1 corrected bulk field equations
as well.

(b) This pure AdS solution to the field equations of higher
derivative gravity with the cosmological constant Λ is
identical to AdS space with radius R, which is a
solution to the (two-derivative) Einstein’s field equa-
tions with cosmological constant Λ0 ¼ − dðd−1Þ

2R2 . This
is necessary so that the definition of Newton’s constant
(1) does not get revised/renormalized.8 In the N ¼ 4
SYM/ type IIB duality, it is known that the AdS radius
does not get renormalized by stringy α0 corrections
owing to supersymmetry [30]. This demand then
implies [31]:

Λ¼Λ0þ
dðd−3Þ
2R4

½dðdþ1Þα1þdα2þ2α3�; with

Λ0¼−
dðd−1Þ
2R2

: ð14Þ

(c) The λ−1 corrections in the bulk, being classical
corrections due to nonlocality/extended probes, must
admit consistent semiclassical quantizations of gravity
(about AdS space). In particular these corrections must
not change the number of (on-shell) degrees of free-
dom associated with the graviton as AdS=CFT de-
mands that the number of degrees of freedom of the
graviton must be same as that of the CFT stress tensor.
This is directly manifest in the holographic gauge of
[17], where there is a direct isomorphism between
components of the CFT stress-tensor and local grav-
iton insertions in AdS,

hμν ↔ Tμν with hμz ¼ hzz ¼ 0: ð15Þ
Generically, higher derivative actions modify the
degrees of freedom due to the presence of higher
derivatives. Isomorphism with gauge theory/CFT
forces the requirement of keeping intact the number
of graviton on-shell degrees of freedom, i.e. forces us
to choose a very particular form of the λ-corrected
action, one which was obtained in [32,33]

α1 ¼ α3 ¼ −
1

4
α2:

α4 can be consistently set to zero as it is the coefficient
of a total derivative term. This term is called a Gauss-
Bonnet term [34], and the specialty of such a term is

that the resulting equations of motion contain only
second derivatives. For higher order λ−1 corrections
one generates/adds higher order Lovelock terms [34]
in the bulk AdS action. Note that if the stress tensor of
the CFT is itself Lorentz anomalous, then of course
one can consider general higher derivative terms
which are not Lovelock. As an example, consider in
AdS3, a topologically massive gravity term. It corre-
sponds to an extra stress tensor (generally called the
anomalous stress tensor) in the dual chiral log CFT.

(d) The stress-tensor two-point function (and its higher
order functions in general) determine the coefficient
α1, since in the boundary limit

lim
z;z0→0

hhμνðx; zÞhρσðx0; z0ÞiðSUÞGRA

¼ zd−2z0d−2hTμνðxÞTρσðx0ÞiðSÞCFT; ð16Þ

as was done in [17]. The left-hand-side graviton two-
point function in the Gauss-Bonnet gravity is a
function of α1. But there is one subtlety to note here:
usually the normalization convention on the left-hand
side, i.e. the (super)gravity side, is different from the
right-hand or the S(CFT) side. For (super)gravity
the loop expansion parameter is κ2 ¼ 16πGN and
the graviton is defined as a perturbation hμν around

some background gð0Þμν like

gμν ¼ gð0Þμν þ κhμν;

and as a result the Newton’s constant does not show up
in the SUGRA two-point function for gravitons. In the
large-N CFT side, however, two-point functions,
particularly of boundary stress tensors (and in general
all connected correlators), are usually taken to have a
norm which scales as N2,

hOΔðxÞOΔðx0Þi ¼
CO

ðx − x0Þ2Δ ; with CO ∼ N2:

The usual practice in a large-N CFT is to set the norm
of the two-point function to unity, by defining

O → O=
ffiffiffiffiffiffiffi
CO

p
:

But the stress-tensor two-point function is not nor-
malized to unity. In fact, the norm gives the central
charge, which is a characteristic of the field theory
[heuristically speaking, it is an indicator of the field
content of the (S)CFT]. For an (S)CFTone has [35,36]

hTμνðxÞTρσðx0Þi ¼ CðN2; λÞ Iμν;ρσ
ðx − x0Þ2d : ð17Þ

Here Iμν;ρσ is some (universal) conformally covariant
structure depending on ðx − x0Þ independent of the

