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Abstract

Optimization is a procedure where we find and compare feasible solutions to a problem until the
best solution is found, or in other words until no better solution can be found. Most of the real
world problems are multi-objective, i.e. they have more than one conflicting objectives. Due to
the presence of multiple conflicting objectives, it becomes difficult to find one best solution among
multiple solutions available.

Classical optimization can find at best one solution in one trial. Evolutionary algorithms (EAs),
on the other hand, can find multiple solutions in one run. Hence, EAs are best suited to find
solutions to multi-objective problems.

Interval mathematics is a generalization of mathematics, in which real numbers are replaced by
interval numbers. Interval analysis was developed so as to put bounds on errors, both rounding and
measurement, and thus, developing numerical methods to yield better results. In interval analysis
we represent a real number z as an interval instead of exact value. The arithmetic is almost similar
to real arithmetic, but since it involves intervals, we have to take care of the bounds of all the
intervals involved. We begin with the introduction to some of the basic commands and functions
that are used in INTLAB, the toolbox that will be used to perform interval analysis. This toolbox
is compatible with MATLAB 2016a (the MATLAB version that I have used for this version). The
basic commands that are used in MATLAB can also be used in INTLAB. This text explains in
fair detail the interval number system. The interval numbers follow the properties of real numbers,
although we have to make slight modifications accordingly. When we go through these properties, we
make some interesting observations regarding some properties that make interval analysis different,
and should be kept in mind while performing operations. Real functions can be extended to their
interval counterpart very easily.

Now, the question arises, whether or not, can the interval analysis be applied to solve optimization
problems? If yes, then how do we do that? In this text, the different processes involved in performing
optimization using interval analysis, which form the prerequisite for the algorithm, are explained.
After that, the complete algorithm, called the Branch and Bound Technique is explained. Having
understood the basics of interval analysis, now the question arises, how do we perform interval
analysis on computer? To explain this, some examples are taken, their outputs show the working of
interval analysis. Later, some examples are taken for optimization problems and their solutions are

produces by the aforementioned technique.
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Chapter 1

Introduction

1.1 Multi-objective Optimization

According to [1], optimization refers to finding one or more feasible solutions corresponding to
extreme values of one or more objectives.

The task of finding optimal solution(s) for a physical system with only one objective function is
called single objective optimization. These problems can be classified into two categories - Evolu-
tionary Algorithms and Simulated Annealing.

The task of finding optimal solution(s) for a physical system with one or more objective functions
is called multi-objective optimization.

Let’s take an example of buying a car, to understand the optimization problem better. We know
cars prices range from a few lakhs to a few crores of rupees (depending on the brand and type).
Let us take two extreme hypothetical examples of cars (Fig. 1.1, taken from [1]), i.e. car A costing
about Rs.10,000 and car B costing around Rs.100,000. Let’s say that car A has comfort level of
40% and car B has comfort level of 90%. Here the two objectives are cost and comfort. If cost is
the only objective, then without a doubt everyone will buy car A. Similarly, if the comfort is the
only objective, then everybody will go for car B. Now, apart from these two solutions, there exist
many other solutions as per the needs and capabilities of different people. Thus, among all these

solutions, we see that the solution is better only in one of the objectives.

Cost

Figure 1.1: Example for Multi-objective optimization

The above problem can be solved by considering either only one of the two objectives individually,
or by considering both the objectives simultaneously. The former will be the case for single objective
optimization, while the latter will be a problem for multi-objective optimization. As we have seen

above, if we solve the problem with single objective, then all we will see around us will be only two



types of cars i.e. car A and car B. But in reality we see that is not the case. And that is why we
can say that real world problems mostly are multi-objective in nature.

When we try to solve the problem as multi-objective problem, we see that whenever we optimize
one objective, other objectives will be affected for the worse. Thus, we see that in multi-objective
optimization problems, if we optimize one objective then we have to compromise on the other
objective(s). This is the basic crux of multi-objective optimization problems.

In earlier stages of development of multi-objective optimization problems, people used to solve
them by considering them as a cluster of several single objective problems. But over the years it

became clear that this was wrong approach.

1.1.1 Approach to solve Multi-objective Optimization

Although a multi-objective problem gives many optimal solutions, as a user we need only one optimal
solution, no matter what. Hence, it is needed that after solving the problem and getting many
optimal solutions, we use some higher information to get a unique optimal solution. Taking the
example of car buying problem once again, we see that apart from the two objectives mentioned
above i.e. cost and comfort, there are a number of other objectives that need to be addressed viz.
social status, choice of brand, availability of brand, locality, etc. Hence to solve a multi-objective
problem, the basic need is to find a trade-off solution by considering all the objectives to be equally
important. Hence to find solutions to ideal multi-objective problem, we suggest the following principle:

Step 1 Find multiple trade-off solutions for the objectives over a wide range.

Step 2 Use higher level qualitative information to find a single optimal solution.

Hence we see that the classical way of finding optimal solutions follows a procedure based ap-

proach.

1.1.2 Evolutionary Algorithms

It was seen in the previous section that solving a multi-objective problem using classical approach
requires us to follow a procedure based approach. In classical method, we find many solutions
simultaneously. The classical approach was designed keeping in mind the limitations of computing
methods at the time which could find only one solution at a time. With the advent of time and
advancement of computing facilities it is only justified that the optimization techniques are also
improved. Hence, Evolutionary Algorithms (EAs) were designed. EAs mimic the the evolutionary
principles of nature. One of the most striking differences of EAs from classical algorithms is that
here we have a population of solutions instead of a single solution. Hence, we also get a population of
solutions in each iteration. If a problem has a single optimal solution, then we get a single optimal
solution by EAs. But, if a problem has multiple optimal solutions, then EAs will give multiple

solutions.

1.2 Interval Mathematics

Ever since elementary school, we have been doing mathematics. Our primary objective was always
to find out the exact value of the solution. Now, if we are given the exact value of all the quantities,

it is alright to perform mathematics in that way. But with the advancement of computers, the



mathematics also evolved to a more complex state. But since computers are also machines and have
limitations in the number of digits we can represent, it is difficult to represent certain numbers with
accuracy, viz. the irrational numbers.

For example [2], let’s take a quadratic equation 22 — 2 = 0. Now we know that the solution is
x = +v2. Now we know that v/2 is an irrational number, and cannot be represented with high
accuracy. Hence, it is difficult to represent these numbers.

Apart form that, mathematical computing errors occur in many ways. Data often contain mea-
surement errors, or otherwise are uncertain due to rounding errors and approximations. Many
situations arise where we deal with quantities that are not exactly representable.

The interval analysis was developed in the late 1950s by mathematicians. The purpose of interval
analysis is to contain the effect of these errors with lower and upper bounds. As for the example
above, it will be way better if we represent the solution as an interval like z = [1.414,1.415] and
x = [—1.415, —1.414]. This way we don’t have to take care of the number of significant digits as the
answer will always lie within the interval.

Interval mathematics is a generalization of mathematics where real numbers are replaced by
interval numbers, real arithmetic replaced by interval arithmetic, and real analysis replaced by
interval analysis [3].

It is quite alright to represent a quantity in terms of interval, however loose the solution may
seem. Since it might be better to know that y € [59,62] rigorously than knowing the answer as
y ~ 60.

