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Abstract 

UHRF1 is a multi-domain protein comprising of a tandem tudor domain (UHRF1 

TTD), a PHD finger, and a SET and RING-associated (UHRF1 SRA) domain. It is 

involved in the maintenance of CG methylation, heterochromatin formation and 

DNA repair processes. Isothermal titration calorimetry binding studies of UHRF1 

TTD with unmodified and methylated lysine histone peptides establishes that the 

UHRF1 TTD binds dimethylated lysine 9 on histone H3 (H3K9me2). Further, MD 

simulation and binding studies reveal that, together, UHRF1’s TTD and PHD 

(UHRF1 TTD-PHD) preferentially recognizes dimethyllysine status. Importantly, it 

was found that in the binding pocket of UHRF1, the Asp145 which determines the 

preferential recognition of the dimethyl-ammonium group of H3K9me2.  In contrast, 

PHD finger of the UHRF1 TTD-PHD has a negligible contribution to the binding 

affinity for recognition of H3K9me2 by the UHRF1 TTD-PHD. Surprisingly, Lys4 

methylation on H3 peptide has an insignificant effect on combinatorial recognition 

of R2 and K9me2 on H3 (H3R2K9me2) by the UHRF1 TTD-PHD. Electrophoretic 

mobility shift assay and fluorescence polarization binding studies indicate that the 

UHRF1 SRA binds to all the oxidation products of 5-methyl cytosine (5mC) but 

exhibits lower affinity towards 5-carboxyl cytosine (5caC) and 5-formyl cytosine 

(5fC).  Subtle variations of key residues at the binding pocket could determine 

status specific recognition of histone methyllysine by the reader domains. Thus, 

further studies are required to unravel the possibility of combinatorial recognition of 

H3R2K9me2, and 5hmCG DNA by the UHRF1 and role of combinatorial 

recognition on UHRF1 functions especially for CG methylation maintenance and 

heterochromatin formation.   
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Nomenclature 

5caC  -  5-carboxyl Cytosine 

5fC  - 5-formyl Cytosine 

5hmC  - 5-hydroxymethyl Cytosine 

5mC  - 5-methyl Cytosine  

6-FAM  - 6-carboxyfluorescein 

Å  - Angstroms 

KA  -  Association constant 

BER  -  Base Excision Repair 

bp  - Base pair 
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CpG  - Cytosine-Guanine 

°C  - Degree Celsius 
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EMSA  - Electrophoretic Mobility Shift Assay 

ΔH  - Enthalpy Change 

ECRM  - Epigenetic Code Replication Machinery 

E. coli  - Escherichia coli 
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fs  - Femtoseconds 

FP  - Fluorescence Polarization 
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ITC  - Isothermal Titration Calorimetry 
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1.1   Introduction 

Though there has been a significant advancement in genomics, still, epigenetic 

regulation of genetic mechanisms remains one of the major challenges. In 1942, the 

term “epigenetics” was first coined by Conrad Waddington, defining it as “the 

branch of biology which studies the casual interactions between genes and their 

products which bring the phenotype into being” [1,2]. Today, more stringently, 

epigenetics is defined as the heritable chemical modifications, which, in turn can 

cause structural modifications of biomolecules including DNA, RNA and proteins, 

without any alteration in their primary sequence [3].   

Structural modification of chromatin leads to epigenetic changes in the gene 

expression that stem from altered accessibility of the transcription machinery to 

particular genes. The chromatin structural modulations signify the means of 

controlling access to genetic information. The packaging of nuclear DNA is one of 

the strategies for regulating the genetic information accessibility. In this approach, 

linear DNA is wrapped around histone particles to form the nucleosome, considered 

as a basic unit of chromatin. The strength of the interaction between DNA and 

histone proteins play a crucial role for DNA packaging, which dictates chromatin to 

be either in a condensed (silenced) or relaxed (active) state. The structural 

reorganization in the chromatin regulates gene activity and specific cellular 

phenotype [4,5]. 

Chromatin can be classified into euchromatin and heterochromatin, based on their 

functional perspectives. Typically, euchromatin represents actively transcribed 

genes in the genome. These euchromatin regions, usually, contain unmethylated 

CpG and hyper acetylated N-terminal lysine residues on H3 and H4 core histones; 

and are accessible to nucleases. On the other hand, heterochromatin represents 

transcriptionally inactive and highly condensed regions of the genome. Dinucleotide 

CpG methylation and significant hypoacetylation on histone usually occur in 
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heterochromatin and DNA is nearly inaccessible to the nucleases. Furthermore, 

heterochromatin is sub-classified into constitutive and facultative heterochromatin 

based on whether heterochromatin is formed in every cell type or particular cell, 

respectively [6]. The governing factors that affect the transition between 

euchromatin and heterochromatin are DNA methylation, RNA interference (RNAi), 

non-coding RNAs, histone post-translational modifications and DNA replication-

independent incorporation of histone variants [7].  

1.1.1   Nucleosomes and chromatin organization 

The genomic DNA in eukaryotes is primarily packed into nucleosome which 

constitutes ‘core particle’, ‘linker DNA’ a 10-90 bp long nucleotide sequence which 

connects the two nucleosomes and ‘linker histone H1’. The core particle of 

nucleosome comprises 146 bp DNA which wraps around histone octamer, consisting 

of two copies of each of the four histones, H2A, H2B, H3, and H4 (Fig. 1.1A) [8,9]. 

The core histones share a structurally conserved motif, the histone fold.  It 

comprises of three helices, two short helices (α1 and α3; 10-14 amino acids) and one 

longer helix (α2; 28 amino acids). These helices are connected by two short loops 

(L1 and L2). In solution, homo or heterodimer formation of histone is strongly 

influenced by the histone fold protein interaction (Fig. 1.1B and C) [10].  
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Figure 1.1: Structure of nucleosome core particle and histone fold heterodimers. (A) 

Nucleosome core particle structure (PDB ID: 1KX5). Histones and DNA are 

depicted in cartoon and sticks representations, respectively, and colored as 

indicated. (B) H3/H4 histone-fold heterodimer. (C) H2A/ H2B histone-fold 

heterodimer. [Adapted from McGinty and Tan, 2014] 

The main functions of the nucleosome are: (i) to bring genome compaction through 

organization of the genomic DNA; (ii) provide scaffold for the binding of the 

chromatin associated proteins and displaying combinatorial array of post-

translational modifications (PTMs) to regulate the stability of the nucleosome and 

compaction of chromatin; (iii) form high-order chromatin structures through self- 

assembly, leading to further compaction of the genome [11,12].  

The primary chromatin structure, where DNA is wrapped around nucleosome, 11 

nm thick, is called bead-on-a string form. The individual nucleosome interactionsis 

a driving force for the folding of a nucleosomal array (the primary structure of 

chromatin) into the 30 nm fiber, solenoid (a secondary structure) and into large-

scale configurations, chromatin (tertiary structures) that build an entire 

chromosome [13] (Fig. 1.2) The chromatin fiber within the nucleus is in dynamic 

state and also flexible over longer lengths. It usually undergoes several sorts of 

remodeling activities such as histone modifications, sliding and reduction of 

nucleosomes, and insertion of histone variants [14]. 
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Figure 1.2: Hierarchical organization of chromatin.  

[Adapted from Klug and Cummings, 1997] 

1.1.2   Epigenetic modifications 

The function of chromatin is largely regulated by the post-translational 

modifications (PTMs) of histones [7,15]. N-terminal tails of histone proteins usually 

undergo various covalent modifications including methylations, phosphorylation and 

acetylation (Fig. 1.3) [16]. Such covalent modifications directly regulate the 

structure of chromatin and often serve as binding sites for the non-histone proteins 

recruited to the chromatin  [17].    
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Figure 1.3: Post-translational modifications of N-terminal histone tails.                                         

1.1.3   Writers, eraser and readers 

PTMs of histones offer a controlled mechanism for regulating chromatin structure 

and dynamics. Thus, the direct interactions between histones and DNA are strongly 

influenced by the PTMs [18,19], hence affects the DNA-associated processes. 

Proteins involved in epigenetic modifications are classified as writers, readers and 

erasers (Fig. 1.4). The incorporation of specific PTM is performed by “writer” 

proteins. For example, acetyltransferases, methyltransferases and kinases add the 

chemical groups acetyl, methyl and phosphoryl, respectively, onto histone tails. 

Such covalent modifications act as docking sites for “reader” domains such as 

bromodomain, tudor domain, PHD finger and chromodomain. Whereas, “eraser” 

proteins remove the chemical groups  added by the writers, for example, 

deacetylase, demethylase, and phosphatase [20,21]. 

 

Figure 1.4: Epigenetic regulator proteins of histone marks. 

Gene expression is influenced by the accessibility of DNA rendered by nucleosome 

structure and chromatin conformation, histone PTMs, along with linker histones, 

histone chaperons and ATP-driven nucleosome remodelers. In another mechanism, 

effector proteins specifically bind to PTMs on histone through their reader domain 

then regulate gene expression. Chromatin associated reader domains are often 
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present in multi-protein complexes. These domains bind to the epigenetic marks 

and affects chromatin association (Fig. 1.5), which eventually led to the specific 

biological outcomes. Therefore, histone modifications regulate the expression of 

DNA encoded genetic information [22].  

  

Figure 1.5: Recognition of histone modifications by reader domains of respective 

proteins. 

It has been well-established that the recognition of specific histone PTMs is 

facilitated by conserved binding modules through a variety of intermolecular 

interactions. For instance, two most commonly recognized PTMs are methylation 

and acetylation on lysine (Table 1.1). Bromodomains bind to acetylated lysine 

(Kac), through a deep hydrophobic cavity formed by four conserved helical bundles, 

and exhibit affinity for single or multiple Kac. PHD fingers and royal superfamily 

domains (chromo, tudor, plant Agenet, MBT and PWWP), on the other hand, form 

an aromatic cage which can accommodate the methylated lysine through cation-π or 

CH-π interactions. Size and other binding pocket residues of the aromatic cage 

determines the binding specificity for different methylation status of lysine (mono-, 

di- or tri-methylation) [23]. Readers also differentiate same type of modification on 

a residue at different position on histones, through sequence specific interactions, by 

interacting with the flanking sequence of the altered amino acid [24]. 
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Table 1.1: Readers of histone PTM. 

1.1.4   Classification of epigenetic reader 

Reader domain containing proteins are broadly categorized into four groups, (Fig. 

1.6) namely  

1. Chromatin architectural proteins 

2. Chromatin remodelers 

3. Chromatin modifiers 

4. Adaptors 

Recognition of Reader domain Histone PTM 

Methyllysine ADD H3K9me3 

Ankyrin H3K9me2, H3K9me1 

BAH H4K20me2 

Chromo-barrel H3K36me3, H3K36me2, H3K36me1, 

H3K4me1 

Chromodomain H3K9me3, H3K9me2, H3K27me3, 

H3K27me2 

DCD H3K4me3, H3K4me2, H3K4me1 

MBT H3K4me1, H3K4me2, H4K20me1, 

H4K20me2 

PHD H3K4me3, H3K4me2, H4K9me3 

PWWP H3K36me3, H4K20me1, H4K20me3, 

H4K79me3 

TTD H3K4me3, H3K9me3, H4K20me2 

Tudor H3K36me3 

WD40 H3K27me3, H3K9me3 

Zf-CW H3K4me3 

Methylarginine ADD H4R3me2s 

Tudor H3Rme2, H4Rme2 

WD40 H3R2me2 

Acetyllysine Bromodomain H3K36ac, H4Kac, H2AKac, H2BKac 

DBD H3K18acK23ac, H4K5acK8ac 

Phosphoserine  

(or) 

Phosphothreonine 

14-3-3 H3S10ph, H3S28ph 

BIR H3T3ph 

Tandem BRCT H2AXS139ph 

Unmodified     

histone 

ADD H3un 

PHD H3un 
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Figure 1.6: Functional outcomes of reader domain on histone modification readout. 

1.1.4.1   Chromatin architectural proteins 

Chromatin architectural protein complexes recognize multiple nucleosomes 

concurrently and have the capacity to compact chromatin or to make underlying 

DNA inaccessible by providing physical shields. Such proteins frequently undergo 

self-propagation and oligomerization resulting in the spreading of protein over a 

large region of a chromatin [24]. Reader domains present on chromatin architectural 

proteins are required for modification specific binding and compaction of chromatin. 

For example, HP1 proteins which are involved in the establishment and 

maintenance of chromatin higher-order structures [25], contains domains, such as 

chromodomain (CD) and chromo shadow domain (CSD). CD binds to H3K9me2/3 

mark, while CSD is required for creating a dimeric interface for recruiting specific 

ligands to connect the DNA-interacting hinge region [26]. 

1.1.4.2   Chromatin remodelers 

Chromatin remodelers are multi-protein complexes which have ATPase subunit of 

the Snf2 subfamily, that utilize the energy generated during ATP hydrolysis for 

mobilization/sliding of nucleosomes, that in turn modulate the chromatin structure. 

Remodelers include proteins that ensure the proper density and spacing of 

nucleosomes and also contribute to gene repression. Some remodelers facilitate the 
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binding of site-specific transcription factors to DNA by cooperating with 

transcription factors and enzymes that modify histones [27].   

Remodeling complexes possess reader domain to identify chromatin signals. Reader 

domains in  combination with other domains are indispensable for the specific 

targeting and regulating the enzyme activity [28]. For example, NoRC (Nucleolar 

Remodeling Complex) becomes functional when the bromodomain of Tip5 (a 

subunit of NoRC) binds to the acetyllysine 16 of histone 4 (H4K16ac). Even a point 

mutation in bromodomain, impedes the association of NoRC with chromatin, 

precludes heterochromatin formation, and  hinders the transcriptional repression 

[28]. Similarly, the recognition of H3K4me3 by PHD and Kac by bromodomain 

from BPTF (sub-unit of NURF), respectively, plays an important role in 

localization of NURF (NUcleosome Remodeling Factor) to chromatin [24].  

1.1.4.3   Chromatin modifiers 

There are some reader domains containing proteins that do not modulate chromatin 

architecture directly but recruit secondary chromatin modifiers or revert the 

existing modification. 

Several proteins are which involved in either addition or removal of the PTMs, like 

histone lysine methyltransferases (HKMTs), histone deacetylases (HDACs), histone 

acetyltransferases (HATs), lysine demethylases (KDMs), E3 ubiquitin ligase and 

deubiquitylases (DUBs), are multi-subunit complexes. They target the globular 

domains or N-terminal tails of core histones, particularly specific residues, for 

modifications. For instance, Sin3S complex is recruited to the methyllysine of 

histones via Sin3 tandem bromodomain. Co-repressor of Sin3S complex contains 

histone deacetylases such as HDAC1, HDAC2 and HDAC3, and thus the 

recruitment of this complex lead to the histone deacetylation, i.e., secondary histone 

modification [29]. 
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1.1.4.4   Adaptors 

The primary function of these reader domain-containing adaptor proteins is to 

recruit factors that are associated with DNA metabolic processes such as 

transcription, DNA recombination, DNA replication, DNA damage repair, and 

RNA processing. For example, BRCT (BRCA1 N-terminus) domain of MDC1, an 

important mediator of the DNA damage response, interacts with the 

phosphorylated serine residue on histone H2AX, and act as an adaptor to recruit 

the histone ubiquitin ligase, RNF8, to the site of double-strand break-flanking 

chromatin.  

1.1.5   Lysine methylation 

Histone lysine methylation plays a vital role in the regulation of cell cycle, nuclear 

architecture, genome stability and gene expression [30]. The most interesting feature 

in histone lysine methylation is the effect of methylation at two different close 

positions that displays completely distinct functions. For instance, methylation on 

H3K4 represents transcriptionally active genes, while H3K9 methylation is 

associated with gene silencing [31]. Genomic stability and maintenance of the cell 

are strongly by lysine methyltransferases (KMTs) and lysine demethylases (KDMs). 

H3K9 methylation is regulated by SUV39H1 while demethylation is carried out by 

JHDM2A. Until now, it was found that, KMTs methylate five lysine residues, K4, 

K9, K27, K36 and K79 on H3 and K20 residue on the H4 tail (Table 1.2) [32].  

Table 1.2: Canonical sites of lysine methylation. 

PTM Position Reader 

domain 

Protein Functions 

 

 

 

 

  Lysine 

methylation 

H3 K4me0 PHD WD40 Autoimmune 

regulator 

 

 

K4me 

Chromo CHD ATPase 

 

PHD 

RAG2 Recombination 

ING2 HDAC 

K9 Chromo HP1 Heterochromatin 

K27 WD40 EED PRC mediated 
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repression 

K36 Chromo EAF3 Histone deacetylation 

K79 Tudor 53BP1 DSB response 

H4 K20 Tudor 53BP1 DNA damage repair  

 Lysine is methylated at its ε-amino group and it can undergo mono, di and tri 

methylation (Fig. 1.7) known as methylation status or degree of methylation. The 

position and degree of methylation endows methylated histones to confer active or 

repressive transcription, however, other histone modification just specify the state 

of the active or repressed chromatin. Usually, active transcriptions are marked by 

methylations of K4, K36 and K79 on H3, whereas silenced chromatin states are 

represented by methylations of K9 and K27 on H3, and K20 on H4.  