8If we allow the AdS radius to change with λ, then (1) implies
that Planck length needs to change identically, so as to keep their
ratio fixed and equal to N2. But change in Planck length implies
that they are quantum/loop corrections in the bulk, not classical
string corrections.
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CFT field content. The central charge has an asymp-
totic expansion about λ → ∞,9

CðN2; λÞ ¼ CðN2ÞfðλÞ; fðλÞ ¼ 1þOðλ−αÞ:

(of course recall that we are talking in the strictly
planar limit; otherwise, the central charge would, in
addition, have terms subleading in 1=N). Thus, we
need to make the identification (15) in a way so that
the boundary limit of the AdS graviton two-point
function reproduces the CFT stress-tensor two-point
function with the normalization ∼N2 (central charge).
This is easily achieved by the GKPW recipe [7,8] of
extracting boundary stress-tensor correlators or per-
haps more directly for us, through the BDHM
(extrapolate) or HKLL dictionary of AdS=CFT in
the holographic gauge, where we arrive at the boun-
dary CFT stress-tensor two-point functions by taking
the boundary limit of the bulk graviton two-point
function,

hTμνðxÞTλρðz; yÞiCFT
¼ lim

z→0
z2dhhμνðz; xÞhλρðz; yÞiSUGRA:

One always identifies the central charge in the
supergravity limit (N; λ → ∞) in terms of SUGRA
parameters

CðN2Þ ¼ nðdÞ Rd−1

16πGN
; ð18Þ

where nðdÞ is a numerical factor depending on the
dimensionality of the field theory.

A. CFT-induced (four)-derivative corrections to
bulk action (Gauss-Bonnet)

We now perform the required calculations in order
to justify various points that we discussed above. The
variation of the action (12) restricted to first order in λ−α

gives the field equations for four-derivative corrected
gravity [37],10

0¼ gAB
2

ðR−2Λþα1R2þα2Ric2þα3Rie2Þ
−RABþ2α1ð∇A∇BR−gAB□R−RABRÞ
þα2ð∇C∇ARBCþ∇C∇BRAC−□RAB

−gAB∇C∇DRCD−2RACRBCÞ
−2α3ðRA

LMNRBLMN þ∇L∇MRALBMþ∇M∇LRALBMÞ:
ð19Þ

Obviously, Ric and Rie signify the Ricci and Riemann
tensors for the background. Next, using the (Bianchi)
identities,

∇ARAB ¼ 1

2
∇BR;

∇A∇BRAB ¼ 1

2
□R and

∇L∇MRALBM ¼ □RAB −
1

2
∇A∇BR −RACRBD

þRACBDRCD;

we can recast the field equations in a nicer form

0¼RAB−
1

2
gABðR−2Λþα1R2þα2Ric2þα3Rie2Þ

þ2α1RRAB−4α3RACRB
Cþð2α2þ4α3ÞRACBDRCD

þ2α3RALMNRB
LMNþ

�
2α1þ

α2
2

�
gAB□R

− ð2α1þα2þ2α3Þ∇A∇BRþðα2þ4α3Þ□RAB:

ð20Þ
Since we must have AdS spacetime as a solution to these
four-derivative gravity field equations, we plug in an AdS
space ansatz with the AdS radius R,11

RABCD ¼ −
1

R2
ðgACgBD − gADgBCÞ:

The derivative terms become derivatives of the metric and
vanish, and the nonvanishing contributions to the field
equations are

RAB −
1

2
gABðR − 2Λþ α1R2 þ α2Ric2 þ α3Rie2Þ

þ 2α1RRAB − 4α3RACRB
C

þ ð2α2 þ 4α3ÞRACBDRCD þ 2α3RALMNRB
LMN ¼ 0:

After contracting with gAB on both sides, we get the revised
cosmological constant parameter in the Lagrangian,

9Note that the 1=λ order correction to the graviton two-point
function can be absorbed in a redefinition of Newton’s constant
GN , instead of the running of the central chargeC. (We should not
confuse this renormalization of GN with 1=N, i.e. quantum
gravity loop corrections.) However, when we go to the graviton
three-point function level, there are three “central charges”
corresponding to the coefficients of three distinct tensor struc-
tures allowed for the three-point function. Thus, at the three-point
level one cannot just absorb the 1=λ running of three distinct
central charges into a single Newton’s constant. We thank Dan
Kabat for pointing this out to us.

