
Parameterized Algorithms for Graph

Partitioning Problems

Anjeneya Swami Kare

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Doctor of Philosophy

Department of Computer Science and Engineering

May 2018

Acknowledgements

Firstly, I would like to express my heartfelt thanks and gratitude to Dr. N. R. Aravind

and Dr. Subrahmanyam Kalyanasundaram for being my supervisors. I must confess that

I am lucky enough to have such supervisors as they gave me freedom to choose research

problems that I ultimately was able to follow and constitute my own interests. I am

indebted to both of them for sparing kind enough of time to have invigorating discussions

that, at times, gave crucial directions to this thesis. I would like to express my greatest

appreciation for their care and attention in knowing the status of my work particularly

when there was an occurrence of delay from my end. They were generous enough to grant

funds from their personal research fund to pay registration fee of a conference for which

I owe my deepest gratitude.

I would like to offer my sincere thanks to Dr. N. R. Aravind for an umpteen number

of technical discussions I had with him which were crucial for the results in this thesis. I

thank him for motivating me in the form of giving time to discuss articles related to exact

and parameterized algorithms, thus he is responsible for pushing me to explore more and

to acquire knowledge and develop an interest in this area. His crucial insights always used

to put me on heels and thus he helped me to imbibe this nature of constant improvement.

At a point of time, he noticed that I was just reading and was not attempting to pose

research questions. This cognizance of him, indeed, gave an opportunity to locate my

weakness which changed my perspective on posing research questions, else this thesis

wouldn’t have been possible.

I would like to express my honest gratitude to Dr. Subrahmanyam Kalyanasundaram

with whom I have developed a scholarly rapport. On many occasions I had technical

discussions with him which eventually crucial to the ideas present in this thesis. I am

thankful to him for giving lot of his time in preparing the technical content to submit

the papers to different conferences and journals. Many a times, he took time and pains

to meet in my office at HCU for discussions whenever we could not meet up in IITH. I

pay my heartfelt thanks to him for giving me an opportunity to review couple of research

papers, thus, I was introduced to the realm of the process of research paper reviewing.

I also indebted to him for making me part of his other research scholars work so that I

was able to learn the nuances of research and he also kept a continuous positive light in

me by the way of talking positive things about my work which lead me to see the light.

I would like to thank one of my co-authors Dr. Juho Lauri with whom I had plenty

of discussions over email on happy coloring problems. Some of the results on happy

coloring problems were originated during these discussions. During this process I also

got to know some of the concepts of parameterized complexity which was very crucial for

this thesis. He was also very supportive in preparing the technical content for a research

iv

article on happy coloring problems. I thank Dr. Sandeep R. B. for giving his time on

many occasions for discussing research articles. I thank my fellow PhD student Sriram

Bhyravarapu for keeping me part of his research work and assisting each other whenever

possible.

I thank the department of CSE, IITH for giving me an opportunity to pursue PhD in

IITH. I thank the former heads of the department Dr. C. Krishna Mohan, Dr. Bheemar-

juna Reddy Tamma and the current head of the department Dr. M. V. Panduranga Rao

for their support. I thank my DRC committee members for giving valuable suggestions at

different stages of my PhD. I thank Dr. Ramakrishna Upadrasta for his encouragement

in many occasions which gave lot confidence and motivation to perform well. I thank all

the faculty and staff of CSE department, whose names I could not mention here, for their

unconditional support throughout my doctoral study. I thank the staff at academic and

accounts offices for helping me in many academic and financial matters. I thank IITH

for providing congenial environment and providing me financial support for attending an

international conference.

I thank University of Hyderabad for granting me study leave to pursue PhD. I thank

Prof. Arun K. Pujari former dean of SCIS who encouraged me to take up leave and

pursue full time PhD. He was very supportive in approving my study leave. I thank Dr.

Anupama Potluri who was constantly encouraging me to do well in my PhD. I thank

all the faculty and staff of SCIS who has supported me directly or indirectly during my

PhD.

I thank my friend Dr. Nookaraju Bendukurthi who is my pillar of strength. He is the

one who is been encouraging me to come to academics and to pursue PhD. I thank my

friends Naveen Davuluri, Lakshman Rao Vittanala, Nagesh Devireddy, Sateesh Pabboju

who were encouraging me to do well in research.

Last but not the least, I thank my family, my parents for their unconditional love and

encouragement, my brother who always there to cherish my achievements as his, my wife

for her financial and moral support all through my PhD journey and my daughter who is

a stress buster for me. Finally I thank the almighty for continuously showering positive

things and keeping positive people around me.

v

Abstract

In parameterized complexity, a problem instance (I, k) consists of an input I and an

extra parameter k. The parameter k usually a positive integer indicating the size of the

solution or the structure of the input. A computational problem is called fixed-parameter

tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc),

where f(k) is a function dependent only on the input parameter k, n is the size of the

input and c is a constant. The existence of such an algorithm means that the problem

is tractable for fixed values of the parameter. In this thesis, we provide parameterized

algorithms for the following NP-hard graph partitioning problems:

(i) Matching Cut Problem: In an undirected graph, a matching cut is a partition

of vertices into two non-empty sets such that the edges across the sets induce a match-

ing. The matching cut problem is the problem of deciding whether a given graph has

a matching cut. The Matching Cut problem is expressible in monadic second-order

logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear

time solvability on graphs with bounded tree-width. However, this approach leads to a

running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the

tree-width of the graph and n is the number of vertices of the graph. The dependency of

f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials.

In this thesis we give a single exponential algorithm for the Matching Cut problem

with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n.

This answers an open question posed by Kratsch and Le [Theoretical Computer Science,

2016]. We also show the fixed parameter tractability of the Matching Cut problem

when parameterized by neighborhood diversity or other structural parameters.

(ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H,

the H-Free q-Coloring problem asks to color the vertices of the graph G using at

most q colors such that none of the color classes contain H as an induced subgraph.

That is every color class is H-free. This is a generalization of the classical q-Coloring

problem, which is to color the vertices of the graph using at most q colors such that no

pair of adjacent vertices are of the same color. The H-Free Chromatic Number is

the minimum number of colors required to H-free color the graph.

For a fixed q, the H-Free q-Coloring problem is expressible in monadic second-

order logic (MSOL). The MSOL formulation leads to an algorithm with time complexity

f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the

graph and n is the number of vertices of the graph.

In this thesis we present the following explicit combinatorial algorithms for H-Free

Coloring problems:

vi

• An O(qO(tr) · n) time algorithm for the general H-Free q-Coloring problem,

where r = |V (H)|.

• An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is

a complete graph on r vertices.

The above implies an O(tO(tr) · n log t) time algorithm to compute the H-Free Chro-

matic Number for graphs with tree-width at most t. Therefore H-Free Chromatic

Number is FPT with respect to tree-width.

We also address a variant ofH-Free q-Coloring problem which we callH-(Subgraph)Free

q-Coloring problem, which is to color the vertices of the graph such that none of the

color classes contain H as a subgraph (need not be induced).

We present the following algorithms for H-(Subgraph)Free q-Coloring problems.

• An O(qO(tr) ·n) time algorithm for the general H-(Subgraph)Free q-Coloring

problem, which leads to an O(tO(tr) · n log t) time algorithm to compute the H-

(Subgraph)Free Chromatic Number for graphs with tree-width at most t.

• An O(2O(t2) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4

is a cycle on 4 vertices.

• An O(2O(tr−2) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring,

where Kr\e is a graph obtained by removing an edge from Kr.

• An O(2O((tr2)r−2) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring prob-

lem, where Cr is a cycle of length r.

(iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its

endpoints have the same color. Similarly, a vertex is happy if all its incident edges are

happy. we consider the algorithmic aspects of the following Maximum Happy Edges

(k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring

of G such that the number of happy edges are maximized. When we want to maximize

the number of happy vertices, the problem is known as Maximum Happy Vertices

(k-MHV).

We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees.

We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter,

the number of happy edges. We show the hardness of k-MHE and k-MHV for some

special graphs such as split graphs and bipartite graphs. We show that both k-MHE

and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded

neighborhood diversity.

vii

In the last part of the thesis we present an algorithm for the Replacement Paths

Problem which is defined as follows: LetG (|V (G)| = n and |E(G)| = m) be an undirected

graph with positive edge weights. Let PG(s, t) be a shortest s− t path in G. Let l be the

number of edges in PG(s, t). The Edge Replacement Path problem is to compute a

shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement

Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t).

We present an O(TSPT (G) + m + l2) time and O(m + l2) space algorithm for both

the problems, where TSPT (G) is the asymptotic time to compute a single source shortest

path tree in G. The proposed algorithm is simple and easy to implement.

viii

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

1 Introduction 4

1.1 Matching Cut Problem . 6

1.1.1 Previous Work . 7

1.1.2 Our Results . 8

1.2 H-Free Coloring Problems . 8

1.2.1 Related Work . 9

1.2.2 Our Results . 9

1.3 Happy Coloring Problems . 10

1.3.1 Previous Work . 11

1.3.2 Our Results . 12

1.4 Replacement Paths Problems . 13

1.4.1 Previous Work . 14

1.4.2 Our Results . 15

2 Preliminaries 16

2.1 Graph Terminology . 16

2.2 Parameterized Complexity . 19

2.3 Tree-Width . 20

2.4 Branch-width . 21

2.5 MSOL and Courcelle’s Theorem . 22

2.6 Neighborhood Diversity . 23

2.7 Problem Definitions . 24

2.8 Other Notations . 27

2.9 Organization . 27

ix

3 Algorithms for Matching Cut Problem 28

3.1 Graphs with Bounded Tree-width . 28

3.2 Graphs with Bounded Neighborhood Diversity 31

3.3 Other Structural Parameters . 32

4 Algorithms for H-Free Coloring Problems 34

4.1 Overview of the Techniques Used . 35

4.2 H-Free Coloring . 36

4.2.1 Kr-Free 2-Coloring . 36

4.2.2 H-Free 2-Coloring . 37

4.2.3 H-Free q-Coloring . 42

4.3 H-(Subgraph)Free Coloring . 46

4.3.1 C4-(Subgraph)Free 2-Coloring 46

4.3.2 {Kr\e}-(Subgraph)Free 2-Coloring 48

4.3.3 Cr-(Subgraph)Free 2-Coloring 51

4.3.4 H-(Subgraph)Free 2-Coloring 56

4.3.5 H-(Subgraph)Free q-Coloring 57

5 Happy Coloring Problems 58

5.1 Algorithm for k-MHV Problem for Trees 58

5.1.1 Computing Tv[i,H] . 60

5.1.2 Computing Tv[i, U] . 61

5.1.3 Generating all optimal happy vertex colorings 63

5.2 Algorithm for k-MHE problem for Trees 64

5.2.1 Generating all optimal happy edge colorings 66

5.3 MHV and MHE on Complete Graphs 66

5.4 Hardness Results for Happy Coloring Problems 67

5.4.1 k-MHE for planar graphs and graphs with bounded branch width 69

5.5 Exact Exponential-Time Algorithms for Happy Coloring 70

5.6 A Linear Kernel for Weighted MHE 72

5.6.1 Polynomial Time Algorithm for Subproblems of Weighted MHE 72

5.7 Structural parameterization . 76

5.7.1 Tree-Width . 76

5.7.2 Neighborhood Diversity . 77

6 Algorithm for Replacement Paths Problem 81

6.1 Edge Replacement Paths . 81

6.1.1 Labeling the nodes of G . 83

x

6.1.2 Computing Swap Edges . 83

6.2 Node Replacement Paths . 85

7 Conclusions and Future Work 88

References 90

xi

List of Figures

2.1 An example graph. 21

2.2 Tree decomposition of the graph G . 21

2.3 A nice tree decomposition of G . 21

4.1 An example graph H. 37

4.2 Forming H at an introduce node. Sequence s = (v, v2, v1,FG,FG,FG). . 37

4.3 FormingH at join node. Sequences at node j1 s
′ = (DC,DC, v1, v2,FG,FG),

at node j2 s
′′ = (FG,FG, v1, v2,DC,DC) gives a sequence s = (FG,FG, v1, v2,

FG,FG) at node i. Vertices outside the dashed lines are forgotten vertices. 38

4.4 A cycle of length 15 formed with vertex v at an insert node. The vertices

outside the dotted outline are forgotten vertices. The ` values are marked

between the ui’s in the figure. 51

4.5 A cycle of length 20 formed using the paths from left and right subtrees at

join node. The vertices outside the dotted outline are forgotten vertices. . . 51

5.1 (a) A graph G of an instance of DMHE, where white vertices correspond

to uncolored vertices. (b) The graph G transformed into a split graph G′

by the construction of Theorem 25. The edges between the vertices in C

are not drawn. 68

5.2 A set of a type partition, where each vertex in Q1 ∪Q2 has the same type.

The dashed edges appear exactly when Q1 ∪Q2 induces a clique. The set

Q1 forms a complete bipartite graph with both X1 and X2; likewise for Q2

(edges omitted for brevity). 78

6.1 Potential replacement paths for the edge ei. The zig-zag lines represent a

path . 82

1

6.2 (a)An SPT rooted at s. Solid lines are part of the SPT. Dashed lines

represent the non-tree edges (we omit the edge weights). Number inside

the vertex circle denotes the vertex number, where as the number above

the vertex circle represents vertex label. (b)Corresponding RSP-DAG with

set of non-tree edges associated with nodes 84

2

List of Publications

Papers [4, 5, 47] appeared as conference proceedings. Papers [6, 7] are under review.

Paper [46] is not part of the thesis.

[4] N. R. Aravind, Subrahmanyam Kalyanasundaram and Anjeneya Swami Kare.

Linear Time Algorithms for Happy Vertex Coloring Problems for Trees. In 27th

International Workshop on Combinatorial Algorithms IWOCA 2016 pages 281–292,

2016.

[5] N. R. Aravind, Subrahmanyam Kalyanasundaram and Anjeneya Swami Kare. On

Structural Parameterizations of the Matching Cut Problem. In 11th International

Conference on Combinatorial Optimization and Applications COCOA 2017 pages

475–482, 2017.

[47] Anjeneya Swami Kare. A Simple Algorithm For Replacement Paths Problem.

In International Conference on Graph Theory and its Applications ICGTA 2015.

Appeared in Electronic Notes in Discrete Mathematics (53), Elsevier, pages 307-318

(2016).

[6] Akanksha Agrawal, N. R. Aravind, Subrahmanyam Kalyanasundaram, Anjeneya

Swami Kare, Juho Lauri, Neeldhara Misra and I. Vinod Reddy. Parameterized

Complexity of Happy Coloring Problems (Under Review).

[7] N. R. Aravind, Subrahmanyam Kalyanasundaram and Anjeneya Swami Kare.

H-Free Coloring on Graphs with Bounded Tree-Width (Under Review).

[46] Saurabh Joshi, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare and

Sriram Bhyravarapu. On the Tractability of (k, i)-Coloring. Appeared in 4th Inter-

national Conference on Algorithms and Discrete Applied Mathematics CALDAM

2018.

3

Chapter 1

Introduction

Graph theory has played an important role in solving many real world computational

problems. Mathematicians and computer scientists formulate many of these computational

problems as algorithmic problems on graphs so that they can design efficient algorithms.

Many classical problems like shortest paths, minimum spanning tree and maximum

matching have efficient (polynomial-time) algorithms, while many other problems like

travelling sales person, graph coloring, maximum independent set and max-cut are NP-

hard. It is unlikely for the NP-hard problems to have polynomial-time algorithms as it is

highly believed that P 6= NP .

Some of the standard ways to cope with NP-hardness are: (i) approximation algorithms

and more precisely, designing polynomial-time approximation schemes, (ii) heuristics which

do not give any theoretical guarantee on the running time, but run reasonably well on

particular practical instances, (iii) polynomial time algorithms for restricted inputs, i.e,

for some special graph classes such as trees and (iv) exact exponential algorithms, a faster

exact algorithm would mean increase in the size of the problem instance that can be

solved in a given time.

The framework of Parameterized Complexity, developed by Downey and Fellows in

90s, allows to study NP-hard problems on a finer scale. The traditional computational

complexity measures the running time of an algorithm with respective to the input size n

(for graphs, n usually denotes the number of vertices). In parameterized complexity, apart

from the input an extra parameter k is provided and the running time of the algorithm is

measured in terms of both the input size n and the parameter k. The parameter k usually

a positive integer indicating the size of the solution or the structure of the input.

For an NP-hard maximization (minimization) problem, computing an optimal solution

in polynomial time is unlikely. However, instead of the optimal solution if we need a

solution of size at least (at most) k then the problem might be tractable when k is

small. The parameter solution size is usually referred to as the natural parameter. The

4

parameters which are related to the structure of the graph are called structural parameters.

For instance, we could consider parameters like chromatic number of the graph or the

maximum degree of the graph. A computational problem on graphs may be NP-hard in

general but at the same time be efficiently solvable for bipartite graphs or graphs with

small degree. Hence it makes sense to look at the running time in terms of n and k, where

k is the parameter. When k is small if we get an efficient algorithm that leads to the

definition of FPT.

A problem is called Fixed Parameter Tractable (FPT) with respect to a parameter

k, if there is an algorithm with time complexity O(f(k).nc), where f(k) is a function

dependent only on the input parameter k and c is a constant. If a problem is in FPT with

respect to a parameter k, we get a polynomial-time algorithm for the problem for fixed

values of k. There is a related notion of XP algorithms (Slice-wise Polynomial), where

the running time is of the form O(f(k) · ng(k)), for some functions f and g. However the

notion of XP algorithms did not gain much attention compared to FPT algorithms. In

this thesis also we focus on FPT algorithms.

One of the commonly studied parameters is the tree-width of the graph. Unlike maxi-

mum degree and solution size, tree-width does not have a simple definition. Tree-width

measures how close the graph is to a tree. Indeed several NP-hard problems like maxi-

mum independent set, chromatic number, minimum dominating set have straightforward

dynamic programming algorithms when the input graph is a tree. Tree-width generalizes

this notion and defines a class of graphs that are structurally similar to trees. Many

NP-hard graph problems are shown to be tractable for graphs with bounded tree-width.

That is, the problems are shown to be in FPT with respect to the parameter tree-width

of the graph [25]. Some of the other highly used parameters include vertex cover number –

the minimum number of vertices to remove from the graph to get an empty (edgeless)

graph and feedback vertex number – the minimum number of vertices to remove from the

graph to get a forest (acyclic graph). Many NP-hard problems are shown to be in FPT

for the parameters vertex cover number [37, 39, 52] or feedback vertex number [53].

Our main focus in this thesis will be on graph coloring/partitioning problems. The

classical coloring problem is to color the vertices of the graph such that no pair of adjacent

vertices are of the same color. The classical coloring problem is among the Karp’s 21

NP-complete problems which he showed in 1972. Graph coloring has history starting from

the famous four coloring theorem. It had several attempts and was eventually proven by

Appel and Haken in 1976 using computer based case analysis. Due to its rich applications

in scheduling, register allocation, time tabling, social and biological networks the graph

coloring problem has been explored in all dimensions. Many variants of coloring such as

list coloring [30], acyclic coloring [42], multi coloring [43], equitable coloring [65], oriented

5

coloring [23] and many more coloring problems has been explored in the past.

In graph partitioning problems we need to partition the vertices of the graph into

two or more sets such that some condition is satisfied. The well known minimum cut

problem is to partition the vertices into two sets such that the number of edges across

the sets is minimized. Minimum cut problem is polynomial-time solvable [73] . A variant

of minimum cut called s − t cut which is to find a minimum cut separating two given

vertices s and t. Ford and Fulkerson [35] gave a polynomial-time algorithm for the s− t
cut problem. The maximum cut problem is to partition the vertices into two sets such

that the number of edges across the sets is maximized. Interestingly, the maximum cut

problem is NP-hard. Apart from the above problems, many variants of graph partitioning

problems such as multiway cut [26], multicut [38], minimum k-cut [40] and multimultiway

cut [1] has been studied in the past.

In this thesis, we consider the NP-hard graph partitioning problems (i)Matching

Cut, (ii)H-Free Coloring and (iii) Happy Coloring. We study these problems from

parameterized complexity perspective. The parameters we mainly consider are the solution

size, tree-width and neighborhood diversity.

1.1 Matching Cut Problem

Consider an undirected graph G such that |V (G)| = n. An edge cut is an edge set

S ⊆ E(G) such that the removal of S from the graph increases the number of components

in the graph. A matching is an edge set such that no two edges in the set share a common

endpoint. A matching cut is an edge cut which is also a matching. The Matching Cut

problem is the decision problem of determining whether a given graph G has a matching

cut.

The Matching Cut problem was first introduced by Graham in [41], in the name of

decomposable graphs. Farley and Proskurowski [31] pointed out the applications of the

Matching Cut problem in computer networks – in studying the networks which are

immune to failures of non-adjacent links.

Patrignani and Pizzonia [70] pointed out the applications of the Matching Cut

problem in orthogonal three-dimensional graph drawing. They refer to a method of graph

drawing, where one starts with a degenerate drawing where all the vertices and edges

are at the same point. At each step, the vertices in the drawing are partitioned and

progressively the drawing approaches the original graph. In this regard, the cut involving

the non-adjacent edges (matching cut) yields a more efficient and effective performance.

6

1.1.1 Previous Work

The Matching Cut problem is NP-complete for the following graph classes:

• Graphs with maximum degree 4 (Chvátal [19], Patrignani and Pizzonia [70]).

• Bipartite graphs with one partite set has maximum degree 3 and the other partite

set has maximum degree 4 (Le and Randerath [58]).

• Planar graphs with maximum degree 4 and planar graphs with girth 5 (Bonsma [11]).

• K1,4-free graphs with maximum degree 4 (inferred from the reduction in [19]).

The Matching Cut problem has polynomial-time algorithms for the following graph

classes:

• Graphs with maximum degree 3 (Chvátal [19]).

• Line graphs (Moshi [67]).

• Graphs without chordless cycles of length 5 or more (Moshi [67]).

• Series parallel graphs (Patrignani and Pizzonia [70]).

• Claw-free graphs, cographs, graphs with bounded tree-width and graphs with

bounded clique-width (Bonsma [11]).

• Graphs with diameter 2 (Borowiecki and Jesse-Józefczyk [12]).

• (K1,4, K1,4 + e)-free graphs (Kratsch and Le [52]).

When the graph G has degree at least 2, the Matching Cut problem in G is

equivalent to the problem of deciding whether the line graph of G has a stable cut set. A

stable cut set is a set S ⊆ V (G) of independent vertices, such that the removal of S from

the graph G increases the number of components of G. Algorithmic aspects of stable cut

set of line graphs have been studied in [13, 15, 16, 17, 20, 50, 58, 59].

Recently, Kratsch and Le [52] presented a 2n/2nO(1) time algorithm for the Matching

Cut problem using branching techniques. They also showed that the Matching Cut

problem is tractable for graphs with bounded vertex cover.

7

1.1.2 Our Results

One way to show that a graph problem is FPT with respect to the parameter tree-width

is to give a monadic second-order logic (MSOL) formulation for that problem. Courcelle’s

theorem [21, 22] states that every problem expressible in MSOL can be solved in linear

time on graphs with bounded tree-width. This leads to an algorithm with running time

f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the

graph and n is the number of vertices of the graph. However, the function f(||ϕ||, t) can

be as bad as a tower of exponentials of height ||ϕ||. We state the following excerpt from

the book Parameterized Algorithms by Cygan et al. [25].

“Tracing the exact bound on f even for simple formulas ϕ is generally

very hard, and depends on the actual proof of the theorem that is used. This

exact bound is also likely to be much higher than optimal. For this reason,

Courcelle’s theorem and its variants should be regarded primarily as classi-

fication tools, whereas designing efficient dynamic-programming routines on

tree decompositions requires ‘getting your hands dirty’ and constructing the

algorithm explicitly.”

Considering this, it is preferable to have explicit combinatorial algorithms, since such

algorithms are more efficient and are amenable to a precise running time analysis.

The Matching Cut problem can be expressed using an MSOL formula [11]. MSOL

along with Courcelle’s theorem yields an algorithm with time complexity f(||ϕ||, t) · n.

That raises the following question, asked in [52]: Can we have an algorithm where f is a

single exponential function?

In this thesis, we answer the above question by giving a 2O(t) ·n time algorithm for the

Matching Cut problem, where t is the tree-width of the graph. We also show that the

Matching Cut problem is tractable for graphs with bounded neighborhood diversity

and FPT for other structural parameters.

1.2 H-Free Coloring Problems

Let G be an undirected graph. The classical q-Coloring problem is to color the vertices

of the graph G using at most q colors such that no pair of adjacent vertices are of the

same color. The Chromatic Number of the graph is the minimum number of colors

required for q-coloring the graph and is denoted by χ(G). The graph coloring problem

has been extensively studied in various settings.

In this thesis we consider a generalization of the graph coloring problem called H-Free

q-Coloring which is to color the vertices of the graph using at most q colors such that

8

none of the color classes contain H as an induced subgraph. The H-Free Chromatic

Number is the minimum number of colors required to H-free color the graph and is

denoted by χ(H,G). Note that when H = K2, the H-Free q-Coloring problem is

same as the traditional q-Coloring problem.

For q ≥ 3, H-Free q-Coloring problem is NP-complete as the q-Coloring problem

is NP-complete. The 2-Coloring problem is polynomial-time solvable as it is equivalent

to decide whether the graph is bipartite. The H-Free 2-Coloring problem has been

shown to be NP-complete as long as H has 3 or more vertices [2]. Rao [71] has mentioned

about the MSOL formulation and linear time solvability of H-Free Coloring problems

for graphs with bounded tree-width. A variant of H-Free Coloring problem which

we call H-(Subgraph)Free q-Coloring is to color the vertices of the graph such

that none of the color classes contain H as a subgraph (need not be induced) is studied

in [54, 61].