 

Figure 1.7: Modification status of histone lysine residues. (AdoMet stands for S-

adenosylmethionine) 

In order to regulate the specific gene expression, HKMTs further 

communicate/interact with methylated DNA as well as other modified histones. For 

instance, ubiquitination of H2B in yeast is a prerequisite for stimulation of 

methylation of H3K4 and H3K79. Besides, in embryonic stem cells (ESCs), bivalent 

modifications of histones,H3K4 and H3K27 methylations, play a critical role in 

transforming poised state of gene expression to active or inactive states [33]. Mostly, 

histone lysine methylations are believed to cause regulatory functions when they are 

specifically recognized by the effector proteins. These ‘reader’ proteins contain 

methyllysine-binding motifs, including chromo, PHD, tudor, BAH, MBT, ADD, 

PWWP, Ankyrin repeat, zn-CW domains and WD40, and also have the ability to 
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distinguish surrounding amino-acid residues and methyllysine statuses. (Table 1.2) 

[33].        

Mono and dimethyllysine binders have a, relatively, small hole-type cavity that can 

only accommodate mono or dimethyllysine, but not the bulky trimethyllysine. On 

the other hand, di and trimethylated lysine binders use wider surface groove as the 

binding pocket for accommodating the di- or trimethylation moiety. The binding 

cavity for methyllysine recognition is formed by either only aromatic residues 

(maximum 4) or aromatic residues (maximum 2) in combination with other residues 

for methyllysine status specific recognition. (Fig. 1.8) [24]. 

 

Figure 1.8: Comparison of binding surfaces from different methyllysine readers. 

Lysines are labeled in green and pocket-forming residues are labeled in pink. (A) No 

Aromatic cage; (B, C) Half aromatic and (D, E) Fully Aromatic cage. PDB IDs: 

(A) 2PUY, (B) 2G6Q, (C) 2K17, (D) 2F6J and (E) 2K3Y) 

Di- and trimethylated ammonium groups are held in the binding pocket composed 

of aromatic residues by cation-π, CH-π and van der Waals interactions. Among 

aromatic residues, Tryptophan can form stronger cation-π interaction compared to 
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tyrosine and phenylalanine. Some readers can recognize the unmethylated lysine 

(Kme0) through intermolecular hydrogen bonds [24]. 

1.1.6   DNA methylation 

DNA methylation is a stable heritable epigenetic mark. DNA methyltransferases 

(DNMTs) add the methyl group (CH3) onto the fifth carbon of cytosine ring of 

DNA, (Fig. 1.9) [34]. De novo methyltransferases DNMT3a, DNMT3b and their 

regulatory unit DNMT3l establish cytosine methylation during early embryonic and 

germ cell development. DNMT1 maintains the methylation patterns during cell 

generations [35]. Together, they ensure the formation of proper epigenetic landscape 

in an early development process, and DNMT1 is responsible for transmission of 

cytosine methylation through cell division. 

 

Figure 1.9: Methylation of Cytosine at C5.  

Cytosine methylation (5mC) found in either symmetrical (CG or CHG) or 

asymmetrical (CHH, where H is A, T, or C) sequence context in plants. In 

mammals, it occurs mostly CG sequence context. Majority of DNA methylation (> 

98%) occurs in CpG dinucleotide in somatic cells. However, minor non-CpG 

methylation in embryonic stem cells (ESCs), the removal and re-establishment of 

DNA methylation during zygote formation and in the embryo respectively at the 

time of implantation. 

DNA methylation plays a critical role in several important processes including gene 

expression, X-chromosome inactivation, cellular differentiation, genomic imprinting 
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and, transposon silencing [34,36]. 5mC can undergo sequential oxidation to 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC). These oxidation reactions are catalyzed by Ten-eleven translocation (Tet) 

family dioxygenases. Sequential oxidation of 5mC is required for base excision 

repair (BER) mediated 5mC demethylation [37]. 5hmC is mostly found in the 

vicinity of binding sites of transcription factor, and several reports have implicated 

the association of 5hmC in transcription regulation, epigenetic reprogramming, and 

pluripotency [38].  

Methyl-CpG binding proteins (MBPs) specifically read the 5mC mark on DNA. 

MBPs are divided into three major families on based on their structural features: 

         1. Methyl-CpG binding Domain (MBD) protein family,  

         2. Kaiso protein family  

         3. SET (Su(var)3-9, enhancer of Zeste and Trithorax) and RING (Really 

Interesting New Gene) finger associated (SRA) domain protein family.  

The MBD proteins serve as a very important component of epigenetic regulation 

because they are involved in various critical mechanisms that influence the 

regulation of transcription. These proteins play a main role in silencing 

transcription by blocking transcription or by affecting other proteins  to bind DNA 

or by inducing chromatin remodeling through their binding partners [39]. MBD 

family members, such as methyl-CpG binding protein 2 (MeCP2) and methyl-CpG 

binding domain proteins 1–4 (Mbd1–4) are also capable of binding to (hydroxy) 

methylated CpG dinucleotides [35,40]. Unlike MBD proteins, Kaiso-like family 

protein family, including, Kaiso, ZBTB4(Zinc finger and BTB domain containing 

protein 4), and ZBTB38 consist of a conserved BTB/POZ (Bric-a-brac, tramtrack, 

broad complex/poxvirus and zinc finger) domain, associated with protein– protein 

interactions and three Kruppel-like C2H2 zinc finger motifs. Kaiso preferentially 

binds to two consecutively methylated CpG sites. Like MBD proteins, zinc-finger 
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domain containing proteins involved in transcriptional repression in a DNA 

methylation-dependent manner [39,41]. 

In mammals, SRA domain present in RING domain associated proteins like Np95 

(mouse homolog of human ICBP90), also known as UHRF1 (Ubiquitin-like with 

PHD and Ring Finger Domains 1), recognizes methylated DNA. While in plants, 

SRA domain present on SET domain associated SUVH (Su(Var 3-9) Homolog) 

family HKMTs, like SUVH4 and SUVH5 proteins [35]. In contrast to many methyl 

binding proteins, the main function of UHRF1 is not only to bind to DNA  for 

transcriptional repression, but also to bind DNMT1 and direct it to the 

hemimethylated DNA to maintain DNA methylation in the genome, particularly 

during DNA replication process [41]. 

1.1.7   Linking DNA methylation with histone mark 

There is a interdependent relationship between 5mC and H3K9me, i.e., dependent 

on one another for their establishment and maintenance  in the genome [42]. It has 

been demonstrated that DNA binding proteins such as MeCP2, MBD1, and Kaiso 

are associated with histone modifications. These proteins bind to the promoter 

region by recognizing the methylation mark on DNA, and recruit protein complexes 

such as HDACs and HKMTs for histone deacetylation and methylation. Thus, DNA 

methylation induces chromatin structural changes through histone modifications 

[43]. MeCP2 associated with SUV39H1/2, a H3K9 methyltransferase, plays a role in 

gene repression and heterochromatin formation [44]. Both DNMT1 and DNMT3a 

assist H3K9 methylation by recruiting SUV39H1 H3K9 methyltransferase to 

chromatin. Also, DNMT1 and DNMT3b can assist the removal of acetylation mark 

from histones upon binding to HDACs, which leads to tight packing of DNA and 

shields it from transcription machinery [41]. G9a, a H3K9 methyltransferase from 

mammals, forms a complex with HDAC and DNMT1, which facilitate the local 

deacetylation of histones, again resulting in transcriptional repression. Similarly, 
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recruitment of G9a by DNMT3a and 3b is required for final stages of gene silencing 

through 5mC and H3K9me [45]. 

In plants, the KYP (KRYPTONITE/SUVH4), a SUVH protein, contains an N-

terminal SRA domain which binds methylated DNA and C-terminal SET domain 

which methylates H3K9. Recently, crystal structure of KYP complexed with 5mC 

containing DNA, SAH and unmodified H3 peptide substrate reveal the recognition 

of 5mC by SRA domain through a flip-out mechanism, where 5mC is flipped out 

from the DNA duplex and inserted into the pocket within the SRA domain. 

Structural and in vivo studies have shown that KYP is recruited to nucleosomes 

through binding to methylated DNA and subsequently  methylates  H3K9 [42]. 

Therefore, these studies have established that DNA methylation and histone 

modification pathways are interdependent [45]. 

1.1.8   UHRF1  

UHRF1 is a cell cycle regulator protein which is primarily expressed in proliferating 

cells and is crucial for S phase entry.  UHRF1 mainly resides in a pericentromeric 

heterochromatin (PCH) and involved in the formation of heterochromatin  [46]. 

UHRF1 is also present in euchromatin region and regulates gene expression; 

particularly, tumor suppressor genes silencing, probably affecting both DNA 

methylation and histone modifications. It is up-regulated in breast, prostate, and 

lung cancer cells. Therefore, it has become a central target for design and 

development of drug for cancer chemotherapy and a biomarker for diagnosis [46]. 

Recently, intriguing functions of UHRF1 have been discovered. The most 

noteworthy is that UHRF1 serves as a sensor for inter-strand cross-links illustrating 

its role in DNA repair processes. It is characterized as an E3 ligase with auto 

ubiquitination activity. Its deletion results in genome hypo methylation that leads 

to cell cycle arrest. Thus, UHRF1 exhibits three important roles during cell 

proliferation: (1) DNA methylation inheritance (2) DNA crosslinks sensing (3) DNA 

demethylation facilitation during development. 
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As an epigenetic regulator, UHRF1 connects DNA methylation with lysine 

methylation on histone. It binds to H3K9me mark and is also required for DNMT1-

mediated DNA methylation through recruitment of DNMT1 to the hemi-

methylated on replication forks during DNA replication. Apart from DNMT1, 

UHRF1 also interacts with Proliferating Cell Nuclear Antigen (PCNA), Ubiquitin 

Specific Processing protease (USP7), HDAC1, HKMTs (SUV39H1, G9a), and HAT 

(Tip60). UHRF1 and these proteins work together to form a multicomponent 

complex, termed as Epigenetic Code Replication Machinery (ECREM), for the 

regulation of DNA replication [46].  

1.1.9   UHRF1 domain architecture 

UHRF1 is a multi-domain protein, composed of five functional domains (Fig. 1.10): 

              1. UBQ (Ubiquitin-like) domain 

             2. TTD (Tandem Tudor Domain) 

             3. PHD (Plant Homeodomain) 

             4. SRA (SET and RING Associated) domain 

             5. RING (Really Interesting New Gene) domain.  

UHRF1 interacts with several proteins through its domains to form a large macro-

molecular protein complex called ECREM  [47].  

 

Figure 1.10: UHRF1 domain architecture. 

1.1.9.1   Ubiquitin like domain (UBQ) 

UBQ like domain is positioned in the N-terminus of UHRF1. This domain contains 

α/β ubiquitin fold and has conserved surface lysines 31 and 50, which are supposed 

to be targeted for mono- or poly-ubiquitination (PDB ID: 2FAZ) [48]. UHRF1 

controls the ubiquitination state and stability of DNMT1 and the USP7 [48]. 
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1.1.9.2   Tandem Tudor Domain (TTD) 

The TTD consists of two subdomains i.e., TTD
N
 and TTD

C
. These two domains 

belong to tudor family 5-stranded β-barrel fold and are tightly packed together. 

TTD
N
 has a cage, formed by aromatic residues F152, Y188 and Y191, which 

recognizes di and tri-methylated lysine residues [48]. Recognition of H3K9me by the 

TTD domain , connects DNA methylation to histone modifications [47]. 

1.1.9.3   Plant Homeodomain (PHD) 

Plant Homeodomain (PHD) is a Zn-finger domain consisting of three zinc atoms 

coordinated to cysteine residues, which stabilize the structure. Crystal structure of 

PHD domain with bound H3 tail revealed that alanine 1 and arginine 2 on H3 form 

hydrogen bond interactions to specific residues of the domain. The PHD finger 

domain of UHRF1 recognizes unmodified arginine 2 of histone H3 (H3R2) [49]. It 

has been found that PHD of UHRF1 is associated with extensive  reorganization of 

PCH  [48,50].  

1.1.9.4   SRA domain 

The SRA (SET and RING associated) domain of UHRF1 is a DNA-binding module 

which binds to 5mC and 5hmC containing DNA duplex in context of 

hemimethylated CpG. As already mentioned, UHRF1 mediates the recruitment of 

DNMT1 for faithful inheritance of DNA-methylation, more specifically, it is the 

SRA domain which binds to hemimethylated DNA during replication and maintains 

the DNA-methylation.  The crystal structure analysis of SRA domain (PDB ID: 

2PB7) reveals that it has twisted β sheets packed together that appears like a 

crescent moon-like structure, and only the inner surface is involved in binding to 

DNA [51]. Two loops sticking out of this structure hold into the DNA minor and 

major groove. R491 in N-K-R finger loops, forms hydrogen bond interaction with 

CpG sequences. When SRA domain binds to hemi-methylated DNA, cytosine from 

the double helix is flipped out because of the contacts discussed above. Two 
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aromatic residues, Y478 and Y466, are involved in forming π-π stacking interactions 

with the 5mC in pocket. It was established that SRA domain displays highest 

preference for hemi-methylated DNA (me1/2CpG). This interaction is facilitated by 

contacts between N489 in N-K-R finger loop and non-methylated cytosine on the 

second strand of DNA. Methylation of this cytosine disturbs positioning of the N-K-

R finger and therefore impairs SRA binding This cytosine methylation disturbs the 

N-K-R positioning and impairs SRA binding [48]. 

1.1.9.5   RING domain 

RING domain is situated at C-terminus of UHRF1. It has E3 ubiquitin ligase 

activity towards histone H3. It contains two zinc-fingers and three α-helical bundles 

(PDB ID: 3FL2). A recent report demonstrates that RING domain establishes 

interactions with H3K23 and H3K18. It was suggested that these marks are 

required for recruitment of the maintenance DNMT1 to the UHRF1 targeted sites 

in the genome [48].  
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1.2   Aim of the thesis  

Histone and DNA binding by UHRF1 is regulated by long-range inter-domain and 

inter-domain linker interactions within the full-length protein. UHRF1 TTD-PHD 

act together to recognize the N-terminus of histone H3 along with H3K9me3, which 

may play a role in establishing and maintaining histone H3K9 methylation patterns 

during the cell cycle. Crystal structures of the UHRF1 TTD-PHD bound to 

H3R2K9me3 peptide show that UHRF1 can simultaneously engage H3R2 and 

H3K9me3 on a single H3 tail through TTD and PHD linked recognition module. 

The degree of methylation (also known as methylation status) may confer distinct 

functions. Recently, it has been demonstrated that UHRF1 TTD-PHD functions as 

a single histone recognition module in cells, providing a combinatorial readout of a 

histone H3 tail in ‘cis’ that is required for the epigenetic inheritance of DNA 

methylation. Different histone modifications can influence each other either in a 

positive or negative manner through effector/reader-mediated readout. 

The aim of this thesis is to gain mechanistic and dynamic insights into the 

interaction of UHRF1 protein with histone lysine methylation and methylation 

statuses, and binding to 5mC oxidation derivatives. 

The focus of my thesis research is: 

1. Characterization of histone lysine methyl mark binding by TTD domain of 

UHRF1. 

2. Molecular Dynamic simulation and binding studies to explore the H3R2K9 

methylation statuses recognition by the TTD-PHD of UHRF1. 

3. Molecular Dynamic simulation and binding studies to explore the effect of 

H3K4 methylation on H3R2K9me recognition by the TTD-PHD of UHRF1. 

4. Characterization of 5mC oxidation derivative recognition by SRA domain of 

UHRF1. 
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Chapter 2 

Characterization of histone lysine methyl mark binding by TTD domain of 

UHRF1 
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2.1   Introduction 

Lysine and arginine methylation pattern on histones and non-histone proteins 

governs the chromatin structure, genomic stability, transcriptional regulation and 

RNA metabolism. Such methylation marks are recognized by the reader domains of 

different families [52]. Among royal family domain, tudor domain is considered as 

the largest and diverse set of reader domain involved in different epigenetic 

functions such as chromatin remodeling, binding of histones, pre-RNA-processing, 

RNA-silencing and transposon silencing [53]. 

2.1.1   Tudor domain 

Tudor domain binds to methylated histone tails and facilitates protein-protein 

interactions [54]. Despite different functions, Tudor domain family proteins have a 

common feature, i.e., a conserved 50 amino acid domain, which serves to mediate 

intermolecular protein interactions [55]. The tudor domain is composed of four- or 

five-stranded β-barrel fold along with one or two helices packed against the β-sheet 

to form an aromatic cage for the recognition of methylated histone peptides (Fig. 