1.3 INTLAB Commands and Functions

INTLAB [4], [5] stands for INTerval LABoratory. It is a toolbox that was developed by S.M.Rump
so as to perform interval analysis. This version of INTLAB is entirely written in MATLAB and is
compatible with MATLAB 2016a, with the exception of some functions that don’t work. Iere we
mention some of the basic INTLAB commands and functions that will be used later to perform some
basic operations. Although there are a lot more of these commands and functions that INTLAB

incorporates, here only a few are mentioned.
1.3.1 Basic Commands

Let X denote an interval, and a, b, ¢, and d be real numbers.

o intvalinit(’DisplayInfsup’): Infimum-Supremum default display
X =infsup(a,b): Defines X as interval [a, b]

o intvalinit(’DisplayMidrad’): Midpoint radius default display
X = midrad(a,b): Defines X as [¢,d] = [a — b,a + b]

e intvalinit(’Display_’): Uncertainty default display

e« INTLAB follows all the basic arithmetic and logical instructions as followed by MATLAB,

with interval interpretations

Throughout this work, X = infsup(a,b) has been used.



1.3.2 Special Interval Functions

These are special to interval analysis.
e diam(X): Width of X
e hull(X,Y): Interval hull of X and Y
o inf(X): Returns the lower bound of X
e sup(X): Returns the upper bound of X
o intersect(X,Y): Gives intersection of X and Y
o union(X,Y): Gives union of X and Y

o mid(X): Gives midpoint of X

1.3.3 Plotting in INTLAB

o plotintval(X): If X is an n-dimensional complex interval vector, this plots each component as
a circle in complex plane. If X is array of real interval vectors of dimension (2, N), then this

plots each interval vector [X1 ;, X2,] as a box in zy-plane.

o plotlinsol(A,B): This plots the solution to the system of linear equation AX = B. The entire

solution is enclosed in an interval hull.

1.4 Motivation

The motivation for this project comes from the way interval optimization works. It works on the
principle of rejection, i.e. it has the ability to reject a particular region that does not fit the required
criteria. Hence, when performing optimization we can remove large chunks of search area and hence

significantly reduce the region.

1.5 Objectives

The objective of this study is to be able to apply interval mathematics to optimization problems,

both single objective and multi-objective.



Chapter 2

Multi-Objective Interval

Optimization

From [1] we see that, when we solve a physical system with more than one objective to find it’s
optimal solution, it is called multi-objective optimization. Almost all the real world problems are
multi-objective in nature since they require us to evaluate a problem from more than one perspective.

As we have seen before, for a problem to be multi-objective, all the objectives need to be conflict-
ing in nature. By conflicting we mean that if we try to optimize the problem in one objective, then
we won'’t get optimal solution in the other objective. This is the reason that solving a multi-objective

optimization problem is not an easy task.

2.1 Multi-objective Optimization Problem(MOOP)

A problem that deals with multiple objectives is called a Multi-objective optimization problem
(MOOP. A MOOP has a number of objective functions which need to be maximized or minimized.
The problem usually has a number of constraints which any feasible solution (including the optimal

solution) must satisfy. The general form of MOOP can be written as follows:

F(:E) = (f1($)7,f2(93')7 -~~7fm(x))T (21)
hi(z)>0,i=1,2,...,1
subject to gi(x)=0,7=1,2,....J
IEL)SIISxEU)7i:1727 7N

A solution x is the solution of n variables: z = (z1, 2, ...,2,)7.

Also associated with the problem are I inequality and J equality constraints. The terms h;(x)
and g;(z) are called constraint functions. A solution that does not satisfy all the (I 4+ J) constraints
and all of the 2N variable bounds, is called infeasible solution. On the other hand,a solution x
satisfying all constraints and variable bounds, is known as feasible solution.

In MOOP, there are M objective functions f(z) = (fi(z), f2(), ..., far(z))T, each of which has
to be either maximized or minimized. A maximization problem can be converted into minimization

problem by multiplying the objective function by —1. This is called the Duality principle. This

ot



helps in solving mixed type of problems. Quite a few algorithms are designed to solve only one type
of problems like minimization problems. The duality principle comes in handy when we are solving

a maximization problem using such algorithms.

2.1.1 Linear and Nonlinear MOOP

If all the objective functions and all the constraints are linear, the resulting MOOP is called multi-
objective linear program (MOLP).
However, even if one of the objective functions or constraints is nonlinear, the problem is called

nonlinear multi-objective problem.

2.1.2 Convex and Nonconvex MOOP

Before defining a convex and nonconvex function, we must define what a convex function is.

Definition 1 A function f : R — R is a convex function if for any two pair of solutions z(V, 2,

the following condition is true:
FOaW + (1= 0)e®) <Af @) + (1= N f?) (2.2)
forall0 <A <1

Following properties can be defined from the above definition:

1. The linear approximation of f(x) at any point in the interval [x(l), x(Z)] always underestimates

the actual function value.
2. The Hessian matrix of f(x) is positive definite for all x
3. For any convex function, a local minimum is always a global minimum.

A convex function is shown in Fig.2.1.

f(x)

if{:(“ U (1=R) 2l

it e

o (1 A2t

11 AxITig (1-R)xi2! T X

Figure 2.1: A convex function

If, in eq 2.2, we replace the < sign with > sign, the function becomes nonconvex. To check if the
function is convex, we find the Hessian matrix V2f and check if it is positive definite i.e. all eigen
values are positive. To check for nonconvex function, we find Hessian matrix —V2f. If this matrix
is positive definite, then the function is nonconvex.

Now we define a convex MOOP:



Definition 2 A multi-objective optimization problem is convex if all objective functions are convex
and the feasible region is convex (or if all inequality constraints are nonconvex and equality constraints

are linear).

2.2 Principles of Multi-objective Optimization

When multiple conflicting objectives are important, there cannot be a single optimum solution which
simultaneously optimizes all objectives. The resulting outcome is a set of optimal solutions with a

varying degree of objective values.

2.2.1 Pareto-optimal Front

For a non-trivial multi-objective optimization problem, no single solution exists that simultaneously
optimizes each objective. In that case, the objective functions are said to be conflicting, and there
exists a (possibly infinite) number of Pareto optimal solutions. A solution is called non dominated,
Pareto Optimal, Pareto Efficient or non-inferior, if none of the objective functions can be improved

in value without degrading some of the other objective values.

2.2.2 Objectives in Multi-objective Optimization

In principle, for the two objective optimization problem, the search space can be divided into two
non-overlapping regions, namely optimal and non-optimal.

In the presence of multiple Pareto-Optimal solutions, it is difficult to prefer one solution over
the other without any further information. Hence, it is important to find as many Pareto-optimal

solutions as possible. Thus we can define two goals in an MOOP:
1. To find a set of solutions as close as possible to the Pareto-optimal front
2. To find a set of solutions as diverse as possible
The first goal is mandatory for any task of optimization, while the second goal is specific to the

MOOP.

2.2.3 Non Conflicting Objectives

Multiple Pareto-optimal solutions exist only if the objectives are conflicting to each other.