10Recall that for noncompact spaces such as AdS, all total
derivative terms vanish and there is no need to add boundary
terms such as the Gibbons-Hawking term.

11This radius is unchanged while the “bare” parameters in the
Lagrangian are changed as higher and higher derivatives terms
are added.
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Λ ¼ −
dðd − 1Þ
2R2

þ dðd − 3Þ
2R4

ðdðdþ 1Þα1 þ dα2 þ 2α3Þ:
ð21Þ

In general, for the higher derivative contributions
to vanish one needs to arrange the αi’s to set the
coefficients of the three independent higher derivative
terms □R, ∇A∇BR and □RAB in the field equations (20)
to vanish, i.e.

2α1 þ
1

2
α2 ¼ 0;

2α1 þ α2 þ 2α3 ¼ 0;

α2 þ 4α3 ¼ 0:

Evidently, this is achieved for arbitrary spacetime dimen-
sions for the Gauss-Bonnet combination, i.e.

α2 ¼ −4α1; α3 ¼ α1:

For this case the field equations take the form

RAB −
1

2
gAB½R − 2Λþ α1ðR2 − 4Ric2 þ Rie2Þ�

þ 2α1½RRAB − 2RACRB
C − 2RACBDRCD

þRALMNRB
LMN � ¼ 0: ð22Þ

Note that the cosmological constant for (asymptotically)
AdS backgrounds in Gauss-Bonnet gravity becomes

Λ ¼ −
dðd − 1Þ
2R2

þ dðd − 1Þðd − 2Þðd − 3Þ
2R4

α1: ð23Þ

Below, following [17,38], we shall use a slightly more
convenient form of the field equations,

RAB þ d
R2

�
1 −

α1
R2

ðd − 2Þðd − 3Þ
�
gAB

−
α1

d − 1
gABðR2 − 4Ric2 þ Rie2Þ

þ 2α1ðRRAB − 2RACRB
C − 2RACBDRCD

þRALMNRB
LMNÞ ¼ 0: ð24Þ

IV. CORRECTIONS TO BULK (SU)GRA
FROM 1=λ RUNNING OF CFT

STRESS-TENSOR CORRELATIONS

In this section we finally turn to linearizing the above
equation of motion in order to obtain the smearing function
to the first subleading order in λ−1 expansion. The graviton

equation of motion is obtained by linearizing the field
equations (22) and (24) around the pure AdS solution,

gAB ¼ gð0ÞAB þ hAB;

using the following linearized forms around AdS space,

Rð1ÞA
LMN ¼ 1

2
ð∇M∇NhAL þ∇M∇LhAN

−∇M∇AhLN −M ↔ NÞ;

Rð1Þ
AB ¼ ∇ðA∇ChBÞC −

1

2
□hAB −

1

2
∇B∇Ah

−
dþ 1

R2
hAB þ 1

R2
gð0ÞABh;

Rð1Þ ¼ ∇C∇DhCD −□hþ d
R2

h:

At the end of the day, quite expectedly, the linearized
Ricci equation remains the same,�
1 −

2ðd − 2Þðd − 3Þ
R2

α1

��
∇ðA∇ChBÞC −

1

2
□hAB

−
1

2
∇B∇Ah −

1

R2
hAB þ 1

R2
gð0ÞABh

�
¼ 0; ð25Þ

i.e. identical to that of (super)gravity [38], except for the
appearance of an overall coefficient which doesn’t alter
anything. However, the bulk Green’s function (e.g.
Feynman or retarded/advanced ones) for the metric per-
turbations GABðx − yÞ will be affected,�
1− 2α1