2.1) [54].  

Tudor domain containing proteins are categorized  into two groups based on the 

number of tudor domain [54].  First group, those having single tudor domain, for 

instance, Esa1 and SMN proteins. And other, containing multiple tudor domain 

repeats, called Tandem Tudor Domains (TTDs), for example, TTDs of spindlin1 

and TDRD1. Structures of TTDs of several proteins, like JMJD2A and 53BP1, 

complexed with H3K4me, H3K9me, and H4K20me peptides, show that only one of 

the tudor domain in TTDs  interacts with methylated histone peptide [54]. Owing 

to the internal packaging and the linker between two domains, the orientation, of 

the tudor domains to each other, is distinct among TTDs [52,56]. 
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Tudor domain containing proteins are divided into four groups based on the 

existing functional data in the literature. Group 1 proteins bind to the methylated 

lysines/ arginines on histone tails, for instance, Tdrd3, PHF1, PHF20, the JMJD 

family and TP53BP1. Group 2 tudor proteins recognize methylated arginine and 

forms complex with pre-mRNA splicing factors which is essential for efficient 

assembly of small nuclear ribonucleoproteins (snRNPs), for instance, include SMN 

and SMNDC1. Group 3 tudor proteins, e.g. SND1 is a main component of the 

RNA-Induced Silencing Complex (RISC) and binds to hyper-edited, double-

stranded RNA and promotes its cleavage, and also involved in other cellular 

pathways. Group 4 tudor proteins, such as Tdrd1-9 and Tdrd11 are identified in 

methylation-dependent association with PIWI proteins [53]. 

 

Figure 2.1: Ribbon representation of UHRF1 TTD (PDB ID: 4GY5). 

2.1.2   Tudor Domain of 53BP1 

53BP1 is a p53-binding protein 1, which plays a key role DNA double-strand breaks 

(DSBs) repair. Domains architecture of 53BP1 is given in Fig. 2.2 [56,57]. 53BP1 

TTD binds to H4K20me2 and localizes 53BP1 to the DSB sites thereby linking 

lysine methylation to chromatin structures and DSB signaling. 53BP1 TTD also 

binds to dimethyllysine 370 of p53 for the transactivation modulation of p53 on the 

target sites thereby involved in transcription regulation [58]. 
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53BP1 TTD is also found to recognize H3K79me2 and this interaction was 

seemingly necessary for targeting DSBs. Since oligomerization of 53BP1 is essential 

for efficient DSB recognition. Previous studies have reported  that the binding 

pocket contains five aromatic  residues, as a result, it can accommodate small sized 

dimethyl or monomethyl lysine marks [56].   

 

Figure 2.2: Domain architecture of 53BP1. 

2.1.3   Sequence comparison of UHRF1 TTD and 53BP1 TTD binding pocket 

UHRF1 TTD reads the methylation mark on H3K9. Recently, it was demonstrated 

that the UHRF1 TTD recognize  lysine 4, threonine 6, and tri-methylated lysine 9 

of the H3K9me3 peptide [46]. TTD simultaneously recognizes H3K9me3 and H3K4 

by tudor1 and groove between the tandem tudor domains, respectively [59]. The 

conserved aromatic residues Phe152, Tyr188 and Tyr191 of N-terminal region of 

UHRF1 TTD interact with tri-methyl ammonium group of H3K9me3. However, 

53BP1 TTD recognizes H4K20me2 by using five aromatic amino acids including 

Tyr1500, Trp1495, Tyr1502, Phe1519 and Tyr1523 [60]. There is a structural 

resemblance between the aromatic cages present on N-terminus of UHRF1 TTD 

(residues 133–217) and 53BP1 (residues 1484–1538) (Fig. 2.3) [59]. 
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Figure 2.3: Sequence alignment of TTD of UHRF1 and 53BP1 and residues of 53BP1 

involved in recognition of H4K20me2. (A) Sequence comparison between Tudor 1 of 

TTDs of UHRF1 and 53BP1. Secondary structural elements of the UHRF1 TTD 

are indicated above the sequences (β-strands are in green arrows and loops are in 

dotted lines). Residues highlighted in a background color-code correspond to their 

conservation level: fully-conserved, red; conservative substitutions, yellow. Residues 

that form the aromatic amino acid-lined cage for K9me2 recognition in UHRF1 and 

53BP1 are indicated as inverted blue and red upright triangles, respectively. Filled 

blue and red circles designate the acidic residues, which interact with methyllysine 

in UHRF1 TTD and 53BP1 TTD, respectively. Green and red rectangles 

correspond to residues that form van der Waals contacts with the aliphatic and 

ammonium group of the K9me2 side chain in UHRF1, respectively. (B) Binding 

pocket residues of 53BP1 TTD involved in recognition of H4K20me2. 

Based on the sequence and structural alignment of TTD domain of UHRF1 and 

53BP1, we hypothesized that UHRF1 TTD may also recognize di-methyllysine 20 

on histone H4. We tested this hypothesis by isothermal titration calorimetry (ITC) 

binding studies by comparing KD of UHRF1 TTD towards H3K9me2 and 

H4K20me2 peptides. 

2.1.4   Structural relationship between tudor and Chromodomain 

Chromodomain is a methyllysine reader domain associated with various processes 

such as gene expression/repression in cellular differentiation, stem cell maintenance 

.and cancer progression. Chromodomain  is made of 40 to 60 amino acid residues 

and has three-stranded anti-parallel β-sheets flanked by a C-terminal α-helix [61,62].  

It recognizes methyllysine histone marks through a shallow surface recognition 

pocket that consists of 3 to 4 aromatic residues (aromatic cage). Chromodomain 

containing proteins, HP1, Polycomb group (PcG) and Chromodomain Helicase 

DNA-binding (CHD) protein, bind to H3K9me3, H3K27me3 and H3K4me3 marks, 

respectively [61–64].  
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TTD and chromodomain are structurally superimposable and bind to methylated 

peptides by using equivalent amino acid position (Fig. 2.4). 

 

Figure 2.4: Cartoon representation of the (A) Chromo, (B) Tudor domain and their 

(C) Structural superposition 

Analysing the sequence and structural similarity with tudor1 domain of 53BP1 and 

chromodomain, we hypothesized that UHRF1 TTD may have affinity towards 

dimethylated lysine present at distinct positions in histones H3 and H4. To 

investigate this, we performed ITC binding studies of UHTF1 TTD with H3K4me2, 

H3K9me2 and H3K27me2 peptides. 

2.1.5   Role of flanking sequence on methyllysine recognition  

Most of the methyllysine binders accommodate methyllysine by using hydrophobic 

aromatic cage to discriminate different PTMs and methylation marks [24]. Once the 

methylated peptide binds to the protein, it induces change in β-sheet conformation 

and form antiparallel alignment to the reader surface groove. This antiparallel 

interaction enhances the binding affinity and also influences the orientation of 

methyllysine [24].  

On the other hand, flanking-sequence contacts can influence methyllysine binder’s 

selectivity for particular histone lysine methylation mark. On the histone H3 tail, 

methylation on lysine 9 (H3K9) and lysine 27 (H3K27) are involved in epigenetic 

repression. The amino acid sequences immediately surrounding H3K9 and H3K27 

are very similar and share a consensus sequence motif of ARKS (Fig. 2.5) [24,65,66]. 
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However, consensus motif flanking residues are unrelated. Residues from -2 to +1 

positions can make the methylation binders highly selective for particular histone 

mark [22]. 

  

Figure 2.5: Flanking region similarity between H3K9 and H3K27. (A) Sequence of 

the N-terminus (residues 1–31) of histone H3. The “neighborhoods” of the H3K9 and 

H3K27 methylation sites are very similar; identical sequence stretches surrounding 

both sites are boxed and H3K9 and H3K27 are marked in red. (B) Sequence 

comparison of the H3K9 and H3K27 methylation sites surrounding residues 

(highlighted with green shade). 

Since the -2 to +1 flanking residues of H3K9 and H3K27 are identical, we 

hypothesized that UHRF1, which binds H3K9me, may also have similar affinity 

towards H3K27me. To test this, we performed ITC binding studies on UHRF1 with 

H3K9me2 and H3K27me2 peptides. 

2.1.6   Methylation status specific readout 

Basic amino acid residues on histones such as arginine and lysine undergo 

methylation. The well-established lysine methylation sites include H3K4, H3K9, 

H3K27, H3K36, H3K79 and H4K20. Most studied sites of arginine methylation 

include H3R2, H3R8, H3R17, H3R26 and H4R3. Methylation modifies the 

hydrophobicity and size of the modified residue. Unlike, lysine acetylation, lysine 

methylation doesn’t have significant effect on histone-DNA interaction. Therefore, 

histone lysine methylation functions mainly through reader domain. These ‘reader’ 

modules contain methyllysine-binding motifs, including PHD, chromo, tudor, 

PWWP, WD40, BAH, ADD, Ankyrin repeat, MBT and Zn-CW domains, and also 
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have the ability to distinguish target methyllysines based on their status of 

methylation and surrounding amino-acid sequence. 

The chromodomains of HP1 and PcG recognize H3K9me3 and H3K27me3, 

respectively. The single tudor domains of PHF1 and PHF19 are recognize 

H3K36me3, whereas the TTD of 53BP1 binds to H4K20me2 and the hybrid TTD 

domain of JMJD2A recognises H3K4me3 and H4K20me3. The other two members 

of the Royal family, PWWP and chromo-barrel preferentially bind H3K36me3/me2 

and H4K20me1 respectively. PHD finger is different from the royal family and it is 

well-characterized reader of H3K4me3. BPTF PHD binds tightly to H3K4me3 

compared to H3K4me2 and is associated with chromatin remodeling. The WD40 

domain of EED interacts with H3K27me3, H3K9me3, H4K20me3 and H1K26me3. 

The G9a and GLP ankyrin repeats and the ORC1 BAH domain shown to recognize 

high specificity towardsH3K9me2/me1 and H4K20me2, respectively.  

Depending on the position and degree of methylation (mono, di or tri), histone 

lysine methylation can have role on repression or activation of transcription. Effect 

of position of methylation is as follows; H3K4me3 is normally associated with active 

transcription, whereas H3K27me3 is involved in chromatin repression. Effect of 

degree of methylation is as follows; H3K4me1 is  mainly associated with enhancer 

activity whereas H3K4me3 is connected to promoter function; H3K79me2 is 

associated in cell cycle regulation whereas H3K79me3 is connected to the Wnt 

signaling pathway [67,68]. However, there exist some examples that can be 

associated with opposite activities; for instance, H3K4me2 and H3K4me3 are 

involved in transcriptional activation and/or repression [67].  

The high density of H3K36me3 was found on 3’ end of an actively expressed gene.  

On the other hand, H3K9me3 and H4K20me3 act as repressive marks and are 

involved in constitutive heterochromatin formation, and H3K27me3 is involved in 

facultative heterochromatin. Outcome of particular lysine methylation mark 
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readout is also dependent on the type of the effector module recognizing the mark 

(Table 2.1) [7]. For example, recognition of H3K4me2 by the Tudor domain of 

JMJD2A module promotes the H3K9me3 demethylation. In contrast, recognition of 

same mark by the tudor domain of Spindlin1 is required for rRNA transcription. 

Thus reader domains act as important determinant for the functional outcome of 

histone modifications [67].  

Table 2.1: Reader domains that recognize different lysine methylation. 

S.No Protein Recognition  

Module 

Ligand Biological functions 

1. JMJD2A Tudor H3K4me3 

H4K20me3 

H4K20me2 

H3K9me3 and 

H3K36me3-specific 

demethylase; 

transcriptional regulation 

and regulator of DNA 

damage response 

2. 53BP1 Tudor H4K20me2 Substrate of ATM; 

Promote nonhomologous 

end joining DNA repair 

3. Spindlin1 Tudor H3K4me3 Nucleolar protein;  

promote rRNA 

transcription 

4. PHF1 Tudor H3K36me3 Accessory component of 

PRC2 complex; promote 

Transcriptional 

repression 

5. ORC1 BAH H4K20me2 DNA replication licensing 

6. HP1 Chromo H3K9me3 Heterochromatin 

assembly and 

maintenance 

7. Polycomb Chromo H3K27me3 Cellular differentiation 

8. CHD1 DCD H3K4me3 Chromatin remodelling 

9. MRG15 Chromo H3K36me3 RNA splicing 

10. BPTF PHD H3K4me3 Nucleosome Sliding 

11. L3MBTL1 MBT H4K20me2 Chromatin compaction 

12. Pdp1 PWWP H4K20me3 Chromatin localization of 

H4K20 methyltransferase 
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Based on these information, we investigated the binding affinities of UHRF1 TTD 

for mono, di and trimethylated H3K9 (i.e. H3K9me0/1/2/3) and H4K20 (i.e. 

H4K20me1/2/3), to understand the preferred methylation status readout by 

UHRF1 TTD. 

2.1.7   Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) is a powerful, label free and sensitive 

technique for studying the thermodynamics of macromolecular interactions such as 

proteins with peptide, nucleic acid, drugs and metal ions. In ITC experiments two 

reactants are titrated against one another and their binding is determined by direct 

measurement of heat exchange [69,70]. We can calculate thermodynamic parameters 

such as enthalpy (ΔH), entropy (ΔS), association constant (KA), binding 

stoichiometry (n), free energy of binding (ΔG), and potential site-site interactions 

(cooperativity) in a single experiment [71]. 

 

Figure 2.6: Schematic representation of the Basic principle of isothermal titration 

calorimetry (left), a characteristic curve of the titration experiment (upper right) 

with its convolution integral enthalpy plot (lower right). 
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The ITC instrument consists of a reference cell and a reaction cell. They are made 

up of a conductive inert (non-reactive) metal (Fig. 2.6). The cells are connected by 

a thermoelectric device (TED) that is sensitive to temperature and is connected to 

a feedback power supply. Constant power supply is applied to the sample cell 

heater. The temperature difference between the two cells is detected by the 

thermocouples and it is measured. The advantage of ITC is that it determines the 

direct enthalpy which is important for drug design. 

2.2   Materials and Methods 

2.2.1   Sub-Cloning of UHRF1 TTD to generate hexahistidine-SUMO tagged 

construct 

The cDNA encoding full-length human UHRF1 was obtained from Open bio-

systems.  Residues 140-295, that corresponds to the UHRF1 TTD, were sub-cloned. 

Amplification was carried out using forward and reverse primers (Appendix I) 

containing NdeI and BamHI restriction sites, respectively. The amplified PCR 

product was confirmed by agarose gel electrophoresis, followed by DNA gel 

extraction and subsequent digestion with NdeI and BamHI. The purified digested 

product was ligated with NdeI-BamHI digested pET28-N-His-SUMO vector using 

T4 DNA ligase. Schematic represents the workflow of cloning strategy (Fig. 2.7).  

Clones obtained were screened by using colony PCR and confirmed by sequencing. 
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Figure 2.7: Flowchart of UHRF1 TTD sub-cloning. 

2.2.2   Expression and Purification of UHRF1 TTD 

UHRF1 TTD protein was expressed in E. coli Rosetta2(DE3) (Novagen). Cells were 

grown at 37°C, till the OD600 reached 0.5-0.6, then the temperature was decreased 

to 20°C and the culture was induced with 0.4 mM of isopropyl-1-thio-D-

galactopyranoside (IPTG). The cell culture was grown for 15 hrs, following which 

the cells were harvested and re-suspended in lysis buffer (25 mM Tris-HCl, pH 7.5, 

500 mM NaCl, 10 mM imidazole and 3 mM β-mercaptoethanol). Cells were lysed by 

ultrasonic homogenizer and then the lysate was clarified by centrifugation at 

40,000g for 1 hr. The hexahistidine-SUMO fusion protein was purified on a nickel-

charged column (HisTrap HP, GE healthcare). After elution with a 750 mM 

imidazole containing buffer, the fusion protein was cleaved with Ulp1 protease at 25 

Uml-1 to remove hexahistidine-SUMO tag, during a 16 hr dialysis using dialysis 

tube (5kDa Cutoff), at 4°C. The protein was further purified by gel filtration 

chromatography (HiLoad Superdex 75 16/600) and equilibrated with equilibration 

buffer (15 mM Tris-HCl, pH 7.5, 50 mM NaCl, 3 mM DTT). Purified UHRF1 TTD 
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was concentrated to 20 mg mL
-1
 at 4°C in Vivaspin 20 mL (Vivascience AG) 5,000 

cut-off concentrator. 12% SDS-PAGE gel of gel filtration purified UHRF1 TTD 

along with the chromatogram showing the elution profile, is given in Fig. 2.8. 