2.3 Dominance

2.3.1 Concept of Domination

Most MOOPs use the concept of dominance. In these algorithms, two solutions are compared to

each other on the basis whether one dominates the other or not.

Definition 3 A solution (Y is said to dominate solution x2) if both the following conditions are

true:



1. The solution 1) is no worse than solution £? in all the objectives.

2. The solution zWis strictly better than solution £® in at least one objective.
To understand the concept of dominance properly, let us take us two objective problem with five
solutions. The problem is shown in Fig 2.2.

£, (minimize)

£, (maximize)
Figure 2.2: Example for Dominance

In the example, we need to maximize objective function 1 while we need to minimize objective
function 2. Since both the objective functions are equally important to us, we use the concept of
dominance to find optimal solution.

Starting with 1, we compare it with the other solutions. Let’s say we first compare it with
solution 2. We see that solution 1 is better than solution 2 in objective function 1 as well as 2. So
we can say that 1 dominates 2.

Similarly, we see that when solution 1 is compared with solution 5, 5 dominates 1 in objective
function 1, but in objective function 2 they are equivalent (i.e. 5 is no worse than 1). Hence, we can

say that 5 dominates 1.

2.3.2 Properties of Dominance Relation

From definition 3 we define the concept of dominance. From this we can derive 3 outcomes of

dominance between solutions 1 and 2, i.e.
1. Solution 1 dominates solution 2,
2. Solution 2 dominates solution 1, or
3. Solution 1 and 2 do not dominate each other.
The binary relation properties of dominance operator are:
o Reflexive: Dominance solution is not reflexive (as per definition 2.3).
e Symmetric: Dominance relation is also not symmetric since p < ¢ doesn’t imply ¢ < p .

e Antisymmetric: Since the dominance relation is not symmetric, it can’t be antisymmetric as

well.

e Transitive: Dominance relation is transitive as if p < q and ¢ < r, then p < r.



2.3.3 Procedures for Finding Non Dominance

For finding a non-dominated set, we discuss here three approaches, starting from a naive and slow
approach to an efficient and fast approach.

Approach 1: Each solution is compared to every other solution in the population to check if
it is dominated by any solution in the population. If a solution ¢ is found to be dominated by
any solution, then there exists at least one solution in the population which is better than ¢ in all
objectives. Hence, the solution ¢ cannot belong to the non-dominated set. We mark a flag against
solution 4 to denote that it does not belong to non-dominated set. However, if no solution is found
to dominate solution i, it is a member of non-dominated set. This is followed for all the solutions in
the population.

The algorithm for Approach 1:

Step 1 Set solution counter ¢ = 1 and create an empty non-dominated set P’.

Step 2 For a solution j € P(j # i), check if solution j dominates solution 4. If yes, go to Step 4.

Step 3 If more solutions are left in P, increment j by one and go to Step 2; otherwise, set
P’ =P U{i}.

Step 4 Increment ¢ by one. If i < N, go to Step 2; otherwise, stop and declare P’ as non-
dominated set.

Approach 2-Continuously Updated: This approach is similar to the first one, except that here

each solution is checked with a partially filled population for domination.

The algorithm for Approach 2:

Step 1 Initialize P’ = 1. Set counter ¢ = 2.

Step 2 Set j = 1.

Step 3 Compare solution ¢ with j from P’ for domination.

Step 4 If i dominates j, delete the j** member from P’ or update P = P\ {P' {j}}. If j < |P|,
increment j by one and the go to Step 3. Otherwise, go to Step 5. Alternatively, if the j** member
of P’ dominates 4, increment ¢ by one and then go to Step 2.

Step 5 Insert ¢ in P’ or update P’ = PU {i}. If ¢ < N, increment i by one and go to Step 2.
Otherwise, stop and declare P’ as the non-dominated set.

Approach 3-Kung et al’s Efficient Method: This approach first sorts the population according to

the descending order of importance to the first objective function value. Thereafter, the population
is recursively halved as top (7') and bottom (B) sub-populations. Knowing that the top half is better
than the bottom half population in terms of first objective function, the bottom half is checked for
domination over top half. The solutions of B that are not dominated by any member of T, are
combined with members of T' to form a merged population M. The merging and the domination
check starts with the innermost case and then proceeds in a bottom-up fashion. This is the most
computationally efficient method.

The algorithm for Approach 3:

Step 1 Sort the population according to the descending order of importance in first objective
function and rename the population as P of size V.

Step 2, Front(P) If |P| = 1, return P as the output of Front(P). Otherwise, T = Front(P(1) —
PUPI/2)) and B = Front(PUF1/2+1) — pUPD) Tf the i*" non-dominated solution of B is not dom-
inated by any non-dominated solution of T', create a merged set M = T U {i}. Return M as the
output of Front(P).



What finally returns from Step 2 is the non-dominated set. It is important to mention that Step
2 uses self-recursion.

The speed comparison of all the three methods are shown in Fig 2.3.
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Figure 2.3: Speed Comparison for Three Approaches

Here we see that Approach 1 is the slowest; and, while there is very little difference between their
speeds, Approach 3 is still faster than Approach 2.

An example for Approach 2 is given below for better understanding of the concept:

Given the solutions as in Fig 2.4 with five solutions, we need to find the non-dominated set.
To solve this two objective optimization problem, we will use Approach 2. As we have seen above,
Approach 2 is a five step algorithm. What follows is a step-by-step solution procedure to solve the

problem.

£, {minimize)

WSO 50 A0 -5 L I S

2 & 10 14 i8
£) (maximize)

Figure 2.4: Example for Approach 2

Step 1 P’ = {1} and we set ¢ = 2.

Step 2 We set the solution counter of P’ as j =1 (which refers to solution 1).

Step 3 We now compare solution 2 (¢ = 2) with the lone member of P’ (solution 1) for dom-
ination. We observe that solution 1 dominates solution 2. Since the j** member of P’ dominates
solution 4, we increment i to 3 and go to Step 2. This means that solution 2 does not belong to the
non-dominated set.

Step 2 The set P’ still has solution 1 (j = 1) only.

Step 3 Now we compare solution 3 with solution 1. We observe that solution 3 (¢ = 3) dominates
solution 1. Thus, we delete the j!* (or the first) member from P’ and update P = (. Thus, |P’| = 0.
This depicts that a non-member of the non-dominated set gets deleted from P’. We now move to
Step 5.

Step 5 We insert ¢ = 3 in P’ or update P’ = {3}. Since ¢ < 5 here, we increment i to 4 and

move to Step 2.
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Step 2 We set j = 1, which refers to the lone element (solution 3) of P’.

Step 3 By comparing solution 4 with solution 3, we observe that solution 3 dominates solution
4. Thus, we increment ¢ = 5 and move to Step 2.

Step 2 We still have solution 3 in P’.

Step 3 Now, we compare solution 5 with solution 3. We observe that neither of them dominates
the other. Thus, we move to Step 5.

Step 5 We insert solution 5 in P’ and update P = {3,5}. Since i = 5, we stop and declare
P’ ={3,5} as the non-dominated set.

By looking at the algorithms of both the approaches we can say, without the loss of generality,
that Approach 2 is faster than Approach 1.

