Vishnu, Nandimalla and Badhulika, Sushmee
(2019)
Single step grown MoS2 on pencil graphite as an electrochemical sensor for guanine and adenine: A novel and low cost electrode for DNA studies.
Biosensors and Bioelectronics, 124-12.
pp. 122-128.
ISSN 0956-5663
Full text not available from this repository.
(
Request a copy)
Abstract
Herein we report a simple, one-step approach to prepare a low-cost and binder free MoS2-pencil graphite electrode (i.e., MoS2-PGE) for the electrochemical oxidation of DNA nucleobases i.e., guanine (G) and adenine (A) in physiological pH (7.4) buffer solution. MoS2-PGE was synthesised by hydrothermal method and the morphology of such hybrid was characterized by field emission scanning electron microscopy, X-ray diffraction, Raman and X-ray photoelectron spectroscopy. In cyclic voltammetry, MoS2-PGE displays two well-seprated and well-defined irresversible peaks at 0.58 and 0.90 V for electrochemical oxidation of G and A respectively when compared to bare PGE. Likewise, differential pulse voltammetry of MoS2-PGE showed well-seprated and sharp peak current responses for G and A at 0.56 V and 0.85 V respectively. Under optimized conditions, DPV was further adopted for simultaneous and separation-free determination of G and A in physiological pH. MoS2-PGE shows good stability with linear range of 15–120 μM and 15–120 μM for G and A detection respectively. Obtained sensitivity and limit of detection (signal-to-noise = 3) are comparable with the previous literature. As an immediate practical applicability, MoS2-PGE was used for quantification of G and A concentration in calf-thymus DNA and detected ratio of G and A (i.e., [G]/[A]) ratio is 0.85. The current approach provides a new avenue towards the development of affordable electrodes for a wide range of bioanalytical applications
Actions (login required)
|
View Item |