  

Figure 2.8: SDS-PAGE of gel filtrations purified UHRF1 TTD and the 

chromatogram showing its elution profile. 

2.2.3   ITC measurements 

The equilibrium dissociation constant (KD), molar ratio (N) and thermodynamic 

parameters of the UHRF1 TTD bound to methylated lysine or unmethylated H3 or 

H4 histone peptides (H3[1-12]K9me0/1/2/3, H3[1-12]K4me2, H3[20-34]K27me2, 

H4[1-23]K20me1/2/3) were determined using a VP-ITC calorimeter (MicroCal, 

LLC) at 25°C. The protein was dialyzed in dialysis tube overnight using dialysis 

buffer (40 mM Tris-HCl, pH 7.5, 50 mM NaCl, and 2 mM β-mercaptoethanol), at 

4°C. Lyophilized peptides were dissolved in same buffer used for protein dialysis. 

The protein and peptides concentrations used were 100 μM to 250 μM and 1 mM to 

2.5 mM, respectively. The final volume of the reaction cell was 210 μL, and the 

reference cell was filled with deionized water. The peptide was sequentially added in 

2.3 μL (for a total of 15-16 injections) aliquots at 3-min intervals. The data was 

processed using MicroCal Origin software. The ITC data was deconvoluted based 

on a binding model containing “one set of sites” using a nonlinear least-squares 

algorithm. The binding enthalpy change (ΔH), association constant (KA), and 

binding stoichiometry (N) were permitted to vary during the least-squares 
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minimization process and taken as the best-fit values for UHRF1 TTD bound to the 

histone peptides. In the cases where the C-value (which is the product of the 

receptor concentration and the binding constant, KA) is low, ‘N’ was fixed to 1.0, 

and ‘KA’ and ‘ΔH’ were permitted to float. The reported values are the best values 

from three titrations. The thermodynamic parameters for histone peptides binding 

to UHRF1 are provided in Table 2.2. 

2.3   Results 

2.3.1   UHRF1 TTD selectively recognizes K9 methylation mark on histone H3 

Sequence comparison of UHRF1 TTD with that of 53BP1 reveals that out of five as 

in 53BP1, UHRF1 TTD has three conserved aromatic residues that form the 

methyllysine binding hydrophobic cage. Thus, the UHRF1 TTD should be able to 

recognize methylated lysine histone peptides, as that of 53BP1 TTD. We used ITC-

based binding studies to monitor the potential sequence specific recognition. Our 

binding measurements reveal that the UHRF1 TTD binds to H3(1-12)K9me2 

peptide with a KD of 1.1 μM with 1:1 stoichiometry (Fig. 2.9A). The binding 

affinities for H3(1-12)K4me2 and H3(20-34)K27me2 with a KD of 85.0 μM and 62.0 

μM, respectively, are weaker than H3K9me2 (Fig. 2.9B and C). Thus, the UHRF1 

TTD exhibit highest specificity for methylated H3K9 mark on histone H3, with a 

104 and 66-fold preference over methylated H3K4 and methylated H3K27, 

respectively. The thermodynamic parameters for histone peptides binding to 

UHRF1 are given in Table 2.2. 
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Figure 2.9: Raw ITC data (upper panel) and normalized integration data (lower 

panel) of enthalpy plots the binding of the UHRF1 TTD to (A) H3K9me2 (B) 

H3K4me2 (C) H3K27me2 peptides. Binding stoichiometry (N) is 1 for ITC 

measurements. 

2.3.2   Recognition of H4K20me mark by the UHRF1 TTD 

Structure based sequence comparison of UHRF1 TTD with that of 53BP1 indicated 

that residues of 53BP1 involved in H4K20me2 recognition are significantly 

conserved in UHRF1 (Fig. 2.3A). Therefore, we presume that UHRF1 TTD may 

also recognize the H4K20me mark. Indeed, ITC-based binding studies establish that 

the UHRF1 TTD binds H4(1-23)K20me2 peptide with a KD of 9.8 μM (Fig. 2.10A). 

UHRF1 TTD has very weak binding affinities for K20me3 (KD of 55 μM) and 

K20me1 (KD of 101 μM) peptides (Fig. 2.10B and C). However, the binding affinity 

of UHRF1 TTD for H4(1-23)K20me2 is 9 times lower than H3(1-12)K9me2 peptide.  
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Figure 2.10: Raw ITC data (upper panel) and normalized integration data (lower 

panel) of enthalpy plots for the binding of the UHRF1 TTD to (A) H4K20me2, (B) 

H4K20me3 and (C) H4K20me1 peptides. 

2.3.3   Methylation status specific readout of H3K9me by UHRF1 TTD  

As previously reported [72], ITC-based binding studies establish that the UHRF1 

TTD binds H3(1-12)K9me3 peptide with a KD of 5.6 μM, which is 5-fold weaker 

than binding to H3(1-12)K9me2 peptide (Fig. 2.9A and 2.11A). Similarly, the 

binding is also weaker for methylation statuses lower than dimethylation {KD of 

12.0 μM for H3(1-12)K9me1 (Fig. 2.11B) and 160 μM for H3(1-12)K9me0 peptides) 

(Fig. 2.11C)}. The thermodynamic parameters for histone peptides binding to 

UHRF1 are provided in Table 2.2. 
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Figure 2.11: Raw ITC data (upper panel) and normalized integration data (lower 

panel) of enthalpy plots for binding of UHRF1 TTD to (A) H3K9me3, (B) H3K9me1 

and (C) H3K9me0 peptides. 

Table 2.2: Dissociation constant and thermodynamic data for binding of methylated 

or unmethylated lysines of histone H3 and H4 peptides to the UHRF1 TTD. Errors 

reported for KD and sum of the squared deviations between the data and the model 

curve. 

Peptides KD (µM) ΔH 

(kcal/mol) 

TΔS 

(kcal/mol) 

UHRF1 TTD 

H3(1-12)K9me2 1.1 ± 0.07 -21 ±0.01 -1.08 

H3(1-12)K4me2 85 ± 0.8 -8.06 ± 0.1 -0.19 

H3(20-34)K27me2 62 ± 1.5 -5.8 ± 0.2 -0.0 

H3(1-12)K9me3 5.6 ± 0.05 -13.1±0.09 -0.4 

H3(1-12)K9me1 12.0 ± 0.06 -11.5 ± 0.1 -0.36 

H3(1-12)K9me0 160 ± 2.2 -8.9 ±0.7 -0.31 

H4(1-34)K20me2 34 ± 1.5 -10.5 ± 0.15 0.1 

2.4   Discussion 

Our ITC binding studies show that UHRF1 TTD, like 53BP1 TTD, binds to 

H4K20me2 with high affinity (KD = 34 μM). Since, it is also structurally similar to 

chromodomain, which recognizes methyllysine present at different positions in H3 

and H4, our study shows that among H3K4me2, H3K9me2, H3K27me2 and 

H4K20me2, UHRF1 has higher affinity for H3K9me2 (KD = 1.1 μM). For rest other 

dimethyllysine, it shows moderate binding affinity (Table 2.2 and Fig. 2.9A). These 

results indicate that UHRF1 TTD selectively recognize the dimethyl mark on 

H3K9.  

Then we investigated the methyl status specific readout by UHRF1 TTD. Our ITC 

studies on H3K9 with different methyl status shows that it has a comparable 

binding affinity for H3K9me3 (KD = 5.6 μM) and H3K9me2 (KD = 1.1 μM). These 

results indicate that UHRF1 TTD binds to both H3K9me3 and H3K9me2 
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methylation marks but has higher preference for H3K9me2. Higher preference of 

UHRF1 TTD for lower methylation status (dimethyllysine) may be due to presence 

of negatively charged residues in the binding pocket, as in 53BP1. Our ITC binding 

results are supported by the lower lysine methylation status-specific readout by 

MBT repeats of L3MBTL1 and an engineered PHD finger where presence of an 

acidic residue in the aromatic cage in these reader modules restrict the binding 

pocket to recognize the lower methylation status, di and monomethyllysine, of 

H1.4K26, H3K4, H3K9, H3K27, H3K36 and H4K20.  

We also hypothesized that, since, the flanking residues may also contribute towards 

the recognition of epigenetics mark, whereas -2 to +1 flanking residues of H3K9 and 

H3K27 are identical, UHRF1 TTD, which binds to H3K9me2 with highest affinity, 

may also bind to H3K27me2 with similar affinity. On the contrary, our ITC studies 

on UHRF1 TTD with H3(1-12)K9me2 and H3(20-34)K27me2 peptides show that it 

has 60 times less affinity for H3K27me2 (KD = 62 μM). This result contradicts our 

hypothesis. One possible explanation may be the variation in stretched flanking 

residues. 

Thus, UHRF1 TTD as a stand-alone domain binds to H3K9me2 with a significantly 

higher binding affinity compared to H3K4me2, H3K27me2 and H4K20me2. It is 

possible that UHRF1 TTD can nonspecifically bind other methyllysine, H3K4me2 

and H3K27me2 marks in different amino acids sequence contexts. 

In this study, we have found that UHRF1 TTD preferentially recognizes H3K9me2 

mark. In UHRF1, TTDC is linked to PHD domain which is known to assist the 

UHRF1 TTD to recognize H3K9me. In the next chapter, we have investigated the 

mechanistic insights of the preferential recognition of H3R2K9me2 by UHRF1 

TTD-PHD dual domain, using computational (molecular modelling and molecular 

dynamic simulation) and biochemical approaches. 
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Chapter 3 

Molecular Dynamic simulation and binding studies to explore the H3R2K9 

methylation statuses recognition by the TTD-PHD of UHRF1 



  

41 

3.1   Introduction 

Many effector modules function together through recognition of two or more histone 

PTMs on the histone tails. The paired effector modules appear in the different 

combinations such as reader-reader, reader-writer and reader-eraser pairs [73]. 

Combinatorial actions of these effector modules is  involved in the recruitment of 

particular chromatin-associated proteins to the specific genomic region for further 

modulation [74]. 

A number of chromatin-associated proteins contain more than one reader domain, 

in the form of  the same reader domain and/or a combination of different reader 

domains which are specific for particular histone PTMs [22]. More than 10 families 

of different histone modification-specific reader domains, that bind to the same 

histone tail or multiple histone tails in cis or trans  positions, have been structurally 

characterized (Figure 3.1) [73]. 

 

Figure 3.1: Schematic representation of combinatorial recognition of histone PTMs 

by multiple domains of same protein. (A) In cis mode where PTMs on same histone 
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is read and (B) In Trans where PTMs on different histones is read. The first and 

second panel in section B represents the combinatorial binding of intra-nucleosomal 

and inter-nucleosomal histone modification by two reader domains of same protein. 

3.1.1   Combinatorial recognition of histone marks in single histone tail (cis) 

Epigenetic marks on the same histone tails can be recognized by the multiple 

tandem linked reader domains. Combinatorial recognition of multiple histone PTMs 

is supported by the coexistence of different effector domains in different 

combination within a given polypeptides or complexes involved in epigenetic 

regulation (Fig. 3.2A and B)  [75]. 

 

Figure 3.2: (A) Schematic representation of the coexistence of possible reader 

domains within single polypeptides. Numbers in the line connecting the domains 

indicate the number of instances any of the two domains are linked. (B) Depicts the 

examples of proteins containing multiple reader domains.  

[Adapted from Ruthenberg et al., 2015] 

Simultaneous recognition of multiple histone PTMs by the reader domains of the 

multi-domain protein or complex leads to high affinity binding compared to single 

readout. Thus, two or more reader domains recognizing multiple histone codes, 

cooperatively, would enhance the binding affinity. For instance, TAF1 (TBP-

associated factor, 250 kDa), the largest subunit of TFIID (RNA polymerase II 

transcription factor D) is the first reported paired chromatin associated reader 
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domain. It contains two bromodomains that simultaneously engage two or more 

acetyllysine histone marks (Fig. 3.3A) [73]. The two bromodomains exhibit a 

binding affinity of 39 μM towards the H4K16ac peptide, which was enhanced by 7 

to 28 folds for di/tetra-acetyllysine-modified H4 peptides (H4K8ac/K16ac and 

H4K5ac/K8ac/K12ac/K16ac), respectively [76]. The linked bromodomains of TAF1 

simultaneously recognize two acetyllysine mark on a single histone tail. Unlike 

TAF1, TRIM24 and TRIM33 binds to two different histone PTMs by distinct set of 

reader domains called PHD-bromodomain cassettes. The TRIM33 PHD binds to 

K9me3, and the bromodomain recognizes K18ac of the H3 tail [73,75,76]. TRIM24 

PHD and bromodomain associates with H3K4me0 and H3K23ac, respectively (Fig. 

3.3B and C) [74]. 

 

Figure 3.3: Schematic representation of combinatorial readout of two histone marks 

by paired chromatin-associated reader domains in cis mode. (A) TAF1 double 

bromodomains reads H4K5ac and H4K12ac marks. (B) TRIM24 PHD-bromodomain 

cassette reads H3K4me0 and H3K23ac modification pair and (C) The TRIM33 

PHD-bromodomain cassette reads H3K9me3 and H3K18ac modification pair. 

3.1.2   Combinatorial recognition of PTMs in different histone tails (trans) 

Some chromatin associated proteins recognize multiple PTMs on separate histone 

tails that may be on single nucleosome or on adjacent nucleosomes.  These histone 

marks are present in close proximity for the recognition by reader domains. For 

instance, BPTF (Bromodomain PHD finger Transcription Factor), a subunit of 

NURF chromatin remodeling complex, contains PHD linked bromodomain 

simultaneously recognizes H3K4me3 and H4K12ac, H4K16ac or H4K20ac, 

respectively (Fig. 3.4A)  [74,75]. Some reader domains are linked by a short linker 
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region in such a way that they can bind histone marks from different nucleosome in 

the trans mode. For instance, CHD4 contains two PHD finger domains connected 

by short linker. The PHD1 preferentially binds to unmodified H3K4 and PHD2 

binds H3K9me3 (Fig. 3.4B) [74,75,77].  

 

Figure 3.4: Schematic representation of combinatorial readout of two histone marks 

by paired chromatin-associated domains in trans. (A) The BPTF PHD-

bromodomain cassette reads H3K4me3 and H4K12ac modification pair. (B) Two 

PHD domains of CHD4 read H3K4 and K9me3 marks on two different H3. 

Thus, the linked reader domain shows the multivalent recognition of modified 

histone peptide interaction in cis and trans position. UHRF1 also has multiple 

reader domains that can exhibit multivalent histone PTMs recognition. 

3.1.3   Multivalent histone engagement of UHRF1 

UHRF1 contains two reader domains, namely, TTD and PHD. The UHRF1 TTD 

and PHD are separated by a 17 amino acids linker. The association of domains is 

maintained by extensive contacts between TTD and the linker residues [78]. 

UHRF1 TTD-PHD is known to be involved in combinatorial recognition of 

unmodified R2 and K9me3 (H3R2K9me3) marks on histone H3 tail (Fig. 3.5) [72]. 

UHRF1 TTD is reported to bind the N-terminal H3(1-10)K9me3 with the binding 

affinity of 0.97µM, and PHD binds to unmodified H3R2 with a KD of 2.1 µM. 

Recently, it was found that the linked TTD-PHD cassette  binds H3K9me3 with a 

binding affinity of 0.15 µM which is 6 fold higher than isolated TTD alone [22,79]. 

It indicates that the interaction between the PHD and the N-terminus of H3 is 
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important for H3K9me3 recognition by TTD-PHD. Importantly, disruption of the 

function of individual reader domain , or disturbing the dual domain function to 

engage the H3 tail in cis, was shown to inhibit the interaction between UHRF1 and 

the chromatin [80]. It suggests that the combinatorial interaction of H3R2K9me3 

marks containing H3 histone tail by UHRF1 TTD-PHD involved in the role in 

establishment and maintenance of H3K9me mark in the cell cycle regulation[78]. 

 

Figure 3.5: Structure of the UHRF1 TTD-PHD bound to H3 (1-10) K9me3 peptide. 

(A) Protein and peptide are in electrostatic surface model and cartoon 

representation, respectively. H3K9me3 and H3R2 are in stick representation. (B) 

Magnified view of the peptide in UHRF1 TTD-PHD-H3R2K9me3 binding pocket. 

It is reported that recognition of first two N-terminal amino acids, i.e. alanine 1 and 

arginine 2 of H3 (H3A1R2), by PHD domain induces the conformational change in 

the linker region and the TTD domain, so that TTD can specifically bind to 

methylated H3K9 [79,81]. It suggests that PHD is necessary and sufficient for H3R2 

recognition, whereas both the PHD and TTD are required for H3R2K9me3 

recognition. Thus, TTD and PHD work together to interactH3R2K9me and localize 

the UHRF1 to PCH, which is important for DNA methylation maintenance by 

DNMT1 during DNA replication. The independent recognition of H3R2 mark by 

PHD domain is important for regulation of the euchromatic gene expression by 

UHRF1 [46]. 