2.3.4 Non-Dominated Sorting of a Population

We have seen that many algorithms use the concept of dominance to find optimal solutions. For this
they find a non-dominant set and that is the optimal solution. But many evolutionary algorithms
classify sets into ranks, i.e. one non-dominated set of level 1 and other non-dominated sets at
different levels.

After finding level 1 non-dominated set, to find the other non-dominating sets, we temporarily
disregard this set form the list. And this procedure is followed until all the levels are found.

The algorithm for finding levels of non-dominated sorting is as follows:

Step 1 Set all non-dominated P;(j = 1,2, ...), as empty sets. Set non-domination level counter
j=1.

Step 2 Use any one of the Approaches to find the non-dominated set P’ of population P.

Step 3 Update P; = P’ and P = P'.

Step 4 If P’ # (), increment j by one and go to Step 2. Otherwise, stop and declare all non-
dominated sets P;,for i =1,2,, 7.

2.4 Interval Numbers

Taking reference from [3] we define interval numbers.

Consider a closed, real interval X = [a,b]. An interval number X is such a closed interval, i.e.
it is the set [x = {x|a < z < b} of all real numbers between and including a and b. This process of
representing a number or a solution within bounds is called enclosing the solution.

A real number z is equivalent to an interval [z, z], which has zero width. Such an interval is said
to be degenerate.

If the end points of an interval are not representable on a given computer, then lower limit a is
rounded down to the largest machine-representable number (a) and upper limit b is rounded up to

the smallest machine-representable number (b). This is called outward rounding.

2.5 Notation and Relations of Interval Numbers

When a real quantity is expressed in lower case, then interval quantity is expressed in capital letter.

For example, if y denotes real variable then Y denotes interval variable. If real quantity is expressed
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in capital letters (say matrix X), then corresponding interval variable is expressed with superseript
I (matrix X'). Similarly, for a function f(y) corresponding interval vector is f(Y'). An under-bar
denotes lower limit while an over-bar denotes upper limit of an interval. For example, if A = [z,y],
then A = y and A = 2. An interval A = [2,9] is said to be positive if z > 0 and non-negative if
x > 0. Tt is said negative if y < 0 and non-positive if y < 0. Intervals [a, b] and [c, d] are equal if and
only if a = cand b =d.

Throughout this text, interval number will be represented by X for any real number z.

2.6 Interval Number System

Let - denote any of the arithmetic operations, i.e. addition (+4), subtraction (—), multiplication
(x) and division (<), on real numbers z and y, then the corresponding operation for arithmetic on
interval numbers X and Y is X - Y ={z-ylz € X,y € Y}.

This definition produces the following rules for generating endpoints of X - Y from the two
intervals X = [K,X and Y = [X,ﬂ.

>
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X+Y=X+Y X+ (2.3)
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For division, we exclude division by interval containing 0.

Here, we have to note a very important point regarding subtraction in interval analysis. Now,
we know that in regular mathematics, when we subtract a number by itself, we get 0. But, this is
not the case in interval analysis. Let’s see this with an example.

If we take an interval X = [X, X], then
X-X=[X-X,X—X]

If, and only if, the interval is degenerate, i.e. X = X, we will get the answer as 0, not in any

other case.



Multiplication, in short, can also be represented in a simpler way [9]:

X xY =min{XY, XY, XY, XY} (2.7)

2.7 Intersection, Union and Interval Hull

In this section, we define some terms for interval analysis, that we know for real mathematics.
Given two sets X = [X, X] and Y = [V, Y].
Intersection: We know that intersection means taking out the common terms from different

sets. In interval analysis also we can define intersection as follows:

XNY={z:2zeXorzeVY}

i ve (2.8)
= [maz(X,Y), min(X,Y)]

But if we have Y < X or X < Y, then the intersection is an empty set denoted by @, i.e.
XNy =490 (2.9)

Union: Union of sets is deflined as the set containing all the elements of all the individual sets

involved in the union. In interval analysis we define union as follows:

XUY={z:2zeXorzeV}

, I (2.10)
= [min(X,Y), max(X,Y)]

Now, a union is an interval only if the individual intervals have a non-empty intersection, i.e.
only in the former case. If the intersection is empty then we cannot define a union.
Interval Hull: Now, the union of two intervals defined above is not always an interval. So, to

remove this problem, we define an interval hull, as follows:

XUY = [mm(&, X)a mam(Y,V)] (2'11)

So, we can say that:
XUY € XUy (2.12)
Let’s take an example to understand this. Let’s say we have two intervals X = [—2,0] and [2,4].

Now, clearly these two sets are disconnected and so, their intersection is empty. So, here we find
interval hull XUY = [—2,4]. Although, information is lost while taking interval hull, but most of
the times this information is useless.

Since we are using interval analysis for optimization purposes, it is worth mentioning the impor-
tance of intersection here. Our task is to find the optimal solution, and for that we need to reach
as much close to actual value as possible. And this is where intersection plays a key role. When we
perform intersection, we are taking common part of many intervals and then removing all the part
that is not common. This way we reduce our search space.

Other way intersection is important is the fact that it ensures the correctness of different mea-

surements. Now, if the solution lies in all two intervals then it must also lie in the intersection of the
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two intervals. If the intersection does not contain the solution then either of the solutions is wrong.
Let’s take an example to understand this. Suppose two people make independent measurements
of the same physical quantity g. One finds that ¢ = 10.3 with a measurement error less than 0.2.
The other finds that ¢ = 10.4 with an error less than 0.2. We can represent these measurements as
the intervals X = [10.1,10.5] and Y = [10.2,10.6], respectively. Since ¢ lies in both, it also lies in
X NY =[10.2,10.5]. An empty intersection would imply that at least one of the measurements is

wrong.

2.8 Width, Absolute Value, Midpoint

In this section, some other important terms related to interval analysis are defined. Refer to Fig.
2.5 and the definitions below.

| X]

w(X)

0 X m(X) X T

Figure 2.5: Width, Absolute Value, Midpoint

Width: Width of an interval is denoted by the difference of the respective upper and lower

bounds. Mathematically, we can say:
wX)=X-X (2.13)

Absolute Value: As the name suggests, it is the magnitude. But, since we are working in

intervals, we have to take care of the bounds. So, the absolute value is defined as below:
X[ = maz {|X].[X]} (2.14)
Midpoint: As the name suggests, it is the middle point of the interval. Tt is defined as below:
1 —
m(X) =5 (X +7X) (2.15)
A wuseful formula: Any interval X can be represented as:

X =m(X) + [-5w(X), sw(X)] (2.16)

2.9 Interval Vectors and Matrices

An n-dimensional interval vector can be represented as X = (Xi, Xs, ..., X,,). For example, let’s
take 2-dimensional case, where X = (X1, X5) = ([X1,X1], [X2,X2]). It can be represented as a

rectangle in the zjzo-plane, as shown inf Fig. 2.6
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X, . w(X)

X
Figure 2.6: Two Dimensional Interval Vector

Now, this can be extended very easily to n-dimensions as well. The properties of simple interval

numbers can be extended to interval vectors as well, as shown below:

o Ifz = (x1,x9, ..., 2,) is an n-dimensional real vector, then X = (X1, X, ..., X,;) is n-dimensional

interval vector.

o Intersection of two n-dimensional vectors X and Y will be empty if any one of it’s components

is empty, i.e. X NY = 0 if for some i we have X; NY; = (). Otherwise, we have

XNY =(X;NY1,X3NYs,..., X, NY,) (2.17)

e Width of X = (X3, Xo,...,X,,) is given by the largest of the widths of it’s components.

w(X) = mazw (X;) (2.18)

1
o Midpoint of vector is given by a set containing the midpoints of all the individual intervals.

m(X) = (m(Xy1),m(Xsa),....,m(X,)) (2.19)

e The norm of interval vector is given by

I X = miaz|X1-| (2.20)

2.10 Properties of Interval Arithmetic

We already saw some of the arithmetic operation of interval analysis previously. In this section, we

will see some more properties relating to interval analysis.