ðd− 2Þðd− 3Þ
R2

��
∇xðA∇xCGxBÞxCðx− yÞ

−
1

2
□xGABðx− yÞ− 1

2
∇xB∇XAGðx− yÞ− 1

R2
GABðx− yÞ

þ 1

R2
gð0ÞABGðx− yÞ

�
¼ 1ffiffiffi

g
p gABδdþ1ðx− yÞ

because the right-hand side is a delta function. In particular,
the Green’s function will get rescaled by this prefactor,

GGB ∼
1

ð1 − 2α1
ðd−2Þðd−3Þ

R2 Þ
GEH;

where the subscriptGB denotes Gauss-Bonnet theory in the
bulk, while the subscript denotes Einstein-Hilbert in the
bulk. This then implies that the smearing functions
obtained in [17] from the spacelike supported Green’s
function will also get rescaled by the α1-dependent nor-
malization factor.12 Hence, following [17], the final grav-
iton smearing expression becomes (i ¼ 1, 2)

12This can also be expected in other intuitive ways. For
example, we can derive (25) by redefining the initial metric
perturbation hAB, which has the Einstein-Hilbert form, upon
absorbing the extra α1-dependent factor in it.
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z2hhμνðt1;x1; z1Þhμνðt2;x2; z2Þiðα1Þ

¼ 1

volðBdÞð1 − 2α1
ðd−2Þðd−3Þ

R2 Þ

Z
t0i
2þjy0ij2<z2i

Z
dt0id

d−1y0ihTμνðt1 þ t01;x1 þ iy01ÞTμνðt2 þ t02;x2 þ iy02Þi;

where the volume of a unit d ball ¼ volðBdÞ ¼ 2πd=2

dΓðd=2Þ ð26Þ

Now if we use the HKLL dictionary of AdS/CFT in the
holographic gauge, then we arrive at the boundary CFT
stress-tensor two-point functions,

hTμνðxÞTλρðyÞi ¼ lim
z→0

z2dhhμνðz; xÞhλρðz; yÞi:

Thus, we see that the stress-tensor two-point functions of
the 1=λ-corrected CFT is related to the leading λ → ∞
result by

hTμνðxÞTλρðyÞiλ ¼
1

ð1 − 2α1
ðd−2Þðd−3Þ

R2 Þ
hTμνðxÞTλρðyÞiλ¼∞:

ð27Þ

Here α1=R2 is to be expressed in powers of λ−1 as in (13) or
in terms of CFT central charges as in (28) below. Further,
since the central charge is defined to be the coefficient of
the leading singularity of the two-point function of the CFT
stress tensor (17), this overall coefficient of the Gauss-
Bonnet correction to the bulk determines the “λ running” of
the central charge as we turn on the marginal coupling λ,13

α1
R2

¼ 1

2ðd − 2Þðd − 3Þ
�
1 −

Cðλ → ∞Þ
CðλÞ

�
: ð28Þ

Above, CðλÞ denotes the central charge appearing in front
of the stress-tensor correlator, but only expanded up to first
subleading order in λ−1 expansion. Alternatively, upon
defining

CðλÞ≡ C∞ þ 1

λα
Cð1Þ;

we can obtain

α1
l2s

¼ Cð1Þ

2C∞ðd − 2Þðd − 3Þ : ð29Þ

This equation predicts that for d ¼ 2, 3, the correction
vanishes, Cð1Þ ¼ 0, which makes sense because in those
dimensions the bulk Gauss-Bonnet term either vanishes or
is a topological term (not local). Thus, knowing the
boundary CFT data, i.e. the stress-tensor two-point function
order by order in 1=λ expansion, we can determine the
coefficient of the respective Lovelock terms that we need to
add in the gravity Lagrangian/action to reconstruct the bulk.
Using (28) or (29), the right-hand side of (26) becomes a
purely boundary quantity.