1.2.1 Related Work

Graph bipartitioning (2-coloring) problems with other constraints have been explored

in the past. Many variants of 2-coloring have been shown to be NP-hard. Recently,

Karpiński [49] studied a problem which asks to color the vertices of the graph using 2

colors such that there is no monochromatic cycle of a fixed length. The degree bounded

bipartitioning problem asks to partition the vertices of G into two sets A and B such

that the maximum degree in the induced subgraphs G[A] and G[B] are at most a and b

respectively. Xiao and Nagamochi [77] proved that this problem is NP-complete for any

non-negative integers a and b except for the case a = b = 0, in which case the problem is

equivalent to testing whether G is bipartite.

Other variants that place constraints on the degree of the vertices within the partitions

have also been studied [8, 24]. Wu, Yuan and Zhao [76] showed the NP-completeness of

the variant that asks to partition the vertices of the graph G into two sets such that both

the induced graphs are acyclic. Farrugia [32] showed the NP-completeness of a problem

called (P ,Q)-coloring problem. Here, P and Q are any additive induced-hereditary graph

properties. The problem asks to partition the vertices of G into A and B such that G[A]

and G[B] have properties P and Q respectively.

1.2.2 Our Results

For a fixed q, the H-Free q-Coloring problem can be expressed in monadic second-order

logic (MSOL) [71]. The MSOL formulation together with Courcelle’s theorem [21, 22]

yields an algorithm with running time f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL

9

formula, t is the tree-width of the graph and n is the number of vertices of the graph.

In this thesis, we present the following explicit combinatorial algorithms for H-free

coloring problems.

• An O(qO(tr) · n) time algorithm for the H-Free q-Coloring problem, where

r = |V (H)|.

• An O(2t+r log t ·n) time algorithm for Kr-Free 2-Coloring, where Kr is a complete

graph on r vertices.

• An O(qO(tr) ·n) time algorithm for the H-(Subgraph)Free q-Coloring problem,

where r = |V (H)|.

• An O(2O(t2) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4

is a cycle on 4 vertices.

• An O(2O(tr−2) ·n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where

Kr\e is a graph obtained by removing an edge from Kr.

• An O(2O((tr2)r−2) ·n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem,

where Cr is a cycle of length r.

For graphs with tree-width t theH-Free Chromatic Number (H-(Subgraph)Free

Chromatic Number) is at most t+ 1. Hence, we have an O(tO(tr) · n log t) time algo-

rithm to compute H-Free Chromatic Number (H-(Subgraph)Free Chromatic

Number) for graphs with tree-width at most t. Which shows that H-Free Chromatic

Number (H-(Subgraph)Free Chromatic Number) is FPT for tree-width.

1.3 Happy Coloring Problems

Analyzing large networks is of fundamental importance for a constantly growing number

of applications. In particular, how does one mine social networks to provide valuable

insight? A basic observation concerning the structure of social networks is homophily, that

is the principle that we tend to share characteristics with our friends. Intuitively, it seems

believable our friends are similar to us in terms of their age, gender, interests, opinions,

and so on. In fact, this observation is well-known in sociology (see [29, 57, 64]). For

example, imagine a network of supporters in a country with a two-party system. In order

to check whether there is homophily by political stance (i.e., a person tends to befriend a

person with similar political beliefs), we could count the number of edges between two

people of opposite beliefs. If there were no such edges, we would observe homophily in an

10

extreme sense. It is the characteristic of social networks that they evolve over time: links

tend to be added between people that share some characteristic. But given a snapshot of

the network, how extensively can homophily be present? For instance, how far can an

extreme ideology spread among people some of whom are “politically neutral”?

We abstract these questions regarding the computation of homophily as follows.

Consider a vertex-colored graph G. We say an edge is happy if its endpoints have the

same color (otherwise, the edge is unhappy). Similarly, a vertex is happy if it and all its

neighbors have the same color (otherwise, the vertex is unhappy). Equivalently, a vertex

is happy when all of its incident edges are happy. Let S ⊆ V (G), and let c : S → [k] be

a partial vertex-coloring of G. A coloring c̃ : V (G)→ [k] is an extended full coloring of

c if c̃|S = c, i.e, c̃(v) = c(v) for all v ∈ S. In this work, we consider the following happy

coloring problems. Given a partial coloring of the vertices of the graph using k colors,

the Maximum Happy Edges (k-MHE) problem asks to color the remaining vertices

such that the number of happy edges is maximized. The Maximum Happy Vertices

(k-MHV) problem asks to color the remaining vertices such that the number of happy

vertices is maximized.

1.3.1 Previous Work

Zhang and Li [78] proved that for every k ≥ 3, the problems k-MHE and k-MHV are NP-

complete. However, when k = 2, they gave algorithms running in timeO(min{n2/3m,m3/2})
and O(mn7 log n) for 2-MHE and 2-MHV, respectively. Towards this end, the authors

used max-flow algorithms (2-MHE) and minimization of submodular functions (2-MHV).

Moreover, the authors presented approximation algorithms with approximation ratios 1/2

and max{1/k,Ω(∆−3)} for k-MHE and k-MHV, respectively, where ∆ is the maximum

degree of the graph. Later on, Zhang, Jiang, and Li [79] gave improved algorithms with

approximation ratios 0.8535 and 1/(∆ + 1) for k-MHE and k-MHV, respectively.

Perhaps not surprisingly, the happy coloring problems are tightly related to cut

problems. Indeed, the k-MHE problem is a generalization of the following Multiway

Uncut problem [56]. In this problem, we are given an undirected graph G and a terminal

set S = {s1, s2, . . . , sk} ⊆ V (G). The goal is to find a partition of V (G) into classes

V1, . . . , Vk such that each class contains exactly one terminal and the total number of the

edges not cut by the partition is maximized. The Multiway Uncut problem can be

obtained as a special case of k-MHE, when each color is used to precolor exactly one

vertex. We also mention that the complement of the Multiway Uncut problem is the

Multiway Cut problem that has been studied before (see e.g., [18, 26]). There are

known (parameterized) algorithms for the Multiway Cut problem with the size of the

cut ` as the parameter. In this regard, the fastest known algorithm runs in O∗(1.84`)

11

time [14].

1.3.2 Our Results

Apart from the results in [78] and [79], the MHE and MHV problems does not seem

to be addressed for any class of graphs. In this thesis, we study the complexity of these

problems for some special graph classes such as trees, bipartite graphs, split graphs and

complete graphs. We also consider the weighted variants of the happy coloring problems.

We have the following results:

• We show that k-MHV and k-MHE are solvable in polynomial-time for trees. For an

arbitrary k, the proposed algorithms take O(nk log k) and O(nk) time respectively.

We also extend our algorithms to generate all the optimal colorings of the tree.

Generating each optimal coloring takes polynomial-time.

• We consider exact exponential-time algorithms for the happy coloring problems.

The naive brute force runs in knnO(1) time, but we show that for every k ≥ 3, there

is an algorithm running in time O∗(2n), where n is the number of vertices in the

input graph. Moreover, we prove that this is not optimal for every k by giving an

even faster O∗(1.89n)-time algorithm for both 3-MHE and 3-MHV.

• We show that Weighted k-MHE admits a kernel of size k + `, where ` is the

total weight of the happy edges. The ingredients of the kernel are a polynomial-time

algorithm for Weighted k-MHE when the uncolored vertices induce a forest

together with simple reduction rules. By combining the exact algorithm with the

kernel, we obtain an algorithm running in time 2`nO(1) for k-MHE. This improves

considerably upon the algorithm of Misra and Reddy [66] which runs in time

(2`)2`nO(1).

• We study the complexity of both problems for graphs with bounded tree-width and

graphs with bounded neighborhood diversity. When either parameter is bounded,

we show that both the problems admit polynomial-time algorithms. The result for

bounded tree-width graphs was also obtained independently in [3, 66].

• We prove that for every k ≥ 3, the problem k-MHV is NP-complete for split graphs

and bipartite graphs. This extends the hardness result of Zhang and Li [78] for

general graphs. Similarly, we show that k-MHE remains NP-complete for bipartite

graphs. Using slightly different ideas, both problems were shown to be hard for

bipartite graphs and split graphs independently of our work in [66].

12

• Using the result from [26] we observe that, for an arbitrary k, the k-MHE problem

is NP-hard for planar graphs.

• Using the result from [27] we infer that, when the number of pre-colored vertices is

bounded, the k-MHE problem can be solved in linear time for graphs with bounded

branch width.

1.4 Replacement Paths Problems

Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with a weight function

w : E(G)→ R>0 on the edges. Let PG(s, t) = {v0 = s, v1, . . . , vl−1, vl = t} be a shortest

s− t path in G. Let l denote the number of edges in PG(s, t), also denoted by |PG(s, t)|.
The total weight of the path PG(s, t) is denoted by dG(s, t), i.e, dG(s, t) =

∑l
i=1w(ei),

where, ei is the edge (vi−1, vi) ∈ PG(s, t). A shortest path tree (SPT) of G rooted at s

(respectively, t) is denoted by Ts (respectively, Tt).

A Replacement Shortest Path (RSP) for the edge ei (respectively, node vi) is a shortest

s− t path in G\ei (respectively, G\vi). The Edge Replacement Path problem is to

compute RSP for all ei ∈ PG(s, t). Similarly, the Node Replacement Path problem is

to compute RSP for all vi ∈ PG(s, t).

As in all existing algorithms for RSP problem, our algorithm has two phases:

1. Computing shortest path trees rooted at s and t, Ts and Tt respectively.

2. Computing RSP using Ts and Tt.

For graphs with non-negative edge weights, computing an SPT takes O(m+ n log n) time,

using the standard Dijkstra’s algorithm [28] implemented using Fibonacci heaps [36].

However, for integer weighted graphs (RAM model) [75], planar graphs [44] and minor-

closed graphs [74], O(m + n) time algorithms are known. In this paper, to compute

SPTs Ts and Tt (phase (i)), we use the existing algorithms. For phase (ii), we present

an O(m + l2) time algorithm which is simple and easy to implement. Motivation for

studying the replacement paths problem is its relevance in single link (or node) recovery

protocols. Other problems which are closely related to replacement paths problem are

Most Vital Edge problem [68], Most Vital Node problem [69] and Vickrey Pricing [45].

Often an algorithm for replacement paths problem is used as a subroutine in finding

k-simple shortest paths between a pair of nodes.

13

1.4.1 Previous Work

For the Edge Replacement Path problem Malik et al. [63] and Hershberger and

Suri [45] independently gave O(TSPT (G) + m + n log n) time algorithms. Nardelli et

al. [68] gave an O(TSPT (G)+mα(m,n)) time algorithm, where α is the inverse Ackermann

function.

For the Node Replacement Path problem Nardelli et al. [69] gave an algorithm with

time complexity O(TSPT (G) +m+ n log n). Kare and Saxena [48] gave an O(TSPT (G) +

mα(m,n)) time algorithm.

Jay and Saxena [62] gave an O(TSPT (G) +m+ d2) algorithm, where d is the diameter

of the graph. Their algorithm can be used to solve both the edge and the node replacement

path problems. They used linear time algorithms for Range Minima Query (RMQ) [9] and

integer sorting in their solution. A total of 2l instances, each of RMQ and integer sorting

has been used (with size of each instance at most l). Recently, Lee and Lu [60] gave an

O(TSPT (G) +m+ n) time algorithm. Table 1.4.1 summarises the existing algorithms for

RSP problem.

Edge Replacement Path Problem

Reference Time Complexity

Malik et al. [63] (1989) O(TSPT (G) +m+ n log n)

Hershberger and Suri [45] (1997) O(TSPT (G) +m+ n log n)

Nardelli et al. [68] (2001) O(TSPT (G) +mα(m,n))

Jay and Saxena [62] (2013) O(TSPT (G) +m+ d2)

Lee and Lu [60] (2014) O(TSPT (G) +m+ n)

This Thesis O(TSPT (G) +m+ l2)

Node Replacement Path Problem

Reference Time Complexity

Nardelli et al. [69] (2003) O(TSPT (G) +m+ n log n)

Jay and Saxena [62] (2013) O(TSPT (G) +m+ d2)

Kare and Saxena [48] (2014) O(TSPT (G) +mα(m,n))

Lee and Lu [60] (2014) O(TSPT (G) +m+ n)

This Thesis O(TSPT (G) +m+ l2)

Table 1.1: Summary of existing algorithms1 for RSP problem

1In the referenced papers, authors ignore the term TSPT (G), as they assume either shortest path trees
are given or restriction on the input graph class for which linear time algorithms are known for SPT

14

1.4.2 Our Results

In this thesis, we present an O(TSPT (G) +m+ l2) time and O(m+ l2) space algorithm.

The asymptotic complexity of our algorithm matches that of [62]. However, our solution

does not use RMQ and integer sorting. Our algorithm organizes the non-tree edges of

the graph in a simple manner. Note that linear time algorithm for RMQ [9] and the

algorithm in [60] are complex to implement. The simplicity of our algorithm makes it

an ideal candidate for the RSP. In particular, for dense graphs and graphs with small

diameter (l ≤ diameter(G) = O(
√
m)) our algorithm is optimal and matches with that

of [60]. As observed in [62], graphs in real world data sets have small diameter, which

further adds significance to our algorithm.

15

Chapter 2

Preliminaries

In this chapter, we give notations, terminology and concepts used in this thesis.

2.1 Graph Terminology

In this thesis, we consider simple undirected graphs. Let G be an undirected graph.

We use V (G) and E(G) to denote the set of vertices and the set of edges of the graph

respectively. We denote |V (G)| = n and |E(G)| = m.

Neighbor Two vertices u and v are neighbors or adjacent to each other if {u, v} ∈ E(G).

We say that u is a neighbor of v and vice versa.

Degree Degree of a vertex u is the number of neighbors of u in the graph G and is

denoted by dG(u).

Maximum Degree Maximum degree of the graph is denoted by ∆(G) and is defined as

∆(G) = maxu∈V (G)(dG(u)).

Minimum Degree Minimum degree of the graph is denoted by δ(G) and is defined as

δ(G) = minu∈V (G)(dG(u)).

Open Neighborhood The set of all neighbors of u is called open neighborhood of u and

is denoted by NG(u).

Closed Neighborhood The closed neighborhood of u, denoted by NG[u], is defined as

NG[u] = NG(u) ∪ {u}.

Subgraph A graph H is a subgraph of the graph G if (i) V (H) ⊆ V (G) and (ii)

E(H) ⊆ E(G) and {u, v} ∈ E(H) ⇒ u, v ∈ V (H). If V (G) = V (H) then the

subgraph H is called a spanning subgraph.

16

Induced Subgraph A subgraph H of G is called an induced subgraph, if for any two

vertices u, v ∈ V (H), {u, v} ∈ E(G) ⇔ {u, v} ∈ E(H). A subgraph induced by a

set S ⊆ V (G) is denoted by G[S].

Path A path in the graph G is a subgraph P with V (P) = {u0, u1, u2, . . . , u`|ui 6= uj∀i 6=
j} and E(P) = {{ui, ui+1}|0 ≤ i < `}.

Cycle A cycle in the graph G is a subgraph C with V (C) = {u0, u1, u2, . . . , u`|ui 6=
uj∀i 6= j} and E(P) = {u0, u`} ∪ {{ui, ui+1}|0 ≤ i < `}. A cycle on r vertices is

denoted as Cr.

Clique A vertex subset C ⊆ V (G) such that every pair of vertices in C are adjacent is

called a clique.

Independent Set A vertex subset I ⊆ V (G) such that every pair of vertices in I are

non-adjacent is called an independent set.

Connected Graph A graph G is connected if for every two vertices u, v ∈ V (G) there

exists a path from u to v in G.

Connected Component A maximal connected subgraph of a graph is called connected

component of the graph.

Edge Cut An edge cut is an edge set S ⊆ E(G) such that the removal of S from the

graph increases the number of components in the graph.

Vertex Cut A vertex cut is a vertex set S ⊆ V (G) such that the removal of S together

with all the edges incident on the vertices of S from the graph increases the number

of components in the graph.

Matching A matching is an edge set such that no two edges in the set have a common

end point.

Vertex Cover A vertex cover is a vertex set S ⊆ V (G) such that for every edge

{u, v} ∈ E(G) either u ∈ S or v ∈ S.

Twins Two non-adjacent (adjacent) vertices having the same open (closed) neighborhood

are called twins.

Twin Cover A twin cover is a vertex set S ⊆ V (G) such that for every edge {u, v} ∈
E(G): u ∈ S (or) v ∈ S (or) u and v are twins.

Split Graph A graph in which the vertices can be partitioned into a clique and an

independent set is called a split graph.

17

Distance to Split Graph The minimum size of the vertex set S ⊆ V (G) such that

G[V (G)\S] becomes a split graph is called its distance to split graph.

Proper Coloring An assignment of colors to vertices such that the adjacent vertices

have different colors is called proper coloring.

Chromatic Number Minimum number of colors required to properly color the graph

G is called its chromatic number and is denoted by χ(G).

Tree A connected graph without cycles is called a tree.

Forest An undirected graph where every connected component of the graph is a tree.

Subtree A connected subgraph of a tree is called subtree.

Planar Graph A graph G is said to be planar if there exists some geometric representa-

tion of G which can be drawn on a plane such that no two of its edges intersect.

Feedback Vertex Set A vertex set S ⊆ V (G) such that G[V (G)\S] becomes a forest.

Shortest Path In an undirected graph G with weights on the edges, a shortest path

PG(s, t) from s to t in G is defined as a path from s to t which minimizes the sum

of the weights of the edges along the path from s to t. For unweighted graphs, the

weights of edges are assumed to be 1.

Union For graphs G1 and G2, the union of G1 and G2 is denoted by G1 ∪ G2 and

V (G1 ∪G2) = V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

Shortest Path Tree For a distinguished vertex s ∈ V (G) called the source vertex, and

for all the vertices u ∈ V (G)\{s}, a single source shortest path tree (SPT) in G

rooted at s, denoted by Ts, is a spanning tree of G rooted at s and formed by the

union of shortest paths from s to u for each u ∈ V (G)\{s}.

Distance The distance between the two vertices u and v is the sum of the weights of the

edges in the shortest path between u and v.

Diameter The diameter of the graph is the length of the maximum shortest path between

all pairs of vertices.

Post-order Traversal In a rooted tree post-order traversal refers to processing or visiting

of vertices such that a vertex is processed only after all its children are processed.

Pre-order Traversal In a rooted tree pre-order traversal refers to processing or visiting

of vertices such that a vertex is processed before all its children are processed.

18

Bipartite Graph A graph whose vertices can be partitioned into two independent set

I1 and I2. Bipartite graphs are the graphs which do not have cycles of odd length.

Complete Graph A graph in which every pair of vertices are adjacent is called complete

graph. A complete graph on r vertices is denoted as Kr.

Complete Bipartite Graph A graph whose vertices can be partitioned into two inde-

pendent set I1 and I2 such that every vertex in I1 is adjacent to every vertex in I2.

A complete bipartite graph is denoted as Kr,s where |I1| = r and |I2| = s.

Diamond Graph A graph formed by deleting any one edge from K4 is called a diamond.

Claw Graph The complete bipartite graph K1,3 is known as claw.

Minor an undirected graph H is called a minor of G if H can be formed from G by

deleting edges and vertices and by contracting edges.

Minor-closed Graphs A graph family F is called minor-closed if every minor of a graph

in F is also in F . For example planar graphs are minor-closed.

Directed Acyclic Graph A directed graph without any directed cycle is called a di-

rected acyclic graph (DAG).

In-degree In a directed graph indegree of a vertex is the number of incoming edges onto

the vertex.

Out-degree In a directed graph outdegree of a vertex is the number of outgoing edges

from the vertex.

H-free For a fixed graph H, a graph G is called H-free, if there is no S ⊆ V (G) such

that G[S] is isomorphic to H.

2.2 Parameterized Complexity

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet.

For an instance (I, k) ∈ Σ∗ × N, we call k the parameter. The parameterized problem L

is fixed-parameter tractable (FPT) when there is an algorithm A, a computable function

f : N→ N, and a constant c such that, given (I, k) ∈ Σ∗ × N, the algorithm A correctly

decides whether (I, k) ∈ L in time bounded by f(k) · |I|c. An equivalent way of proving a

problem is FPT is by constructing a kernel for it. A kernel for a parameterized problem

(I, k) is a polynomial-time algorithm B that returns an equivalent instance (I ′, k′) of L

such that |I ′| ≤ g(k), for some computable function g : N→ N. Here, we say two instances

19

are equivalent if the first is a YES-instance if and only if the second is a YES-instance.

Given a parameterized problem, it is natural to ask whether it admits a kernel, and

moreover whether that kernel is small. By small, we typically mean a polynomial kernel,

or even a linear kernel (i.e., g(k) = O(k)).

Kernelization is often discovered through reduction rules. A reduction rule is a

polynomial-time transformation of an instance (I, k) to another instance of the same

problem (I ′, k′) such that |I ′| < |I| and k′ ≤ k. A reduction rule is safe when the instances

are equivalent. For more on parameterized complexity, we refer the interested reader

to [25].

2.3 Tree-Width

A tree decomposition of G is a pair (T, {Xi, i ∈ I}), where Xi ⊆ V (G) for every i ∈ I,

and T is a tree with elements of I as the nodes such that:

1. For each vertex v ∈ V (G), there is an i ∈ I such that v ∈ Xi.

2. For each edge {u, v} ∈ E(G), there is an i ∈ I such that {u, v} ⊆ Xi.

3. For each vertex v ∈ V (G), T [{i ∈ I|v ∈ Xi}] is connected.

The width of the tree decomposition is maxi∈I(|Xi| − 1). The tree-width of G is the

minimum width taken over all tree decompositions of G and we denote it as t. For

more details on tree-width, we refer the reader to [72]. Kloks [51] introduced nice tree

decomposition, which is a tree decomposition where every node i ∈ I is one of the following

types:

1. Leaf node: For a leaf node i, Xi = ∅.

2. Introduce Node: An introduce node i has exactly one child j and there is a vertex

v ∈ V (G)\Xj such that Xi = Xj ∪ {v}.

3. Forget Node: A forget node i has exactly one child j and there is a vertex v ∈
V (G)\Xi such that Xj = Xi ∪ {v}.

4. Join Node: A join node i has exactly two children j1 and j2 such that Xi = Xj1 = Xj2 .

Every graph G has a nice tree decomposition with |I| = O(n) nodes and width equal to

the tree-width of G. Moreover, such a decomposition can be found in linear time if the

tree-width is bounded [51]. A tree decomposition of the graph in Figure 2.1 is given in

Figure 2.2. A nice tree decomposition of the tree decomposition in Figure 2.2 is given in

Figure 2.3.

20

e

a

b c

d

f

g

Figure 2.1: An example graph.

b,c

b,c,g

a,b,g
c,e,g

e,f,g c,d,e

Figure 2.2: Tree decomposition of the graph
G

b,c,g

b,c,g b,c,g

b,g c,g

a,b,g c,e,g

a,g c,e,g c,e,g

a
e,g c,e

e,f,g c,d,e

f,g d,e

f d

Join Node

Forget Node

Insert Node

Leaf Node

b,c

Root

Figure 2.3: A nice tree decomposition of G

2.4 Branch-width

A branch decomposition of an undirected graph G is a pair (T, η), where T is an unrooted

binary tree with |E(G)| leaves, all its internal nodes have degree 3 and η is a bijection

from E(G) to the leaves of T . Consider any edge e ∈ E(T), if we remove edge e from the

tree T , the T is partitioned into two subtrees and hence the set of leaves of T (edges of

G) is also partitioned into two sets. Each of these sets corresponds to a subgraph in G.

The width of the edge e is the number of common vertices between these two subgraphs.

The width of the branch decomposition is the maximum width taken over all the edges of

the tree T .

The branch-width of the graph G is the minimum width taken over all the branch

decompositions of the graph G and is denoted by b. Robertson and Seymour [72] introduced

the notions of tree-width and branch-width. They showed that b(G) ≤ t(G)+1 ≤ 3/2b(G).

21

2.5 MSOL and Courcelle’s Theorem

Graph properties can be expressed in monadic second-order logic (MSOL). An MSOL

formula is a string formed over the symbols of the MSOL using the syntactic rules of the

MSOL. An MSOL formula can have four types of variables: variables for single vertex,

for single edge, for subset of vertices and for subset of edges. Quantifiers are used to

express graph properties. There are two types of quantifiers. The quantifier ∀ is called the

universal quantifier and ∃ is called existential quantifier. In MSOL we can use quantifiers

over variables of single vertex, single edge, vertex subset or edge subset.

Formulas of MSOL are constructed inductively from smaller formulas. Below are the

smallest building blocks called atomic formulas:

1. If u is a vertex (edge) variable and X is a vertex (edge) set variable, then we can

write u ∈ X. This formula is true if and only if u is an element in X.

2. If u is a vertex variable and e is an edge variable, the we can write formula inc(u, e).

This formula is true if and only if u is an end vertex of e.

3. For any two variables x, y of the same type, we can write formula x = y. This

formula is true if and only if x and y are equivalent.

By using the standard boolean operators ¬, ∨, ∧ and =⇒ between formulas we can

build larger formulas. If ϕ1 and ϕ2 are two formulas, ϕ1 and ϕ2 can be combined to form

larger formula using the following operations.

¬ϕ1: ¬ϕ1 is true if and only if ϕ1 is false.