2.10.1 Arithmetic Properties

o Interval analysis follows commutative law, for intervals X, Y, Z as
X4+4Y=Y+X

XY =YX (2.21)

o Interval analysis also follows associative law, for intervals X, Y, Z as
X+Y+2)=(X+Y)+Z
X(YZ)=(XY)Z (2.22)
o We define identity elements for addition and multiplication as, for intervals X, Y as
X+0=0+X=X

Xxl=1xX=X (2.23)

Here 0 and 1 are degenerate intervals.

2.10.2 Inverse Elements

We saw how subtraction is done in interval arithmetic. There we saw that when we subtract an
interval X from itself, we DO NOT get 0. Similarly, when we divide an interval X by itself, we DO
NOT get 1. This is shown here: Let’s take an interval X = [X, X].

Then when we subtract it from itself, we get
X-X=[X-X,X-X] (2.24)

It is clear that this will be 0 only when we have X = X.

Similarly, when we divide interval X = [X, X| with itself, we will get

X/X, X/X]if0< X
x/x = | BAX/A0<X (2.25)
[(X/X, X/X]if X <0
2.10.3 Subdistributivity
In normal arithmetic, distributive law is defined as
x(y+2) =zy+az (2.26)

But in interval mathematics, this is not always possible. Let’s take an example to see this. Given
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X =11,2],Y =[1,1], Z = —[1,1]. From LHS of 2.26

XY+2)=1[1,2]-(1,1] —[1,1)

While the RHS gives
XY+ XZ=][1,2]-[1,1] = [1,2] - [1,1]
=[1,2] - [1,2]
= [717 1}

Hence, the subdistributive law is defined for interval mathematics. It is defined as below

X(Y+2)CXY+XZ (2.27)

2.10.4 Symmetricity of Intervals
An interval is called symmetric when it has following property

X=-X (2.28)
Use of symmetric intervals helps reduce the complexity of analysis

X+Y=X-Y=(X+|YD[11]
XY = |[X||[Y|[-1,1] (2.29)
X(Y +2)=XY +XZ =|X|(|Y] +]2])[-1,1]

2.11 Interval Functions

Let f be a real valued function of single variable x. We want to know how the function f(z) varies

with variation in x over the range of interval X, i.e. we want to know the image of set X under
mapping f:
J(X) = {f(2) sz € X} (2.30)

Extending it to n-variables, we can write:
(X1, X)) ={f(x1,c0yzpn) 1 € X1, ooy xn € X} (2.31)

Definition 4 Let g : My — My be a mapping between sets My and My, and let S(M;) and
S(Ma) be family of subsets of My and Ms. The united extension of g is the set-valued mapping
g:S(Mq) = S(Ma), such that

9 X)={g(z) :z € X, X € S(M)} (2.32)
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2.12 Elementary Function of Interval Arguments
For some functions, we can easily compute (2.30). For example, let’s take

fx)y=2% zeR (2.33)

If X =[X, X], then
f(X)={2*:2¢c X} (2.34)
can be expressed as
X2 X)if X<0<X
fX)={ X XYifX<0<X (2.35)
[O,maz[&2,72] if X<0<X

This can be seen in the Fig. 2.7

y=[(x)

f(X)

Figure 2.7: Graph for f(X) = X?

2.12.1 Interval Extension for Functions
When the function f is a single interval variable function, we give it’s interval extension as follows:

Definition 5 We say that F is an interval extension of function f, if for degenerate interval

arguments, F agrees with f:
F(lz,z]) = f(z) (2.36)

When the function f is multi-variable, i.e.
f=75X1,Xe, ..., Xn),
we give it’s interval extension as follows:

Definition 6 By an interval extension of function f, we mean an interval-valued function F of n
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interval variables X1, Xa, ..., X, such that for real arguments x1, xa, ..., x, we have

F(X1, X2, Xp) = f(X1, X2, ., Xy) (2.37)

2.12.2 Inclusion Isotonicity
Inclusion Isotonicity is defined as:

Definition 7 We say that F = F(Xq,...,X5) s inclusion isotonic if Y; C X; fori =1,..,n =
F(\Y1,..,Y,) € F(X1,...,Xy). Observe carefully that united extensions, which all have the subset
property, are inclusion isotonic. In particular, then, the operations of interval arithmetic must satisfy
YICX, Y, CXo=Y0Y, C X 0Xs.

2.13 Convergence and Continuity

Given a sequence of intervals Xj, we say that it is converging if there exists and interval X*, such
that for every e > 0, we get d(X, X*) < ¢, whenever k > N, where N = N(¢) is a natural number.
We can write
X" = lim X;
k—o0
Here, d is given by
d(X,Y)=max{|X -V, X - Y|} (2.38)

2.14 Refinements

Fundamental theorem of interval analysis gives us

flxr, o, xn) C f(X1, X2, 0, X)) (2.39)

2.14.1 Lipschitz Interval Extensions

We see a process as to how f(z1, 2, ...,z,) may be approximated as close to desired answer by finite

union of intervals.

Definition 8 An interval extension F is said to be Lipschitz in Xq if there is constant L such that
2(F(X)) < Lw(X) for every X C Xy

2.14.2 Subdivisions and Refinements
Definition 9 By a uniform subdivision of an interval vector X = (X1, Xo, ..., X,,), we mean
Xij=[X; +(§ —Dw(X;)/N, X; + jw(X;)/N], j=1,2,..N

where N is a positive integer.
We have X; = Ujvzl X, ; and w(X; ;) = w(X;)/N. Furthermore,

N
Xi=J, (X150 Xajp0 o X (2.40)

Ji=1
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with w(Xl’j] ; )(27]'27 -~~7Xn,jn) = w(X)/N

Definition 10 Let F(X) be an inclusion isotonic, Lipschitz, interval extension for X C Xo.The

interval quantity

FoyX) =, _ F(X1 1, Xnj,) (2.41)

is called refinement of F over X.

If X and Y are intervals such that X C Y, then there is an interval E with E < 0 < E such that
Y =X+ F and w(Y) = w(X)+ w(E). If Fis an inclusion isotonic interval extension of f with
F(X) defined for X C Xy, then f(X) C F(X) for X € Xy. We have F(X) = f(X) + E(X) for
some interval-valued function F(X) with w(F(X)) = w(f(X)) + w(E(X)).