V. CONCLUSION AND OUTLOOK

In this paper we have taken the first step towards
incorporating 1

λ corrections (i.e. finiteness of the marginal
coupling in a CFT) in the construction of smeared boun-
dary operators which play the roles of local fields in the
AdS bulk. The construction is performed while holding N
infinite, i.e. when only connected two-point correlators in
the CFT are turned on, or equivalently in the limit of
Newton’s constant GN → 0 in the AdS bulk, i.e. the bulk
theory is at tree-level in quantum gravity. We have studied
the effect of the 1=λ corrections in two cases. In the first
case, we looked at changes in the bulk theory resulting from
1=λ corrections to (two-point) correlators of a CFT scalar
primary (unprotected). The anomalous dimensions of the
CFT primary operators develop a dependence on λ, and
we showed that this leads to new tree-level/classical
interactions to the dual bulk AdS scalar theory via
nonminimal couplings to the background, i.e. couplings
to higher orders of the curvature tensors and scalars.
These new interactions can be thought to be arising out
of massive string modes since in the context of the
gauge-string duality, the 1=λ corrections are expected to
be equivalent to perturbative worldsheet effects (α0

corrections). In the second case, we looked at the pure
gravity sector in the AdS bulk (dual to the CFT stress-
tensor multiplet), and again we found out that CFT 1=λ
corrections to the TT correlators transpire into higher
curvature correction terms, but only those which are of
the special Lovelock form. We have thus shown that the
(HKLL) map from local bulk operators to nonlocal
boundary operators via the smearing functions can be
easily and very naturally extended from the λ → ∞ case
to include 1=λ corrections [Eqs. (11) and (26)].

13Similar expressions have also been found in e.g. [39]
where they consider AdS=CFT for Gauss-Bonnet theory in the
bulk from a “bottom-up” phenomenological approach. Their
Gauss-Bonnet term could have contributions from 1=N order
since the AdS radius after adding the GB term changes compared
to the AdS solution in the pure EH gravity. Here we reconstruct
the bulk action from the CFT order by order, in an 1=λα
expansion.
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There are various avenues for future directions. Our
work is only the first step (the next to leading order in
1=λ) towards understanding the emergence of higher
curvature and higher derivative terms on the bulk, i.e.
stringy physics from the underlying CFT. The logical
next step would be to extend our results to incorporate
higher order 1=λ corrections. It remains to be seen how
the standard HKLL AdS=CFT bulk-boundary map
morphs. Another natural generalization would be to
consider both the scalars and the gravitational degrees
of freedom interacting at a certain order of α0. Our
results seem to suggest that as long as we have full AdS
isometry, the scalar and metric smearing functions will
again have the same structures; however, the overall
normalization factors and powers of the AdS covariant
distance function σðx; x0Þ will change. The AdS isometry
considerations dictate that it is also straightforward to
generalize our situation for asymptotically AdS space-
times which are global quotients of pure AdS, viz. AdS3-
Rindler, BTZ and higher dimensional hyperbolic black
holes. We expect our results to be easily adapted for
such backgrounds.
However, one of the main goals of our studies of bulk

locality (microcausality) from boundary is to better
understand AdS quantum gravity itself and perhaps
precisely derive the restrictions placed on the dual
CFT in order to have a local causal bulk AdS. Along
this line, one of the recent interesting developments was
in [40], which pointed out the need for an infinite tower
of higher spin particles in the AdS bulk in order to
construct a consistent (causality respecting) theory of
quantum gravity. In AdS=CFT, one should see such a
structure purely from the dual CFT. In [40] the authors
found their results by looking at the bulk three-point
graviton vertex, or, equivalently, in the CFT stress-tensor
three-point function. This is an effect which is manifest
at an order subleading in 1=N. As we mentioned in the
introduction, within the HKLL program itself, a lot of
literature already exists that deals with 1=N corrections
to fields of various spins such as spin 2 [21] and higher
[18], and thus the next step will be to understand such
effects simultaneously with our 1=λ corrections.
However, we believe that deriving the results of [40]
would require us to consider another criterion in addition
to microcausality in the bulk. Microcausality is a feature
of local quantum field theories (in this curved space
QFT), and it guarantees causal propagation of informa-
tion. However, this is not expected to be enough when
one considers stringy physics, which is not described by
a local QFT Lagrangian, i.e. containing only a finite
number of terms. For causal propagation in such stringy
physics, one requires additional consistency/causality
criteria in the bulk. The criterion of a gravitational
Shapiro delay used by [40] could exactly be such a
constraint on a nonlocal yet causal bulk theory. Another