ϕ1 ∧ ϕ2: ϕ1 ∧ ϕ2 is true if and only if both ϕ1 is true and ϕ2 is true.

ϕ1 ∨ ϕ2: ϕ1 ∨ ϕ2 is true if and only if ϕ1 is true or ϕ2 is true.

ϕ1 =⇒ ϕ2: ϕ1 =⇒ ϕ2 is true if and only if ϕ2 is true when ever ϕ1 is true.

We can apply quantifiers over variables of single vertex (∀v ∈ V (G)/∃v ∈ V (G)), of

single edge (∀e ∈ E(G)/∃e ∈ E(G)), of vertex subsets ((∀X ⊆ V (G)/∃X ⊆ V (G))) and

of edge subsets ((∀Y ⊆ E(G)/∃Y ⊆ E(G))).

There are two kinds of MSOL formulas, MSO2 which allows quantifiers over edge

subsets also where as in MSO1 quantifiers over edge subsets is not allowed. Throughout

the thesis by MSOL we mean the MSO1.

Below is an example MSOL formula for 3-colorability of a graph (from [25]):

3Colorability = ∃X1, X2, X3 ⊆ V (G)[partition(X1, X2, X3)

∧indp(X1) ∧ indp(X2) ∧ indp(X3)]

22

partition(X1, X2, X3) = ∀v ∈ V [(v ∈ X1 ∧ v /∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v ∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v /∈ X2 ∧ v ∈ X3)]

indp(X) = ∀u, v ∈ X¬adj(u, v)

Theorem 1 (Courcelle’s Theorem [21] from [25]). Assume that ϕ is a formula of MSOL

and G is a graph equipped with evaluation of all the free variables of ϕ. Given a tree

decomposition of G of width t, there is an algorithm that verifies whether ϕ is satisfied in

G in time f(||ϕ||, t) · n for some computable function f . Here ||ϕ|| is the length of the

MSOL formula and n is the number of vertices of the graph G.

2.6 Neighborhood Diversity

The polynomial-time solvability of a problem on bounded tree-width graphs implies the

existence of a polynomial-time algorithm also for other structural parameters that are

polynomially upper-bounded in tree-width. For instance, one such parameter is the vertex

cover number, i.e., the size of a smallest vertex cover that a graph has. However, graphs

with bounded vertex cover number are highly restricted, and it is natural to look for less

restricting parameters that generalize vertex cover (like tree-width). Another parameter

generalizing vertex cover is neighborhood diversity, introduced by Lampis [55]. Let us first

define the parameter, and then discuss its connection to both vertex cover and tree-width.

Definition 1. In an undirected graph G, two vertices u and v have the same type if and

only if N(u) \ {v} = N(v) \ {u}.

Definition 2 (Neighborhood diversity [55]). A graph G has neighborhood diversity d if

there exists a partition of V (G) into d sets P1, P2, . . . , Pd such that all the vertices in each

set have the same type. Such a partition is called a type partition. Moreover, it can be

computed in linear time [55].

Note that all the vertices in Pi for every i ∈ [d] have the same neighborhood in G.

Moreover, each Pi either forms a clique or an independent set in G.

Neighborhood diversity can be viewed as representing the simplest of dense graphs.

If a graph has vertex cover number q, then the neighborhood diversity of the graph is

not more than 2q + q (for a proof, see [55]). Hence, graphs with bounded vertex cover

number also have bounded neighborhood diversity. However, the converse is not true since

complete graphs have neighborhood diversity 1. Paths and complete graphs also show

that neighborhood diversity and tree-width are incomparable. In general, some NP-hard

23

problems (some of which remain hard for tree-width), are rendered tractable for bounded

neighborhood diversity (see e.g., [33, 37, 39]).

2.7 Problem Definitions

The Matching Cut problem is defined as follows:

Definition 3. Matching Cut problem

(Instance) An undirected graph G.

(Question) Does the graph has a matching cut?.

The H-Free q-Coloring and H-Free Chromatic Number problems are defined

as follows:

Definition 4. H-Free q-Coloring

(Instance) An undirected graph G.

(Question) Can we color the vertices of G using at most q colors such that none of the

color classes contain H as an induced subgraph?.

Definition 5. H-Free Chromatic Number

(Instance) An undirected graph G.

(Output) The minimum number of colors required to color the vertices of the graph

such that none of the color classes contain H as an induced subgraph.

The H-(Subgraph)Free q-Coloring and H-(Subgraph)Free Chromatic Num-

ber problems are defined as follows:

Definition 6. H-(Subgraph)Free q-Coloring

(Instance) An undirected graph G.

(Question) Can we color the vertices of G using at most q colors such that none of the

color classes contain H as a subgraph?.

Definition 7. H-(Subgraph)Free Chromatic Number

(Instance) An undirected graph G.

(Output) The minimum number of colors required to color the vertices of the graph

such that none of the color classes contain H as a subgraph.

The unweighted variants of the happy coloring problems are defined as follows:

Definition 8. Maximum Happy Edges (MHE)

(Instance) A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k].

24

(Output) A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the total number of

the happy edges.

Definition 9. Maximum Happy Vertices (MHV)

(Instance)A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S →
[k].

(Output)A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the total number of

the happy vertices.

When k is fixed and not part of the input, we refer the MHE and MHV problems as

k-MHE and k-MHV respectively. The decision versions of the unweighted variants of

the happy coloring problems are defined as follows:

Definition 10. Decision MHE (DMHE)

(Instance)A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k].

(Question)Does there exist a coloring c̃ : V (G)→ [k] such that c̃|S = c and the number

of the happy edges is at least `?.

Definition 11. Decision MHV (DMHV)

(Instance)A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k].

(Question)Does there exist a coloring c̃ : V (G)→ [k] such that c̃|S = c and the number

of the happy vertices is at least `?.

The weighted variants of the happy coloring problems are defined as follows:

Definition 12. Weighted Maximum Happy Edges (Weighted MHE)

(Instance)A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S →
[k], and a weight function w : E(G)→ N.

(Output)A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the total weight of

the happy edges.

Definition 13. Weighted Maximum Happy Vertices (Weighted MHV)

(Instance)A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S →
[k], and a weight function w : V (G)→ N.

(Output)A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the total weight of

the happy vertices.

When k is fixed and not part of the input, we refer the Weighted MHE and

Weighted MHV problems as Weighted k-MHE and Weighted k-MHV respectively.

The decision versions of the weighted variants of the happy coloring problems are defined

as follows:

25

Definition 14. Weighted DMHE

(Instance)A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k], and a weight function w : E(G)→ N.

(Question)Does there exist a coloring c̃ : V (G)→ [k] such that c̃|S = c and the sum of

the weights of the happy edges is at least `?.

Definition 15. Weighted DMHV

(Instance)A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k], and a weight function w : V (G)→ N.

(Question)Does there exist a coloring c̃ : V (G)→ [k] such that c̃|S = c and the sum of

the weights of the happy vertices is at least `?.

Problem definitions for replacement shortest paths problems.

Definition 16. Edge Replacement Path

(Instance)An undirected graph G with positive edge weights, two specified vertices s, t

and shortest s− t path PG(s, t) in G.

(Output)A shortest s− t path in G\{e}, for every edge e in PG(s, t).

Definition 17. Node Replacement Path

(Instance)An undirected graph G with positive edge weights, two specified vertices s, t

and shortest s− t path PG(s, t) in G.

(Output)A shortest s− t path in G\{v}, for every vertex v in PG(s, t).

Other partitioning problems which are used in the thesis are:

Definition 18. Max Weighted Partition

(Instance)An n-element set N , integer d, and functions f1, f2, . . . , fd : 2N → [−M,M]

for some integer M .

(Output)A d-partition (S1, S2, . . . , Sd) of N that maximizes f1(S1)+f2(S2)+· · ·+fd(Sd).

Definition 19. Multiway Cut

(Instance)An undirected graph G and a terminal set S = {s1, s2, . . . , sk} ⊆ V (G).

(Output)A set of edges C ⊆ E(G) with minimum cardinality whose removal disconnects

all the terminals from each other.

Definition 20. Multiway Uncut

(Instance)An undirected graph G and a terminal set S = {s1, s2, . . . , sk} ⊆ V (G).

(Output)A partition {V1, V2, . . . , Vk} of V (G) such that each partition contains exactly

one terminal and the number of edges not cut by the partition is maximized.

26

Definition 21. Multi-Multiway Cut

(Instance)An undirected graph G and c sets of vertices S1, S2, . . . , Sc.

(Output)A set of edges C ⊆ E(G) with minimum cardinality whose removal disconnects

every pair of vertices in each set Si.

2.8 Other Notations

We write f(n) = O∗(g(n)) if f(n) = O(g(n)nc) for some constant c > 0, here g(n) be any

function on n. When there is no ambiguity, we use the simpler notations S\x to denote

S\{x} and S ∪ x to denote S ∪ {x}. We denote the set of all k sized subsets of the set S

by
(
S
k

)
. Some times we use uv to denote the edge {u, v} for convenience. We denote the

set {1, 2, 3, . . . , r} by [r].

2.9 Organization

In Chapter 3 we discuss the parameterized algorithms for the Matching Cut problem.

In Chapter 4 we discuss the parameterized algorithms for the H-Free q-Coloring

problems and its variants. In Chapter 5 we discuss results on happy coloring problems;

polynomial-time algorithms, hardness results for special graph classes and parameterized

algorithms. In Chapter 6 we discuss algorithms for replacement shortest path problems.

Finally we give conclusions and future work in Chapter 7.

27

Chapter 3

Algorithms for Matching Cut

Problem

The Matching Cut problem is a graph partitioning problem, where we need to partition

the vertices into two non-empty sets A and B such that the edges across the sets induce a

matching.

The Matching Cut problem can be expressed using a monadic second-order logic

(MSOL) formula [11]. The MSOL formulation, together with Courcelle’s theorem implies

linear time solvability on graphs with bounded tree-width. This approach yields an

algorithm with running time f(||ϕ||, t) · n. Where ||ϕ|| is the length of the MSOL formula

and t is the tree-width of the graph. However, the function f(||ϕ||, t) can be as bad as

a tower of exponentials of height ||ϕ||. That raises the following question, asked in [52]:

Can we have an algorithm where f is a single exponential function?.

In this thesis, we answer the above question by giving a 2O(t) · n time explicit combina-

torial algorithm for the Matching Cut problem, where t is the tree-width of the graph.

We also show that the Matching Cut problem is tractable for graphs with bounded

neighborhood diversity and other structural parameters.

3.1 Graphs with Bounded Tree-width

In this section, we present an O(2O(t) ·n) time algorithm for the Matching Cut problem.

The algorithm we present is based on dynamic programming technique on the nice tree

decomposition. We use the following notations in the algorithm.

• i: A node in the tree decomposition.

• Xi: The set of vertices associated with node i. The Xis will sometimes be referred

as bags.

28

• G[Xi]: Subgraph induced by Xi.

• Ti: The sub-tree rooted at node i of the tree decomposition. This includes node i

and all its descendants.

• G[Ti]: Subgraph induced by the vertices in node i and all its descendants.

Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi, we say that the partition Ψ is

legal at node i if it satisfies the following conditions (?):

1. Every vertex of A1 (respectively B1) has exactly one neighbor in B1 (resp. A1)

and no neighbors in B2 ∪B3 (resp. A2 ∪ A3).

2. Every vertex of A2 ∪ A3 (resp. B2 ∪ B3) has no neighbors in any of the Bi’s

(resp. Ai’s).

We say that a legal partition ψ is valid for the node i if there exists a matching cut

(A,B) of G[Ti] such that the following conditions (??) hold:

1. The Ai’s are contained in A and the Bi’s are contained in B.

2. Every vertex of A1 (resp. B1) has a matching cut neighbor in B1 (resp. A1).

3. Every vertex of A2 ∪B2 has a matching cut neighbor in G[Ti] \Xi.

4. The vertices of A3 ∪ B3 are not part of the cut-edges, i.e. every vertex of A3

(resp. B3) has no neighbor in B (resp. A).

A matching cut is empty if there are no edges in cut. We say that a valid partition Ψ of

Xi is locally empty in G[Ti], if every matching cut of G[Ti] extending Ψ (i.e. satisfying ??) is

empty. Note that, a necessary condition for Ψ to be locally empty is: A1∪A2∪B1∪B2 = ∅.
We define Mi[Ψ] to be +1 if Ψ is valid for the node Xi and not locally empty, 0 if it is

valid and locally empty, and −1 otherwise. Now, we explain how to compute Mi[Ψ] for

each partition Ψ at the nodes of the nice tree decomposition.

Leaf node: For a leaf node i, Xi = ∅. We have Ψ = (∅, ∅, ∅, ∅, ∅, ∅) and Mi[Ψ] = 0. This

step can be executed in constant time.

Introduce node: Let j be the only child of the node i. Suppose that v ∈ Xi is the new

node present in Xi, v /∈ Xj. Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. If Ψ is

not legal, we straightaway set Mi[Ψ] to −1. Otherwise, we use the below procedure to

compute Mi[Ψ] for v ∈ Ai, and analogously for v ∈ Bi.

29

Case 1: v ∈ A1. Mi[Ψ] = +1, if there exists a unique x ∈ B1, such that, (v, x) ∈ E(G)

and Mj[Ψ
′] ≥ 0 for Ψ′ = (A1\v, A2, A3, B1\x,B2, B3 ∪ x). Otherwise Mi[Ψ] = −1.

Note that, Mi[Ψ] can not be 0, as v ∈ A1 brings an edge into the cut if it is valid.

Case 2: v ∈ A2. This case is not valid as v does not have any neighbor in V (Ti)\Xi (it

is the property of the nice tree decomposition).

Case 3 v ∈ A3. Mi[Ψ] = Mj[Ψ
′] where Ψ′ = (A1, A2, A3\v,B1, B2, B3).

The total number of possible Ψ’s for Xi is 6t+1. For each Ψ, the above cases can be exe-

cuted in polynomial-time. Hence, the total time complexity at the introduce node is O∗(6t).

Forget node: Let j be the only child of the node i. Suppose, v ∈ Xj is the node missing

in Xi, v /∈ Xi. Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. If Ψ is not legal, we

straightaway set Mi[Ψ] to −1.

Otherwise, Mi[Ψ] = maxk=6
k=1{δk}, where δk is computed as follows: If Ψ is valid, it

should be possible to add v to one of the six sets to get a valid partition at node j.

Case 1: v is in the first set at the node j. If there is a unique x ∈ B2 such that

(v, x) ∈ E(G) then δ1 = Mj [Ψ
′] where Ψ′ = (A1 ∪ v,A2, A3, B1 ∪ x,B2\x,B3). If no

such x exists, then δ1 is set to −1.

Case 2: v is in the second set at the node j.

Let Ψ′ = (A1, A2 ∪ v, A3, B1, B2, B3) and δ2 = Mj[Ψ
′].

Case 3: v is in the third set at the node j.

Let Ψ′ = (A1, A2, A3 ∪ v,B1, B2, B3) and δ3 = Mj[Ψ
′].

The values δ4, δ5 and δ6 are computed analogously. The total number of possible Ψ’s for

Xi is 6t. For each Ψ, the above cases can be executed in polynomial-time. Hence, the

total time complexity at the forget node is O∗(6t).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2 and

V (Tj1) ∩ V (Tj2) = Xi. There are no edges between V (Tj1)\Xi and V (Tj2)\Xi. Let

Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. For X ⊆ A2 and Y ⊆ B2 let Ψ1 =

(A1, X,A3∪{A2\X}, B1, Y, B3∪{B2\Y }) and Ψ2 = (A1, A2\X,A3∪X,B1, B2\Y,B3∪Y).

Mi[Ψ] =


+1, If ∃X ⊆ A2 and Y ⊆ B2 such that Mj1 [Ψ1] +Mj2 [Ψ2] ≥ 1;

0, If Ψ is locally empty, (i.e Mj1 [Ψ] = 0 and Mj2 [Ψ] = 0);

−1, Otherwise

30

The total number of possible Ψ’s for Xi is 6t+1. For each Ψ, we need to check 2t+1 different

Ψ1 and Ψ2. The total time complexity at the join node is O∗(12t).

At each node i, let ∆i = maxΨ{Mi[Ψ]}. If ∆i = +1, then G[Ti] has a valid non-

empty matching cut. If r is the root of the nice tree decomposition, the graph G has

a matching cut if ∆r = +1. By induction and the correctness of Mi[Ψ] values, we can

conclude the correctness of the algorithm. The total time complexity of the algorithm is

O∗(12t) = O∗(2O(t)).

Theorem 2. There is an algorithm with running time O∗(2O(t)) that solves the Matching

Cut problem, where t is the tree-width of the graph.

3.2 Graphs with Bounded Neighborhood Diversity

Let d be the neighborhood diversity of the graph and P1, P2, . . . , Pd be the type partitioning

of the graph. Due to the property of type partitioning, each Pi forms either a clique or an

independent set in G.

Here, we show that the Matching Cut problem is tractable for graphs with bounded

neighborhood diversity. We describe an algorithm with time complexity O∗(22d), where d

is the neighborhood diversity of the graph.

We start with a graph G, and its type partitioning P1, P2, . . . , Pd. We label the vertices

of G (using the type partitioning) such that vertices having the same label should be

entirely on one side of the cut. We assume that the graph is connected and so is the

type partitioning graph. We say that a set Pi is an I-set if Pi induces an independent set.

Similarly, we say that a set Pi is a C-set if Pi induces a clique. The size of a set Pi is the

number of vertices in the set Pi.

Observe that a clique Kc with c ≥ 3 and Kr,s with r ≥ 2 and s ≥ 3 do not have a

matching cut. It means that all the vertices of these graphs should be entirely on one side

of the cut. Consider a partition Pi, vertices of Pi are labeled according to the following

rules in order:

• If Pi is a C-set with size ≥ 2, vertices in the set Pi and all the vertices in its

neighboring sets get the same label.

• If Pi is an I-set with size ≥ 3 and is adjacent to an I-set with size ≥ 2, then the

vertices in both the sets get the same label.

• If Pi is an I-set with size ≥ 3 and is adjacent to two or more sets of size ≥ 1, then

vertices in all these sets get the same label.

31

• If Pi is an I-set with size ≥ 3 and has only one adjacent set of size 1, then G has a

matching cut.

• If Pi is an I-set with size 2 and is adjacent to an I-set of size 2 and a set of size 1,

then vertices in all these sets get the same label.

• If Pi is an I-set with size 2 and is adjacent to only one I-set of size 2, in these two

sets, each vertex will get different label.

• If Pi is an I-set with size 2 and is adjacent to two sets of size 1, in these three sets,

each vertex will get different label.

• If Pi is an I-set with size 2 and is adjacent to a set of size 1, then G has a matching

cut.

• All the remaining sets of size 1 will get different labels.

If we apply the above rules, either we conclude that G has a matching cut, or for each

set we use at most 2 labels, hence we can state the following:

Lemma 3. The number of labels required is at most 2d.

The vertices of each label should entirely be in the same set of the matching cut.

Hence, there are 22d possible label combinations. Thus we have the following:

Theorem 4. There is an algorithm with running time O∗(22d) that solves the Matching

Cut problem, where d is the neighbourhood diversity of the graph.

3.3 Other Structural Parameters

For graphs with bounded feedback vertex number, the tree-width is also bounded. As the

Matching Cut problem is in FPT for tree-width, it is also in FPT for feedback vertex

number. Kratsch and Le [52] showed that the Matching Cut problem is in FPT for the

size of the vertex cover. We use the techniques used in [52] to show that the Matching

Cut problem is in FPT for the parameters twin cover and the distance to split graphs.

Lemma 5 (stated as Lemma 3 in [52]). Let I be an independent set and let U = V (G)\I.

Given a partition (X, Y) of U , it can be decided in O(n2) time if the graph has a matching

cut (A,B) such that X ⊆ A and Y ⊆ B.

Two non-adjacent (adjacent) vertices having the same open (closed) neighborhood are

called twins. A twin cover is a vertex set S such that for each edge {u, v} ∈ E(G), either

u ∈ S or v ∈ S or u and v are twins. Note that, for a twin cover S ⊆ V (G), G[V (G)\S]

is a collection of disjoint cliques.

32

Lemma 6. Let S ⊆ V (G) be a twin cover of G. Given a partition (X, Y) of S, it can

be decided in O(n2) time if the graph has a matching cut (A,B) such that X ⊆ A and

Y ⊆ B.

Proof. Clearly, V (G)\S induces a collection of disjoint cliques. Consider a maximal clique

C on two or more vertices in V (G)\S. Let u, v be any two vertices of the clique C. Clearly,

u and v are twins. If u and v has a common neighbor in both X and Y , then the graph

has no matching cut such that X ⊆ A and Y ⊆ B. Hence, without loss of generality we

can assume that u and v have common neighbors only in X. Let X ′ = X ∪V (C). Clearly,

V (G)\(S ∪ V (C)) is an independent set. Using Lemma 5, we can decide in O(n2) time if

the graph has a matching cut (A,B) such that X ′ ⊆ A and Y ⊆ B.

Let S be a twin cover of the graph. By guessing a partition (X, Y) of S, we can check

in O(n2) time if G has a matching cut (A,B) such that X ⊆ A and Y ⊆ B. Hence we

can state the following theorem.

Theorem 7. There is an algorithm with running time O∗(2|S|) to solve the Matching

Cut problem, where S is the twin cover of the graph.

Lemma 8. Let G be a graph with vertex set V (G), if S ⊆ V (G) be such that G[V (G)\S]

is a split graph. Given a partition (X, Y) of S, it can be decided in O(n2) time whether

the graph G has a matching cut (A,B) such that X ⊆ A and Y ⊆ B.

Proof. Let V (G)\S = C ∪ I be the vertex set of the split graph, where C is a clique and I

is an independent set. If |C| = 1 or |C| ≥ 3, then let X ′ = X ∪ V (C) and Y ′ = Y ∪ V (C).

Clearly, V (G)\(S ∪ V (C)) is an independent set. Hence, G has matching cut (A,B) such

that X ⊆ A and Y ⊆ B if and only if G has a matching cut such that either X ′ ⊆ A and

Y ⊆ B or X ⊆ A and Y ′ ⊆ B. Both these instances can be solved in O(n2) time using

Lemma 5. If |C| = 2, depending on whether the vertices of C go to X or Y , we solve four

instances of Lemma 5 to check whether the graph has a matching cut (A,B) such that

X ⊆ A and Y ⊆ B. Therefore the time complexity is O(n2).

Similar to Theorem 7, we can state the following theorem.

Theorem 9. There is an algorithm with running time O∗(2|S|) to solve the Matching

Cut problem, where S ⊆ V (G) such that G[V (G)\S] is a split graph.

33

Chapter 4

Algorithms for H-Free Coloring

Problems

Let G be an undirected graph. The classical q-Coloring problem asks to color the

vertices of the graph using at most q colors such that no pair of adjacent vertices are of

the same color. The Chromatic Number of the graph is the minimum number of colors

required for properly coloring the graph and is denoted by χ(G). The graph coloring

problem has been extensively studied in various settings.

In this thesis we consider a generalization of the graph coloring problem called H-Free

q-Coloring which asks to color the vertices of the graph using at most q colors such that

none of the color classes contain H as an induced subgraph. The H-Free Chromatic

Number is the minimum number of colors required to H-free color the graph and is

denoted by χ(H,G). Note that when H = K2, the H-Free q-Coloring problem is

same as the traditional q-Coloring problem.

For q ≥ 3, H-Free q-Coloring problem is NP-complete as the q-Coloring problem

is NP-complete. The 2-Coloring problem is polynomial-time solvable. The H-Free

2-Coloring problem has been shown to be NP-complete as long as H has 3 or more

vertices [2]. A variant of H-Free Coloring problem which we call H-(Subgraph)Free

q-Coloring which asks to color the vertices of the graph such that none of the color

classes contain H as a subgraph (need not be induced) is studied in [54, 61].

For a fixed q, the H-Free q-Coloring problem can be expressed in monadic second-

order logic (MSOL) [71]. The MSOL formulation together with Courcelle’s theorem [21, 22]

implies linear time solvability on graphs with bounded tree-width. This approach yields

algorithm with running time f(||ϕ||, t) ·n, where ||ϕ|| is the length of the MSOL formula, t

is the tree-width of the graph and n is the number of vertices of the graph. The dependency

of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials.

In this thesis we present the following explicit combinatorial algorithm for H-free

34

coloring problems.

• An O(2t+r log t ·n) time algorithm for Kr-Free 2-Coloring, where Kr is a complete

graph on r vertices.

• An O(qO(tr) · n) time algorithm for the H-Free q-Coloring problem, where

r = |V (H)|.

• An O(2O(t2) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4

is a cycle on 4 vertices.

• An O(2O(tr−2) ·n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where

Kr\e is a graph obtained by removing an edge from Kr.

• An O(2O((tr2)r−2) ·n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem,

where Cr is a cycle of length r.

• An O(qO(tr) ·n) time algorithm for the H-(Subgraph)Free q-Coloring problem,

where r = |V (H)|.

For graphs with tree-width t theH-Free Chromatic Number (H-(Subgraph)Free

Chromatic Number) is at most t + 1. Hence, we have an O(tO(tr)n log t) time algo-

rithm to compute H-Free Chromatic Number (H-(Subgraph)Free Chromatic

Number) for graphs with tree-width t. This implies that H-Free Chromatic Num-

ber (H-(Subgraph)Free Chromatic Number) problem is FPT with respect to the

parameter tree-width.

4.1 Overview of the Techniques Used

In the rest of the chapter, we assume that the nice tree decomposition is given. Let i be a

node in the nice tree decomposition, Xi is the bag of vertices associated with the node

i. Let Ti be the subtree rooted at the node i, G[Ti] denote the graph induced by all the

vertices in Ti.