Theorem 1 If F(X) is an inclusion isotonic, Lipschitz, interval extension for X C Xq, then the

excess width of a refinement Fny(X) is of order 1/N. We have
Fovy(X) = f(Xy,...,Xn) + En, (2.42)

where w(EyN) < Kw(X)/N for some constant K

2.15 Finite Convergence and Stopping Criteria

2.15.1 Finite Convergence

Definition 11 By the finite convergence of a sequence Xy, we mean there is a positive integer K

such that Xy = Xg for k> K. Such a sequence converges in K steps.
For example, let’s take
Xo=1[1,2], Xpy1=1+X/3, (k=0,1,2,.)

The sequence goes like this

Xa“ =[1,2],
=[1.33,1.67],
= [1.44,1.56],

X3 = [1.48,1.52],

= [1.49,1.51],
= [1.49,1.51],

and X, = X for all k > 4. We have finite convergence in four steps.

2.15.2 Natural Stopping Criterion

Any interval sequence that has nested sequence, we have a natural stopping criteria for it. Since the

sequence { Xy} converges in finite number of steps, we can compute X} until
X1 =X+Ek (2.43)
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If X} generated are of the form
X1 = F(Xk) (2.44)

such that each Xj11 depends only on previous X}, , then (2.43) guarantees successful convergence.
In particular, if F/(X) is a rational expression in X and if Xy is an interval such that F(Xy) C Xy,
it follows that

Xkt1=F(Xr) (k=0,1,2,.) (2.45)

is nested with
Xo 2 X1 2 Xo (2.46)

and hence converges to some X* with X* = F(X*) and X* C X}, for all k =0,1,2, ..

2.15.3 Skelboe’s Algorithm

Skelboe [10] introduced an efficient algorithm for refinements. We first find the lower bound for f,
then we find lower bound for —f, which is upper bound for f. Skelboe shows that, in computing
refinements, no subdivision is necessary of argument intervals for arguments occurring only once.

Here, a simplified version of this algorithm is presented, called Skelboe-Moore Algorithm [2].

Suppose we are given an interval extension F(X) of f C FC,(Xy), and we want to bound the
range of values of f in X using refinements of F'. We first find a lower bound and then, replacing
F(X) by —F(X), repeat the procedure to be described to find an upper bound. If the evaluations
are done in TA, the procedure will converge in a finite number of steps. To find a lower bound, we
create a list of pairs (Y, F(Y')), ordered so that (Y, F(Y)) comes before (Z, F(Z)) in the list only if
F(Y) < F(Z). The interval extension used should be having inclusion isotonicity. The better the
extension, the fewer the steps to convergence.

Algorithm [2][11]: Given an interval extension F of f , a tolerance ¢, and a box Xp, this
algorithm returns a lower bound (LB) on the range of f over X that is within e of the actual
minimal value of lower bound as well as lists C' and L of boxes that have been produced during the

process of computing these, such that C U L = Xj.

1. Set? fup + f(m(Xy)), where f(m(Xy)) is computed with either upward rounding or interval
arithmetic## as F(m(Xy));

2. Set X + Xo;
3. Initially, lists L and C' are empty;

4. Bisect X in coordinate direction i such that w(X;) = w(X) = mari<;<,w(X;) : X = XD U
X(Z);

5. fub <= min{ fup, F(m(X 1)), F(m(X®))};
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IF max{F(XM), F(X@)}—min{F(XD), F(X2))} < ¢, then
(a) Place X and X into C in order
(b) IF L isnotempty THEN
(i) remove the first item from L and place its box into X;
(ii) IF F(X) > fuy THEN
RETURN with LB equal to lower bound on the first box in C' and with the lists C and L
END IF
6. ELSE
RETURN with LB equal to the lower bound on the first box in C' and with list C
END IF
ELSE
(a) enter the items (XM, F(X™M)) and (X, F(X®)) in proper order in the list L;
(b) set X < the argument (first member of the pair) of the first item in the list L (with lowest F'(X))
and remove the item (X, F'(X)) from the list; -

END IF

7. IF L is not empty, THEN return to step (4).

Step (4) means, we replace X by two interval vectors,

X(l): (Xl7--'7Xi—17X(1)i7Xi+17"'7Xn)7
X(g): (Xl7--'7Xi—17X(2)i7Xi+17"'7Xn)7

where . .
X0i= Xiy5 (XKDl XOi= [5 (X4 %0). K.

Note:

o #We use + to denote operation of setting a value, while setting a value equal to something is

given by =

o ## f., represents a mathematically rigorous upper bound on the lower bound of f over F

2.16 The Newton Method

Let f be a real valued function of real variable x, and is continuously differentiable. By mean value

theorem, we can write

f@)=fy)+ f(s)x—y) (2.47)

for some s between z and y. Now let [a, ] be an interval in which we seek a solution of the equation
flx)=0 (2.48)

If the solution z exists, it should satisfy
fW)+ f(s)(xz—y)=0 (2.49)
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for any y € [a,b], in particular for y = m([a,b]) = (a + b)/2. Hence,

z=y—f)/f's) (2.50)
Let F'(X) be be an inclusion monotonic interval extension of f/(z) and consider the algorithm
XED — X () nNX®) k= (0,1,2,...) (2.51)

where
N(X) =m(X) - f(m(X))/F'(X) (2.52)

It follows that z is contained in N(X) if y = m(X), and if z is contained in X, then s is also

contained in X.

Theorem 2 If an interval X° contains a zero x of f(x), then so does X* for allk = 0,1,2, ..., defined

by (2.50). Furthermore, the intervals X* form a nested sequence converging to x if 0 ¢ F'(X(),

An updated version was presented by Hansen [12]. What he did was that he applied Newton
method to f’ instead of f. So let X be a closed subinterval of [a,b]. Let x be any point in X, it is
best if it is the mid point. If y € X is a stationary point of f, then f/(y) =0 and y solves

fl@) +y—=2)f"(€) =0 (2.53)
for some £ € X. Here y € X belongs to set
S"={y: f'(x) +(y—2)f"(€) =0, ¢ € X}
If0 ¢ f”(X), then set S” is contained in

§'=ax— f(x)/f"(X) (2.54)

If the iterative process is defined as

N(Xp) =z — f'(xn)/f"(xn) n=0,1,..
XnJrl = Xn n N(Xn)

with z,, the mid point of X,,. This process never fails to converge when 0 ¢ f"(Xjy).

Theorem 3 Let the extended Newton method be applied to finding zeros of f'(x) in an interval Xg.
Assume that, at the it step, i = 1,2,3, ..., the method is applied to the largest remaining subinterval.
Also assume that f'(x) is continuous and has a finite number of distinct zeros in Xo. Then, for a
sufficiently large value of i, the sum of the lengths of the remaining intervals is less than a positive

prescribed number €.
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2.17 The Krawczyk Method

We consider the following finite system of non-linear equations
fl(l'h ,{En) =0

(2.56)

or, in vector form we can write

fl@)=0 (2.57)

Suppose that f in (2.57) continuously differentiable in some open domain D. Suppose that we can
compute inclusion isotonic interval extensions F' and F’ for f and f’, defined on interval vectors
XCD.