standard expectation that comes from the studies of these
massive stringy modes is that for a sub-AdS duality one
needs to have a gap in conformal dimensions between
fields of spin 2 and higher [41]. In fact, in [42] it was
shown that a key result of [40] [Eq. (5.20) of [40]] can
be rederived from a CFT by assuming this gap and
assuming the chaos bound on out of time ordered four-
point functions of [43]. So far, our prescriptions, depend-
ing solely on bulk microcausality, are insensitive to these
extra constraints. However, from our point of view, i.e.
from the point of ab initio reconstructing the bulk from
the CFT, these conditions or restrictions should emerge
naturally from the existence of a perturbative expansion
of OPEs in two parametrically large dimensionless
quantities, namely N and λ. It would be nice to see
the emergence of a gap in the spectrum which is related
to the marginal coupling of the CFT (without using a
bulk stringy spectrum).
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APPENDIX: GRAVITATIONAL
PERTURBATION RESULTS

The form of the gravitational perturbation theory used in
this paper is14

14In metric perturbation theory it is customary to multiply the
perturbation by κ ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

,

gAB ¼ gð0ÞAB þ κδgAB:

However, we will not follow this convention in this paper.
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gAB ¼ gð0ÞAB þ δgAB;

gAB ¼ gð0ÞAB − δgAB þ δgALδgBL þ � � � ;
RAB ¼ Rð0Þ

AB þ Δð1ÞRAB þ Δð2ÞRAB þ � � � ;

Δð1ÞRAB ¼ ∇ðA∇CδgBÞC −
1

2
□δgAB −

1

2
∇B∇AδgCC þRð0Þ

ACδg
C
B −Rð0Þ

ACBDδg
CD

Δð2ÞRABgð0ÞAB ¼ δgAB

�
gð0ÞABgð0ÞCD − gð0ÞACgð0ÞBD

4
□þ∇A∇Cgð0ÞBD − gð0ÞCD∇A∇B

2
þRð0ÞACgð0ÞBD −Rð0ÞACBD

2

�
δgCD

Δð1ÞRABδgAB ¼ δgAB

�
∇A∇Cgð0ÞBD −

1

2
gð0ÞACgð0ÞBD□ −

1

2
∇A∇Bgð0ÞCDþRð0ÞACgð0ÞBD −Rð0ÞACBD

�
δgCD

Δð2ÞR ¼ 1

4
ðgð0ÞABgð0ÞCD þ gð0ÞACgð0ÞBDÞ□þ 1

2
∇A∇Cgð0ÞBD þ 1

2
ðRð0ÞACgð0ÞBD þRð0ÞACBDÞ:

1. First-order perturbation expressions

We have used the following first-order perturbations of
gravitational quantites15:

δΓμ
νσ¼1

2
gμαð∇νδgασþ∇σδgνα−∇αδgνσÞ;

δRσ
ρμν¼∇μδΓσ

νρ−∇νδΓσ
μρ;

¼1

2
ð∇μ∇νδgσρþ∇μ∇ρδgσν−∇μ∇σδgρν−μ→νÞ:

δRμν¼∇ρδΓ
ρ
μν−∇νδΓ

ρ
ρμ

¼1

2
ð∇σ∇μδgσνþ∇σ∇νδgμσ−□δgμν−gρσ∇ν∇μδgρσÞ;

δR¼∇μ∇νδgμν−gμν□δgμν−Rμνδgμν;

δ
ffiffiffiffiffiffi
−g

p ¼1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν:

One also needs the following results using the Bianchi
Identity,

∇ARAB ¼ 1

2
∇BR;

∇A∇BRAB ¼ 1

2
□R

and

∇M∇LRALBM ¼ □RAB −∇M∇BRAM

¼ □RAB −∇B∇MRA
M − ½∇M;∇B�RA

M

¼ □RAB −
1

2
∇A∇BR −RACRB

D

þRACBDRCD:
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