We use dynamic programming on the nice tree decomposition to solve the problems.

We process the nodes of nice tree decomposition according to its post order traversal.

We say that a partition (A,B) of G is a valid partition if neither G[A] nor G[B] have H

as an induced subgraph. At each node i, we check each bipartition (Ai, Bi) of the bag

Xi to see if (Ai, Bi) leads to a valid partition in the graph G[Ti]. For each partition, we

also keep some extra information that will help us to detect if the partition leads to an

invalid partition at some ancestral (parent) node. We have four types of nodes in the

35

tree decomposition – leaf, introduce, forget and join nodes. In the algorithm, we explain

the procedure for updating the information at each of these above types of nodes and

consequently, to certify whether a partition is valid or not.

4.2 H-Free Coloring

Before discussing the algorithm for the general H-Free q-Coloring problem, we discuss

algorithms for Kr-Free 2-Coloring and H-Free 2-Coloring problems. Finally we

discuss the algorithm for the general H-Free q-Coloring problem.

4.2.1 Kr-Free 2-Coloring

Let Ψ = (Ai, Bi) be a partition of a bag Xi. We set Mi[Ψ] to 1 if there exist a partition

(A,B) of V [Ti] such that Ai ⊆ A, Bi ⊆ B and both G[A] and G[B] are Kr-free. Otherwise,

Mi[Ψ] is set to 0.

Leaf node: For a leaf node Ψ = (∅, ∅) and Mi[Ψ] = 1.

Introduce node: Let j be the only child of the node i. Suppose, v ∈ Xi is the new

vertex present in Xi, v /∈ Xj . Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has

Kr as a subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following cases to compute

Mi[Ψ] value. Since v cannot have forgotten neighbors, it can form a Kr only within the

bag Xi.

Case 1: v ∈ Ai, Mi[Ψ] = Mj[Ψ
′], where Ψ′ = (Ai\v,Bi).

Case 2: v ∈ Bi, Mi[Ψ] = Mj[Ψ
′], where Ψ′ = (Ai, Bi\v).

Forget node: Let j be the only child of the node i. Suppose, v ∈ Xj is the vertex

missing in Xi, v /∈ Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has

Kr as a subgraph, we set Mi[Ψ] to 0. Otherwise, Mi[Ψ] = max{Mj[Ψ
′],Mj[Ψ

′′]}, where,

Ψ′ = (Ai ∪ v,Bi) and Ψ′′ = (Ai, Bi ∪ v).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2 and V (Tj1) ∩
V (Tj2) = Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has Kr as a

subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following expression to compute

Mi[Ψ] value. Since there are no edges between V (Tj1)\Xi and V (Tj2)\Xi, a Kr cannot

contain forgotten vertices from both Tj1 and Tj2 .

Mi[Ψ] =

{
1, If Mj1 [Ψ] = 1 and Mj2 [Ψ] = 1.

0, Otherwise.

36

u u

u u

u u

1

3 4

5 6

2

Figure 4.1: An example graph H.

iv

v v1 2

Figure 4.2: Forming H at an introduce node.
Sequence s = (v, v2, v1,FG,FG,FG).

Correctness of the algorithm follows from the correctness of Mi[Ψ] values, which

can be proved using bottom up induction on nice tree decomposition. G has a valid

bipartitioning if there exists a Ψ such that Mr[Ψ] = 1, where r is the root node of the nice

tree decomposition. The total time complexity of the algorithm is O(2ttrn) = O∗(2t+r log t).

With this we state the following theorem.

Theorem 10. There is an O(2t+r log t · n) time algorithm that solves the Kr-Free 2-

Coloring problem, on graphs with tree-width at most t.

4.2.2 H-Free 2-Coloring

Let Xi be a bag at node i of the nice tree decomposition. Let (Ai, Bi) be a partition of

Xi. We can easily check if G[Ai] or G[Bi] has H as an induced subgraph. Otherwise, we

need to see if there is a partition (A,B) of V (Ti) such that Ai ⊆ A, Bi ⊆ B and both

G[A] and G[B] do not have H has an induced subgraph. If there is such a partition

(A,B), then G[A] and G[B] may have an induced subgraph H ′, an induced subgraph of

H which can lead to H at some ancestral node (introduce node or join node) of the nice

tree decomposition (See Figures 4.2 and 4.3).

We perform dynamic programming over the nice tree decomposition. At each node

i we guess a partition (Ai, Bi) of Xi and possible induced subgraphs of H that are part

of A and B respectively. We check if such a partition is possible. Below we explain the

algorithm in detail.

Let the vertices of the graph H are labeled as u1, u2, u3, . . . , ur. Let (Ai, Bi) be a

partition of vertices in the bag Xi. Let (A,B) be a partition of V (Ti) such that A ⊇ Ai

and B ⊇ Bi. We define ΓAi
as follows:

37

i

jj
v v v v

v v

1 2 21

1 2

1 2

Figure 4.3: Forming H at join node. Sequences at node j1 s
′ = (DC,DC, v1, v2,FG,FG),

at node j2 s
′′ = (FG,FG, v1, v2,DC,DC) gives a sequence s = (FG,FG, v1, v2, FG,FG) at

node i. Vertices outside the dashed lines are forgotten vertices.

SAi
={(w1, w2, w3, . . . , wr)|w` ∈ {Ai ∪ {FG,DC}},

∀`1 6= `2, w`1 = w`2 =⇒ w`1 ∈ {FG,DC}}.

IAi
={s = (w1, w2, w3, . . . , wr) ∈ SAi

| there exists `1 6= `2

such that w`1 = FG, w`2 = DC and {u`1 , u`2} ∈ E(H)}

ΓAi
=SAi

\IAi

Here FG represents a vertex in A\Ai, the forgotten vertices in A and DC stands for

don’t care. That is we don’t care if the corresponding vertex is part of the subgraph or

not. Similarly, we can define ΓBi
with respect to the sets Bi and B.

A sequence in SAi
corresponds to an induced subgraph H ′ of H in A as follows:

1. If w` = FG then u` is part of A\Ai, the forgotten vertices in A.

2. If w` = DC then u` need not be part of the subgraph H ′.

3. If w` ∈ Ai then the vertex w` corresponds to the vertex u` of H ′.

ΓAi
is the set of sequences that can become H in future at some ancestral (insert/join)

node of the tree decomposition. Note that the sequences IAi
are excluded from ΓAi

because

a forgot vertex cannot have an edge to a vertex which will come in future at some ancestral

node (insert or join nodes).

Definition 22 (Induced Subgraph Legal Sequence in ΓAi
with respect to A). A sequence

s = (w1, w2, w3, . . . , wr) ∈ ΓAi
is legal if the sequence s corresponds to induced subgraph

H ′ of H within A as follows.

38

Let FV(s) = {`|w` = FG}, DC(s) = {`|w` = DC} and VI(s) = [r]\{FV(s) ∪ DC(s)}.
Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s) ∪ FV(s)}. That is

H ′ = H[{u`|` ∈ VI(s) ∪ FV(s)}].
If there exist |FV(s)| distinct vertices z` ∈ A\Ai corresponding to each index in

FV(s) such that H ′ is isomorphic to G[{w`|` ∈ VI(s)} ∪ {z`|` ∈ FV(s)}], then s is legal.

Otherwise, the sequence is illegal.

Similarly, we define legal/illegal sequences in ΓBi
with respect to B.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple. Here, (Ai, Bi) is a partition of Xi, Pi ⊆ ΓAi
and

Qi ⊆ ΓBi
.

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. Every sequence in Pi is legal with respect to A.

3. Every sequence in Qi is legal with respect to B.

4. Every sequence in ΓAi
\Pi is illegal with respect to A.

5. Every sequence in ΓBi
\Qi is illegal with respect to B.

6. Neither G[A] nor G[B] contains H as an induced subgraph.

Otherwise Mi[Ψ] is set to 0.

We call a 4-tuple Ψ as invalid if one of the following conditions occur. If Ψ is invalid

we set Mi[Ψ] to 0.

1. There exists a sequence s ∈ Pi such that s does not contain DC.

2. There exists a sequence s ∈ Qi such that s does not contain DC.

Now we explain how to compute Mi[Ψ] values at the leaf, introduce, forgot and join

nodes of the nice tree decomposition.

Leaf node: Let i be a leaf node, Xi = ∅, for Ψ = (Ai, Bi, Pi, Qi), we have Mi[Ψ] = 1.

Here Ai = Bi = ∅, Pi ⊆ {([DC]r)} and Qi ⊆ {([DC]r)}.
Introduce node: Let i be an introduce node and j be the child node of i. Let {v} =

Xi\Xj. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid we set Mi[Ψ] = 0.

Otherwise depending on whether v ∈ Ai or v ∈ Bi we have two cases. We discuss only

the case v ∈ Ai, the case v ∈ Bi can be analogously defined.

39

v ∈ Ai: We set Mi[Ψ] = 0, if there exists an illegal sequence s (in Pi) containing v or if

there exists a trivial legal sequence s containing v but s is not in Pi.

That is, we set Mi[Ψ] = 0 in one of the following (?) conditions occurs:

[? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but {v, w`2} /∈
E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} /∈ E(H) but {v, w`2} ∈
E(G).

3. ∃`1 6= `2, such that w`1 = v, w`2 = FG, {u`1 , u`2} ∈ E(H).

4. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi
\Pi. There exists `1 such that w`1 = v

and for all `2 6= `1 w`2 ∈ Ai ∪ {DC}. For all `1 6= `2 w`1 , w`2 ∈ Ai,

{u`1 , u`2} ∈ E(H) ⇐⇒ {w`1 , w`2} ∈ E(G).

Otherwise we set Mi[Ψ] = Mj[Ψ
′], where Ψ′ = (Ai\v,Bi, Pj, Qi). Here Pj is

computed as follows:

Definition 23. RepDC(s, v) = s′, sequence s′ obtained by replacing v (if present)

with DC in s.

Note that, RepDC(s, v) = s, if v not present in s.

Pj = ∪s∈Pi
{RepDC(s, v)}.

Forget node: Let i be a forget node and j be the only child of node i. Let {v} = Xj\Xi.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid we set Mi[Ψ] = 0. Otherwise,

we set Mi[Ψ] = max{δ1, δ2} where δ1 and δ2 are computed as follows:

Computing δ1: Set Aj = Ai ∪ {v}. As v is the extra vertex in Aj, there could be many

possible Pj at node j.

Definition 24. RepFG(s, v) = s′, sequence s′ obtained by replacing v (if present)

with FG in s.

Note that, if s does not contain the vertex v then RepFG(s, v) = s.

We also extend the definition of RepFG to a set of sequences as follows:

RepFG(S, v) = ∪s∈S{RepFG(s, v)}.

40

Note that, if s is a legal sequence at the node j with respect to A, then RepFG(s, v)

is also a legal sequence at node i with respect to A.

δ1 = max
Pj⊆ΓAj

RepFG(Pj ,v)=Pi

{Mj[(Aj, Bi, Pj, Qi)]}

Computing δ2: Bj = Bi ∪ v. It is analogous to computing δ1 but we process on B.

Join node: Let i be a join node, j1, j2 be the left and right children of the node i

respectively. Xi = Xj1 = Xj2 and there are no edges between V (Tj1)\Xi and V (Tj2)\Xi.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid we set Mi[Ψ] = 0. Otherwise,

we compute Mi[Ψ] value as follows:

Definition 25. Let s = (w1, w2, w3, . . . , wr), s′ = (w′1, w
′
2, w

′
3, . . . , w

′
r) and s′′ = (w′′1 , w

′′
2 , w

′′
3 , . . . , w

′′
r)

be three sequences. We say that s = Merge(s′, s′′) if the following conditions are satisfied.

1. ∀` w` ∈ Xi =⇒ w′` = w′′` = w`.

2. ∀` w` = FG =⇒ either (w′` = FG and w′′` = DC) or (w′` = DC and w′′` = FG).

3. ∀` w` = DC =⇒ w′` = w′′` = DC.

Note that, if s′ ∈ ΓAj1
and s′′ ∈ ΓAj2

are legal sequences at node j1 and j2 respectively

then s is a legal sequence at node i with respect to A. We extend the Merge operation to

sets of sequences as follows:

Merge(S1, S2) = {s|∃s′ ∈ S1, s
′′ ∈ S2 such that s = Merge(s′, s′′)}.

We set Mi[Ψ] = 1 if there exists Pj1 , Qj1 , Pj2 and Qj2 such that the following conditions

are satisfied:
(i) Pi = Merge(Pj1 , Pj2), (ii) Qi = Merge(Qj1 , Qj2),

(iii) Mj1 [(Ai, Bi, Pj1 , Qj1)] = 1, and (iv) Mj2 [(Ai, Bi, Pj2 , Qj2)] = 1.

The graph has valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1. Where r is

the root node of the nice tree decomposition. The correctness of the algorithm is implied

by the correctness of Mi[Ψ] values, which can be proved using a bottom up induction

on the nice tree decomposition. The time complexity at each of the nodes in the tree

decomposition is as follows: constant time at leaf nodes, O(2O(tr)) time at insert nodes,

O(2O(tr)) time at forget nodes and O(2O(tr)) time at join nodes. Thus we get the following:

Theorem 11. There is an O(2O(tr) · n) time algorithm that solves the H-Free 2-

Coloring problem for any arbitrary fixed H (|V (H)| = r), on graphs with tree-width at

most t.

41

4.2.3 H-Free q-Coloring

We note that techniques used in 4.2.2 extend in a straightforward manner to solve the

H-Free q-Coloring problem. We discuss the algorithm for completeness. Here we

consider tuples Ψ that have 2q sets. That is Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i).

We perform dynamic programming over the nice tree decomposition. At each node i

we guess a partition (A1
i , A

2
i , . . . , A

q
i) of Xi and possible induced subgraphs of H that are

part of Az
i for 1 ≤ z ≤ q respectively. We check if such a partition is possible. Below we

explain the algorithm in detail.

Let the vertices of the graph H are labeled as u1, u2, u3, . . . , ur. Let (A1
i , A

2
i , . . . , A

q
i)

be a partition of vertices in the bag Xi. Let (A1, A2, . . . , Aq) be a partition of V (Ti) such

that for 1 ≤ z ≤ q, Az ⊇ Az
i . For 1 ≤ z ≤ q, we define ΓAz

i
as follows:

SAz
i

={(w1, w2, w3, . . . , wr)|w` ∈ {Az
i ∪ {FG,DC}},

∀`1 6= `2, w`1 = w`2 =⇒ w`1 ∈ {FG,DC}}.

IAz
i

={s = (w1, w2, w3, . . . , wr) ∈ SAz
i
| there exists `1 6= `2

such that w`1 = FG, w`2 = DC and {u`1 , u`2} ∈ E(H)}

ΓAz
i

=SAz
i
\IAz

i

Here FG represents a vertex in Az\Az
i , the forgotten vertices in Az and DC stands for

don’t care. That is we don’t care if the corresponding vertex is part of the subgraph or

not.

A sequence in SAz
i

corresponds to a subgraph H ′ of H in Az as follows:

1. If w` = FG then u` is part of Az\Az
i , the forgotten vertices in Az.

2. If w` = DC then u` need not be part of the subgraph H ′.

3. If w` ∈ Az
i then the vertex w` corresponds to the vertex u` of H ′.

ΓAz
i

is the set of sequences that can become H in future at some ancestral (insert/join)

node of the tree decomposition. Note that the sequences IAz
i

are excluded from ΓAz
i

because a forgot vertex cannot have an edge to a vertex which will come in future at some

ancestral node (insert or join nodes).

Definition 26 (Induced Subgraph Legal Sequence in ΓAz
i

with respect to Az for 1 ≤ z ≤ q).

A sequence s = (w1, w2, w3, . . . , wr) ∈ ΓAz
i

is legal if the sequence s corresponds to subgraph

H ′ of H within Az as follows.

42

Let FV(s) = {`|w` = FG}, DC(s) = {`|w` = DC} and VI(s) = [r]\{FV(s) ∪ DC(s)}.
Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s) ∪ FV(s)}. That is

H ′ = H[{u`|` ∈ VI(s) ∪ FV(s)}].
If there exist |FV(s)| distinct vertices z` ∈ Az\Az

i corresponding to each index in

FV(s) such that H ′ is isomorphic to G[{w`|` ∈ VI(s)} ∪ {z`|` ∈ FV(s)}], then s is legal.

Otherwise, the sequence is illegal.

Let Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i) be a tuple. Here, (A1

i , A
2
i , . . . , A

q
i) is a parti-

tion of Xi, P
z
i ⊆ ΓAz

i
for 1 ≤ z ≤ q.

We define Mi[Ψ] to be 1 if there is a partition (A1, A2, . . . , Aq) of V (Ti) such that:

1. Az
i ⊆ Az for 1 ≤ z ≤ q.

2. Every sequence in P z
i is legal with respect to Az for 1 ≤ z ≤ q.

3. Every sequence in ΓAz
i
\P z

i is illegal with respect to Az for 1 ≤ z ≤ q.

4. For 1 ≤ z ≤ q, every Az
i is H-free.

Otherwise Mi[Ψ] is set to 0.

We call a tuple Ψ as invalid if one of the following condition occur. If Ψ is invalid we

set Mi[Ψ] to 0.

1. There exists a sequence s ∈ P z
i for some 1 ≤ z ≤ q, such that s does not contain

DC.

Now we explain how to compute Mi[Ψ] values at the leaf, introduce, forgot and join

nodes of the nice tree decomposition.

Leaf node: Let i be a leaf node, Xi = ∅, for Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i), we

have Mi[Ψ] = 1. Here Az
i = ∅, P z

i ⊆ {([DC]r)}.
Introduce node: Let i be an introduce node and j be the child node of i. Let {v} =

Xi\Xj. Let Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i) be a tuple at node i. If Ψ is invalid

we set Mi[Ψ] = 0. Otherwise without loss of generality let us assume v ∈ Az
i for some

1 ≤ z ≤ q.

v ∈ Az
i : We set Mi[Ψ] = 0, if there exists an illegal sequence s (in P z

i) containing v or if

there exists a trivial legal sequence s containing v but s is not in P z
i .

That is, we set Mi[Ψ] = 0 in one of the following (#) conditions occurs:

43

[(#) Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Az
i , {u`1 , u`2} ∈ E(H) but {v, w`2} /∈

E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Az
i , {u`1 , u`2} /∈ E(H) but {v, w`2} ∈

E(G).

3. ∃`1 6= `2, such that w`1 = v, w`2 = FG, {u`1 , u`2} ∈ E(H).

4. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAz
i
\P z

i . There exists `1 such that w`1 = v

and for all `2 6= `1 w`2 ∈ Az
i ∪ {DC}. For all `1 6= `2 w`1 , w`2 ∈ Az

i ,

{u`1 , u`2} ∈ E(H) ⇐⇒ {w`1 , w`2} ∈ E(G).

Otherwise we set Mi[Ψ] = Mj [Ψ
′], where Ψ′ is obtained by replacing Az

i with Az
i \{v}

and P z
i with P z

j which is computed as follows:

Definition 27. RepDC(s, v) = s′, sequence s′ obtained by replacing v (if present)

with DC in s.

Note that, RepDC(s, v) = s, if v not present in s.

P z
j = ∪s∈P z

i
{RepDC(s, v)}.

Forget node: Let i be a forget node and j be the only child of node i. Let {v} = Xj\Xi.

Let Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i) be a tuple at node i. If Ψ is invalid we set

Mi[Ψ] = 0. Otherwise, we set Mi[Ψ] = max1≤z≤q{δz} where δz is computed as follows:

Computing δz: Set Az
j = Az

i ∪ {v}. As v is the extra vertex in Az
j , there could be many

possible P z
j at node j.

Definition 28. RepFG(s, v) = s′, sequence s′ obtained by replacing v (if present)

with FG in s.

Note that, if s does not contain the vertex v then RepFG(s, v) = s.

We also extend the definition of RepFG to a set of sequences as follows:

RepFG(S, v) = ∪s∈S{RepFG(s, v)}.

Note that, if s is a legal sequence at the node j with respect to Az, then RepFG(s, v)

is also a legal sequence at node i with respect to Az.

44

δz = max
P z
j ⊆ΓAz

j

RepFG(P z
j ,v)=P z

i

{Mj[(A
1
j , A

2
j , . . . , A

q
j , P

1
j , P

2
j , . . . , P

q
j)]}

Join node: Let i be a join node, j1, j2 be the left and right children of the node i

respectively. Xi = Xj1 = Xj2 and there are no edges between V (Tj1)\Xi and V (Tj2)\Xi.

Let Ψ = (A1
i , A

2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i) be a tuple at node i. If Ψ is invalid we set

Mi[Ψ] = 0. Otherwise, we compute Mi[Ψ] value as follows:

Definition 29. Let s = (w1, w2, w3, . . . , wr), s′ = (w′1, w
′
2, w

′
3, . . . , w

′
r) and s′′ = (w′′1 , w

′′
2 ,

w′′3 , . . . , w
′′
r) be three sequences. We say that s = Merge(s′, s′′) if the following conditions

are satisfied.

1. ∀` w` ∈ Xi =⇒ w′` = w′′` = w`.

2. ∀` w` = FG =⇒ either (w′` = FG and w′′` = DC) or (w′` = DC and w′′` = FG).

3. ∀` w` = DC =⇒ w′` = w′′` = DC.

Note that, if s′ ∈ ΓAz
j1

and s′′ ∈ ΓAz
j2

are legal sequences at node j1 and j2 respectively

then s is a legal sequence at node i with respect to Az
i . We extend the Merge operation

to sets of sequences as follows:

Merge(S1, S2) = {s|∃s′ ∈ S1, s
′′ ∈ S2 such that s = Merge(s′, s′′)}.

We set Mi[Ψ] = 1 if there exists P z
j1

and P z
j2

for 1 ≤ z ≤ q such that the following

conditions are satisfied:

• P z
i = Merge(P z

j1
, P z

j2
) for 1 ≤ z ≤ q,

• Mj1 [(A
1
j1
, A2

j1
, . . . , Aq

j1
, P 1

j1
, P 2

j1
, . . . , P q

j1
)] = 1, and

• Mj2 [(A
1
j2
, A2

j2
, . . . , Aq

j2
, P 1

j2
, P 2

j2
, . . . , P q

j2
)] = 1.

The graph has valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1. Where r is

the root node of the nice tree decomposition. The correctness of the algorithm is implied

by the correctness of Mi[Ψ] values, which can be proved using a bottom up induction on

the nice tree decomposition. The time complexity of the algorithm is O∗(qO(tr)). Thus we

state the following theorem.

Theorem 12. There is an O(qO(tr) · n) time algorithm that solves the H-Free q-

Coloring problem for any arbitrary fixed H (|V (H)| = r), on graphs with tree-width at

most t.

45

For graphs with tree-width t, χ(H,G) ≤ χ(G) ≤ t + 1. Our techniques can also be

used to compute the H-Free Chromatic Number of the graph by searching for the

smallest q for which there is an H-free q-coloring. We have the following theorem.

Theorem 13. There is an O(tO(tr) · n log t) time algorithm to compute H-Free Chro-

matic Number of the graph whose tree-width is at most t.

This shows that H-Free Chromatic Number problem is in FPT with respect to

the parameter tree-width.

4.3 H-(Subgraph)Free Coloring

Before discussing the algorithm for the general H-(Subgraph)Free q-Coloring prob-

lem, we discuss algorithms for C4-(Subgraph)Free 2-Coloring, {Kr\e}-(Subgraph)Free
2-Coloring and Cr-(Subgraph)Free 2-Coloring and H-(Subgraph)Free 2-

Coloring problems. Finally we discuss the algorithm for the generalH-(Subgraph)Free

q-Coloring problem.

4.3.1 C4-(Subgraph)Free 2-Coloring

A cycle of length 4 is formed when a pair of (adjacent or non-adjacent) vertices have two or

more common neighbors. If a graph has no C4 then any vertex pair can have at most one

common neighbor. Let Xi be a bag at the node i of the nice tree decomposition. We guess

a partition (Ai, Bi) of the bag Xi. For each pair of vertices from Ai (similarly Bi), we also

guess if the pair has exactly one common forgotten neighbor in part A (similarly B) of

the partition. We check if the above guesses lead to a valid partitioning in the subgraph

G[Ti], which is the graph induced by the vertices in the node i and all its descendent

nodes. Below we formally explain the technique.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple defined as follows: (Ai, Bi) is a partition of Xi,

Pi ⊆
(
Ai

2

)
and Qi ⊆

(
Bi

2

)
. Intuitively, Pi and Qi are the set of those pairs that have exactly

one common forgotten neighbor.

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. Every pair in Pi has exactly one common neighbor in A\Ai.

3. Every pair in
(
Ai

2

)
\ Pi does not have a common neighbor in A\Ai.

4. Every pair in Qi has exactly one common neighbor in B\Bi.

46

5. Every pair in
(
Bi

2

)
\Qi does not have a common neighbor in B\Bi.

6. G[A] and G[B] do not have C4 as a subgraph.

Otherwise, Mi[Ψ] is set to 0. Suppose there exists a 4-tuple Ψ such that Mr[Ψ] = 1, where

r is the root of the nice tree decomposition. Then the above conditions 1 and 6 ensure

that G can be partitioned in the required manner.

When one of the following occurs, it is easy to see that the 4-tuple does not lead to a

required partition. We say that the 4-tuple Ψ is invalid if one of the below cases occur:

(i) G[Ai] or G[Bi] contains a C4.

(ii) There exists a pair {x, y} ∈ Pi with a common neighbor in Ai.

(iii) There exists a pair {x, y} ∈ Qi with a common neighbor in Bi.