  

46 

From the binding studies discussed in previous chapter, we know that UHRF1 TTD 

has the highest binding affinity for H3K9me2 mark. Also, the role of UHRF1 PHD 

to aid UHRF1 TTD in recognition of H3K9me3 through H3R2 binding is well 

established. Based on these information, we hypothesized that UHRF1 PHD may 

contribute significantly towards the combinatorial recognition of H3K9me2 and 

H3R2 by UHRF1 TTD-PHD cassette. 

To validate the hypothesis, MD simulation studies were carried out to: (A) capture 

the dynamic of TTD-PHD binding to H3R2K9me peptides in different methylation 

statuses; (B) identify the dynamics of binding pocket residues contributing to 

peptide recognition; (C) compute free energy of binding of TTD-PHD to H3 

peptides, along with ITC and FP. Through MD simulation studies, it was found 

that Asp145 may contribute for preferential recognition of H3K9me2. To confirm 

the role of Asp145, present in the binding pocket of UHRF1 TTD, in preferential 

recognition of H3K9me2, binding and MD simulation studies using Asp145 mutants 

are performed. Also, contribution of PHD finger of UHRF1 TTD-PHD to recognize 

H3K9me2 is studied. 

We used MD simulation for computational characterization of peptide-protein 

interactions. ITC and Fluorescence Polarization techniques were used for binding 

studies. Principle of ITC technique is discussed in section 2.1.7, whereas MD 

simulations and Fluorescence Polarization principles are discussed below. 

3.1.4   Fluorescence polarization 

Fluorescence polarization (FP) is a homogenous and powerful technique in which 

the polarization of the fluorescent light emitted from the sample is measured. It is 

based on the rotational behavior of the labelled molecule. A monochrome light of 

certain wavelength (absorption wavelength) is incident on the sample, which in 

turns emits light of higher wavelength (emission wavelength). Polarization is an 

inverse function of rotational dynamics of the molecule, which is, again, an inverse 
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function of the molecular weight (MW). This polarization value gives the kinetic 

details of the interaction. Increase in the MW reduces the rotation of the molecule 

and hence increase the polarization (Fig. 3.6). In the biological processes, including 

protein-peptide, protein-protein, protein-nucleic acid and protein-small molecules, 

the MW of the complex increases upon interaction [82].  

 

Figure 3.6: Principle of Fluorescence Polarization 

 

Fluorescence polarization is used to study the biological processes that involve 

changes in molecular weight, such as a binding event or the enzymatic cleavage of a 

substrate. FP is used to measure emission intensities such as parallel (Iǁ) and 

perpendicular (I┴) of the fluorescent sample which is excited by the polarized light 

and calculate fluorescence anisotropy (FA) or fluorescence polarization (FP) (Fig. 

3.6) [82,83]. The equations of FP and FA are given below. 

 

3.1.5   Molecular Dynamic Simulation 

Proteins undergo different conformational changes and they interact with one 

another, with drugs and hormones dynamically. An MD simulation is a standard 

method for simulating dynamic motion of the molecules. It helps in visualizing and 
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understanding the dynamic behavior of the system at an atomic level, under a given 

temperature, pressure and energy constants. When combined with a visualization 

software, it can display the structural parameters in a time dependent way. MD 

simulation routinely calculates the following quantities: 1) thermodynamics of 

system; 2) interface related terms like order parameter, density of groups, 

electrostatic potential; 3) Time average structure; 4) RMSD difference between two 

structures; and 5) Radius of Gyration [84–86]. Schematic representation of the steps 

involved in MD simulation of protein is shown in the fig. 3.7 

 

 

Figure 3.7: Schematic depicts steps involved in MD simulation of Protein 
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3.2   Material and Methods 

3.2.1   Preparation of UHRF1 TTD-PHD-H3K9me2 complex for simulation 

The crystal structure of UHRF1 TTD-PHD with H3(1-10)K9me3 (PDB ID: 4GY5) 

[46] was prepared for MD simulation using Schrodinger’s Maestro Molecular 

modeling suite. The H3K9me3 was modified to H3K9me2 by virtually editing the 

methylation marks. Two amino acids threonine 11 and glycine 12 were also added 

virtually to the existing H3(1-10) peptide to get H3(1-12) peptide and the added 

amino acids were energy minimized. Bond orders were assigned and hydrogen atoms 

were added followed by H-bond optimization and restrained minimization using 

OPLS3 force field. Protonation statuses were determined at physiological pH 7.0 

using PROPKA [87,88]. All the water molecules were removed. 

3.2.2   Preparation of UHRF1 TTD-PHD Asp145Glu and Asp145Ala mutants for 

simulations 

The crystal structure of UHRF1 TTD-PHD complexed with H3(1-10)K9me3 (PDB 

ID: 4GY5) was used to prepare Asp145Glu and Asp145Ala mutants. The mutation 

was carried out using Schrodinger’s Maestro Molecular modeling suit. Then the 

methylation marks on H3K9 were virtually edited to generate different 

combinations of protein-peptide complex, i.e. UHRF1 TTD-PHD Asp145Glu and 

UHRF1 TTD-PHD Asp145Ala mutants complexed with H3(1-12)K9me2 and H3(1-

12)K9me3 peptides. All the parameters were set as that of UHRF1 TTD-PHD-

H3(1-12)K9me2 complex. 

3.2.3   Molecular dynamics (MD) simulations 

To investigate the time dependent protein-peptide interactions and conformational 

dynamics of the studied complex systems, in the current study, we carried out 

classical MD simulations for H3(1-12)K9me3 and H3(1-12)K9me2 peptides 

complexed with UHRF1 TTD-PHD and its Asp145Glu and Asp145Ala mutants, 

using Desmond MD simulation program [Desmond Molecular Dynamics System, 
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Version 2.2, D.E. Shaw Research, New York, NY, 2009]. All systems were solvated 

in an orthorhombic box (a=b=c=10Å and α=β=γ=90o) with explicit SPC (Single 

Point Charge) water model. The interactions were calculated with the OPLS3 force 

field. The complex was neutralized in buffer system with 0.15M NaCl. The particle-

mesh Ewald method [89] was used to calculate the long-range electrostatic 

interactions. A cut-off radius of 9.0 Å was applied for short-range van der Waals 

and Coulomb interactions. The systems were simulated under an isothermal–

isobaric ensemble (NPT) with the temperature of 300K and the pressure of 1 bar. 

Nose–Hoover thermostat [90] and Martyna–Tobias–Klein [91] methods were 

implemented to maintain the temperature and the pressure of the systems, 

respectively. An integral time step of 2 fs was used for the overall simulations. The 

systems were minimized and equilibrated with the default protocols of the Desmond 

and the systems were relaxed. Finally, a 10 ns non-constrained MD simulation was 

performed for each system and the coordinates were saved for every time step. 

3.2.4   Protein-peptide interaction analysis 

Protein-peptide interactions were screened throughout the MD simulations. To 

identify the hydrogen bond, maximum distance of 3.5 Å and minimum donor angle 

of 120.0
o
 were considered. In the case of a face to face π-π stacking interaction, 

angle and distance between the rings less than 30o and less than 4.4 Å were set 

3.2.5   Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations 

Protein-peptide free energy of binding (ΔGbind) after 10ns of the simulation were 

estimated using MM-GBSA method (Prime module of the Schrodinger’s molecular 

modeling package) [Schrödinger Release 2017-1: Prime, version 3.8, Schrödinger, 

LLC, New York, NY, 2014] [91] for all the complexes.   
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3.2.6   Sub-Cloning of UHRF1 TTD-PHD to generate hexahistidine-SUMO tagged 

construct 

The cDNA encoding full-length human UHRF1 was obtained from Open bio-

systems.  Residues 140-380, that corresponds to the UHRF1 TTD-PHD, were sub-

cloned. Amplification was carried out using forward and reverse primers (Appendix 

I) containing NdeI and BamHI restriction sites, respectively. The amplified PCR 

product was confirmed by agarose gel electrophoresis, followed by DNA gel 

extraction and subsequent digestion with NdeI and BamHI. The purified digested 

product was ligated with NdeI-BamHI digested pET28-N-His-SUMO vector using 

T4 DNA ligase. Schematic represents the workflow of cloning strategy (Fig. 3.8).  

Clones obtained were screened by using colony PCR and confirmed by sequencing. 

 

 

Figure 3.8: Flowchart of UHRF1 TTD-PHD sub-cloning. 

3.2.7   Expression and Purification of UHRF1 TTD-PHD 

Expression and purification of UHRF1 TTD-PHD carried out as discussed in 

section 2.2.2.  The purification gel picture and the chromatogram of UHRF1 TTD-

PHD depicted in Fig. 3.9 
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Figure 3.9: SDS-PAGE image after gel filtrations purification and the chromatogram 

showing elution profile of UHRF1 TTD-PHD. 

3.2.8   Generation of UHRF1 TTD-PHD Asp145Glu mutant 

Mutant was generated by using QuikChange II XL Site Directed Mutagenesis Kit 

(Stratagene) on a plasmid carrying the cDNA of the UHRF1 TTD-PHD and 

mutation was confirmed by sequencing. Mutated protein was expressed and purified 

as described for UHRF1 TTD-PHD.  

3.2.9   ITC measurements 

The equilibrium dissociation constant (KD), molar ratio (N) and thermodynamic      

parameters of the UHRF1 TTD-PHD and UHRF1 TTD-PHD Asp145Glu bound to 

H3(1-12)K9me3 and H3(1-12)K9me2 peptides were determined using a VP-ITC 

calorimeter (MicroCal, LLC) at 25°C. The proteins were dialyzed overnight against 

a buffer containing 40 mM Tris-HCl, pH 7.5, 50 mM NaCl, and 2 mM β-

mercaptoethanol at 4°C. Lyophilized peptides were dissolved in buffer used for 

protein dialysis. The concentrations of protein and peptides used in this study were 

100-250 μM and 1-2.5 mM, respectively. The reaction cell was filled with 210 μL of 

protein and the reference cell was filled with deionized water. The peptide was 

sequentially added in 2.3 μL (for a total of 15-16 injections) aliquots at 3 min 

intervals. The data were processed using MicroCal Origin software. The titration 

data were deconvoluted based on a binding model containing “one set of sites” using 

a nonlinear least-squares algorithm. The binding enthalpy change (ΔH), association 
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constant (KA), and binding stoichiometry (N) were permitted to vary during the 

least-squares minimization process and taken as the best-fit values for UHRF1 

TTD-PHD bound to the histone peptides. In the cases where the C-value (which is 

the product of the receptor concentration and the binding constant, KA) is low, ‘N’ 

was fixed to 1.0, and ‘KA’ and ‘ΔH’ were permitted to float. The reported values 

are the mean values from three titrations. The equilibrium molar dissociation 

constant (KD) of the mutant bound to H3K9me2 and H3K9me3 peptides was 

determined using a VP-ITC calorimeter (MicroCal, LLC). 

3.2.10   Fluorescence Polarization (FP) measurements  

To confirm the ITC binding studies on UHRF1 TTD-PHD with peptides, 

fluorescence polarization measurements were performed at 20°C using C-terminal 

fluorescein labeled peptides. The labeled peptide (1 μM) was added to an increasing 

concentration of the protein. The polarization (in millipolarization [mP] units) of 20 

μL of reaction mixture was measured after 45 minutes of incubation at room 

temperature. Polarization values were referenced against a blank sample buffer (20 

mM Tris-HCl pH 7.5, 50 mM NaCl and 1 mM DTT) and a reference containing 1 

μM of peptide. The polarization data were analyzed using GraphPad Prism 5.0 

software (GraphPad, San Diego, CA, USA) to calculate a binding dissociation 

constant (KD) by fitting the experimental data in a non-linear regression equation 

using a one-site specific binding model accounting for ligand depletion. Experiments 

were performed in triplicate. 

3.3   Results 

3.3.1   MD simulation studies on binding of H3R2K9me2 and H3R2K9me3 peptides 

to TTD-PHD UHRF1 cassette 

Insignificant fluctuation of RMSDs of protein and ligand, and RMSFs of ligand has 

indicated that not only TTD-PHD but also methyllysine peptides are stable during 

simulation time (Fig. 3.10 and 3.11). Overall, H3R2K9me2 and H3R2K9me3 
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peptides have similar network of interactions throughout the simulation (Fig. 3.12), 

as well as peptides exhibit minimum internal conformation (Fig. 3.12C, D). 

 

 

Figure 3.10: Protein-Ligand root-mean square deviation (RMSD) plotted against the 

stimulation time. (A) UHRF1 TTD-PHD-H3(1-12)K9me2 complex (B) UHRF1 

TTD-PHD-H3(1-12)K9me3 complex RMSD of Cα of the UHRF1 TTD-PHD. ‘Lig fit 

on Prot’ shows the RMSD of the respective peptide when the protein-peptide 

complex is aligned on the protein backbone (at t=0ns). RMSD of the ligand is 

measured; ‘Lig fit on Lig’ shows the RMSD of the peptide with respect to its 

conformation at t=0ns. 

H3R2 mark is recognized by the negatively charged surface groove of PHD finger. 

Guanidinium group of Arg2 is recognized by the Asp337, Asp334 and Cys333 

through the network of salt bridge and hydrogen bond interactions in TTD-PHD-

H3R2K9me3 complex structure [46,49,60,72]. Above network of interactions are 

similar throughout the simulation in H3R2K9me2 and H3R2K9me3 peptides 

binding (Fig. 3.12C, D). Phe152, Tyr188 and Tyr191 residues from TTD domain of 

TTD-PHD form aromatic cage binding pocket that binds to K9me3 mark through 

hydrophobic and CH-π interactions (Fig. 3.12) [46,72]. All these aromatic residues 

interact with K9me3 and K9me2 mark of the peptides mainly through hydrophobic 

interactions throughout the simulation time (Fig. 3.12A, B). Asp145 has hydrogen 

bond interaction with dimethyl ammonium group of H3R2K9me2 peptide (Fig. 
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3.12A, C), surprisingly, which is, absent in H3R2K9me3 peptide (Fig. 3.12B, D). 

Another notable difference is TTD-PHD has significantly lower free energy of 

binding for H3R2K9me2 compared to H3R2K9m3 (Table 3.1). 

 

Figure 3.11: Ligand root-mean square fluctuation (RMSF) - peptide’s atoms 

fluctuation throughout the simulation. RMSF of atoms of (A) H3K9me2 (B) 

H3K9me3 during 10ns MD simulation. The figure shows the ligand’s fluctuations 

broken down by atom, corresponding to the 2D structure in the top panel of every 

curve. K9 methylations are highlighted in light blue in all figures. 
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Figure 3.12: Residual interaction profile of UHRF1 TTD-PHD with di- and tri-

methylated lysine 9 of H3(1-12) peptide. Histograms display interaction fraction of 

protein residues during simulation time with (A) H3R2K9me3 and (B) 

H3R2K9me2. 2D-interaction diagrams of the protein residues contact with the 

peptides (C) H3R2K9me3 and (D) H3R2K9me2. 
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3.3.2    UHRF1 TTD-PHD cassette preferentially binds H3R2K9me2 

Our ITC binding study on UHRF1 TTD-PHD with H3(1-12)K9me2 and H3(1-

12)K9me3 peptides reveal that UHRF1 TTD-PHD cassette exhibits 6-folds higher 

affinity for dimethyllysine mark (KD = 0.15 μM) (Fig. 3.13A) than trimethyllysine 

mark (Fig. 3.13B). To confirm this, we also conducted FP studies on the UHRF1 

TTD-PHD cassette with fluorescent labelled H3(1-12)K9me2 and H3(1-12)K9me3 

peptides. FP studies also revealed that the UHRF1 TTD-PHD has higher affinity 

for H3(1-12)K9me2 (KD of 5.2 μM) compared to H3(1-12)K9me3 (KD of 23.1 μM) 

(Fig. 3.14). The variation between the KD values of ITC and FP studies may be 

due to difference in the temperature constants used in the experiment. 

 

Figure 3.13: ITC binding studies of H3R2K9me2 and H3R2K9me3 peptides to 

UHRF1 TTD-PHD cassette. Enthalpy plots for the binding of the UHRF1 TTD-

PHD to (A) H3R2K9me2 and (B) H3R2K9me3 peptides. The inset lists the 

measured molar dissociation constant. 
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Figure 3.14: Fluorescence Polarization (FP) Binding of the UHRF1 TTD-PHD to 

fluorescein labelled peptides (A) H3(1-12)K9me2 (B) H3(1-12)K9me3. The inset lists 

the measured molar dissociation constant. 