Theorem 4 Let Y be a non-singular real matrix approzimating the inverse of the real Jacobian
matriz F'(m(X)) with elements F'(m (X)),; = 0fi(x)/0z; at x = m(X). Let y be a real vector
contained in the interval vector X C D. Define K(X) by

K(X)=y=Y[f(y) +{I -YF(X)}(X —y) (2.58)

If K(X) C X, then (2.57) has a solution in X. It is also in K(X).

2.18 System of Linear Equations

Here we discuss the problem of applying interval mathematics to bound the solution of a non-linear
equation [13]. The multi-dimensional Newton method is being extended and implemented in interval
analysis.

Let f(x) be a vector having components f;(x), (i = 1, ...,n), where f;(z) is a real rational function

of a real function of a real vector x. Assume

fly) =0 (2.59)

To obtain the solution y, we do Taylor series expansion of f(y)

F@) = £+ i v g fly + kile ) (2.60)
i=1

T
where k; € [0,1]. Since f(y) =0, (2.60) becomes
J(@—y) = f(z) (2.61)
where J is the Jacobian matrix with elements

Jji = a%fi [y + ki(z = y)] (2.62)
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Now, let X(© be an interval vector containing both z and y. Then
y+ki(z—y) e X© (2.63)

since k; € [0,1]. Let J(X(©) denote the interval matrix obtained from .J by replacing y + k;(z — %)
by X © for all i. We assume J(X (%)) does not contain a singular matrix. Let V(X)) be an interval
matrix containing the inverse of J(X®). Then J~!' € V(X©) for all k; € [0,1] and hence the
solution vector y is contained in

YO =z - v(XO)f(x) (2.64)

Define X = XO ny©  Note X contains the solution ¥ since X(© and Y(® do. We next
replace by the midpoint of X1 replace X(© by X() and repeat the procedure. In this way,
we obtain a sequence of interval vectors X (9 (i =0,1,2,...) each containing the solution vector y.
Under appropriate conditions, these interval vectors converge to the solution y. Note that every

element of J may be an interval.



Chapter 3

Branch and Bound Technique

Interval branch and bound methods [14], [15] are deterministic methods, known to find with certainty,
the global optima of a function within a box. With interval arithmetic, it is possible to find all global

minima, with certainty, of objective function
f@) = f(z, ...;zn) (3.1
where the following bounds are known
z; <x; <7 for 1<i<n

The basic overview of the method is shown below:
1. Begin with box X7 “"in which global optimization is sought.
2. Delete subboxes of X that cannot contain solution.The methods are:

(a) Delete subboxes where gradient is non zero.

(b) Compute upper bounds on f at various sampled points. Smallest computed upper bound

f is upper bound on f*. Delete subboxes wherein f > f.

(c) Delete subboxes wherein f is not convex.
3. Tterate step 2 to find small set for *. Then find f* over this set.

We can explain the basic process in the following pictures, although the actual process involves
a lot of other steps, which are explained later.

From the overview, we know that we have to initiate with defining a box for search area (Fig.
3.1).

Next, what we do is, we delete the boxes that do not contain the optimal solution (Fig. 3.2).

This is followed for a lot many iterations. And, once the iterations stop, we get the final solution
(Fig. 3.3).

Although Fig. 3.3 shows only one optimal solution, there could be more solutions depending
upon the function.

The other steps involved in finding the optimal solution are explained henceforth.
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Initial box

Figure 3.1: Initialising the box

Reduced region

Figure 3.2: Next Steps in Iteration

3.1 The Steps Involved

3.1.1 The Initial Box

The initial box is specified by the user itself, depending upon the needs, as shown in the Fig. 3.1
above. It should be noted that, a user can declare multiple boxes initially, which may be either
disjoint or may have some intersection. In both the cases, we have to treat the boxes as separate.
Since our aim is to reduce the box size and reach the optimal solution, which is also indeed a box, it
is always preferable to start with a box that is as small as possible, but at the same time big enough
so that we do not miss the global optimal and end up with local solution.

So, let us take a function f(X) and an initial box X! . our problem now becomes

Minimize (globally) f(X)
. © (32)
Subject to X € X'

3.1.2 Gradient

We can assume that f is continuously differentiable, which means that we get global minimum where
the gradient G of f is zero. But we also get G a zero at other local minima, maxima and saddle
points. Our goal is reject any zero that is not a global minimum of f.

Let X! be a subbox of the initial box X!, We evaluate components of G over X/, ie. we
evaluate g;(X7) for i = 1,...,n and denote the resulting interval by [g;(X7), g:(X71)].

Now, if we get either g;(X') > 0 or g;(X') < 0, then g;(X) can never be zero, hence optimal
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Further Reduced Region

[ W Optimal
Solution

Figure 3.3: The Final Solution
solution can never be found in X’ and this box should be deleted.

3.1.3 Upper Bound on Minimum

As we proceed with our algorithm, we cvaluate f at various points of X7 @, Fvery upper bound
that we calculate is also the upper bound for the global minimum f* of f. Following this, we use
the smallest upper bound f.

Again let’s take X! as a subbox of X!, Now in every step, X! is reduced in size or split into
more subboxes. Then we evaluate f at the center of each new box. Let’s say we get the result as
interval [f_I(X),F(X)] Here, fI is the upper bound on f(X) and hence on f*. If f is the lowest
such upper bound, then we can delete any subbox with f > f, since f > f*. The method to delete
the subbox is follows:

Let’s take X! as a subbox of X!, We evaluate f over X! and obtain [f!(X), fT(X)]. If

FHX) > T > f*, then f(X) > f* for every X € X. Therefore, we delete X?.

3.1.4 Updating the Upper Bound

We already discussed that when we generate new subbox, we evaluate the value of function f at the
center of new subbox and then update f > f*. We can infact also search for some point in f where
f < f* and further reduce f > f*. For this, we do a line search for a point where f is small. The
procedure is described now.

Suppose we evaluate gradient G(X) of f(X) at a point X. f decreases in the negative gradient
direction from X. In a simple way, we can find small values for f if we search along this line. Let
X be the center of the current box X’. We define the half line of points Y (a) = X — aG(X) where
a> 0.

We first determine the value of o/ such that Y (a/) = X — o/G lies on the boundary of X!, and
restrict our search region. The procedure is:

If f(X') < f(X), replace X by (X + X')/2. Otherwise, replace X’ by (X + X')/2.

The procedure is applied a few times and the smaller of the final values of f(X) and f/(X) are
used to update f.

If Newton method succeeds in getting a new box bounding solution for G = 0, we evaluate f at
the center of the box and use the result to update f. Regardless, we always obtain an additional test
point Y = X — BG(X) at which we evaluatef(X). Y can be anywhere, be it inside the box X' ©

or outside, it doesn’t matter.
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3.1.5 Termination

Our algorithm splits and reduces the size of boxes. Thus, making them small. We require a set of
conditions which will define the stop point for the algorithm, so that it does not go on unnecessary.
This set contains two conditions, which when satisfied, we can terminate the algorithm, and take
that current value as the final answer. Let’s take a box X . The conditions applied on this box are:

Condition 1. This condition is on the width of interval X. We can define a number € x such that

the algorithm stops when the width is either less than or equal to this number.
w(X') <ex (3.3)

Condition 2: This condition is on the width of interval function f(X7) itself. Once again we
define a number € such that the algorithm stops when the width is either equal to or less than this
number.

w[f(X")] < ef (3.4)

that is f(XT)— f(X') < ;. Condition (3.4) guarantees that the global minimum f* of the objective

function is bounded to within the tolerance €.