Note that it is easy to check if a given Ψ is invalid. Below we explain how to compute

Mi[Ψ] value at each node i.

Leaf node: For a leaf node i, Ψ = (∅, ∅, ∅, ∅) and Mi[Ψ] = 1.

Introduce node: Let j be the only child of the node i. Suppose v ∈ Xi is the new vertex

present in Xi, v /∈ Xj. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ is invalid, we set

Mi[Ψ] to 0. Otherwise, we use the following cases to compute the Mi[Ψ] value.

Case 1, v ∈ Ai: If ∃{v, x} ∈ Pi for some x ∈ Ai or if ∃{x, y} ∈ Pi such that {x, y} ⊆
N(v)∩Ai, thenMi[Ψ] = 0. Otherwise, Mi[Ψ] = Mj [Ψ

′], where Ψ′ = (Ai\v,Bi, Pi, Qi).

As v is a newly introduced vertex, it cannot have any forgotten neighbors. Hence,

{v, x} ∈ Pi =⇒Mi[Ψ] = 0. If x and y have a common forgotten neighbor, they all

form a C4, together with v. Hence {x, y} ∈ Pi =⇒Mi[Ψ] = 0.

Case 2, v ∈ Bi: If ∃{v, x} ∈ Qi for some x ∈ Bi or if ∃{x, y} ∈ Qi such that {x, y} ⊆
N(v)∩Bi, thenMi[Ψ] = 0.. Otherwise, Mi[Ψ] = Mj [Ψ

′], where Ψ′ = (Ai, Bi\v, Pi, Qi).

Forget node: Let j be the only child of the node i. Suppose v ∈ Xj is the vertex missing

in Xi, v /∈ Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ is invalid, we set Mi[Ψ] to

0. Otherwise, Mi[Ψ] is computed as follows:

Case 1, v ∈ Aj: If ∃x, y ∈ Ai such that xv, yv ∈ E(G), then v is a common forgotten

neighbor for x and y. Hence we set Mi[Ψ] = 0 whenever {x, y} /∈ Pi. Otherwise,

let R = {{x, y}|x, y ∈ Ai ∩ N(v)}. At node j, note that any pair in R with a

common forgotten neighbor will form a C4. Hence we consider only those Pj’s that

47

are disjoint with R. Also there can be new pairs formed with v at the node j. Let

S = {{v, x}|x ∈ Ai}. We have the following equation.

δ1 = max
X⊆S
{Mj[(Ai ∪ v,Bi, (Pi\R) ∪X,Qi)]}.

Case 2, v ∈ Bj: This is analogous to Case 1. We set Mi[Ψ] = 0, whenever {x, y} /∈ Qi.

Otherwise, let R = {{x, y}|x, y ∈ Bi ∩N(v)} and S = {{v, x}|x ∈ Bi}.

δ2 = max
X⊆S
{Mj[(Ai, Bi ∪ v, Pi, (Qi\R) ∪X)]}.

If Mi[Ψ] is not set to 0 already, we set Mi[Ψ] = max{δ1, δ2}.

Join node: Let j1 and j2 be the children of the node i. By the property of nice tree

decomposition, we have Xi = Xj1 = Xj2 and V (Tj1) ∩ V (Tj2) = Xi. There are no edges

between V (Tj1)\Xi and V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi. If Ψ is

invalid, we set Mi[Ψ] to 0. Otherwise, we use the following expression to compute the

value of Mi[Ψ].

A pair {x, y} ∈ Pi can come either from the left subtree or from the right subtree

but not from both, for that would imply two distinct common neighbors for x and y and

hence a C4. For X ⊆ Pi and Y ⊆ Qi, Ψ1 = (Ai, Bi, X, Y) and Ψ2 = (Ai, Bi, Pi\X,Qi\Y).

Mi[Ψ] =

{
1, ∃X ⊆ Pi, Y ⊆ Qi such that Mj1 [Ψ1] = Mj2 [Ψ2] = 1.

0, Otherwise.

The correctness of the algorithm is implied by the correctness of Mi[Ψ] values, which

follows by a bottom-up induction on the nice tree decomposition. G has a valid biparti-

tioning if there exists a 4-tuple Ψ such that Mr[Ψ] = 1, where r is the root of the nice

tree decomposition.

The time complexity at each of the nodes in the tree decomposition is as follows:

constant time at leaf nodes, O(2t+t2) time at insert nodes, O(22t+t2) time at forget nodes

and O(2t+2t2) time at join nodes. This gives the following:

Theorem 14. There is an O(2O(t2)ṅ) time algorithm that solves the C4-(Subgraph)Free

2-Coloring problem on graphs with tree-width at most t.

4.3.2 {Kr\e}-(Subgraph)Free 2-Coloring

Let Xi be a bag at the node i of the nice tree decomposition. Let Ψ = (Ai, Bi, Pi, Qi) is a

4-tuple defined as follows: (Ai, Bi) be a partition of Xi, Pi ⊆
(

Ai

r−2

)
and Qi ⊆

(
Bi

r−2

)
.

48

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. For every set S in Pi, there is exactly one vertex v ∈ (V (Ti)\Xi) ∩ A, such that

G[S ∪ v] is a Kr−1.

3. For every set S ∈
(

Ai

r−2

)
\ Pi, G[S ∪ v] is not Kr−1 for any choice of vertex v ∈

(V (Ti)\Xi) ∩ A.

4. For every set S in Qi, there is exactly one vertex v ∈ (V (Ti)\Xi) ∩ B, such that

G[S ∪ v] is a Kr−1.

5. For every set S ∈
(

Bi

r−2

)
\ Qi, G[S ∪ v] is not Kr−1 for any choice of vertex v ∈

(V (Ti)\Xi) ∩B.

6. G[A] and G[B] do not have Kr\e as a subgraph.

Otherwise, Mi[Ψ] is set to 0.

We say that a 4-tuple is invalid if one of the following occurs:

(i) G[Ai] or G[Bi] has Kr\e as subgraph.

(ii) There exists a set Y in Pi such that every vertex in Y has a common neighbor in Ai.

(iii) There exists a set Y in Qi such that every vertex in Y has a common neighbor in

Bi.

(iv) There exists a set Y in Pi such that Y is not a clique.

(v) There exists a set Y in Qi such that Y is not a clique.

We calculate Mi[Ψ] based on the type of node i.

Leaf node: For a leaf node, Ψ = (∅, ∅, ∅, ∅) and Mi[Ψ] = 1.

Introduce node: Let j be the only child of node i. Suppose v is the lone vertex in

Xi\Xj. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0.

Otherwise, we use the following cases to compute Mi[Ψ] value.

Case 1, v ∈ Ai: If ∃Y ∈ Pi such that Y ⊆ (N [v] ∩ Ai), Mi[Ψ] = 0. Otherwise, Mi[Ψ] =

Mj[Ψ
′], where Ψ′ = (Ai\v,Bi, Pi, Qi).

Case 2, v ∈ Bi: If ∃Y ∈ Qi such that Y ⊆ (N [v] ∩Bi), Mi[Ψ] = 0. Otherwise, Mi[Ψ] =

Mj[Ψ
′], where Ψ′ = (Ai, Bi\v, Pi, Qi).

49

Forget node: Let j be the only child of the node i. Suppose v is the lone vertex in

Xj\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0.

Otherwise, Mi[Ψ] is computed as follows.

Case 1: If ∃Y ∈
(

Ai

r−2

)
such that Y ⊆ N(v) and Y /∈ Pi, then Mi[Ψ] = 0. Otherwise, let

R = {Y ∈
(

Ai

r−2

)
|Y ⊆ N(v)} and S = {Y ∈

(
Ai

r−2

)
|v ∈ Y }.

δ1 = max
Z⊆S
{Mj[(Ai ∪ v,Bi, (Pi\R) ∪ Z,Qi)]}.

Case 2: If ∃Y ∈
(

Bi

r−2

)
such that Y ⊆ N(v) and Y /∈ Qi, then Mi[Ψ] = 0. Otherwise, let

R = {Y ∈
(

Bi

r−2

)
|Y ⊆ N(v)} and S = {Y ∈

(
Bi

r−2

)
|v ∈ Y }.

δ2 = max
Z⊆S
{Mj[(Ai, Bi ∪ v, Pi, (Qi\R) ∪ Z)]}.

If Mi[Ψ] is not set to 0 already, we set Mi[Ψ] = max{δ1, δ2}.

Join node: Let j1 and j2 be the children of node i. Xi = Xj1 = Xj2 and V (Tj1)∩V (Tj2) =

Xi. There are no edges between V (Tj1)\Xi and V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be

a 4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we use the following

expression to compute Mi[Ψ] value. For Z1 ⊆ Pi and Z2 ⊆ Qi, let Ψ1 = (Ai, Bi, Z1, Z2)

and Ψ2 = (Ai, Bi, Pi\Z1, Qi\Z2).

Mi[Ψ] =

{
1, If ∃Z1 ⊆ Pi, Z2 ⊆ Qi such that Mj1 [Ψ1] = 1 and Mj2 [Ψ2] = 1.

0, Otherwise.

The correctness of the algorithm is implied by the correctness of Mi[Ψ] values, which

follows by a bottom-up induction on the nice tree decomposition. G has a valid biparti-

tioning if there exists a 4-tuple Ψ such that Mr[Ψ] = 1, where r is the root of the nice tree

decomposition. The time complexity at each of the nodes in the tree decomposition is as

follows: constant time at leaf nodes, O(2t+tr−2
) time at insert nodes, O(2t+tr−2

) time at

forget nodes and O(2t+2tr−2
) time at join nodes. With this we state the following theorem.

Theorem 15. There is an O∗(2O(tr−2)) time algorithm that solves the {Kr\e}-(Subgraph)Free
2-Coloring problem w, on graphs with tree-width at most t.

We remark that the technique will also work for the case of Kr\{e1, e2} where e1, e2

two non-adjacent edges. The only difference in the algorithm is that the elements in the

sets Pi and Qi should not only include cliques of size r − 2 but also vertex sets that form

Kr−2\e.

50

v

u u u u u u u u
1 2 3 4 5 6 7 8

1 1 1 1 15 3

Ai

Figure 4.4: A cycle of length 15 formed with vertex v at an insert node. The vertices
outside the dotted outline are forgotten vertices. The ` values are marked between the
ui’s in the figure.

1 014 1 1 0 131 0 1 3 1 0 1 4 1

1 4 1 3 1 3 1 4 1

AAj1 j2

Ai

Figure 4.5: A cycle of length 20 formed using the paths from left and right subtrees at
join node. The vertices outside the dotted outline are forgotten vertices.

4.3.3 Cr-(Subgraph)Free 2-Coloring

Let Xi be a bag at node i of the nice tree decomposition. Let (Ai, Bi) be a partition of

Xi. We can easily check if G[Ai] or G[Bi] has a cycle of length r. Otherwise, we need to

see if there is a partition (A,B) of V (Ti) such that Ai ⊆ A, Bi ⊆ B and both G[A] and

G[B] do not have cycle of length r. If there is such a partition (A,B), then G[Ai] and

G[Bi] may have partial paths of length at most r − 2 which can lead to cycle of length r

at some ancestral node j (insert node or join node) of the nice tree decomposition (see

Figures 4.4 and 4.5). We perform dynamic programming over the nice tree decomposition.

At each node i, we guess a partition (Ai, Bi) of Xi and possible partial paths of length

at most r − 2 of A and B using vertices of Ai and Bi respectively. We check if such a

partition (A,B) is possible or not. Below we explain the algorithm in detail.

Below, we define ΓAi
and ΓBi

which are the set of all possible partial paths that need

to be considered within the parts Ai and Bi respectively. The members of ΓAi
and ΓBi

are called sequences.

ΓAi
={(u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2) | u1, u2, . . . , ur−2 ∈ Ai,

2 ≤
j=r−2∑
j=1

`j ≤ r − 2, 0 ≤ `1, . . . , `r−2 ≤ r − 2,max{`1, . . . , `r−2} ≥ 2}.

51

ΓBi
={(u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2) | u1, u2, . . . , ur−2 ∈ Bi,

2 ≤
j=r−2∑
j=1

`j ≤ r − 2, 0 ≤ `1, . . . , `r−2 ≤ r − 2,max{`1, . . . , `r−2} ≥ 2}.

Definition 30 (Legal Sequence in ΓAi
with respect toA). A sequence s = (u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2) ∈

ΓAi
is said to be legal with respect to a set A ⊇ Ai, if the following conditions are true for

each 1 ≤ i ≤ r − 3:

(a) If `i > 1, there is a path of length `i from ui to ui+1. Except for ui and ui+1, all the

other `i − 1 vertices in the path are vertices in A\Ai. All the above paths from the

sequence must be vertex disjoint.

(b) If `i = 1, then uiui+1 ∈ E(G).

(c) If `i = 0, then either uiui+1 /∈ E(G) or the edge uiui+1 is not included in the path.

Legal sequences in ΓBi
with respect to B are analogously defined.

Intuitively, condition (a) above insists that all the intermediate vertices in the path

from ui to ui+1 are forgotten vertices at the node i.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple defined as follows: (Ai, Bi) is a partition of Xi,

Pi ⊆ ΓAi
and Qi ⊆ ΓBi

. Let A, B be a partition of V (Ti) such that Ai ⊆ A and Bi ⊆ B.

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. Every sequence s ∈ Pi is legal w.r.t. A.

3. Every sequence s ∈ Qi is legal w.r.t. B.

4. Every sequence s ∈ ΓAi
\Pi is illegal w.r.t. A.

5. Every sequence s ∈ ΓBi
\Qi is illegal w.r.t. B.

6. G[A] and G[B] do not have Cr as a subgraph.

Otherwise, Mi[Ψ] is set to 0.

Like in the case of C4, when one of the following occurs, it is easy to see that the

4-tuple does not lead to a required partition. We say that the 4-tuple Ψ is invalid in these

cases:

(i) G[Ai] or G[Bi] contains a Cr.

(ii) There exist an s = (u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2) ∈ Pi, u ∈ Ai such that s and

u form a Cr within A.

52

(iii) There exist an s = (u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2) ∈ Qi, u ∈ Bi such that s and

u form a Cr within B.

Condition (i) can be verified in O∗(tr) time. For condition (ii) (and similarly for (iii))

we do the following. For a vertex u ∈ Ai and a sequence s we can verify if u forms a Cr

with s as follows. Consider all the edges adjacent to the vertices of the sequence s. For

each pair of such edges, suppose the edges are adjacent to the vertices ux and uy (for

x < y) we check if the subsequence (u, 1, ux, `x, ux+1, . . . , uy, 1, u) forms a cycle of length

r. For a vertex u and a sequence s we can verify this in O(r3) time. The total time

complexity to check both conditions (ii) and (iii) is O((|Pi|+ |Qi|)tr3) time.

We calculate Mi[Ψ] based on the type of node i. For algorithmic convenience, we add

2r − 4 isolated vertices to the graph G. These vertices are also added to each bag of the

nice tree decomposition. This will increase the tree-width by 2r − 4. This changes some

aspects of the decomposition but still enough “niceness” of the nice tree decomposition is

retained for the purpose of the algorithm. Among the added vertices, a fixed set of r − 2

vertices added to every Ai and the other r − 2 vertices to Bi.

Leaf node: For a leaf node, note that there is only one partition (Ai, Bi) possible – where

we add the fixed set of the (r − 2) added vertices to each of Ai and Bi. For this partition,

ΓAi
= ΓBi

= ∅, Ψ = (Ai, Bi, ∅, ∅) and Mi[Ψ] = 1.

Introduce node: Let j be the only child of node i. Suppose v ∈ Xi is the new vertex

present in Xi, v /∈ Xj. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ is invalid, we set

Mi[Ψ] to 0. Otherwise we compute the Mi[Ψ] value in the following manner. We only

describe the case when v ∈ Ai.

Case v ∈ Ai: Suppose there is a sequence s = (. . . , ux, `x, v, `x+1, ux+2, . . .) ∈ Pi con-

taining v. Since v is newly introduced, it cannot have forgotten neighbors. Hence the

following cases are illegal, and we can set the corresponding Mi[Ψ] to 0 if any of these

occur.

• `x ≥ 2.

• `x+1 ≥ 2.

• `x = 1 and uxv /∈ E(G).

• `x+1 = 1 and vux+2 /∈ E(G).

We will compute Mi[Ψ] through Mj[Ψ
′] where Ψ′ = (Ai\v,Bi, Pj, Qi). We compute

Pj incrementally as follows: Initially Pj = ∅. For each sequence s ∈ Pi, we add the

sequence(s) to Pj as follows:

53

• If v is not part of s, then add s to Pj.

• If s = (v, `1, u2, . . .), then add the sequence (z, 0, u2, . . .) to Pj, where z is a vertex

not in s but in Ai. Such a vertex is always available as there are r − 2 isolated

vertices in Ai.

• s = (. . . , ux, `x, v, `x+1, ux+2, . . .), then add the sequence (. . . , ux, 0, z, 0, ux+2, . . .)

to Pj. As above z is an isolated vertex in Ai, but not in s.

• s = (. . . , ur−3, `r−3, v), then add the sequence (. . . , ur−3, 0, z) to Pj, where z is an

isolated vertex.

We set Mi[Ψ] = Mj[Ψ
′].

The case when v ∈ Bi is similar to the above case, but we process analogously on the

sets Bi and Qi.

Forget node: Let j be the only child of the node i. Suppose v is the lone vertex in

Xj\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ is invalid, we set Mi[Ψ] to 0.

Otherwise, Mi[Ψ] is computed as follows:

We first consider the case when v ∈ Aj at node j. This means that Aj = Ai ∪ v.

As v is an extra vertex present in j, there are many choices for Pj. We compute

δ1 = maxPj
{Mj[Ψ

′]}, where Ψ′ = (Aj, Bi, Pj, Qi).

To understand the possible choices for Pj, we need the following definition.

Definition 31. Let s′ ∈ ΓAj
be a sequence at the child node j, such that s′ contains v.

Let s′ = (u1, `1, u2, . . . , ux, `x, v, `x+1, ux+2, . . . , ur−2). Then Diff(s′, v) is the following set

of sequences at node i obtained by starting from s′′ = (u1, `1,

u2, . . . , ux, (`x + `x+1), ux+2, . . . , ur−2), and performing one of the below 3 operations once.

Here z is any vertex in Ai that is not present in s′ already.

• Prefix with (z, 0),

• Suffix with (0, z).

• Replace any 0 with (0, z, 0).

We also define Diff(S, v) for a set of sequences S as follows:

Diff(S, v) = ∪s′∈S{Diff(s′, v)}.

Note that if s′ ∈ ΓAj
is a legal sequence w.r.t. some A ⊇ Aj , then every s′′ ∈ Diff(s′, v)

is also legal w.r.t. the same set A.

54

Let Sv = {s ∈ ΓAj
| v appears in the sequence s}. We compute δ1 as follows.

δ1 = max
Z1⊆Pi,Z2⊆Sv |

Z1∪Diff(Z2,v)=Pi

{Mj[(Aj, Bi, Z1 ∪ Z2, Qi)]}.

We analogously compute δ2 for the case when v ∈ Bj (where Bj = Bi ∪ v) at node j.

If Mi[Ψ] is not set to 0 already, we set Mi[Ψ] = max{δ1, δ2}.

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2 and

V (Tj1) ∩ V (Tj2) = Xi. There are no edges between V (Tj1)\Xi and V (Tj2)\Xi. Let

Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we

use the following expression to compute Mi[Ψ] value.

Definition 32. Let s = (u1, `1, u2, `2, . . . , ur−3, `r−3, ur−2), s′ = (u1, `
′
1, u2, `

′
2,

. . . , ur−3, `
′
r−3, ur−2) and s′′ = (u1, `

′′
1, u2, `

′′
2, . . . , ur−3, `

′′
r−3, ur−2) be three sequences. We

say that s = Merge(s′, s′′) if for all 1 ≤ i ≤ r − 3, the below conditions are satisfied:

• `i ∈ {0, 1} ⇐⇒ `′i = `′′i = `i.

• `i > 1⇐⇒ either (`′i = `i and `′′i = 0) or (`′i = 0 and `′′i = `i).

Note that if s′ ∈ ΓAj1
and s′′ ∈ ΓAj2

are legal sequences w.r.t. some A, then the

sequence s = Merge(s1, s2) is a legal sequence w.r.t the same A. We extend the Merge

operation to sets as follows:

Merge(Pj1 , Pj2) = {s|∃s′ ∈ Pj1 , s
′′ ∈ Pj2 such that s = Merge(s′, s′′)}.

Note that Pj1 , Pj2 ⊆ Merge(Pj1 , Pj2) because given a sequence s′ ∈ Pj1 , we can construct

an s′′ ∈ Pj2 with the same vertices and ordering, but with all `i values set to 0. This will

yield s′ = Merge(s′, s′′).

We set Mi[Ψ] = 1 if there exist Pj1 , Qj1 , Pj2 and Qj2 such that all the following

conditions are satisfied:

(i) Pi = Merge(Pj1 , Pj2), (ii) Qi = Merge(Qj1 , Qj2),

(iii) Mj1 [(Ai, Bi, Pj1 , Qj1)] = 1, and (iv) Mj2 [(Ai, Bi, Pj2 , Qj2)] = 1.

Otherwise we set Mi[Ψ] = 0.

As in the case of H = C4, the correctness of the algorithm is implied by the correctness

of Mi[Ψ] values, which follows by a bottom-up induction on the nice tree decomposition.

G has a valid bipartitioning if there exists a 4-tuple Ψ such that Mr[Ψ] = 1, where r is

the root of the nice tree decomposition.

Note that |ΓAi
| = |ΓBi

| ≤ (t + 1)r−2(r − 2)!(r − 1)r−3 = O((tr2)r−2). The time

complexity at each of the nodes in the tree decomposition is dominated by the time

complexity at the join node, which is O∗(2O((tr2)r−2)). Thus we get the following:

55

Theorem 16. There is an 2O((tr2)r−2)·nO(1) time algorithm that solves the Cr-(Subgraph)Free

2-Coloring problem, on graphs with tree-width at most t.

4.3.4 H-(Subgraph)Free 2-Coloring

The techniques described in Section 4.2.2 can also be used to solve theH-(Subgraph)Free

2-Coloring. As we are looking for bipartitioning without H as a subgraph we need to

modify the Definition 22 and (?) conditions. Instead of Definition 22 we have Definition 33.

Definition 33 (Subgraph Legal Sequence in ΓAi
with respect to A). A sequence s =

(w1, w2, w3, . . . , wr) ∈ ΓAi
is legal if the sequence s corresponds to subgraph H ′ of H within

A as follows.

Let FV(s) = {`|w` = FG}, DC(s) = {`|w` = DC} and VI(s) = [r]\{FV(s) ∪ DC(s)}.
Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s) ∪ FV(s)}. That is

H ′ = H[{u`|` ∈ VI(s) ∪ FV(s)}].
If there exist |FV(s)| distinct vertices z` ∈ A\Ai corresponding to each index in FV(s)

such that H ′ is subgraph of G[{w`|` ∈ VI(s)}∪ {z`|` ∈ FV(s)}], then s is legal. Otherwise,

the sequence is illegal.

At the introduced node, instead of (?) conditions we have to check the following (??)

conditions:

[?? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but {v, w`2} /∈ E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 = FG, {u`1 , u`2} ∈ E(H).

3. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi
\Pi. There exists `1 such that w`1 = v and

for all `2 6= `1 w`2 ∈ Ai ∪ {DC}. For all `1 6= `2 w`1 , w`2 ∈ Ai, {u`1 , u`2} ∈ E(H)

=⇒ {w`1 , w`2} ∈ E(G).

Thus we get the following:

Theorem 17. There is an 2O(tr) · n time algorithm that solves the H-(Subgraph)Free

2-Coloring problem for any arbitrary fixed H (|V (H)| = r), on graphs with tree-width

at most t.

56

4.3.5 H-(Subgraph)Free q-Coloring

The techniques described in Section 4.2.3 can also be used to solve theH-(Subgraph)Free

q-Coloring. We need to modify the Definition 26 and (#) conditions. Instead of Defini-

tion 26 we have Definition 34.

Definition 34 (Subgraph Legal Sequence in ΓAz
i

with respect to Az for 1 ≤ z ≤ q). A

sequence s = (w1, w2, w3, . . . , wr) ∈ ΓAz
i

is legal if the sequence s corresponds to subgraph

H ′ of H within Az as follows.

Let FV(s) = {`|w` = FG}, DC(s) = {`|w` = DC} and VI(s) = [r]\{FV(s) ∪ DC(s)}.
Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s) ∪ FV(s)}. That is

H ′ = H[{u`|` ∈ VI(s) ∪ FV(s)}].
If there exist |FV(s)| distinct vertices z` ∈ Az\Az

i corresponding to each index in FV(s)

such that H ′ is subgraph of G[{w`|` ∈ VI(s)}∪ {z`|` ∈ FV(s)}], then s is legal. Otherwise,

the sequence is illegal.

At the introduced node, instead of (#) conditions we have to check the following (##)

conditions:

[(##) Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Az
i , {u`1 , u`2} ∈ E(H) but {v, w`2} /∈ E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 = FG, {u`1 , u`2} ∈ E(H).

3. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAz
i
\P z

i . There exists `1 such that w`1 = v and

for all `2 6= `1 w`2 ∈ Az
i ∪ {DC}. For all `1 6= `2 w`1 , w`2 ∈ Az

i , {u`1 , u`2} ∈ E(H)

=⇒ {w`1 , w`2} ∈ E(G).

With this we state the following theorems:

Theorem 18. There is an O(qO(tr)·n) time algorithm that solves the H-(Subgraph)Free

q-Coloring for any arbitrary fixed H (|V (H)| = r), on graphs with tree-width at most t.