3.3.3    UHRF1 TTD-PHD Asp145Glu mutant preferentially binds di-methyllysine 9 

over tri-methyllysine 9 

Our MD simulation studies show that Asp145Glu and Asp145Ala mutants of 

UHRF1 TTD-PHD shows that the presence of negatively charged residue in the 

binding pocket may be required for preferential recognition of H3K9me2 mark over 

H3K9me3. ITC binding studies on UHRF1 TTD-PHD Asp145Glu mutant with 

H3(1-12)K9me2 and H3(1-12)K9me3 peptides reveal that the Asp145Glu mutant of 

UHRF1 TTD-PHD also exhibits higher affinity for H3(1-12)K9me2 (KD = 0.51 μM) 

compared to H3(1-12)K9me3 (KD = 1.21 μM) (Fig. 3.15). 

 

Figure 3.15: ITC binding studies of H3R2K9me2 and H3R2K9me3 peptides to 

UHRF1 TTD-PHD Asp145Glu mutant. Enthalpy plots for the binding of the 
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UHRF1 TTD-PHD to (A) H3R2K9me2 and (B) H3R2K9me3 peptides. The inset 

lists the measured molar dissociation constant. 

Table 3.1: MM/GBSA calculated ΔGbind for UHRF1 TTD-PHD bound to H3(1-12) 

peptide with different lysine methylation statuses. 

H3 Peptide vs 

TTD-PHD 

G of binding 

(Kcal/mol) 

H3R2K9me3 -111.98 

H3R2K9me2 -130.42 

H3 Peptide vs TTD-PHD Asp145Glu 

H3R2K9me3 -120.57 

H3R2K9me2 -137.68 

H3 Peptide vs TTD-PHD Asp145Ala 

H3R2K9me3 -111.59 

H3R2K9me2 -109.222 

3.3.4   Effect of UHRF1 PHD domain on histone H3 lysine methyl mark recognition 

by the UHRF1 TTD 

To unravel the effect of PHD domain on recognition of H3K9me2 by TTD of 

UHRF1, we have carried out ITC binding studies on UHRF1 TTD and UHRF1 

TTD-PHD with H3(1-12)K9me2 and H3(5-12)K9me2 peptides, respectively. 

UHRF1 TTD-PHD binds H3(5-12)K9me2 peptide with a KD of 2.5 μM (Fig. 3.16B), 

which is similar to H3(1-12)K9me2 peptide recognition by the UHRF1 TTD (Fig. 

3.16A) indicating that PHD may not have any role in recognition of H3K9me2 by 

UHRF1 TTD. 
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Figure 3.16: ITC binding studies of TTD and TTD-PHD of UHRF1 to methylated 

lysine H3. Enthalpy plots for the binding of the (A) UHRF1 TTD to H3(1-

12)K9me2 and (B) TTD-PHD to H3(5-12)K9me2. 

3.4   Discussion 

3.4.1   Effect of negatively charged residue in the binding pocket on lower 

methyllysine status recognition 

Our MD simulation studies show that there is an additional hydrogen bond and salt 

bridge interaction between K9me2 of H3 and Asp145 of TTD domain throughout 

the simulation time, which is lost in trimethylated H3K9. This shows that Asp145 

in the binding pocket of UHRF1 TTD domain may play a key role in preferential 

recognition of H3K9me2 over H3K9me3 (Fig. 3.12, Table 3.1). To confirm the role 

of this negatively charged residue, Asp145, we mutated it to a negatively charged 

residue (Glu) and a hydrophobic residue (Ala). In the case, where Asp145 was 

mutated to Glu145, MD simulation and ΔGbind (Table 3.1) show the persistence of 

preference for H3R2K9me2 mark. Our ITC binding studies have also confirmed that 

the Asp145Glu mutant of UHRF1 TTD-PHD has similar binding affinity for 

H3K9me2 with respect to wild type UHRF1 TTD-PHD (Fig 3.13 and 3.14). The 

preferential recognition of H3R2K9me2 over H3R2K9me3 peptide by the UHRF1 

TTD-PHD Asp145Glu mutant, similar to wild type UHRF1 TTD-PHD highlights 
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the role of negatively charged residue for preferential recognition of lower 

methylation status (Fig. 3.17A). On the other hand, UHRF1 TTD-PHD Asp145Ala 

mutant completely lost this interaction in MD simulation study (Fig. 3.17B). These 

observations are supported by the previous studies on lower methyllysine status-

specific readout by MBT repeats of L3MBTL1 and 53BP1 TTD. Those studies 

reported that the presence of negatively charged residue in the aromatic cage 

binding pocket is linked to lower methyllysine status recognition of H1.4K26, H3K4, 

H3K9, H3K27, H3K36 or H4K20 peptides [60,92,93]. Substitution, of one of the 

aromatic cage residues in the binding pocket to the negatively charged residue 

(Asp/Glu), was the strategy used to engineer the PHD finger of BPTF and the 

Chromodomain of HP1α to preferentially bind dimethyllysine of histone H3 [92,94]. 

In contrast to the current study, the previous study has reported that UHRF1 TTD 

preferentially binds H3R2K9me3 over H3R2K9me2 [60]. Use of N-terminal 

fluorophore labelled H3 peptide for binding study that may affect the recognition of 

H3 peptide by the TTD, might be the reason for an anomaly in the previous study 

[60]. FP binding studies using the C-terminal fluorescein labelled, H3(1-12)K9me2 

and H3(1-12)K9me3, peptides validate the preferential recognition of H3K9me2 

methylation status by the UHRF1 TTD (Fig 3.14). 
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Figure 3.17: Comparison of K9me2 recognition in the H3K9me binding pocket of 

UHRF1 TTD at the end of 10ns simulation of UHRF1 TTD-PHD, UHRF1 TTD-

PHD Asp145Glu and UHRF1 TTD-PHD Asp145Ala complexed with H3(1-

12)K9me2 peptide. Binding pocket of UHRF1 TTD (reddish-brown stick) bound to 

K9me2 (reddish-brown stick) is superimposed on UHRF1 TTD Asp145Glu (A) and 

UHRF1 TTD Asp145Ala bound K9me2 (cyan stick) (B). Asp145Glu and 

Asp145Ala mutation is represented in green stick. 

3.4.2   Comparison of dynamics of the dimethyllysine 9 and the trimethyllysine 9 

recognition by the UHRF1 TTD 

To understand the dynamics of methyllysine statuses recognition by the UHRF1 

TTD domain, we compared the MD simulation results of UHRF1 TTD-PHD-

H3R2K9me2 and UHRF1 TTD-PHD-H3R2K9me3 complexes (Fig. 3.18). Unlike 

53BP1 TTD, UHRF1 TTD can accommodate both dimethyllysine and tri-

methyllysine statuses but prefers former over later (Fig. 3.18). Conformations of 

dimethyl- and tri-methyllysines, in the binding pocket, are such that only di-

methyllysine has hydrogen bond interaction with the Asp145. Among binding 

pocket residues, the carboxyl plane of Asp145 is oriented towards the methyllysine 

in UHRF1 TTD-PHD-H3R2K9me2 complex, in contrast, it is oriented away from 

the methyllysine in the UHRF1 TTD-PHD-H3R2K9me3 complex. Above 

conformational changes are necessary for preferential recognition of H3R2K9me2 

over H3R2K9me3, and to avoid the exposure of one of the methyl groups to the 

negatively charged environment that might weaken the recognition of tri-

methyllysine status by the UHRF1 TTD (Fig. 3.18). Preferential recognition of 

H3R2K9me2 is supported by global loss of H3R2K9me2 in the genome of embryonic 

stem cells (ESCs) that leads to loss of UHRF1 recruitment to chromatin. 
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Figure 3.18: Comparison of K9me3 and K9me2 recognition in the H3K9me binding 

pocket of UHRF1 TTD at the end of 10ns simulation of UHRF1 TTD-PHD-

H3K9me2 and UHRF1 TTD-PHD-H3K9me3 complexes. Binding pocket of UHRF1 

TTD (reddish-brown stick) bound to K9me2 (brown stick) is superimposed on 

UHRF1 TTD (cyan stick) bound K9me3 (blue stick). 

3.4.3   UHRF1 PHD doesn’t contribute in recognition of H3K9me2 by UHRF1 TTD 

domain 

There has been a recent interest and appreciation of multivalent or combinatorial 

readout of two or more histone marks by a corresponding number of ‘reader’ 

domains, highlighting the advantages of combinatorial recognition at the histone 

and/or nucleosome level [76]. The linker region between TTD and PHD in UHRF1 

acts as a ruler for combinatorial recognition of H3K9me2 and H3R2 marks by dual 

domains [72]. Therefore, recognition of N-terminal amino group, H3A1 and H3R2 

by PHD can prevent the non-specific histone H3 methyllysine recognition by the 

TTD, but PHD finger has negligible contribution for binding affinity to recognize 

H3K9me2 mark by the TTD (Fig. 3.16). Our hypothesis is supported by previous 

study showing that UHRF1 TTD-PHD exhibit negligible binding affinity to tri-

methylated histone H3 lysine 27 or 36 peptides [46]. 



  

64 

However, combinatorial recognition of UHRF1 TTD-PHD to H3R2K9me2 peptide 

is marginally better than recognition of individual, H3K9me2 and H3R2 marks by 

TTD and PHD domains, respectively. It appears that the relative linker-dependent 

separation and orientation of TTD and PHD finger within the cassette may not 

conducive to, simultaneously, target H3R2 and H3K9me3 with the expected higher 

binding affinity compared to individual mark recognition. In addition, ordered 

histone H3 in the binding pockets of UHRF1 TTD-PHD could also restrict the 

recognition of dual marks by the reader domain. 
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Chapter 4 

Molecular Dynamics (MD) simulation and binding studies to explore the 

effect of H3K4 methylation on H3R2K9me recognition by the TTD-PHD of 

UHRF1 
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4.1   Introduction  

It is established that some residues on histones undergo several PTMs, like 

methylation (lysine and arginine), acetylation (lysine) and phosphorylation (serine 

and threonine) (Fig. 4.1) [95,96]. Such modification, in most of the cases, affect the 

charge distribution on histones where it is involved in binding to DNA, that lead to 

modulation of chromatin structure/conformation, which in turn regulates the DNA 

associated processes. A synergistic combination of two or more histone marks works 

together to ensure that no gene is inadvertently turned on or off. There are some 

protein motifs or reader domains evolved to bind combinations of histones and 

initiate crosstalk [96,97]. 

A single PTM on histone is able to modulate or regulate protein function by 

creating binding sites for protein or disturbing the protein-protein interaction. 

However, many histone proteins undergo modifications at multiple sites and act 

combinatorically to enrich the information. For instance, N-terminal tail of histone 

H3 can be simultaneously methylated at K4 and acetylated at different positions 

include K9, K14, K18 and K27. These combinatorial modifications affect the 

transcription. Among all modifications, lysine side chain is the main target of 

different PTMs. These lysine PTMs can be involved in the cross regulation [98]. 

 

Figure 4.1: Potential ‘choices’ of the modification states of different histone residues. 

Acetylation (Ac) of lysine (K), mono-, di- and tri-methylation of lysine, mono-

ubiquitination (ub) of lysine and SUMOylation (SUMO) of lysine; Mono- or di-

methylation (symmetric or asymmetric) of arginine (R); phosphorylation (P) of 

serine or threonine (S/T). 
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4.2   Histone modifications crosstalk 

The crosstalk between different modifications provides an extra level of complexity 

to fine tune the overall control. There are three mechanisms that will explain 

crosstalk of modifications. One or more modification occurs in the same residue that 

is targeting different modification pathway. For example, lysine can be acetylated, 

methylated or ubiquitylated. Crosstalk can occur on cis (same histone) and trans 

(between histone or nucleosome) positions. One modification may disturb the 

protein or reader module binding of other modification [99,100]. 

These crosstalks can also be regulated positively or negatively. In positive crosstalk, 

the addition or removal of one PTM can act as a signal for the second 

modification/s recognition/readout or removal. In negative crosstalk, the 

competition between histone PTM on a single residue, the recognition site of one 

PTM masked by another PTM (Fig. 4.2) [98].  

 

Figure 4.2: Modes of histone modification crosstalk. (A) One PTM positively 

regulates another PTM. (B) One PTM negatively regulates another PTM. (C) 

Regulation of PTM is on the same histone tail. (D) Regulation of PTM is on 

different histone tail of same or another histone. 

4.3   Reader domain mediated histone crosstalk 

A major function of PTMs is to create binding sites for specific modular binding 

domains providing a mechanism for inducing protein-protein interactions and 

propagating signals. Proteins commonly contain more than one protein interaction 

domain, and in some cases more than one reader domains can recognize a PTM 
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[98]. In fact, many readers associate with a substantial stretch of the histone tail, 

allowing for the sensing of multiple marks. In many cases, the biological outcome 

depends on a combinatorial readout of multiple PTMs by spatially linked readers 

that lead to crosstalk between PTMs. The readout and crosstalk can be 

cooperative, antagonistic, or independent in nature [101].  

4.4   Phospho/methyl switch 

Methylation and phosphorylation are one of the best examples of cross regulation in 

cis. These two sites are situated nearby or adjacent to each other. For example, 

most of the methylation sites are situated nearby the phosphorylated serine or 

tyrosine such as H3T3phK4me, H3K9meS10ph, H3K27meS28ph and 

H3S31phK36me [102]. The existence of lysine nearby the phosphorylation site is 

called phospho/methyl switch and these switches are involved in the effector 

protein regulation [101]. 

For instance, the binding of HP1 chromodomain to H3K9me3 is inhibited by the 

phosphorylation of S10 and this event is involved in the negative regulation of HP1 

localization at chromatin [74]. The CHD1 double chromodomain (DCD) binds 

tightly towards H3K4me3 mark when the T3 is unphosphorylated. It exhibits 25-

fold lower affinity to H3T3phK4me3 peptide, because of weakening inter-molecular 

interactions upon phosphorylation. But the phosphorylation on H3S10 residue 

doesn’t show any effect on the interaction of CHD1 DCD with H3K4me3 [101]. The 

TTD domain of KDM4A recognizes H3K4me3. This interaction is abolished by 

phosphorylation at H3T3, and significant reduction in binding affinity was observed 

when the H3T6 was phosphorylated [103]. The PHD2 finger domain of CHD4 

protein preferentially binds H3K9me3 compared to unmodified histone H3 tail. T3, 

T6 or S10 phosphorylation affects the interaction between PHD2 and H3K9me3 

[101]. MLL1 methylates H3K4. But methylation of H3R2 prevents methylation of 

H3K4 by MLL1 [104].  
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4.5   Roles of histone modification crosstalk  

Many chromatin marks, such as H3S10ph and H3T3ph, do not act independently 

but influence each other’s function. Histone PTMs crosstalk also has effect on 

catalytic activity and substrate specificity of eraser and writer enzymes. In some 

cases, the existing PTM blocking the modification site of another modification. For 

an example, the H3K9ac blocks the methylation of H3K9. In contrast, activation of 

some enzymes depends on the interaction of chromatin mark or existence of PTM. 

For instance, ubiquitinated histone H2B activates the enzyme Dot1 KMT for intra-

nucleosomal lysine methylation. Thus, histone modification crosstalk will provide 

knowledge to understand synergistic and antagonistic effects of multiple 

modifications [105]. 

4.6   Conformation of N-terminal H3 peptide in the TTD-PHD of UHRF1 

The isolated PHD recognition of H3 is well conserved in UHRF1 TTD-PHD- 

H3R2K9me3 complex.  Residues from R2 to K4 of histone H3 involved in hydrogen 

bond interaction with PHD finger The H3R2 side chain fits into the negatively 

charged groove in the PHD finger, in which the guanidinium nitrogen atoms are 

recognized by residues C333, D334, and D337. H3K9me3 and H3S10 form contacts 

only with the tudor1 domain region. The aliphatic side chain of K9me3 fits into a 

surface groove, and the trimethyl ammonium group is trapped in an “aromatic cage” 

formed by residues F152, Y188, and Y191 of the first tudor domain, as commonly 

observed for methylated lysine recognition in similar reader domain (Fig. 4.3B) [72]. 

Interestingly, crystal structures of the UHRF1 TTD-PHD bound to H3(1–11)K9me3 

(PDB: 4GY5) revealed that lysine 4 through alanine 7 of H3 adopt a single α-helix 

turn (Fig. 4.3A), which is stabilized by intramolecular H-bonds [46,80]. The 

extended conformation of histone H3 in complex with the PHD led to the 

assumption that TTD-PHD multivalent engagement induces a conformational 

change in the histone H3. It is also seen that lysine and arginine residues are rich in 
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N-terminus of H3 tail and they lack secondary structure in peptides and in free 

histone.  These findings have led that N-terminus of histone H3 is disordered [80]. 

UHRF1 PHD recognizes unmodified H3R2, and it exhibit modest reduction in 

binding affinity when the H3K4 is trimethylated. But trimethylation on H3K9 does 

not show any impact on binding. On the other hand, UHRF1 PHD shows very 

weak affinity towards histone H3 (KD > 500 μM) when the T3 is phosphorylated. 