3.1.6 Bounds on Minimum

The algorithm has both lower and upper bounds on the global minimum f*. After termination,
global minimum must lie within the solution box. Let’s say that total of s boxes remain in the end,
denoted by XI' (i = 1,...,5).

The algorithm evaluates f for each 4, denoted by

POy = [P P

Denote

o . 7
E a 1%11'123 i(X )

We evaluate f at center of each box, find the upper bound f of f*, and delete a box if f (xT (i)) >t

Therefore,

) (3.5)

foralli=1,...;s.

Since the global minimum is within one of the final boxes,

<

~

* (3.6)
Let j be an index such that underlinef(XI(J)) = F. Letting i = j in 3.5, we get

) <F(x™) (3.7)
From the termination condition 3.4,

FT) = f(xT) < g4 (3.8)



From (3.6),(3.7) and (3.8),
F<f"<F+ey (3.9)

Hence, global minimum is bounded within €;. We can conclude that
FEES ey (3.10)

3.1.7 List of Boxes

The algorithm we discussed began with only a single box X’ @ This is generally the case because
of it’s simplicity. But if the user wants, she can declare more than one box to start with. Now, if
this is the case, then we put the initial boxes in a list L.

As the algorithm proceeds, X7 © gets divided into subboxes. Then, any subbox X7 satisfying

the following criteria, will be put in list L.
w[XT] <ex (3.11)

wlf(XH] < e (3.12)

3.1.8 Choosing a Box to Proceed

We have seen how to declare initial box(es). Now, whenever a new box is put in list, a cycle of main
algorithm begins. It has to decide which box to choose.

Before the choice is made, algorithm evaluates f(X7) for every box X7 in L;. Let the result be
[i(XIL?(XI)}. The box with the smallest f(X”) is chosen. This method is more likely to choose
the box containing the point X* of global minimum than randomly choosing the box.

3.2 Algorithm Used

The algorithm used in this work is a simplified variation of the Box and Bound technique explained
in detail above. The steps involved are similar to the main technique, with some differences. The

steps involved are mentioned below:

1. Begin with square box X in which global optimization is sought. Define a terminating criteria,
i.e. some ¢ that is the width of the box X.

2. Calculate y = f(X) for the whole box. If the resultant, which is also a box, has width less
than e, then terminate the process. Else, split the box X into Z that has four equal parts,

namely [21, 22, 23, 24].

3. Now, calculate the function y = f(Z) for all the parts of Z. Store the values in a list L; =
[Y1, Y2, Y3, ya]. Make a copy L of list L.

4. Now, begin the main loop with condition on width.

(a) Find the position of the minimum value of Ly. Select the value of Z at this corresponding

position.
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(b) Find y = f(Z) for all parts of Z. Store the solution in the updated list Ly. Plot Z.
(¢) Calculate the width of all the solutions in L.

(d) If the width of all elements of Z are less than ¢, then terminate the process. Else, goto
4(a).

5. Come out of the loop when process terminates. Get the final values of Ly and Z. Also keep

the final plot. This is the solution.

Since the solutions are stored in a list, all the solutions will be taken into account and stored
simultaneously. The algorithm is applicable for all types of optimization problems i.e. single and
multiple objective problems.

The splitting technique was mentioned by E.R.Hansen in [12] for one-dimensional case, and
further used for multi-dimensional case in [16]. The version used here is inspired from these but
with a slight modification. Hansen suggested that the box be split into two, and the one with the
larger width be used for further processing. In this text, the box is split into four equal parts and

then further processing is done.
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Chapter 4

Results and Discussion

This chapter deals with the working of INTLAB. In here is explained how some of the basic functions
are performed in INTLAB toolbox, to get acquainted with the INTLAB toolbox. Then we move on

to show some results obtained through the interval optimization algorithm.

FExample 1:
¢ = 3m/180

Q= |: c'osq? —sin¢:| X = ( [1,2] >
sing  cos¢ 2,4]

—1.1340 0.7321
Y=QxX=
2.2320 4.4642
=L
4
sl
5l
sl
sl
at
ot
5 -4 3 2 -1 o 1 2 3 4

Figure 4.1: Plot for Example 1

The Fig. 4.1 depicts the interval result of the example.
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Example 2:

¢ = 37/180
Q- Cf)sqﬁ —sin ¢ X = 11 2 2
sing cos¢ 2 4 2 4
—0.1340 —1.1340 0.7321 —0.2679
2.2331 3.9641 2.7331 4.4641

aaf " '
421
4F
38t
asf
34f
szt
281
261
241

Figure 4.2: Plot for Example 2

Y=0QxX=

w

Fig. 4.2 shows the true range of the solution.
A= [27 4] [_17 1]
[_17 1] [27 4]

s 733 )
[0.8,0.8]

Then the plot of A with b is given in Fig. 4.3.

Example 3:

25

Figure 4.3: Plot for Example 3
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Example 4: Given an equation AX = B, we need to find the solution for this equation.

A 3l }Lﬂ>
[~1,0]  [2,4]

5[ 22 )
[_27 2]

The plot for solution for this is given in Fig. 4.4.

Figure 4.4: Plot for Example 4

Now that we have acquainted ourselves with the basic working of INTLAB, we move on to show

the working of the algorithm. It may be noted that although the algorithm is general and applicable

for all the cases, the code developed is able to solve only a few test cases.

Function 1: We need to find the global optimum for the function
y=Xx°

The solution for function 1 is shown in Fig. 4.5

Figure 4.5: Plot for y = X?
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Function 2: We need to find the global optimum for the function
y=X2-2

The solution for function 2 is shown in Fig. 4.6

Figure 4.6: Plot for y = X2 — 2
Function 3: We need to find the global optimum for the function
y=3X%2-2X+1

The solution for function 3 is shown in Fig. 4.7

Figure 4.7: Plot for y =3X2 —2X +1

Function 4: We need to find the global optimum for the function
y=(X-1)?

The solution for function 4 is shown in Fig. 4.8

Function 5: We need to find the global optimum for the function

y=(X-2)



Figure 4.8: Plot for y = (X — 1)2

The solution for function 5 is shown in Fig. 4.9

[ ]

]
mi

Figure 4.9: Plot for y = (X — 2)2
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Chapter 5

Scope for Further Development

As mentioned earlier, the code in its present form is able to solve only some functions of single
variable. The algorithm is a general one, and can be extended to multiple variable functions.
For solving a multi-variable function, both single and multiple objective, the initial box X has
to be defined for multiple variable. Also, all the codes written can be directly used, with slight
modifications as required. Then for multi-variable, we can go on solving one objective at a time.
There are a number of applications where Interval Optimization can be applied. This technique
can prove quite useful in self drive vehicles. Since the box and bound technique works on rejection
principle, it should be able to analyse the surroundings and reject the unfavourable paths, and hence
find the optimal path. On similar grounds, it can be used to drive the robots in extremely dangerous

environments where human presence is to be avoided.
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