Theorem 19. There is an O(tO(tr)·n log t) time algorithm to compute H-(Subgraph)Free

Chromatic Number of the graph whose tree-width is at most t.

57

Chapter 5

Happy Coloring Problems

In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly,

a vertex is happy if all its incident edges are happy. Alternatively, a vertex is happy if it

and all its neighbors have the same color. Given a partial coloring of the vertices of the

graph using k colors, the Maximum Happy Vertices (also called k-MHV) problem

asks to color the remaining vertices such that the number of happy vertices is maximized.

The Maximum Happy Edges (also called k-MHE) problem asks to color the remaining

vertices such that the number of happy edges is maximized. For arbitrary graphs, k-MHV

and k-MHE are NP-hard for k ≥ 3.

In this chapter, we study the complexity of k-MHV and k-MHE problems for some

special graph classes like trees, bipartite graphs, split graphs and complete graphs. We

show that both k-MHV and k-MHE problems are polynomial-time solvable for trees and

complete graphs and NP-hard for bipartite graphs and split graphs.

We also study the happy coloring problems from parameterized algorithms perspective.

We show that the k-MHE problem admits a (k+`)-kernel. We show that both Weighted

MHE and Weighted MHV admits O∗(2n) time exact exponential time algorithm. We

show that Weighted MHE is polynomial-time solvable when the uncolored vertices

induce a forest. By combining these with few simple reduction rules we show that k-MHE

has O∗(2`) time algorithm and hence FPT with respect to the parameter `, the number

of happy edges. We also show that both k-MHE and k-MHV are in FPT with respect

to the parameters tree-width and neighborhood diversity.

5.1 Algorithm for k-MHV Problem for Trees

We root the tree at an arbitrary vertex. Let Tv denotes the subtree rooted at a vertex v.

Before presenting the algorithm we give a simple reduction rule, which can be executed in

linear time.

58

Rule 1. If a leaf vertex is uncolored, remove it and count the leaf vertex as happy.

We can give the color of its parent to the uncolored leaf to make it happy. Hence,

without loss of generality we can assume that all the leaves are colored.

We process the vertices of the rooted tree according to post order traversal. At

each vertex v, we maintain a list of 2k integer values. The maximum value of these 2k

values gives the maximum number of happy vertices in Tv, the sub tree rooted at v. The

maximum value of the 2k values associated with the root gives us the maximum number

of happy vertices of the tree. The corresponding optimal coloring can also be traced back

in reverse direction. The list of 2k values defined as follows, for 1 ≤ i ≤ k:

• Tv[i,H] : The maximum number of happy vertices in the subtree Tv, when v is

colored i and is happy in Tv. That is, when v and all its children are colored i. Note

that, here we focus on v being happy in the subtree Tv. The vertex v can become

unhappy in the tree T because its parent gets another color.

• Tv[i, U] : The maximum number of happy vertices in Tv, when v is colored i and is

unhappy in Tv. That is, when one or more children of v are colored with a color

other than i.

Note that, if a vertex or some of its children are already colored, then some of the 2k

values are invalid. We use −1 to denote an invalid value. We keep these 2k values in an

array to access any specific item in constant time. The values are indexed in the order,

Tv[1, H], Tv[1, U], Tv[2, H], Tv[2, U], . . . , Tv[k,H], Tv[k, U].

The following expressions are defined to simplify some of the equations:

• Tv[i, ∗] : The maximum number of happy vertices in the subtree Tv, when v is colored

i. v may be happy or unhappy. That is:

Tv[i, ∗] = max{Tv[i,H], Tv[i, U]}. (5.1)

• Tv[i,−] : The maximum number of happy vertices in Tv excluding v, when v is

colored i.

Tv[i,−] = max{Tv[i,H]− 1, Tv[i, U]}. (5.2)

• Tv[ı, ∗] : The maximum number of happy vertices in the subtree Tv, when v is colored

with color other than i.

Tv[ı, ∗] = max
r 6=i
{Tv[r, ∗]}. (5.3)

59

• Tv[ı,−] : The maximum number of happy vertices in the subtree Tv excluding v,

when v is colored with color other than i.

Tv[ı,−] = max
r 6=i
{Tv[r,−]}. (5.4)

• Tv[∗, ∗] : The maximum number of happy vertices in Tv. That is:

Tv[∗, ∗] = max{Tv[1, ∗], Tv[2, ∗], . . . , Tv[k, ∗]}. (5.5)

Now we explain the process to compute these 2k values at each vertex. As a leaf

vertex is pre-colored, it is always happy alone as a subtree with a single vertex. Only one

out of 2k values is valid. Suppose the color of the leaf is i, then the only valid value is

Tv[i,H] = 1.

The following subsections consider the case when v is a non leaf vertex. Let v1, v2, . . . , vd

be the children of v. The values Tv[i,H] and Tv[i, U] are invalid, if v is pre-colored with a

color r 6= i. Otherwise, we compute Tv[i,H] and Tv[i, U] as follows:

5.1.1 Computing Tv[i,H]

Computing Tv[i,H] has two cases:

Algorithm 1 Computing Tv[i,H]

1: procedure ComputeTvH(v, i)
2: if ∀vj, Tvj [i, ∗] 6= −1 then
3: return (1 +

∑
vj
Tvj [i, ∗]) . Case 2

4: else
5: return −1 . Case 1
6: end if
7: end procedure

Case 1: For some child vj, Tvj [i, ∗] = −1.

This means that the child vj is pre colored with a color other than i. In this case, v

becomes unhappy when it gets color i. So Tv[i,H] is invalid.

Case 2: For every child vj, Tvj [i, ∗] > −1.

In this case, we use the following equation to compute Tv[i,H].

Tv[i,H] = 1 +
∑
vj

Tvj [i, ∗]. (5.6)

60

5.1.2 Computing Tv[i, U]

Computing Tv[i, U] has three cases:

Algorithm 2 Computing Tv[i, U]

1: procedure ComputeTvU(v, i)
2: if every child vj is pre-colored with color i then
3: return −1 . Case 1
4: else if ∃vj′ child of v such that Tvj′ [∗, ∗] 6= Tvj′ [i, ∗] then
5: return (

∑
vj

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]}) . Case 2
6: else . Case 3
7: for each child vj do
8: diff(vj, i)← Tvj [i, ∗]− Tvj [ı,−]
9: end for
10: v` ← argminvj

diff(vj, i)
11: q ← argmaxr 6=i Tv` [r,−]
12: return (Tv` [q,−] +

∑
vj 6=v`

Tvj [i, ∗])
13: end if
14: end procedure

Case 1: Every child vj is pre colored with color i.

In this case, we cannot make v unhappy by giving color i to v. Hence Tv[i, U] is

invalid.

Case 2: For some child vj′ , Tvj′ [∗, ∗] 6= Tvj′ [i, ∗].

That is, the child vj′ has color r 6= i in the optimal coloring of Tvj′ . When v is

colored i and vj′ is colored r, irrespective of the colors of the other children, v will

certainly be unhappy. In this case, we use the following expression to compute

Tv[i, U].

Tv[i, U] = Tvj′ [r,−] +
∑

vj child of v,

vj 6=vj′

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]} (5.7)

=
∑

vj child of v

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]}. (5.8)

Case 3: For every child vj, Tvj [∗, ∗] = Tvj [i, ∗].

For each vj, if we pick Tvj [i, ∗], v will become happy, but we need v to be unhappy.

To avoid this situation, for some child we pick a value with color other than i as

follows:

61

For each vj, we define diff(vj, i) as follows:

diff(vj, i) = Tvj [i, ∗]− Tvj [ı,−]. (5.9)

We pick the child (say v`) with minimum diff(vj, i) value. Suppose, Tv` [ı,−] = Tv` [q,−],

we replace Tv` [i, ∗] with Tv` [q,−]. The new expression is:

Tv[i, U] = Tv` [q,−] +
∑
vj 6=v`

Tvj [i, ∗]. (5.10)

Algorithm 3 Algorithm for k-MHV problem

1: for each v ∈ V (G) in post order do
2: for i = 1 to k do
3: if v is a leaf then
4: if color(v) = i then
5: Tv[i,H]← 1
6: Tv[i, U]← −1
7: else
8: Tv[i,H]← −1
9: Tv[i, U]← −1
10: end if
11: else
12: if v is pre-colored and color(v) 6= i then
13: Tv[i,H]← −1
14: Tv[i, U]← −1
15: else
16: Tv[i,H]← ComputeTvH(v, i)
17: Tv[i, U]← ComputeTvU(v, i)
18: end if
19: end if
20: end for
21: end for

Theorem 20. There is an O(nk log k) time algorithm for the k-MHV problem for trees.

Proof. We evaluate the time spent at a particular vertex v to compute Tv[i,H] and Tv[i, U],

for 1 ≤ i ≤ k. Let v1, v2, . . . , vd be the children of v.

Computing Tv[i,H]: The Tvj [i,H] and Tvj [i, U] values are accessible in constant time for

each child vj. Time to compute Tv[i,H], ∀1 ≤ i ≤ k is:∑
1≤i≤k

O(d) = O(kd). (5.11)

62

Computing Tv[i, U]: We sort the 2k values in descending order. For any child vj , Tvj [i, ∗]
is available in constant time from the original array. From the sorted array Tvj [∗, ∗]
and Tvj [ı, ∗] are available in constant time. Hence Tv[i, U], ∀1 ≤ i ≤ k can be

computed in:

O(dk log k) +
∑

1≤i≤k

O(d) = O(dk log k). (5.12)

Hence the total time is:∑
v

dk + dk log k ≤
∑
v

2dk log k = 2k log k
∑
v

d = O(nk log k). (5.13)

The correctness of the value Tv[∗, ∗] for every vertex v implies the correctness of the

algorithm. The correctness of the value Tv[∗, ∗] follows from the correctness of the 2k

values Tv[1, H], Tv[1, U], Tv[2, H], Tv[2, U], . . . , Tv[k,H], Tv[k, U] associated with v.

Theorem 21. Algorithm 3 correctly computes the values Tv[i,H] and Tv[i, U] for every v

and 1 ≤ i ≤ k.

Proof. We prove the theorem by using induction on the size of the subtrees. For a leaf

vertex v, the algorithm correctly computes the values Tv[i,H] and Tv[i, U] for 1 ≤ i ≤ k.

Since the leaf vertices are pre-colored, each leaf vertex has only one valid value (this value

being 1).

For a non-leaf vertex v, let v1, v2, . . . , vd be the children of v. By induction on the

size of the sub-trees, all the 2k values associated with each child vj of v are correctly

computed. Let x be the value computed by the algorithm for Tv[i,H] (or Tv[i, U]) for any

color i. If x is not the optimal value, it will contradict the optimality of at least one value

of a child of v. Hence the algorithm correctly computes the values Tv[i,H] and Tv[i, U]

for every v and 1 ≤ i ≤ k.

5.1.3 Generating all optimal happy vertex colorings

Our algorithm can also be extended to generate all the optimal happy vertex colorings of

the tree. Among the 2k values associated with a vertex v, there may be multiple values

equal to the optimal value. So, while generating optimal happy vertex coloring, we can

chose any of these values to generate a different optimal coloring. For example, let Tv[i,H]

be an optimal value for the vertex v. Let vj be a child of v with both Tvj [i,H] and Tvj [i, U]

are optimal. So, we can generate one optimal coloring by picking Tvj [i,H] and another

optimal coloring by picking Tvj [i, U]. There may be exponentially many optimal colorings,

but, generating each optimal coloring takes polynomial-time (linear time for fixed k).

63

5.2 Algorithm for k-MHE problem for Trees

Before presenting the algorithm we give simple reduction rules, which can be executed in

linear time.

Rule 2. Let v be a pre-colored vertex with degree more than 1. Let v1, v2, . . . , vd be the

neighbours of v in T . We can divide T into d edge disjoint subtrees T1, T2, . . . , Td and all

these trees share only the vertex v.

k-MHE(T) = k-MHE(T1) + k-MHE(T2) + · · ·+ k-MHE(Td). (5.14)

With the application of Rule 2, without loss of generality we can assume that T does

not have a pre-colored vertex with degree more than 1.

Now, we root the tree at an arbitrary vertex with degree more than 1.

Rule 3. (Similar to Rule 1 in Section 5.1) If a leaf vertex is uncolored, remove it and

count the edge connecting the leaf vertex as happy.

With Rule 2 and Rule 3, without loss of generality, all the leaves of the rooted tree T

are pre-colored and no non-leaf vertex is pre-colored.

Our algorithm for k-MHE problem has two phases. In the first phase, we visit the

vertices according to post order traversal and populate a list of tentative colors for each

vertex. In the second phase we visit the vertices according to pre-order traversal and

assign a color for each vertex.

Phase 1: We visit the vertices according to post order traversal. At each vertex v, we

keep a list of tentative colors to assign to the vertex v in the optimal solution. The

size of this list is at most k. Let L(v) denote the list of tentative colors associated

with the vertex v.

If the vertex v is a leaf, as the leaf vertex is pre-colored, we add that pre-color to

L(v). Otherwise, let v1, v2, . . . , vd be the children of v. The list of tentative colors

L(vj) for each vertex vj are already computed. For each child vj , we traverse the list

L(vj) and compute the frequency of occurrences of each color in the multiset that is

union of the lists. Let frequency(i) denote the frequency of color i. We add all the

colors with maximum frequency to L(v). The process is captured in Algorithm 4.

Phase 2: We visit the vertices according to pre-order traversal to assign a color to each

vertex. Let v be the vertex in pre-order. If |L(v)| = 1, then we fix the color of v to

the only color in L(v). Otherwise, we check if the color of the parent of v is present

in L(v), and assign it to v if present. Otherwise, we pick any arbitrary color from

L(v) and assign it to v. The process is captured in Algorithm 5.

64

Algorithm 4 Phase 1 of the algorithm

1: procedure PopulateTentativeColors(T)

2: for each v ∈ V (G) in post order do

3: if v is a leaf then

4: L(v)← color(v)

5: else . Let v1, v2, . . . , vd be the children of v

6: frequency[1..k]← {0}
7: for each child vj of v do

8: for each color c ∈ L(v) do

9: frequency[c]← frequency[c] + 1

10: end for

11: end for

12: max← 0

13: for i = 1 to k do

14: if frequency[i] > max then

15: max← frequency[i]

16: end if

17: end for

18: for i = 1 to k do

19: if frequency[i] = max then

20: L(v)← L(v) ∪ {i}
21: end if

22: end for

23: end if

24: end for

25: end procedure

Theorem 22. There is an O(nk) time algorithm for the k-MHE problem for trees.

Proof. At each vertex with degree d, we perform O(kd) time in the Phase 1 and O(k)

time in the Phase 2. The time complexity is:∑
v

O(kd) = O(nk). (5.15)

The correctness of the algorithm can be proved using induction on the size of the

sub-tree similar to Theorem 21.

65

Algorithm 5 Phase 2 of the algorithm

1: procedure AttachColors(T, L) . Fixing color to vertices
2: for each v ∈ V (G) in pre order do
3: if |L(v)| = 1 then
4: color(v)← Only element of L(v)
5: else if color(parent(v)) ∈ L(v) then
6: color(v)← color(parent(v))
7: else
8: color(v)← Any element of L(v)
9: end if
10: end for
11: end procedure

5.2.1 Generating all optimal happy edge colorings

Our algorithm can be extended to generate all the optimal happy edge colorings. We keep

a list of tentative colors at each vertex. At a vertex v, if the color(parent(v)) is present in

L(v), then, we assign the color(parent(v)) to v in the optimal coloring. Otherwise, we

can generate a different optimal coloring for each color in L(v). Here we point out that,

this scheme may miss out some optimal colorings when color(parent(v)) is not present in

L(v) but present in the set of colors with frequency one less than the maximum frequency.

In this case, we can assign the color(parent(v)) to v even though the color(parent(v)) is

not present in L(v). A special case of this scenario is when there is a vertex v where

all its children have distinct colors (the maximum frequency being 1). Even though the

color(parent(v)) not present in L(v), we can assign the color(parent(v)) to v as it has zero

frequency at v.

There may be exponentially many optimal happy edge colorings. Generating each

optimal coloring takes polynomial-time (linear time for fixed k).

5.3 MHV and MHE on Complete Graphs

MHV problem is trivial on complete graphs. Thus we have the following proposition.

Proposition 23. Any partial coloring c of the complete graph Kn for any n ≥ 1 can

be extended to a full coloring c′ making n vertices happy iff c uses at most one color.

Consequently, the problem MHV is solvable in polynomial-time for complete graphs.

Proposition 24. The problem MHE is solvable in polynomial-time for complete graphs.

Proof. Let S denote the set of precolored vertices for the Kn for any n ≥ 1. Delete

edges whose both endpoints are in S, since their happiness is already determined by the

66

precoloring. Observe that S is now an independent set and C = V (G) \S induces a clique.

Moreover, every vertex in S is adjacent to every vertex in C.

Denote by p the most frequent occurrence of any color among the precolored vertices.

For any vertex v ∈ C, regardless of the color we give to v, we can make at most p edges

happy among the edges from the vertices in S to v. Thus, the number of happy edges is

at most p · |C|+ |E(C)|. In fact, we can achieve exactly p · |C|+ |E(C)| happy edges by

giving a single color to all the vertices in C. More precisely, we color all the uncolored

vertices with the color that is used p times, completing the proof.

We remark that for the above proof to hold, we do not need the graph to be complete.

Indeed, the procedure described in the proof can be applied as long as every precolored

vertex is adjacent to every uncolored vertex.

5.4 Hardness Results for Happy Coloring Problems

We begin this section by proving hardness of both DMHE and DMHV for bipartite

graphs and split graphs. To prove the NP-hardness we consider the following decision

versions of MHE and MHV.

DMHV Parameter: `

Input: A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k].

Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and the

number of happy vertices is at least `?

DMHE Parameter: `

Input: A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring

c : S → [k].

Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and the

number of happy edges is at least `?

Theorem 25. The DMHV problem is NP-complete for split graphs.

Proof. Let I = (G, c, `) be an instance of DMHE, and let us in polynomial-time construct

an instance I ′ = (G′, c′, `) of DMHV. We can safely (and crucially) assume at least two

vertices of G are precolored (in distinct colors), for otherwise the instance is trivial. We

construct the split graph G′ = (C ∪B,E ′ ∪ E ′′), where

• C = {vx | x ∈ V (G)},

• B = {ve | e ∈ E(G)},

67

1

2

3

4

e1 e3 e5

e4

e2

ve1 ve2 ve3 ve4 ve5

v1 v2 v3 v4

B

C

Figure 5.1: (a) A graph G of an instance of DMHE, where white vertices correspond to
uncolored vertices. (b) The graph G transformed into a split graph G′ by the construction
of Theorem 25. The edges between the vertices in C are not drawn.

• E ′ = {vevx | e is incident to x in G}, and

• E ′′ = {vxvx′ | x, x′ ∈ V (G)}.

That is, C forms a clique and B an independent set in G′, proving G′ is split. In particular,

observe that the degree of each vertex ve is two. To complete the construction, we retain

the precoloring, i.e., set c′(vx) = c(x) for every x ∈ V (G). The construction is illustrated

in Figure 5.1.

We claim that I is a YES-instance of DMHE iff I ′ is a YES-instance of DMHV.

Suppose ` edges can be made happy in G by an extended full coloring of c. Consider

an edge e ∈ E(G) whose endpoints are colored with color i. To make ` vertices happy

in G′, we give ve and its two neighbors the color i. For the other direction, suppose `

vertices are happy under an extended full coloring of c′. As at least two vertices in C are

colored in distinct colors, it follows by Proposition 23 that all the happy vertices must be

in B. Furthermore, the vertices in B correspond to precisely the edges in E(G), so we are

done.

Theorem 26. The DMHV problem is NP-complete for bipartite graphs.

Proof. We start with the construction of Theorem 25. Modify the split graph G′ by

deleting the edges between the vertices in C, i.e., let G′ = (C ∪B,E ′). For each vx ∈ C,

add a path Svx = {v1
x, v

2
x, v

3
x} along with the edges vxv

1
x and v3

xvx. In other words, each

vx forms a 4-cycle with the vertices in Svx . Clearly, we have that G′ is bipartite as it

contains no odd cycles. Arbitrarily choose three distinct colors from [k], and map them

bijectively to Svx . Observe that by construction, none of the vertices in Svx can be happy

under any c′ extending c. This completes the construction. Correctness follows by the

same argument as in Theorem 25.

Theorem 27. The DMHE problem is NP-complete for bipartite graphs.

68

Table 5.1: Summary of our hardness results for happy coloring problems
Graph class k-MHE k-MHV

Bipartite NPC NPC
Complete P P

Split NPC [66] NPC

Proof. Let I = (G, c, `) be an instance of DMHE, and let us in polynomial-time construct

an instance I ′ = (G′, c,m + `) of DMHE, where G′ is bipartite. We obtain G′ by

subdividing every edge of G. Observe that if G has n vertices and m edges, then G′ has

n+m vertices and 2m edges. Clearly, G′ is bipartite.

We will now show that G has an extended full coloring making at least ` edges happy

iff G′ has an extended full coloring making at least m + ` edges happy. Let c′ be an

extended full coloring of the precoloring c given to G. We give G′ the same extended

full coloring, and give each vertex in v ∈ V (G′) \ V (G) an arbitrary color that appears

on a vertex adjacent to v. Thus, for each edge in G, we have one extra happy edge in

G′, giving us a total of at least m+ ` happy edges. For the other direction, let c′ be an

extended full coloring of c that makes at least m+ ` edges happy in G′. Now, there are at

least ` vertices in V (G′) \ V (G) with both of its incident edges happy. These 2` happy

edges correspond to the ` happy edges in G. This concludes the proof.

We were not able to prove the NP-hardness of DMHE for split graphs. However,

Mishra and Reddy [66] gave the proof for the NP-hardness of DMHE for split graphs.

5.4.1 k-MHE for planar graphs and graphs with bounded branch

width

The Multiway Cut is NP-hard for planar graphs [26] when k, the number of terminals,

is not fixed. This implies the following theorem on hardness of k-MHE for planar graphs

for an arbitrary k.

Theorem 28. For an arbitrary k, the k-MHE problem is NP-hard for planar graphs.

In [72], Robertson and Seymour introduced the notions of tree width and branch width.

They showed that these two quantities are always within a constant factor of each other.

Many graph problems that are NP-hard for general graphs have been shown to be solvable

in polynomial time for graphs with bounded tree width or equivalently bounded branch

width.

Definition 35. Multi-Multiway Cut (Instance) We are given an undirected graph

G = (V (G), E(G)) and c sets of vertices S1, S2, . . . , Sc.

69

(Goal) Find a set of edges C ⊆ E(G) with minimum cardinality whose removal

disconnects every pair of vertices in each set Si.

When c = 1, the Multi-Multiway Cut problem is equivalent to Multiway Cut

problem. The k-MHE problem can also be formulated as a Multi-Multiway Cut

problem, by creating vertex sets with every pair of pre-colored vertices with different

colors. In [27], Deng et. al. studied the Multi-Multiway Cut problem for graphs with

bounded branch width and presented an O(b2b+2.22bc.|G|) time algorithm, where b is the

branch width of the graph and c is the number of vertex sets. The algorithm runs in

linear time when the branch width and the number of vertex sets are fixed.

Theorem 29. When the branch width of the graph and the number of pre-colored vertices

are bounded, there is a linear time algorithm for the k-MHE problem.

Proof. Let the number of pre-colored vertices be p and the branch width be b. For this

instance of k-MHE, we can formulate a Multi-Multiway Cut problem with at most p2

vertex sets. Hence, the k-MHE problem can be solved in time O(b2b+2.22bp2 .|G|). Hence,

when both the number of pre-colored vertices and the branch width are constants, the

k-MHE problem can be solved in linear time.

5.5 Exact Exponential-Time Algorithms for Happy

Coloring

In this section, we consider the happy coloring problems from the viewpoint of exact

exponential-time algorithms. Every problem in NP can be solved in time exponential in

the input size by a brute-force algorithm. For Weighted MHE (Weighted MHV),

such an algorithm goes through each of the at most kn colorings, and outputs the one

maximizing the total weight of the happy edges (vertices). It is natural to ask whether

there is an algorithm that is considerably faster than the knnO(1)-time brute force approach.

In what follows, we show that brute-force can be beaten. Let us introduce the following

more general problem.

Max Weighted Partition

Input: An n-element set N , integer d, and functions f1, f2, . . . , fd : 2N → [−M,M]

for some integer M .

Question: A d-partition (S1, S2, . . . , Sd) of N that maximizes f1(S1) + f2(S2) + · · ·+
fd(Sd).

Using an algebraic approach, the following has been shown regarding the complexity of

the problem.

70

Theorem 30 (Björklund, Husfeldt, Koivisto [10]). The Max Weighted Partition

problem can be solved in 3nd2M · nO(1) time and polynomial space. In exponential space,

the time can be improved to 2nd2M · nO(1).

In the following, we observe that the weighted variants of both problems can be reduced

to Max Weighted Partition. This results in an algorithm that is considerably faster

than one running in time knnO(1).

Lemma 31. Weighted MHE and Weighted MHV reduce in polynomial-time to

Max Weighted Partition.

Proof. Consider the claim for an instance I = (G,w, k, S, c) of Weighted MHE. To

construct an instance of Max Weighted Partition, let N = V (G) \ S, where S

is the set of precolored vertices, let d = k, and let M =
∑

uv∈E(G)w(uv). Define

fi =
∑

uv∈E(G[Si∪c−1(i)])w(uv), i.e., fi sums the weights of the edges uv that range over the

edge set of the subgraph induced by the union of Si and c−1(i), the vertices precolored

with color i. Thus, a partition (S1, . . . , Sk) maximizing f1(S1) + · · ·+ fk(Sk) maximizes

the weight of happy edges.