This indicates that instability of the complex due to steric or electrostatic repulsion 

of the T3 phosphorylation [49,72]. 

Thus N-terminus of H3 peptide undergoes single helical conformation upon binding 

to TTD-PHD. We hypothesize that lysine 4 methylation may affect the 

conformation of peptide in the binding pocket, that inturn its recognition by the 

TTD-PHD. Also, the side chain of K4 has hydrogen bond interaction with main 

chain residue of protein (Fig. 4.3C) which may be lost upon methylation. Therefore, 

we want to study the effect of lysine 4 dimethyalation on combinatorial recognition 

of H3R2 and H3K9me3 marks by TTD-PHD dual domains of UHRF1 through MD 

simulation and ITC binding studies. 
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Figure 4.3: Structure of the UHRF1 TTD-PHD bound to H3(1-10)K9me3 peptide 

(PDB ID: 4GY5). (A) Protein and peptide are represented in electrostatic surface 

and sticks respectively. (B) Magnified view of K9me3 positioned between the 

aromatic rings of UHRF1 TTD binding pocket. (C) Zoomed view of H3R2K4 

recognition by the UHRF1 PHD. 

4.7   Material and Methods 

4.7.1   MD Simulation 

4.7.1.1   Preparation of UHRF1 TTD-PHD for simulation 

The crystal structure of UHRF1 TTD-PHD with H3(1-10)K9me3 (PDB ID: 4GY5) 

[46] was prepared for simulation. Using Schrodinger’s Maestro Molecular modeling 

suit, the H3K9me3 was modified to H3K4me2K9me3 and H3K4me2K9me2 by 

virtually editing the methylation marks. Two amino acids threonine 11 and glycine 

12 were also added virtually to the existing H3(1-10) peptide to get H3(1-12) 
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peptide and the added amino acids were energy minimized. Bond orders were 

assigned and Hydrogen atoms were added followed by H-bond optimization and 

restrained minimization using OPLS3 force field. Protonation statuses were 

determined at physiological pH 7.0 using PROPKA [87,88]. All the water molecules 

were removed. 

4.7.1.2   Molecular dynamics (MD) simulations 

MD simulation was done for time dependent investigations of protein-ligand 

interactions and conformational dynamics of studied complex systems. In the 

current study, we carried out classical MD simulations for different methylated 

lysine of H3 using Desmond MD simulations program [Desmond Molecular 

Dynamics System, Version 2.2, D.E. Shaw Research, New York, NY, 2009]. All 

systems were solvated in an orthorhombic box (a=b=c=10Å and α=β=γ=90o) with 

explicit SPC (Single Point Charge) water model. The interactions were calculated 

with the OPLS3 force field. The complex was neutralized in buffer system with 

0.15M NaCl. The particle-mesh Ewald method [89] was used to calculate the long-

range electrostatic interactions. A cut-off radius of 9.0 Å was applied for short-

range van der Waals and Coulomb interactions. The systems were simulated under 

an isothermal–isobaric ensemble (NPT) with the temperature of 300K and the 

pressure of 1 bar. A Nose–Hoover thermostat [90] and Martyna–Tobias–Klein [91] 

methods were implemented to maintain the temperature and the pressure of the 

systems, respectively An integral time step of 2 fs was used for the overall 

simulations. The systems were minimized and equilibrated with the default 

protocols of the Desmond. Finally, 10 ns non-constrained MD simulation was 

performed for each system, and the coordinates were saved for every time step. 

4.7.1.3   Protein-ligand interaction analysis 

Protein-peptide interactions are screened throughout the MD simulations. To 

identify the hydrogen bond, maximum distance of 3.5 Å and minimum donor angle 
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of 120.0
o
 were considered. In the case of a face to face pi-pi stacking interaction, 

angle and distance between the rings less than 30o and less than 4.4 Å were set.  

4.7.1.4   Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) 

Calculations 

Protein-ligand free energy of binding (ΔGbind) of the interactions at 0ns and 10ns 

of the simulation were estimated using MM-GBSA method (Prime module of the 

Schrodinger’s molecular modeling package) [Schrödinger Release 2017-1: Prime, 

version 3.8, Schrödinger, LLC, New York, NY, 2014;] [91] for UHRF1 TTD-PHD 

with H3K4me2K9me3 and H3K4me2K9me2 peptides.  

4.7.2   Sub-Cloning of UHRF1 TTD-PHD to generate hexahistidine SUMO tagged 

construct 

The cDNA encoding full-length human UHRF1 was obtained from Open bio-

systems. Residues 140-380, that corresponds to the UHRF1 TTD-PHD, was sub-

cloned. Amplification was carried out using forward and reverse primers (Appendix 

1) containing NdeI and BamHI restriction sites, respectively. The amplified PCR 

product was confirmed by agarose gel electrophoresis, followed by DNA gel 

extraction and subsequent digestion with NdeI and BamHI. The restriction digested 

product, was purified then, ligated with NdeI-BamHI digested pET28-N-His-SUMO 

vector, using T4 DNA ligase. Schematic represents the workflow of cloning strategy 

(Fig. 4.4). Clones obtained were screened by using colony PCR and confirmed by 

sequencing. 
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Figure 4.4: Flowchart of UHRF1 TTD-PHD sub-cloning. 

4.7.3   Expression and Purification of UHRF1 TTD-PHD 

UHRF1 TTD-PHD protein was expressed in E. coli Rosetta2(DE3) (Novagen). 

Cells were grown at 37°C till OD600 reached 0.5-0.6, then the temperature was 

decreased to 20°C and the culture was induced with 0.4 mM of IPTG. The medium 

is supplemented with 100 μM of ZnCl2. The hexa-histidine-SUMO fusion protein 

was purified on a nickel-charged column (HisTrap HP, GE healthcare). After 

elution with a 750 mM imidazole containing buffer, the fusion protein was cleaved 

with Ulp1 protease 25 U ml-1 during a 16 hr dialysis step at 4°C in the buffer 

containing 25 mM Tris-HCl, pH 8.0, 50 mM NaCl, 3 mM DTT. Protein was further 

purified on an anion exchange column (HiTrap Q; GE healthcare). Protein, eluted 

from the ion exchange column, was concentrated and then loaded on gel filtration 

column (HiLoad Superdex 75 26/600) column, equilibrated with a buffer containing 

15 mM Tris-HCl, pH 7.5, 50 mM NaCl, 3 mM DTT. Purified UHRF1 TTD-PHD 

was concentrated to 10 mg mL-1 at 4°C in Vivaspin 20 mL (Vivascience AG) 10,000 

cut-off concentrator. 
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Figure 4.5: SDS PAGE analysis of purified UHRF1 TTD-PHD and gel filtrations 

chromatogram of UHRF1 TTD-PHD. 

4.7.4   ITC measurements 

The KD, molar ratio (N) and thermodynamic parameters of the UHRF1 TTD-PHD 

bound to H3K4me2K9me2/3 peptide were determined using a VP-ITC calorimeter 

(MicroCal, LLC) at 25°C. The proteins were dialyzed overnight against a buffer 

containing 40 mM Tris-HCl pH 7.5, 50 mM NaCl, and 2 mM β-mercaptoethanol at 

4°C. Lyophilized peptides were dissolved in buffer used for protein dialysis. The 

protein and peptides concentrations used for ITC binding study were 100 to 250 μM 

and 1 to 2.5 mM, respectively. The volume of UHRF1 TTD-PHD in the reaction 

cell was 210 μL, and the reference cell was filled with deionized water. The peptide 

was sequentially added in 2.3 μL (for a total of 15-16 injections) aliquots at 3-min 

intervals. The data were processed using MicroCal Origin software. The titration 

data were deconvoluted based on a binding model containing “one set of sites” using 

a nonlinear least-squares algorithm. The binding ΔH, KA, and binding 

stoichiometry (N) were permitted to vary during the least-squares minimization 

process and taken as the best-fit values for UHRF1 TTD-PHD bound to the histone 

peptides. In the cases where the C-value (which is the product of the receptor 

concentration and the binding constant, KA) is low, ‘N’ was fixed to 1.0, and ‘KA’ 

and ‘ΔH’ were permitted to float. The reported values are the best values from 

three titrations. 
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4.8   Results 

4.8.1   MD simulation studies on binding of H3R2K4me2K9me2 and 

H3R2K4me2K9me3 peptides to UHRF1 TTD-PHD cassette 

To gain insights into the effect of lysine 4 methylation on combinatorial binding of 

H3K9me2/3 and H3R2 to the UHRF1 TTD-PHD, we have under taken MD 

simulation studies on, energy minimized, TTD-PHD-H3R2(1-12)K4me2K9me2 and 

TTD-PHD-H3R2(1-12)K4me2K9me3 complexes. Insignificant fluctuation of RMSDs 

of protein and ligand, and RMSFs of ligand has indicated that not only TTD-PHD 

but also methyllysine peptides are stable throughout the simulation (Fig. 4.6 and 

4.7). Overall, H3R2K4me2K9me2 and H3R2K4me2K9me3 peptides have similar 

network of interactions throughout the simulation (Fig. 4.8), as well as peptides 

exhibit minimum internal conformation (Fig. 4.8C, D). 

Dynamics of TTD-PHD and H3R2K4me2K9me2 peptide showed that the 

intermolecular contacts are similar to those observed between TTD-PHD and 

H3R2K9me2 (Fig. 3.10D and 4.8C). Similarly, H3R2K4me2K9me3 and H3R2K9me3 

peptides have highly comparable intermolecular contacts with TTD-PHD (Fig. 

3.10C and 4.8D). In addition, UHRF1 TTD-PHD has similar ΔGbind for 

H3R2K4me2K9me2 and H3R2K9me2 peptides (Table 3.1 and 4.1). Similarly, 

H3R2K4me2K9me3 and H3R2K9me3 peptides exhibit similar ΔGbind for UHRF1 

TTD-PHD (Table 3.1 and 4.1). Taken together, these studies suggest that 

methyllysine 4 has negligible effect on recognition of H3R2K9me2/3 peptides by the 

UHRF1 TTD-PHD. 
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Figure 4.6: Protein-peptide root-mean square deviation (RMSD) plotted against the 

stimulation time. (A). UHRF1-H3R2(1-12)K4me2K9me2 complex (B). UHRF1-

H3R2(1-12)K4me2K9me3 complex RMSD of Cα of the UHRF1 TTD-PHD 

backbone. ‘Lig fit on Prot’ shows the RMSD of the respective ligand (peptide) when 

the protein-ligand complex is first aligned on the protein backbone (at t=0ns) and 

then RMSD of the ligand is measured; ‘Lig fit on Lig’ shows the RMSD of the 

ligand that is aligned on its conformation at t=0ns. 

 

Figure 4.7: Peptide root-mean square fluctuation (RMSF) - peptide’s atoms 

fluctuation throughout the simulation. RMSF of atoms of (A) H3R2K4me2K9me2 

and (B) H3R2K4me2K9me3 during 10ns MD simulation. The figure shows the 

ligand’s fluctuations broken down by atom, corresponding to the 2D structure in 

A B 
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the top panel of every curve. K9 methylations are highlighted in light blue in all 

figures. 

 

Figure 4.8: Residual interaction profile of UHRF1 TTD-PHD with dual methylated 

H3(1-12) peptides. Histograms display interaction fraction of protein residues during 

simulation time with (A) H3R2K4me2K9me2 and (B) H3R2K4me2K9me3. 2D-
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interaction diagrams of the protein residues contact with the peptides (C) 

H3R2K4me2K9me2 and (D) H3R2K4me2K9me3. 

Table 4.1: MM/GBSA calculated ΔGbind for UHRF1 TTD-PHD bound to H3(1-12) 

peptide with different lysine methylation statuses. 

H3 Peptide vs TTD-PHD G of binding (Kcal/mol) 

H3R2K4me2K9me3 -111.680 

H3R2K4me2K9me2 -123.139 

4.8.2   Dimethyllysine 4 on H3 has insignificant effect on H3R2K9me2 recognition by 

the UHRF1 TTD-PHD Cassette 

To test MD simulation results, we carried out ITC binding study using the H3R2(1-

12)K4me2K9me2 peptide and the UHRF1 TTD-PHD. UHRF1 TTD-PHD cassette 

binds dual lysine-methylated peptide, H3R2K4me2K9me2, with a KD of 0.21 μM, 

which is similar to that of TTD-PHD binding to H3(1-12)R2K9me2 (Fig. 4.9), 

thereby supporting the MD simulation results. 

 

Figure 4.9: Raw ITC data (upper panel) and normalized integration data (lower 

panel) of enthalpy plots for the binding of the UHRF1 TTD-PHD to (A) 

H3R2K9me2 and (B) H3R2K4me2K9me3 peptides. 
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4.9   Discussion 

Our MD simulation and binding studies show that the interaction between the 

dimethylated and the unmethylated H3K4 remains conserved. It may be because of 

the absence of aromatic residues near H3K4, i.e. H3K4me2 may not be recognized 

by the UHRF1 TTD-PHD. These results may indicate that H3K4me2 neither 

affects the H3 tail conformation nor induce any conformational change in the PHD 

finger or the linker region of the protein. Due to this, the orientation or the position 

of the aromatic cage responsible for recognition of H3K9me3 remains able to 

recognize H3K9me2 mark. Results also indicate that dimethylation on lysine 4 has 

insignificant effect on the combinatorial recognition of K9me2 and R2 marks by the 

TTD and PHD domains, respectively. 
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Chapter 5 

Characterization of 5mC oxidation derivative recognition by SRA domain of 

UHRF1. 
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5.1   Introduction 

DNA methylation in the form of 5mC provides critical regulatory mechanism 

beyond the simple genomic sequence as it impacts a variety of biological processes 

from gene regulation to disease pathogenesis [106,107]. The balance between 

methylation and demethylation processes is involved in maintenance of dynamic of 

DNA methylation on the genome.  Disruption of this balance could lead to aberrant 

methylation patterns seen in human diseases such as cancer [107]. 

The oxidized forms of 5mC represent important dynamic epigenetic states in the 

modulation of transcriptional programs and it may serve as signals for several 

specific “binders,” “readers” or “erasers.” It has been demonstrated that 5mC and its 

derivatives recruit distinct transcriptional regulators, polymerases and a large 

number of DNA repair proteins. Maintenance of the appropriate levels of 5mC and 

its derivatives is essential for cell homeostasis [108]. 

5.1.1   Oxidation of 5mC 

The demethylation of CpG sequences can occur in passive or in an active manner 

[109,110]. Passive demethylation takes place due to the absence of DNMT1 or its 

cofactor SAM, during several rounds of DNA replication. After DNA replication the 

created hemimethylated site remains as such, and one daughter cell carries a 

completely unmethylated CpG site after the second round of replication. Passive 

demethylation plays important roles in certain biological contexts such as DNA 

demethylation in primordial germ cells, conversion of embryonic stem cells to a 

naïve pluripotent state and epigenome reprogramming after fertilization [109]. On 

the other hand, active DNA demethylation is mediated by TET proteins in 

mammals, which progressively oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC), and by the thymine-DNA 

glycosidase (TDG) protein that binds and excises 5fC and 5caC residues to allow 

the restoration of unmodified C by the base excision repair machinery (Fig. 5.1) 

[111]. Thus, in mammals and plants, these modified bases may represent new 
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epigenetic state in the genomic DNA or intermediates in the process of 5mC 

demethylation [112,113]. 

               

Figure 5.1: TET mediated 5mC demethylation. 

5.1.2   Recognition of 5mC oxidation derivatives by the SRA domain 

The DNA free structure of the 5hmC and 5 glucosylhydroxymethylcytosine 

(5ghmC)-specific endonuclease PvuRts1I indicated that it’s C-terminal SRA domain 

might accommodate a flipped out 5 hmC or 5ghmC base. Another 5hmC and 5 

ghmC-specific restriction enzyme, AbaSI, recognizes intra-helical 5hmC through an 

SRA-like domain [114,115]. The SRA domain of UHRF1 (UHRF1 SRA) selectively 

recognizes 5mC over 5hmC, and preferentially binds hemi-5mCG over fully-5mCG. 

But SRA UHRF1 binds to other oxidation derivatives remains unknown. 

Until recently, 5mC was considered the only epigenetic mark in genomic DNA. 