Finally, consider the claim for an instance I = (G,w, k, S, c) of Weighted MHV.

Now, we define fi =
∑

v∈Si:∀y∈N(v):y∈(Si∪c−1(i))w(v), i.e., fi sums the weights of the vertices

v for which it holds that v and each neighbor y of v are all colored with color i. Also, we

let M =
∑

v∈V (G) w(v), but otherwise the argument is the same as above.

For some NP-complete problems, the fastest known algorithms run in O∗(2n) time, but

we do not necessarily know whether (under reasonable complexity-theoretic assumptions)

they are optimal. Indeed, could one have an algorithm that runs in O∗((2− ε)n) time, for

any ε > 0, for either Weighted MHE or Weighted MHV? We prove that at least for

some values of k this bound can be achieved. For this, we recall the following result.

Theorem 32 (Zhang and Li [78]). For k = 2, k-MHE and k-MHV are solvable in

O(min{n2/3m,m3/2}) and O(mn7 log n) time, respectively.

We are ready to proceed with the following.

Lemma 33. For k = 3, k-MHE and k-MHV can be solved in time O∗(1.89n
′
), where n′

is the number of uncolored vertices in the input graph.

Proof. First, consider the claim for an instance I = (G,S, c) of k-MHE. Consider a

partition S = (S1, S2, S3) of the uncolored vertices into k = 3 color classes that maximizes

the number of happy edges. Also, denote by Ci for i ∈ [k] the set of vertices precolored

with color i. In V (G) \ (S3 ∪ C3), by the optimality of S, it must be the case that

71

S1 ∪ C1 and S2 ∪ C2 have a minimum number of crossing edges. Thus, we can proceed as

follows. Observe that in any optimal solution S, there exists Si ∈ S such that |Si| ≤ n′/3.

The number of subsets of size at most n′/3 is 2H(1/3)n′ < 1.89n′ , using the well-known

bound 2H(1/3) < 1.89, where H(·) is the binary entropy function (for a proof, see e.g., [34,

Lemma 3.13]). Thus, we guess Si by extending it in all possible at most 1.89n′ ways.

Then, for every such partial coloring, we solve an instance of 2-MHE on the remaining

graph G[V (G) \ (S1 ∪ C1)] in polynomial-time by Theorem 32. Combining the bounds,

we obtain an algorithm running in time O∗(1.89n′) for 3-MHE.

The observation is similar for 3-MHV, but we solve an instance of 2-MHV on V (G) \
N [Si ∪ Ci] instead of V (G) \ (Si ∪ Ci).

By Lemma 33 and by combining Theorem 30 with Lemma 31, we arrive at the following.

Theorem 34. For every k ≥ 3, Weighted k-MHE and Weighted k-MHV can be

solved in time O∗(2n′). When k = 3, the problems k-MHE and k-MHV are solvable in

time O∗(1.89n′), where n′ is the number of uncolored vertices in the input graph.

5.6 A Linear Kernel for Weighted MHE

In this Section we prove that Weighted DMHE has a kernel of size k+`. Our strategy to

obtain the kernel consists of two parts: first, we will show that there is a polynomial-time

algorithm for Weighted MHE when the uncolored vertices induce a forest. Then,

to leverage this algorithm, we apply a set of reduction rules that shrink the instance

considerably, or solve it directly along the way.

5.6.1 Polynomial Time Algorithm for Subproblems of Weighted

MHE

We show that the Weighted MHE problem is polynomial-time solvable when the

uncolored vertices V (G) \ S induce a tree, where S is the set of precolored vertices.

When V (G) \ S induces a forest, we run the algorithm for each component in V (G) \ S
independently. The approach we present is based on dynamic programming, and inspired

by the algorithm given in [4].

We define edges touching a subtree to be those edges that have at least one endpoint in

the subtree. We choose any vertex r ∈ V (G)\S as the root of the tree induced by V (G)\S.

The vertices of this rooted tree are processed according to its post-order traversal. At

each node, we keep k values. The k values are defined as follows, for 1 ≤ i ≤ k:

72

• Tv[i] : The maximum total weight of the happy edges touching the subtree Tv, when

the vertex v is colored with color i.

We also define the following expressions:

• Tv[∗] : The maximum total weight of the happy edges touching the subtree Tv, i.e.,

Tv[∗] =
k

max
i=1
{Tv[i]}. (5.16)

• Tv[ı] : The maximum total weight of the happy edges touching the subtree Tv, when

the vertex v is colored with a color other than i, i.e.,

Tv[ı] =
k

max
j=1,j 6=i

{Tv[j]}. (5.17)

If Wp is the total weight of the happy edges in the initial partial coloring, Wp + Tr[∗]
gives us the maximum total weight of the happy edges in G. Now, we explain how to

compute the values Tv[i] for 1 ≤ i ≤ k and for each v ∈ V (G) \ S. When we say color-i

vertices, we mean the vertices precolored with color i.

For a leaf vertex v ∈ V (G) \ S, let v1, v2, . . . , vx be the color-i neighbors of v in G.

Then,

Tv[i] =
x∑

j=1

w(vvj). (5.18)

If there are no color-i neighbors for v, then Tv[i] is set to 0.

For a non-leaf vertex v ∈ V (G) \ S, let v1, v2, . . . , vx be the color-i neighbors of v in G

and let u1, u2, . . . , ud be the children of v in V (G) \ S. Then,

Tv[i] =
x∑

j=1

w(vvj) +
d∑

j=1

max{(w(vuj) + Tuj
[i]), Tuj

[ı]}. (5.19)

This naturally leads to an algorithm listed as Algorithm 6.

The running time of the algorithm is O(k(m+ n)). The correctness of the values Tv[i],

for 1 ≤ i ≤ k and for each v ∈ V (G) \ S, implies the correctness of the algorithm. The

following theorem is proved by induction on the size of the subtrees.

Theorem 35. Algorithm 6 correctly computes the values Tv[i] for every v ∈ V (G) \ S
and 1 ≤ i ≤ k.

Proof. We prove the theorem by using induction on the size of the subtrees. For a leaf

vertex v, the algorithm correctly computes the values Tv[i] for 1 ≤ i ≤ k. For a non-leaf

73

Algorithm 6 Algorithm for a special case of Weighted MHE

Input: A weighted undirected graph G with S ⊆ V (G) precolored vertices under a partial
vertex-coloring c : S → [k], V (G) \ S induces a tree, and a vertex r ∈ V (G) \ S as the
root of the tree.

Output: Maximum total weight of the happy edges in G.
1: Mp ← 0
2: for each happy edge uv in the precoloring do
3: Mp ←Mp + w(uv)
4: end for
5: for each v ∈ V (G) \ S in post-order do
6: if v is a leaf vertex in V (G) \ S then
7: for i = 1 to k do
8: Tv[i]← 0
9: for each vu ∈ E(G) such that u ∈ S and c(u) = i do
10: Tv[i]← Tv[i] + w(vu)
11: end for
12: end for
13: else
14: for i = 1 to k do
15: Tv[i]← 0
16: for each vu ∈ E(G) such that u ∈ S and c(u) = i do
17: Tv[i]← Tv[i] + w(vu)
18: end for
19: for each child u of v in V (G) \ S do
20: Tv[i]← Tv[i] + max{(w(vu) + Tu[i]), Tu[ı]}
21: end for
22: end for
23: end if
24: end for
25: return (Mp + Tr[∗])

vertex v, let u1, u2, . . . , ud be the children of v in V (G) \ S. By induction, all the k values

associated with each child uj of v are correctly computed. Moreover, Tv[i] is the sum of

two quantities (see Equation 5.19), the first quantity is correct because it is the sum of

the weights of the happy edges from v to S. If Tv[i] is not correct, it will contradict the

correctness of Tuj
[∗] for some child uj of v. So, the second term in the Tv[i] is correct.

Hence, the algorithm correctly computes the values Tv[i] for every v in V (G) \ S and

1 ≤ i ≤ k.

In this subsection, we assume the edge weights of the Weighted DMHE instance

are positive integers. The kernel will also work for real weights that are at least 1. We

present the following simple reduction rules.

Rule 4. If G contains an isolated vertex, delete it.

74

Rule 5. If both endpoints of an edge uv ∈ E(G) are colored, remove uv. Furthermore, if

c(u) = c(v), decrement ` by the weight on uv.

Proof. As both endpoints of uv are colored, the existence of the edge uv does not further

contribute to the value of the optimal solution. Moreover, if the edge is already happy

under c, we can safely decrement `.

Rule 6. Contract every color class Ci induced by the partial coloring c into a single vertex.

Let e1, . . . , er be the (parallel) edges between two vertices u and v. Delete each edge in

e1, . . . , er except for e1, and update w(e1) = w(e1) + w(e2) + · · ·+ w(er).

Proof. Let G′ be the resulting graph after the application of Rule 6. Because Rule 5 does

not apply, each color class Ci forms an independent set. Thus, G′ contains no self-loops.

Fix a color i, and consider an uncolored vertex v ∈ V (G) \ Ci. Denote by Ni(v) the

neighbors of v with color i, and denote by E[X, Y] the set of edges whose one endpoint

is in X and the other in Y . Depending on the color v gets in an extended full coloring

of c, either all edges in E[{v}, Ni(v)] are happy or all are unhappy. Hence, we can safely

replace these edges with a single weighted edge.

Theorem 36. The problem Weighted DMHE admits a kernel on k + ` vertices.

Proof. Let (G,w, k, S, c) be a reduced instance of Weighted DMHE. We claim that if

G has more than k + ` vertices, then we have YES-instance. The proof follows by the

claims below.

Claim 1. The weight of each edge is at most `.

Proof. If an edge uv has w(uv) ≥ ` and at least one of u and v is uncolored, we make uv

happy and output YES. On the other hand, any unhappy edge (with any weight) has

been removed by Rule 5.

Claim 2. The number of precolored vertices in G is at most k.

Proof. Follows directly from Rule 6.

Claim 3. The number of uncolored vertices in G is at most `− 1.

Proof. Let H be the graph induced by the uncolored vertices, i.e., H = G[V (G) \∪i∈[k]Ci].

We note the following two cases:

• If any of the connected components of H is a tree, then we apply the procedure

described in Sction 5.6.1 for that component, and decrement the parameter `

accordingly.

75

• If w(E(H)) ≥ `, then we color all the vertices in H by the same color making all

the edges in H happy. So the case where w(E(H)) ≥ ` is a YES-instance.

After the application of the above, every component of H contains a cycle, and |E(H)| < `.

So in each component of H, the number of vertices is at most the number of edges.

Consequently, we have |V (H)| ≤ |E(H)| < `. Hence the number of uncolored vertices is

at most `− 1.

Clearly, all of the mentioned rules can be implemented to run in polynomial-time.

Moreover, as we have bounded the number of precolored and uncolored vertices, the

claimed kernel follows.

By combining Theorem 36 with Theorem 34, we have the following corollary.

Corollary 1. The Weighted DMHE problem can be solved in time O∗(2`). For the

special case of k = 3, the problem Weighted DMHE admits an algorithm running in

time O∗(1.89`).

5.7 Structural parameterization

In this section, we consider happy coloring from the standpoint of various structural

parameters: tree-width and neighborhood diversity. The algorithms for tree-width were

obtained independently by [66] and [3].

5.7.1 Tree-Width

Theorem 37. For any k ≥ 1, both Weighted k-MHE and Weighted k-MHV can be

solved in time kt · nO(1), where n is the number of vertices of the input graph and t is its

tree-width.

Proof. Let us prove the statement for Weighted k-MHE, and then explain how the

proof extends for Weighted k-MHV. Let (G, c, w, `) be an instance of Weighted

k-MHE, let ({Xi | i ∈ I}, T = (I, F)) be a nice tree decomposition of G of width t, and

let r be the root of T . Moreover, denote by Gi the subgraph of G induced by
⋃

j Xj where

j belongs to the subtree of T rooted at i.

For every node i of T we set up a table Ki indexed by all possible extended full

k-colorings of Xi. Intuitively, an entry of Ki indexed by f : Xi → [k] gives the total weight

of edges happy in Gi under f . It holds that an optimal solution is given by maxf{Kr[f]}.
In what follows, we detail the construction of the tables Ki for every node i. The algorithm

processes the nodes of T in a post-order manner, so when processing i, a table has been

computed for all children of i.

76

• Leaf node. Let i be a leaf node and Xi = {v}. Obviously, Gi is edge-free, so we

have Ki[f] = 0. As k is fixed, Ki is computed in constant time.

• Introduce node. Let i be an introduce node with child j such that Xi = Xj ∪{v}.
Put differently, Gi is formed from Gj by adding v and a number of edges from v to

vertices in Xj. The properties of a tree decomposition guarantee that v /∈ V (Gj),

and that v is not adjacent to a vertex in V (Gj) \Xj. It is not difficult to see that

we set Ki[f] = Ki[f |Xj
] +
∑

p∈Nh(v)w(pv), where Nh(v) denotes the neighbors of v

colored with the same color as v. It follows Ki can be computed in time O(kt+1).

• Forget node. Let i be a forget node with child j such that Xi = Xj \ {v}. Observe

that the graphs Gi and Gj are the same. Thus, we set Ki[f] to the maximum of

Kj[f
′] where f ′|Xi

= f . Since there are at most k such colorings f ′ for each f , we

compute Ki in time O(kt+2).

• Join node. Let i be a join node with children j1 and j2 such that Xi = Xj1 = Xj2 .

The properties of a tree decomposition guarantee that V (Gj1) ∩ V (Gj2) = Xi, and

that no vertex in V (Gj1) \Xi is adjacent to a vertex in V (Gj2) \Xi. Thus, we add

together weights of happy edges that appear in Gj1 and Gj2 , while subtracting a

term guaranteeing we do not add weights of edges that are happy in both subgraphs.

Indeed, we set Ki[f] = Kj1 [f] +Kj2 [f]− q, where q is the total weight of the edges

made happy under f in Xi. The table Ki[f] can also be computed in time O(kt+2).

To summarize, each table Ki has size bounded by kt+1. Moreover, as each table is

computed in O(kt+2) time, the algorithm runs in kt · nO(1) time, which is what we wanted

to show.

The proof is similar for Weighted k-MHV, but each table now stores the total

weight of the happy vertices under an extended full k-coloring.

5.7.2 Neighborhood Diversity

We proceed to present algorithms for MHE and MHV for graphs of bounded neighborhood

diversity. Consider a type partition of a graph G with d sets, and an instance of

I = (G, k, S, c) of MHE (MHV). If a set contains both precolored and uncolored vertices,

we split the set into two sets: one containing precisely the precolored vertices and the

other precisely the uncolored vertices. After splitting each set, the number of sets is at

most 2d. For convenience, we say a set is uncolored if each vertex in it is uncolored;

otherwise the set is precolored. Let the uncolored sets be P1, P2, . . . , Pd. In what follows,

we discuss how vertices in these sets are colored in an optimal solution. We say a set is

monochromatic if all of its vertices have the same color.

77

... ...

C1 C2

X1 X2

Q1 Q2

Figure 5.2: A set of a type partition, where each vertex in Q1∪Q2 has the same type. The
dashed edges appear exactly when Q1 ∪Q2 induces a clique. The set Q1 forms a complete
bipartite graph with both X1 and X2; likewise for Q2 (edges omitted for brevity).

MHE Parameter: neighborhood diversity t

Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring

c : S ⊆ V (G)→ [k].

Output: A coloring c̃ : V (G) → [k] such that c̃|S = c maximizing the number of

happy edges.

Lemma 38. There is an optimal extended full coloring for an instance I of MHE such

that each uncolored set Pi for 1 ≤ i ≤ t is monochromatic.

Proof. Consider any optimal extended full coloring for an instance I. Suppose the vertices

in a set Pi belong to more than one color class. Let Q1 and Q2 be the (disjoint and

non-empty) sets of vertices of Pi belonging to color classes C1 and C2, respectively. Let

X1 and X2 be the neighbors of the vertices in Q1 and Q2 in color classes C1 and C2,

respectively, as shown in Figure 5.2. Without loss of generality, let us assume that

|X1| ≤ |X2|. By recoloring vertices in Q1 with the color of C2, we retain an optimal

solution without disturbing the colors of other vertices. If |E(Q1, Q2)| is the number of

edges between Q1 and Q2, the gain in the number of happy edges by recoloring Q1 is

|E(Q1, Q2)|+ |Q1|(|X2| − |X1|), which is strictly positive if Pi is a clique and non-negative

if Pi is an independent set.

In conclusion, we have shown that every optimal extended full coloring makes each Pi

inducing a clique monochromatic. Moreover, there is an optimal extended full coloring

making each Pi inducing an independent set monochromatic.

The previous lemma is combined with the algorithm of Theorem 34 to obtain the

following.

Theorem 39. For any k ≥ 1, MHE can be solved in time O∗(2d), where d is the

neighborhood diversity of the input graph.

78

Proof. First we construct a weighted graph H from G as follows: merge each uncolored

set into a single vertex. Within a precolored set (i.e., a set that is not uncolored), merge

vertices of the same color. This merging operation may create parallel edges and self-loops

in H. Discard all self-loops in H. Replace all parallel edges with a single weighted edge

with weight equivalent to the number edges between the corresponding vertices. Edges

between the vertices in G that are merged to the same vertex are treated as happy, as

there is an optimal extended full coloring where the merged vertices are colored the same

by Lemma 38. Clearly, H has at most d+ kd vertices in which t vertices are uncolored.

Now, MHE on G is converted to an instance of Weighted MHE on H. By using

Theorem 34, we can solve the instance of MHE on G in time O∗(2d).

Using similar arguments, we get the following results for MHV as well.

MHV Parameter: neighborhood diversity t

Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring

c : S ⊆ V (G)→ [k].

Output: A coloring c̃ : V (G) → [k] such that c̃|S = c maximizing the number of

happy vertices.

Lemma 40. There is an optimal extended full coloring for an instance I of MHV such

that each uncolored set Pi for 1 ≤ i ≤ d is monochromatic.

Proof. Consider any optimal extended full coloring for an instance I. Suppose the vertices

in a set Pi belong to more than one color class. Let Q1 and Q2 be the (disjoint and

non-empty) sets of vertices of Pi belonging to color classes C1 and C2, respectively. Let

X1 and X2 be the neighbors of the vertices in Q1 and Q2 in color classes C1 and C2,

respectively, as shown in Figure 5.2. Without loss of generality, let us assume that

|X1| ≤ |X2|. By recoloring vertices in Q1 with the color of C2, we retain an optimal

solution without disturbing the colors of other vertices. If |E(Q1, Q2)| is the number of

edges between Q1 and Q2, the gain in the number of happy edges by recoloring Q1 is

|E(Q1, Q2)|+ |Q1|(|X2| − |X1|), which is strictly positive if Pi is a clique and non-negative

if Pi is an independent set.

In conclusion, we have shown that every optimal extended full coloring makes each Pi

inducing a clique monochromatic. Moreover, there is an optimal extended full coloring

making each Pi inducing an independent set monochromatic.

Theorem 41. For any k ≥ 1, MHV can be solved in time O∗(2d), where d is the

neighborhood diversity of the input graph.

Proof. First we construct a weighted graph H from G as follows: merge each uncolored

set into a single vertex. Within a precolored set (i.e., a set that is not uncolored), merge

79

vertices of the same color. This merging operation may create parallel edges and self-loops

in H. Discard all self-loops in H. Replace all parallel edges with a single weighted edge

with weight equivalent to the number edges between the corresponding vertices. Edges

between the vertices in G that are merged to the same vertex are treated as happy, as

there is an optimal extended full coloring where the merged vertices are colored the same

by Lemma 38. Clearly, H has at most d+ kd vertices in which d vertices are uncolored.

Now, MHV on G is converted to an instance of Weighted MHV on H. By using

Theorem 34, we can solve the instance of MHV on G in time O∗(2d).

80

Chapter 6

Algorithm for Replacement Paths

Problem

A Replacement Shortest Path (RSP) for the edge ei (respectively, node vi) is a shortest

s− t path in G\ei (respectively, G\vi). The Edge Replacement Path problem is to

compute RSP for all ei ∈ PG(s, t). Similarly, the Node Replacement Path problem is

to compute RSP for all vi ∈ PG(s, t).

Like in all existing algorithms for RSP problem, our algorithm has two phases:

1. Computing shortest path trees rooted at s and t, Ts and Tt respectively.

2. Computing RSP using Ts and Tt.

For graphs with non-negative edge weights, computing an SPT takes O(m + n log n)

time, using the standard Dijkstra’s algorithm [28] using Fibonacci heaps [36]. However,

for integer weighted graphs (RAM model) [75], planar graphs [44] and minor-closed

graphs [74], O(m + n) time algorithms are known. In this paper, to compute SPTs Ts

and Tt (phase (i)) we use the existing algorithms. For phase (ii), we present an O(m+ l2)

time algorithm which is simple and easy to implement.

6.1 Edge Replacement Paths

We start by computing shortest path trees Ts and Tt. In the rest of the section we describe

the algorithm for computing RSP using Ts and Tt (phase (ii)).

A potential replacement path for the edge ei = (vi−1, vi) can be seen as a concatenation

of three paths A, B and C, where, A = s vk ∈ PG(s, t) for some 0 ≤ k < i,

B = vk vr ∈ G\E(PG(s, t)) for some i ≤ r ≤ l and C = vr t ∈ PG(s, t) as shown in

Figure 6.1. Here, the symbol represents a path in G. One extreme case is when |A| = 0

81

and |C| = 0 (i. e. vk = s and vr = t) as shown in Figure 6.1(b). Such a replacement path

is also a potential replacement path for all the edges ei ∈ PG(s, t). The other extreme case

is when |A| = i− 1 and |C| = l − i (i.e. vk = vi−1 and vr = vi) as shown in Figure 6.1(c).

Such a replacement path is a potential replacement path only for the edge ei.

0 0

e
i

e
i

0

e
i

t

v

vk

vr

v
i−1

v

v

i

l

s

A

C

B

v

v
i−1

v

v

i

l

B

A={s}

C={t}

(a) (b)

t

v

v
i−1

v

v

i

l

s

A

C

B

(c)

vk = s

vr = t

vk

vr

Figure 6.1: Potential replacement paths for the edge ei. The zig-zag lines represent a path

Consider the shortest path tree rooted at s (Ts). When the edge ei = (vi−1, vi) is

removed from Ts, Ts is disconnected into two sub-trees. T1(ei) (sub-tree rooted at s) and

T2(ei) (sub-tree rooted at vi). The vertex sets of T1(ei) and T2(ei) determine a cut in the

graph G. Let C(ei) denote the set of all non-tree edges crossing the cut. These edges are

called crossing edges, i.e, C(ei) = {(x, y) ∈ E(G)\ei|x ∈ T1(ei) ∧ y ∈ T2(ei)}. In order to

have a replacement path, the set C(ei) needs to be nonempty. And, any replacement path

must use at least one crossing edge from C(ei). Moreover, as we see from the Lemmas 42

and 43 there exists an RSP that uses exactly one crossing edge.

Lemma 42 ([69]). For all (x, y) ∈ C(ei), dG−ei(s, x) = dG(s, x) and dG−ei(y, t) = dG(y, t).

Proof. If (x, y) ∈ C(ei), then x ∈ T1(ei) and y ∈ T2(ei). Shortest s − x path is fully in

T1(ei) and does not include the edge ei. Hence, dG−ei(s, x) = dG(s, x).

To prove dG−ei(y, t) = dG(y, t), for the sake of contradiction, let us assume that

dG−ei(y, t) 6= dG(y, t) (i.e dG−ei(y, t) > dG(y, t)). It means that, PG(y, t) uses the edge ei =

(vi−1, vi). This implies dG(vi, y) > dG(vi−1, y). Since y ∈ T2(ei), dG(vi−1, y) > dG(vi, y) a

contradiction. Hence, dG−ei(y, t) = dG(y, t).

Lemma 43 ([69]). For any edge ei ∈ PG(s, t), there exists a shortest s− t path in G− ei
which contains exactly one edge from C(ei).

82

Proof. Let us consider a shortest s− t path in G− ei (say P1) which uses more than one

crossing edge from C(ei). Let (x, y) be the last crossing edge in P1. Clearly x ∈ T1(ei)

and y ∈ T2(ei). By replacing the part of P1 from s to x, by the s x path in T1(ei), we

get a new path which is not longer than P1 and uses exactly one edge from C(ei).

Using the Lemmas 42 and 43, we write the total weight of the RSP for the edge ei as:

dG−ei(s, t) = min
(x′,y′)∈C(ei)

{dG(s, x′) + w(x′, y′) + dG(y′, t)}. (6.1)

All the terms in the equation (6.1) are available in constant time for a fixed (x′, y′)

from Ts and Tt. Let (x, y) be the crossing edge that minimizes the RHS of the equation

(6.1). We call that (x, y) the swap edge. If we have the swap edge, we can report the RSP

as s x→ y t in constant time. Every non-tree edge can be a potential crossing edge

for every edge in PG(s, t). So, solving equation (6.1) by brute force gives us O(ml) time

algorithm. In this paper we present an O(m+ l2) time algorithm. In the rest of the paper,

we concentrate on computing the swap edge for each ei ∈ PG(s, t).

6.1.1 Labeling the nodes of G

Every vertex of G is labeled with an integer value from 0 to l, with respect to the shortest

path tree Ts. The process of labeling is as follows:

Let Tvi be the sub-tree rooted at the node vi in Ts. All the nodes in the sub-tree Tvl
are labeled with the integer value l. For 0 ≤ i < l, all the nodes in the sub-tree Tvi\Tvi+1

are labeled with the integer value i. See Figure 6.2(a) for an example labeling.

Using pre-order traversal on Ts, we compute the labels of all the vertices in linear time.

We start pre-order traversal from the source vertex s using zero as initial label. While

visiting the children of a node recursively, the child node part of PG(s, t) (if any) will be

visited last with an incremented label. Let label(v) denote the label of a vertex v in G.

The following Lemma is straightforward.

Lemma 44. A non-tree edge (x, y) ∈ C(ei) if and only if label(x) < i and label(y) ≥ i.

In other words, for a non-tree edge (x, y), if label(x) = i and label(y) = i + r for some

r > 0, then (x, y) ∈ C(ej), ∀(i < j ≤ i+ r).

6.1.2 Computing Swap Edges

We construct a directed acyclic graph which will aid us in computing the swap edges.

We call this DAG as RSP-DAG, denoted by Ĝ. The following algorithm explains the

construction of the RSP-DAG. An example RSP-DAG is shown in Figure 6.2(b).

83

Algorithm 7 Algorithm to construct the RSP-DAG Ĝ = (V̂ , Ê).

1: V̂ ← ∅
2: Ê ← ∅ . Adding Nodes. Each node is identified by an ordered pair (i, j)
3: for i = 0 to l − 1 do
4: for j = i+ 1 to l do
5: V̂ ← V̂ ∪ (i, j)
6: end for
7: end for . Adding Edges
8: for each û = (i, j) ∈ V̂ do
9: if j − i > 1 then
10: Ê ← Ê ∪ ((i, j), (i, j − 1))

11: Ê ← Ê ∪ ((i, j), (i+ 1, j))
12: end if
13: end for

Clearly, the number of vertices in the RSP-DAG is O(l2) and the number of edges is

also O(l2). Every node has in-degree and out-degree at most two. The node with identifier

(0, l) has zero in-degree. Nodes (i, i+ 1),∀(0 ≤ i < l) have zero out-degree (sink nodes).

{(5,14), (6,15)}

(0,4)

(0,3) (1,4)

(0,2) (1,3) (2,4)

(0,1) (1,2) (2,3) (3,4)

{(0,8)} {(7,10), (9,11)} {(2,13)} {(12,14)}

{}

{}

{(10,4), (11,4), (11,15)}{(5,2), 6,2)}

{(0,12)}

00
0

0

1 1
1

1

1

22

2

33
3

44 4

5 6

7
8

9

10
11

12
13

14 15

(a) (b)

s

t

3

4

2

Figure 6.2: (a)An SPT rooted at s. Solid lines are part of the SPT. Dashed lines represent
the non-tree edges (we omit the edge weights). Number inside the vertex circle denotes
the vertex number, where as the number above the vertex circle represents vertex label.
(b)Corresponding RSP-DAG with set of non-tree edges associated with nodes

For each node û = (i, j) ∈ V̂ , we associate a set E(i,j) of crossing edges. This set

includes all the non-tree edges (x, y) such that label(x) = i and label(y) = j. This

association of crossing edges partitions the crossing edges into disjoint sets.

Lemma 45. If the swap edge (x, y) for the tree edge ei ∈ PG(s, t) is present in the edge

set (E(j,k)) of a node û = (j, k) ∈ V̂ , then there exists a directed path from the node û to

the node ŵ = (i− 1, i) ∈ V̂ in the RSP-DAG.

84

Proof. Clearly j ≤ i− 1 and k ≥ i, otherwise, (x, y) will not be the crossing edge for ei.

If û is a sink node (û = ŵ) in the RSP-DAG, then the theorem is trivially true.

Otherwise, if we observe the way edges are added in the RSP-DAG, for the node

û = (j, k) ∈ V̂ , two directed edges ((j, k), (j, k − 1)) and ((j, k), (j + 1, k)) are added and

from these nodes, we keep adding edges to the lower level nodes in the RSP-DAG. We

will eventually connect to the leaf node ŵ = (i− 1, i) ∈ V̂ . Hence there is a directed path

from û to ŵ.

Now we make a BFS traversal on the RSP-DAG starting from the node with identifier

(0, l). During the traversal, at every node, the minimum cost non-tree edge (x, y) (cost

being d(s, x) + w(x, y) + d(y, t)) from the corresponding edge set is inserted into the edge

sets of its two children. By the end of this process, minimum cost non-tree edges in the

respective sink nodes give us the swap edges.

Theorem 46. There is an algorithm for the Edge Replacement Path problem that

runs in O(TSPT (G) +m+ l2) time using O(m+ l2) space.

Proof. TSPT (G) represents the time to compute SPTs Ts and Tt. Construction of the

RSP-DAG takes O(m+ l2) time and O(m+ l2) space. BFS traversal on the RSP-DAG

takes O(l2) time. During the traversal at each node (i, j) ∈ V̂ , we extract the minimum

cost non-tree edge from the set of size at most |E(i,j)|+ 2. Time complexity of overall edge

extraction steps is:
∑

i<j |E(i,j)| + 2 = O(m + l2). Therefore the total time complexity

is O(TSPT (G) +m+ l2). Space complexity is O(m+ l2) which is the space to store the

RSP-DAG.

Using the linear time algorithms for SPT, for integer weighted graphs, minor closed

graphs our algorithm takes O(m+ l2) time.

6.2 Node Replacement Paths

When the node vi ∈ PG(s, t) is removed, the SPT Ts is partitioned as: T1(vi) (sub-tree

rooted at s), T2(vi) (sub-tree rooted at vi+1) and F (vi) (the remaining forest Ts\{T1(vi)∪
T2(vi) ∪ vi}). The crossing edges are denoted as:

C ′(vi) = {(x, y) ∈ E(G)|x ∈ T1(vi) ∧ y ∈ T2(vi)} (6.2)

C ′′(vi) = {(x, y) ∈ E(G)\(vi, vi+1)|x ∈ F (vi) ∧ y ∈ T2(vi)} (6.3)

C(vi) = C ′(vi) ∪ C ′′(vi) (6.4)

Lemma 47 ([69]). For all x ∈ T1(vi), dG−vi(s, x) = dG(s, x), and for all y ∈ T2(vi),

dG−vi(y, t) = dG(y, t).

85

Proof. We omit the proof as the proof is similar to lemma 42

Using Lemma 47, the length of the RSP is written as:

d′G−vi(s, t) = min
(x,y)∈C′(vi)

{dG(s, x) + w(x, y) + dG(y, t)} (6.5)

d′′G−vi(s, t) = min
(x,y)∈C′′(vi)

{dG−vi−T2(vi)(s, x) + w(x, y) + dG(y, t)} (6.6)

dG−vi(s, t) = min{d′G−vi(s, t), d
′′
G−vi(s, t)} (6.7)

Having Ts and Tt, all the terms in the equations (6.5) and (6.6) are available in

constant time, except the distance dG−vi−T2(vi)(s, x) for x ∈ F (vi) (partial shortest path

distance). We need all the partial shortest path distances dG−vi−T2(vi)(s, x), ∀vi ∈ PG(s, t)

and ∀x ∈ F (vi).

To compute all the partial shortest path distances, we use the technique used in [62]

and [60].

Let Gi (corresponding to the vertex vi) be the graph constructed from G as follows:

The vertex set of Gi, V (Gi), consists of the source vertex s and the vertices which are

part of the forest F (vi). The edge set of Gi, E(Gi), consists of the following edges:

• Edges between the nodes within the forest F (vi). These edges will get the same

edge weight as in G.

• For every v ∈ F (vi), an edge (s, v) is added whenever there is at least one edge from

T1(vi) to v. The weight of this edge is calculated as follows:

w̃(s, v) = min
(u,v)∈E(T1(vi),v))

{dG(s, u) + w(u, v)} (6.8)

That is,

V (Gi) = {V (F (vi))} ∪ {s} (6.9)

E(Gi) = {E(F (vi), F (vi))} ∪ {(s, v)|(v ∈ F (vi) ∧ E(T1(vi), v) 6= ∅)} (6.10)

Gi is a graph minor ofG, since it can be obtained by edge contraction. Hence, SPT, Ti(s)

of Gi, rooted at s can be constructed in TSPT (Gi) time. Moreover, dG−vi−T2(vi)(s, x) =

dGi
(s, x) for any x ∈ F (vi). As F (vi) ∩ F (vj) = ∅, for any i 6= j, V (Gi) ∩ V (Gj) =

{s}. Construction of Gi and Ti(s) for all i takes a total time of O(
∑l−1

i=1(TSPT (Gi)) =

O(TSPT (G)). dG−vi−T2(vi)(s, x) for any x ∈ F (vi) is available in constant time from Ti(s)

of Gi.

Instead of computing l − 1 SPTs, Ti(s), for all 1 ≤ i ≤ l − 1, we compute one graph,

G̃ =
⋃l

i=1Gi, where Gi is constructed as explained earlier. G̃ can be constructed from

86

G in O(m+ n) time. Single source shortest path tree rooted at s, T̃s of G̃ is computed

in O(TSPT (G̃)) = O(TSPT (G)) time. dG−vi−T2(vi)(s, x) for any x ∈ F (vi) is available in

constant time from T̃s of G̃. Moreover, as C ′′(vi) ∩ C ′′(vj) = ∅,∀(i 6= j), the distances

d′′G−vi(s, t) for all vi are available in linear time.

To compute d′G−vi(s, t) for all vi, we use the RSP-DAG. We use the vertex labeling on

Ts (as computed in Section 6.1.1), for a non-tree edge (x, y), (x, y) ∈ C ′(vi) if and only if

label(x) < i and label(y) > i. In other words, for a non-tree edge (x, y), if label(x) = i

and label(y) = i+ r for some r > 1, then (x, y) ∈ C ′(vj), for all i < j < i+ r.

Hence, the crossing edges C ′(vi) will be part of edge sets associated with the vertices

(i, i+ r), r > 1 in the RSP-DAG. After the BFS traversal on the RSP-DAG, the minimum

cost crossing edge (over C ′(vi)) for vi is available in the edge set of the node (i− 1, i+ 1)

in the RSP-DAG. We do not need to perform the BFS traversal on the RSP-DAG again,

because, the data populated during the BFS traversal for the edge replacement paths

suffices.

If we have the swap edge (x, y) for the vertex vi, we can report the RSP in constant

time as s x → y t. Here s x is available from Ts if (x, y) ∈ C ′(vi). It is

constructed from SPTs Ts and T̃s if (x, y) ∈ C ′′(vi).

Theorem 48. There is an algorithm for the Node Replacement Path problem that

runs in O(TSPT (G) +m+ l2) time using O(m+ l2) space.

Proof. TSPT (G) represents the time to compute SPTs Ts and Tt. Computing the distances

d′′G−vi(s, t) for all vi takes O(TSPT (G) + m + n) time. Computing d′G−vi(s, t) for all vi

using the RSP-DAG takes O(m+ l2) time and O(m+ l2) space. Therefore the total time

complexity is O(TSPT (G) + m + l2). Space complexity is O(m + l2) which is the space

necessary to store the RSP-DAG.

Using the linear time algorithms for SPT, for integer weighted graphs, minor closed

graphs our algorithm takes O(m+ l2) time.

From Theorems 46 and 48 we state the following Theorem.

Theorem 49. There is an algorithm for the edge and the node replacement path problems

that runs in O(TSPT (G) +m+ l2) time using O(m+ l2) space.

87

Chapter 7

Conclusions and Future Work

In this thesis we presented parameterized algorithms for the graph partitioning problems,

Matching Cut, H-Free Coloring and Happy Coloring. We also studied the complexity

of Happy Coloring problems for some special graph classes like trees, bipartite graphs,

split graphs and complete graphs. We also presented a simple algorithm for replacement

paths problem. The following are some of the open problems related to these problems.

For the Matching Cut problem, we presented an O∗(2O(t)) time algorithm, where t

is the tree-width of the graph. It is interesting to study the complexity of the Matching

Cut problem parameterized by the size of the cut. That is given an undirected graph G

and a positive integer ` the question is: does the graph G have a matching cut such that

the number of edges in the cut is at most `?

When the graph G has degree at least 2, the Matching Cut problem in G is

equivalent to the problem of deciding whether the line graph of G denoted by L(G) has an

independent vertex cut. The Matching Cut problem parameterized by the size of the

cut is equivalent to the problem of deciding whether the line graph of G has independent

vertex cut of size at most `. The maximum independent set problem on line graphs is

polynomial-time solvable, but we need an independent set I ⊆ V (L(G)) such that |I| ≤ `

and I is a vertex cut in L(G).

For the Matching Cut and H-Free Coloring problems, we presented explicit

combinatorial algorithms parameterized by the tree-width. The question is: are these

algorithms optimal? Can we have ETH/SETH based lower bounds for the Matching

Cut and H-Free Coloring problems parameterized by tree-width?

For the MHV problem Agrawal [3] gave a kernel of size O(k2`2). In this thesis, we

obtained an O(k+ `) kernel for the MHE problem. It would be interesting to see if MHV

problem admits an O(k + `) kernel. For a arbitrary k, the MHE problem is NP-hard for

planar graphs. It is interesting to study the complexity of the MHV problem for planar

graphs.

88

In this thesis, we have shown that both MHE and MHV are in FPT with respect to

the combined parameter k + t, where k is the number of colors used in the pre-coloring

and t is the tree-width of the graph. The complexity of the MHE and MHV problems

with respect to the parameter tree-width alone can be explored.

89

Bibliography

[1] The multi-multiway cut problem. Theoretical Computer Science, 377(1):35–42, 2007.

[2] Demetrios Achlioptas. The complexity of g-free colourability. Discrete Mathematics,

165-166(Supplement C):21–30, 1997.

[3] Akanksha Agrawal. On the parameterized complexity of happy vertex coloring.

Accepted to IWOCA 2017.

[4] N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Linear

time algorithms for happy vertex coloring problems for trees. In Proceedings of the

27th International Workshop on Combinatorial Algorithms (IWOCA), volume 9843

of Lecture Notes in Computer Science, pages 281–292. Springer, 2016.

[5] N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On

structural parameterizations of the matching cut problem. In Combinatorial Opti-

mization and Applications, pages 475–482, 2017.

[6] N. R. Aravind, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare, and

Juho Lauri. Algorithms and hardness results for happy coloring problems. CoRR,

abs/1705.08282, 2017. URL http://arxiv.org/abs/1705.08282.

[7] N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Bi-

partitioning problems on graphs with bounded tree-width. CoRR, abs/1804.04016,

2018. URL https://arxiv.org/abs/1804.04016.

[8] Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Degree-constrained decom-

positions of graphs: Bounded treewidth and planarity. Theoretical Computer Science,

355(3):389 – 395, 2006.

[9] Omer Berkman, Baruch Schieber, and Uzi Vishkin. Optimal doubly logarithmic

parallel algorithms based on finding all nearest smaller values. Journal of Algorithms,

14(3):344–370, 1993.

90

[10] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via

Inclusion-Exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.

[11] Paul Bonsma. The complexity of the matching-cut problem for planar graphs and

other graph classes. Journal of Graph Theory, 62(2):109–126, 2009.

[12] Mieczysaw Borowiecki and Katarzyna Jesse-Józefczyk. Matching cutsets in graphs of

diameter 2. Theoretical Computer Science, 407(1-3):574–582, 2008.

[13] Andreas Brandstädt, Feodor F. Dragan, Van Bang Le, and Thomas Szymczak. On

stable cutsets in graphs. Discrete Applied Mathematics, 105(1):39–50, 2000.

[14] Yixin Cao, Jianer Chen, and J.-H. Fan. An O∗(1.84k) parameterized algorithm for

the multiterminal cut problem. Information Processing Letters, 114(4):167–173, 2014.

[15] Yair Caro and Raphael Yuster. Graph decomposition of slim graphs. Graphs and

Combinatorics, 15(1):5–19, 1999.

[16] Guantao Chen and Xingxing Yu. A note on fragile graphs. Discrete Mathematics,

249(1-3):41–43, 2002.

[17] Guantao Chen, Ralph J. Faudree, and Michael S. Jacobson. Fragile graphs with

small independent cuts. Journal of Graph Theory, 41(4):327–341, 2002.

[18] Sunil Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):

51–89, 1991.

[19] V. Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53,

1984.

[20] D.G. Corneil and J. Fonlupt. Stable set bonding in perfect graphs and parity graphs.

Journal of Combinatorial Theory, Series B, 59(1):1 – 14, 1993.

[21] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Information and Computation, 85(1):12–75, 1990.

[22] Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions,

minor and complexity issues. Theoretical Informatics and Applications, 26:257–286,

1992.

[23] Bruno Courcelle. The monadic second order logic of graphs vi: on several repre-

sentations of graphs by relational structures. Discrete Applied Mathematics, 54(2):

117–149, 1994.

91

[24] L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective colorings of graphs in

surfaces: Partitions into subgraphs of bounded valency. Journal of Graph Theory, 10

(2):187–195, 1986.

[25] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.

Springer, 2015.

[26] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.

The complexity of multiway cuts (extended abstract). In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing (STOC), pages 241–251. ACM,

1992.

[27] Xiaojie Deng, Bingkai Lin, and Chihao Zhang. Multi-multiway cut problem on graphs

of bounded branch width. In Frontiers in Algorithmics and Algorithmic Aspects in

Information and Management, pages 315–324, 2013.

[28] E W Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1:269–271, 1959.

[29] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About

a Highly Connected World. Cambridge University Press, 2010.

[30] Paul Erdós, Arthur L. Rubin , and Herbert Taylor. Choosability in graphs. In

In Proceedings of the West Coast Conference on Combinatorics, Graph Theory and

Computing, pages 125–157, 1979.

[31] Arthur M. Farley and Andrzej Proskurowski. Networks immune to isolated line

failures. Networks, 12(4):393–403, 1982.

[32] Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary proper-

ties is NP-hard. The Electronic Journal of Combinatorics, 11, 08 2004.

[33] Jǐŕı Fiala, Tomáš Gavenčiak, Dušan Knop, Martin Koutecký, and Jan Kratochv́ıl.

Fixed Parameter Complexity of Distance Constrained Labeling and Uniform Channel

Assignment Problems. In Thang N. Dinh and My T. Thai, editors, Proceedings of the

22nd International Confence on Computing and Combinatorics (COCOON), volume

9797 of Lecture Notes in Computer Science, pages 67–78. Springer, 2016.

[34] Fedor V Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science

& Business Media, 2010.

92

[35] Lester R. Ford and Delbert R. Fulkerso. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956.

[36] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[37] Robert Ganian. Using neighborhood diversity to solve hard problems. CoRR,

abs/1201.3091, 2012. URL http://arxiv.org/abs/1201.3091.

[38] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms

for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[39] Luisa Gargano and Adele A. Rescigno. Complexity of conflict-free colorings of graphs.

Theoretical Computer Science, 566:39–49, 2015.

[40] Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut

problem for fixed k. Math. Oper. Res., 19(1):24–37, 1994.

[41] R. L. Graham. On primitive graphs and optimal vertex assignments. Annals of the

New York Academy of Sciences, 175(1):170–186, 1970.

[42] Branko Grünbaum. Acyclic colorings of planar graphs. Israel Journal of Mathematics,

14(4):390–408, 1973.

[43] Magnús M. Halldórsson and Guy Kortsarz. Multicoloring: Problems and techniques.

In Mathematical Foundations of Computer Science 2004, pages 25–41, 2004.

[44] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam. Faster shortest-path

algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,

1997.

[45] John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is

an edge worth? In Proceedings of the 42nd IEEE symposium on Foundations of

Computer Science, pages 252–259, 2001.

[46] Saurabh Joshi, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare, and Sriram

Bhyravarapu. On the tractability of (k, i)-coloring. In Algorithms and Discrete Applied

Mathematics, pages 188–198. Springer International Publishing, 2018.

[47] Anjeneya Swami Kare. A simple algorithm for replacement paths problem. Electronic

Notes in Discrete Mathematics, 53:307–318, 2016. International Conference on Graph

Theory and its Applications.

93

[48] Anjeneya Swami Kare and Sanjeev Saxena. Efficient solutions for finding vitality with

respect to shortest paths. In 6th IEEE International Conference on Contemporary

Computing (IC3), pages 70–75, 2013.

[49] Micha l Karpiński. Vertex 2-coloring without monochromatic cycles of fixed size is

NP-complete. Theoretical Computer Science, 659(Supplement C):88–94, 2017.

[50] Sulamita Klein and Celina M. H. de Figueiredo. The NP-completeness of multi-partite

cutset testing. Congressus Numerantium, 119:217–222, 1996.

[51] Ton Kloks, editor. Treewidth: Computations and Approximations. Lecture Notes in

Computer Science, Springer, 1994.

[52] Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem.

Theoretical Computer Science, 609(2):328–335, 2016.

[53] Stefan Kratsch and Pascal Schweitzer. Isomorphism for graphs of bounded feedback

vertex set number. In Algorithm Theory - SWAT 2010, pages 81–92. Springer Berlin

Heidelberg, 2010.

[54] Ewa Kubicka, Grzegorz Kubicki, and Kathleen A. McKeon. Chromatic sums for col-

orings avoiding monochromatic subgraphs. Electronic Notes in Discrete Mathematics,

43:247–254, 2013.

[55] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorith-

mica, 64(1):19–37, 2012.

[56] Michael Langberg, Yuval Rabani, and Chaitanya Swamy. Approximation algorithms

for graph homomorphism problems. In Proceedings of the 9th International Conference

on Approximation Algorithms for Combinatorial Optimization Problems, and 10th

International Conference on Randomization and Computation (APPROX-RANDOM),

volume 4110 of Lecture Notes in Computer Science, pages 176–187. Springer, 2006.

[57] Paul F Lazarsfeld and Robert K Merton. Friendship as a social process: A substantive

and methodological analysis. Freedom and Control in Modern Society, 18(1):18–66,

1954.

[58] Van Bang Le and Bert Randerath. On stable cutsets in line graphs. In 27th

International Workshop Graph-Theoretic Concepts in Computer Science (WG 2001)

Boltenhagen, Germany, pages 263–271, 2001.

[59] Van Bang Le, Raffaele Mosca, and Haiko Müller. On stable cutsets in claw-free

graphs and planar graphs. Journal of Discrete Algorithms, 6(2):256–276, 2008.

94

[60] Cheng-Wei Lee and Hsueh-I Lu. Replacement paths via row minima of concise

matrices. SIAM Journal on Discrete Mathematics, 2(1):206–225, 2014.

[61] Ewa M. Kubicka, Grzegorz Kubicki, and Kathleen A. McKeon. Chromatic sums for

colorings avoiding monochromatic subgraphs. 43:541–555, 08 2015.

[62] Jay Mahadeokar and Sanjeev Saxena. Faster replacement paths algorithms in case

of edge or node failure for undirected, positive integer weighted graphs. Journal of

Discrete Algorithms, 23:54–62, 2013.

[63] K Malik, A K Mittal, and S K Gupta. The k most vital arcs in the shortest path

problem. Operations Research Letters, 8:223–227, 1989.

[64] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a Feather:

Homophily in Social Networks. Annual Review of Sociology, 27(1):415–444, 2001.

[65] Walter Meyer. Equitable coloring. The American Mathematical Monthly, 80(8):

920–922, 1973.

[66] Neeldhara Misra and I.Ṽinod Reddy. The parameterized complexity of happy colorings.

Accepted to IWOCA 2017.

[67] Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):

527–536, 1989.

[68] Enrico Nardelli, Guido Proietti, and Peter Widmayer. A faster computation of the

most vital edge of a shortest path. Information Processing Letters, 79(2):81–85, 2001.

[69] Enrico Nardelli, Guido Proietti, and Peter Widmayer. Finding the most vital node

of a shortest path. Theoretical Computer Science, 296(1):167–177, 2003.

[70] Maurizio Patrignani and Maurizio Pizzonia. The complexity of the matching-cut

problem. In 27th International Workshop Graph-Theoretic Concepts in Computer

Science (WG 2001) Boltenhagen, Germany, pages 284–295, 2001.

[71] Michaël Rao. MSOL partitioning problems on graphs of bounded treewidth and

clique-width. Theoretical Computer Science, 377(1):260–267, 2007.

[72] Neil Robertson and P.D Seymour. Graph minors. X. Obstructions to tree-

decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[73] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):

585–591, 1997.

95

[74] Siamak Tazari and Matthias Muller-Hannemann. Shortest paths in linear time on

minor-closed graph classes, with an application to steiner tree approximation. Discrete

Applied Mathematics, 157(4):673–684, 2009.

[75] Mikkel Thorup. Floats, integers, and single source shortest paths. Journal of

Algorithms, 35(2):189–201, 2000.

[76] Yongqi Wu, Jinjiang Yuan, and Yongcheng Zhao. Partition a graph into two induced

forests. Journal of Mathematical Study, 1:1–6, 01 1996.

[77] Mingyu Xiao and Hiroshi Nagamochi. Complexity and kernels for bipartition into

degree-bounded induced graphs. Theoretical Computer Science, 659:72–82, 2017.

[78] Peng Zhang and Angsheng Li. Algorithmic aspects of homophyly of networks.

Theoretical Computer Science, 593:117–131, 2015.

[79] Peng Zhang, Tao Jiang, and Angsheng Li. Improved Approximation Algorithms for

the Maximum Happy Vertices and Edges Problems. In Proceedings of the 21st Annual

International Conference on Computing and Combinatorics (COCOON), volume

9198 of Lecture Notes in Computer Science, pages 159–170. Springer, 2015.

96