However, newly identified marks either antagonize the read-out and interpretation 

of 5mC or they can act as new set of epigenetic marks that are recognized by 

different epigenetic reader modules [116]. UHRF2, a close relative of UHRF1, 
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specifically binds 5hmC in neuronal progenitor cells. It is intriguing that the SRA 

domains of UHRF1 and UHRF2 selectively recognize hemi-5mCG/hemi-5hmCG 

and fully-5hmCG, respectively [38], even though they have 88% sequence similarity 

and high structural identity (RMSD: 0.73Å). UHRF1 binds to both hemi-5mCG 

and DNA methyltransferase 1 (DNMT1) to maintain the DNA methylation 

patterns in mammals. Our studies reveal that UHRF1 SRA recognizes 5hmC 

similar to 5mC. There is high possibility that UHRF1 can bind both hemi-5hmCG 

and DNMT1 on the genomic DNA, therefore, it may involve in maintenance of CG 

methylation even in the presence of 5hmC. Recently, it has been shown that the 

oxidation of 5mC to 5hmC clearly interferes with the DNA binding to the MBD 

domain of MeCP2, MBD1 and MBD2 [117,118].  

To investigate whether UHRF1 SRA binds to 5mC oxidation derivatives in the 

context of a hemi-CG sequence, and if so, to know the preferred oxidation 

derivative recognition, we carried out binding studies using EMSA and FP 

techniques. 

5.2 Material and methods  

5.2.1   Sub-Cloning of UHRF1 SRA to generate hexahistidine-SUMO tagged 

construct 

The cDNA encoding full-length human UHRF1 was obtained from Open bio-

systems.  Residues 427-630, that corresponds to the UHRF1 SRA, was sub-cloned. 

Amplification was carried out using forward and reverse primers containing NdeI 

and BamHI restriction sites, respectively. The amplified PCR product was 

confirmed by agarose gel electrophoresis, followed by DNA gel extraction and 

subsequent digestion with NdeI and BamHI. The purified then restriction digested 

product was ligated with NdeI-BamHI digested pET28-N-His-SUMO vector using 

T4 DNA ligase. Schematic represents the workflow of cloning strategy (Fig. 5.3). 

Clones obtained were screened by using colony PCR and confirmed by sequencing. 
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Figure 5.3: Flowchart of UHRF1 SRA sub-cloning. 

5.2.2   Expression and Purification of UHRF1 SRA 

The above construct containing hexahistidine-SUMO tagged UHRF1 SRA (residues 

427-630) was expressed in E. coli Rosetta2(DE3). The expressed protein was 

purified on a nickel charged column (HisTrap HP, GE healthcare). The fusion 

protein was cleaved with Ulp1 protease at 15 UmL-1 concentrations. The protein 

was further purified by cation-exchange (HiTrap Heparin HP) chromatography. 

Finally, the protein was purified using gel filtration chromatography using a 

‘HiLoad Superdex 75 16/600’ column, which was equilibrated with a buffer 

containing 15 mM Tris-HCl, pH 7.5, 100 mM NaCl, 3 mM DTT and 2.5% Glycerol 

(Fig. 5.4). Purified protein was concentrated to 15 mg mL
-1
 at 4°C in Vivaspin 20 

mL (Vivascience AG) 10,000 cut-off concentrator. 

  



  

86 

Figure 5.4: SDS-PAGE analysis of purified UHRF1 SRA and its gel-filtration 

chromatogram. 

5.2.3   Qualitative analysis of SRA-DNA complex by SEC 

Binding of UHRF1 SRA domain and 5’-6FAM-labeled duplex DNA was carried out 

by using SEC (Size Exclusion Chromatography) method. DNA oligos were added in 

the ratio of 1:1.1 FAM labeled to modified (5mC/5hmC/5caC/5fC) unlabeled 

complementary DNA and annealing is carried out in the buffer containing 10mM 

Tris pH:7.5, 50mM NaCl and 3mM MgCl2. The oligos were heated at 95°C for 5min 

and cooled at 4°C for overnight. UHRF1 SRA incubated with FAM labeled DNA 

duplex in the molar ratio of 2:1. Finally, the complexes are resolved using Superdex 

75 10/300 GL (GE Healthcare). Schematic flowchart represents the workflow of 

DNA annealing and SEC analysis of UHRF1 SRA-DNA complex (Fig. 5.5).   

 

Figure 5.5: Schematic of DNA annealing and SEC analysis of UHRF1 SRA-DNA 

complex. 

5.2.4   Electrophoretic Mobility Shift Assay (EMSA) 

Binding between the UHRF1 SRA domain and 5’-6FAM-labeled duplex DNA was 

carried out in a buffer containing 25 mM Tris-HCl, pH 7.5, 5% Glycerol, 60 mM 
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NaCl, 10 mM MgCl2. 0.4 mg/mL BSA and 2 mM dithiothreitol with increasing 

amounts of UHRF1 SRA (200 to 1000 pmol for hemi-5mCG and hemi-5hmCG 

binding study and, 600 pmol to 3 nmol for hemi-5fCG and hemi- 5caCG DNA), and 

fixed amount of modified DNA duplex (3 µg of hemi-5mCG and hemi-5hmCG 

DNA, and 9 µg of hemi-5fCG and hemi-5caCG DNA). The 20 µL of reaction 

mixtures were incubated at 4°C for 45 minutes then electrophoresed on a native 6% 

polyacrylamide gel at 100 V for 1.0 hour in a buffer containing 100 mM Tris-

Borate-EDTA and 2.5% glycerol in the cold room. The gels were fluorescence 

scanned using Typhoon TRIO Variable Mode Imager 

5.2.5   Fluorescence Polarization (FP) measurements 

Fluorescence Polarization measurements of UHRF1 SRA domain binding to 5’-

6FAM labeled duplex DNA was performed at 20 °C. The 5’-6FAM-labeled duplex 

DNA (50 nM) was added to a UHRF1 SRA domain with increasing concentration 

(50 nM to 50 µM). The polarization (in millipolarization [mP] units) of 20 µL of the 

reaction mixture was measured after 45 minutes of incubation at room temperature. 

Polarization values were measured against a blank sample buffer (20 mM Tris-HCl 

pH 7.5, 50 mM NaCl and 1 mM DTT) and a reference contained only 50 nM DNA. 

The polarization data was analyzed using GraphPad Prism 5.0 software 

(GraphPad, San Diego, CA, USA) to calculate a dissociation constant (KD) by 

fitting the experimental data in a non-linear regression equation using a one-site 

specific binding model accounting for ligand depletion. Experiments were performed 

in triplicate. 

5.3   Results 

We have determined the qualitative binding of UHRF1 SRA with hemi-5mCG and 

hemi-5hmCG. This gel filtration binding studies showed that the UHRF1 SRA 

binds to both hemi-5mCG and hemi-5hmCG containing DNAs (Fig. 5.6). Further, 

we have performed EMSA and FP studies of the UHRF1 SRA with hemi-5mCG, 



  

88 

hemi-5hmCG, hemi-5fCG and hemi-5caCG duplex DNAs. We attempted to 

determine the KD for binding of 5mC oxidation derivative bases in hemi-CG 

sequence context towards UHRF1 SRA through ITC measurements, however, there 

was negligible heat change during ITC titration. Therefore, we decided to employ 

Electrophoretic Mobility Shift Assay (EMSA) and Fluorescence Polarization (FP) 

techniques. 

 

Figure 5.6: Gel filtration elution profile of UHRF1 SRA-DNA complex. 

Although UHRF1 SRA binding to hemi-5mCG and hemi-5hmCG was reported, no 

data is available on its ability to recognize hemi-5caCG and hemi-5fCG 

modifications. Here, we performed EMSA, using 5’-6FAM labeled DNA duplexes in 

a CG sequence context, to investigate the UHRF1 SRA specificity for hemi-5caCG 

and hemi-5fCG DNA duplexes. Our control EMSA experiments revealed that SRA 

UHRF1 binds to hemi-5mCG and hemi-5hmCG DNA similar to published data 

(Fig. 5.7A and B). Though UHRF1 SRA could also recognize hemi-5caCG and 

hemi-fCG, the concentration of protein and modified DNA used for binding study is 

more than that used for 5hmC owing to weaker binding affinity towards 5caC and 

5fC containing DNAs (Fig. 5.7C and D). Furthermore, our finding showed that the 

SRA domain of UHRF1 binds to all 5mC oxidation derivatives.  
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Figure 5.7: Binding of the UHRF1 SRA domain to hemi-5mCG, hemi- 

5hmCG, hemi-5caCG and hemi-5fCG containing duplex DNAs. (A) EMSA binding 

study of SRA UHRF1 with hemi-5mCG DNA. In the panel above the gel images, 

(_) indicates no protein but only DNA. Un-bound (free) DNA is indicated. (B) 

EMSA binding study of SRA UHRF1 with hemi-5hmCG DNA. (C) EMSA binding 

study of SRA UHRF1 with hemi-5caCG DNA. (D) EMSA binding study of SRA 

UHRF1 with hemi-5fCG DNA. 
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To quantify the UHRF1 SRA binding affinity for 5mC oxidation derivatives in 

hemi-CG sequence context, we performed FP measurements using 5’-6FAM labeled 

DNA duplexes. UHRF1 SRA domain binds to hemi-5mCG DNA with a KD of 0.35 

µM which is similar (0.20 µM) to reported in literature [119]. However, the binding 

constant decreases by a factor of 4.3 (KD = 1.5 µM) for hemi-5hmCG (Fig. 5.8). 

 

 

Figure 5.8: Fluorescence Polarization (FP) measurements of the binding of the 

UHRF1 SRA domain to (A) hemi-5mCG (B) hemi-5hmCG DNA. 

5.4   Discussion 

The current study indicates that the SRA domains of UHRF1 exhibit lower binding 

affinity for 5fC- and 5caC-containing DNAs. UHRF1 involved in transcriptional 

repression through 5mC recognition, the oxidation of 5mC to 5caC could promote a 

switch from a repressive to an active transcriptional state of the chromatin, thereby 

changing the cellular interpretation of the 5mC epigenetic marks. Many hmC, fC 

and caC binders such as UHRF2, CARF and p53 are implicated in cancer. Finally, 

regulating the levels of mC and its oxidized derivatives is essential for normal cell 

homeostasis and that deregulation of the readers, writers, and erasers of these 

marks results in a disturbance of the balance between cell proliferation and 

differentiation during development. 

A B 
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6.1   Conclusion and future perspectives 

In conclusion, in this study, we have characterized the histone methyllysine binding 

specificity of UHRF1 TTD. MD simulation and in vitro binding studies reveal that 

TTD, as standalone domain and also as PHD linked domain, preferentially binds 

H3K9me2 mark, and UHRF1 PHD has an insignificant effect on K9me2 mark 

recognition by the UHRF1 TTD domain in the context of UHRF1 TTD-PHD 

cassette. The methylation of H3K4 has not perturbed the combinatorial recognition 

of H3R2 and H3K9me2 marks by the linked PHD and TUDOR domains of UHRF1. 

Our study also demonstrates that the UHRF1 SRA binds all 5mC oxidation 

derivatives and recognizes 5hmC like 5mC. 

In vitro binding analyses and/or structural studies to determine the effect of post-

translational modifications on receptors, residue substitution or functional group 

changes on peptide or other ligands for receptor-ligand interaction will be laborious 

and costly. Therefore, this study suggests that MD simulation on modeled protein-

modified ligand complexes may give insights on the effect of such modifications on 

ligand binding. Results of such MD simulation studies can be the basis for further 

biochemical and structural characterization, and for the lead optimization in drug 

discovery process. In future, we plan to use MD simulation based structural analysis 

to identify the residues to engineer UHRF1 TTD-PHD to switch its methyllysine 

status binding specificity. The engineered UHRF1 domain can be used to address 

the effect of a change in methyllysine status binding specificity on UHRF1's 

functions, in in vivo, such as heterochromatin formation, DNA repair, cell 

proliferation, and stem cell self-renewal and differentiation. 
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Appendix I 

Antibiotics and other reagents: 

Antibiotic/Reagents Stock solution Working solution 

Kanamycin 50mg/ml in distilled water 50µg/ml 

Chloramphenicol 35mg/ml in ethanol 35µg/ml 

Ethidium Bromide 10mg/ml in distilled water 0.5µg/ml 

IPTG 1.0M in distilled water 0.5mM 

Lysozyme 10mg/ml in distilled water As per requirement 

 

Bacterial strains: 

Bacterial strains Purpose Company 

DH5α Used for general cloning 

and plasmid propagation 

Life technologies 

 

Rosetta2(DE3) Used for Protein 

expression 

Novagen 

 

Plasmid Vectors: 

Vector Expression 

host 

Purpose Antibiotic 

selection 

Company 

pET28-N-His-

SUMO 

Bacteria Used for generating 

His-tagged 

recombinant 

proteins 

Kanamycin Novagen 
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Electrophoresis Running Buffer: 

Buffer Composition 

DNA electrophoresis 

Tris Acetate EDTA (TAE) 

Stock Concentration - 50X 

Working concentration - 0.5X 

For 1000ml – 242g of Tris-base, 57.1 ml 

of glacial acetic acid and 100ml of 

EDTA (pH:8) were dissolved in distilled 

water and made into 1000ml 

Protein Electrophoresis 

Tris glycine SDS 

Stock Concentration – 10X 

Working Concentration – 1X 

For 600ml – 18.2g of Tris-base, 86.5g of 

glycine and 6g of SDS were dissolved in 

distilled water and made into 600ml 

Stacking gel -5% (For 5ml) H2O    - 3.4ml 

30% acrylamide mix - 0.83 ml 

1M Tris (PH 6.8) - 0.63 ml 

10% SDS  - 0.05 ml 

10% APS  - 0.05 ml 

TEMED  -0.005 ml 

Resolving gel -12% (For 10ml) H2O    - 3.3 ml  

30% acrylamide mix - 4.0 ml 

1.5M Tris (PH 8.8) - 2.5 ml 

10% SDS  - 0.1 ml 

10% APS  - 0.1 ml 

TEMED                - 0.004 ml 

 

Growth media and composition: 

Growth Medium Composition 

Luria Bertani (LB) media For 1000ml – 10g of tryptone, 5g of 
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yeast extract and 10g of sodium chloride 

were dissolved in 1000ml of distilled 

water. 

Luria Bertani (LB) agar For 100ml – 1.0g of tryptone, 0.5g of 

yeast extract, 1.5g of agar and 1.0g of 

sodium chloride were dissolved in 100ml 

of distilled water. 

All the growth media were sterilized by autoclaving at 120°C at 1.5bars for 20 min. 

 

Reagents for DNA and protein analysis 

Reagent Composition 

DNA loading dye (6X) For 10ml – 3ml of glycerol, 25mg of 

bromophenol blue and 25mg of Xylene 

cyanol were dissolved in dissolved in 

10ml of distilled water. 

SDS gel loading dye (6X) For 100ml - 5.91g of Tris-HCl, 6g of 

SDS, 50ml of 100% glycerol 9ml of 

14.7M β-mercaptoethanol and 30mg of 

bromophenol blue were dissolved in 

100ml of distilled water. 

30% Acrylamide mix For 100ml- 29g of acrylamide and 1g of 

Bis-acrylamide were dissolved in distilled 

water. 

10% APS For 10ml- 1g of Ammonium per sulfate 

dissolved in 10 ml of distilled water. 

Staining solution for SDS-

polyacrylamide gels 

For 500ml- 1.25 g Coomassie R-250,225 

mL methanol, and 50 mL glacial acetic 

acid were dissolved in distilled water 
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and made the solution into 500ml. 

Destaining solution for SDS-

polyacrylamide gels 

For 100ml – 40ml methanol, 10ml glacial 

acetic acid and 50 ml distilled water 

were mixed and used for SDS gel. 

 

Reagents for protein purification: 

Reagent Composition 

Ni-NTA affinity-based purification 

Lysis Buffer 25mM Tris base (pH-7.5) 

700mM NaCl 

3mM β-mercaptoethanol 

10mM Imidazole 

Elution Buffer 25mM Tris base (pH-7.5) 

700mM NaCl 

3mM β-mercaptoethanol 

1M Imidazole 

Ion exchange Purification 

Buffer A 15mM Tris base (pH-7.5) 

100mM NaCl 

3mM DTT 

Buffer B 15mM Tris base (pH-7.5) 

1M NaCl 

3mM DTT 

Gel filtration Purification 

Elution Buffer 15 mM Tris-HCl, pH 7.5 

50 mM NaCl 

3 mM DTT 
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List of Primer sequences: 

Primer Name Sequence 5’ to 3’ Length Tm 

hUHRF1-

140-NdeI 

CAACATATGTGGGATGAGACGGAATTGGG 29 60.5 

hUHRF1-

427-NdeI 

CAACATATGCCGTCCAACCACTACGGAC 28 61.6 

hUHRF1-

295-BamHI 

CAAGGATCCCTACCGCTCAATCTTGAAGAC

TTCGT 

35 62.9 

hUHRF1-

380-BamHI 

CAAGGATCCCTAGGCATCATTCCGGCACTC

AG 

32 62.5 

hUHRF1-

630-BamHI 

CAAGGATCCCTAGTTGGCCAGGGCTTCCA

GG 

31 63.6 
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