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Abstract

Data management nowadays is being focused a lot in many areas in the industry, the reason for this

is attributed to the speed we are obtaining the data, the volume of it and the new technologies. So,

when we transfer this data through the network, we obviously need the most efficient way to send

and retrieve data in our network with less response time, also known as Edge-Fog-Cloud computing.

In this work, a framework is implemented in such a way that it provides minimum latency to User

devices at the Edge of the network based on the SLA agreement between a Service Provider and the

Network Provider.

It provides an algorithm for Service chain Placement and monitors the network for potential

bottlenecks that may be created in future and removes it.
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Chapter 1

Introduction

1.1 Overview

To tackle the high demand for Cloud Computing technologies researchers in both academia and

industry are slowly coming to the conclusion that it’s better to have smaller instances of data

centers closer to the Users devices. This not only helps in reducing the response time from the

Network but also decreases the load on the network. This is beneficial to the Users, the Service

Providers and the Network Providers.

What this means to the end user is that now the users would get served by services closer to them

than the Cloud. This would reduce the response time of the services and improve the experience for

the Users. For the Service Providers, they can increase their profit by providing users with better

services.

There will be situations where a particular service is popular and being heavily utilized by the

Users. This may use high resources of the network and may affect other services. These type of

scenarios should be detected and handled before hand to provide seamless services to the Users.

1.2 Challenges

The placement and readjustment of VNFs in the edge-fog-cloud network are extremely challenging,

for the following reasons:

• VNF interoperability. VNF interoperability is interoperability between identical VNFs

running in different computing environment like edge, fog, and cloud. For example, a VNF

maybe deployed in a cloud, with provision for a copy to be executed in an edge to handle

traffic peaks. The two VNFs must operate together. Data synchronization is a critical concern

when VNFs in different clouds work together. High latency among the different computing

environment makes synchronization difficult. The design of the communication protocol that

enables the VNF interoperability requires that the interoperating VNFs share common process

and data models.

• Resource constraints. Each SLA has node and link constraints, such as CPU and RAM

resource on the nodes and link bandwidth that must be satisfied while VNFs is being served.
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For example, a user may request the VNFs which demand 1 GHz CPU, 8 GB of RAM and

10 Mbps links between compute nodes and three different end-points of the network in the

geographically distributed location that connect the users. Furthermore, the user may require

additional constraints such as propagation delay. These restrictions on nodes and links make

placement and readjustment of VNFs computationally hard.

• Dynamic requests. The VNF requests can be dynamic; it may come dynamically and stay

in the network for an arbitrary time. The placement and readjustment of the VNFs algorithm

must determine VNF location online. Online placement problems are typically computationally

intractable.

• Guaranteed resources. Since the capacity edge and fog is limited, some VNF request may

be denied, or some VNFs has to migrate to the cloud or apply scheduling techniques for sharing

resources to provide the guaranteed resource availability.

• Priority SLAs. SLAs may have different priority depending upon the negotiation between

the Service Provider and Network Provider. Some SLA requests would have high priority to

be placed close to the End Users to provide low latency User service.

• Handling busty high usage of VNFs. Some VNFs may be highly utilized for certain inter-

val of time. This would increase the Network load and indirectly effect other SLAs sharing the

same node, or link, or both. For example, a Streaming service hosting an El-Classico football

match would create high load onto the network. So, temporary movement or replication of

these VNFs closer to the user devices would reduce the core Network load.

• Detection and removal of potential bottlenecks. to be filled later

1.3 Related Work

The Placement problem even for a single-layered network is NP-Hard as mentioned in [1], [2], [3]

and [4]. Depending on the use cases and parameters considered, most work convert the Placement

problem into a Mathematical model and solve with ILP-solvers using various Heuristic approaches.

These provide sub-optimal solutions to the Placement problem which may require complete restruc-

turing of the Network placement. Total restructuring of the network is both time-consuming and is

not practical.
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Chapter 2

System Design

The System can be considered as an Orchestrator which is built on top of a SDN Controller. The

controller is used only to interact with the OVS switches. The Orchestrator interacts with both the

Service Provider and geographically distributed Hypervisors.

2.1 System Flow Chart

Figure 2.1 shows the flowchart of the system. When an online request for a SLA is received, the

placement algorithm 1 places the VNFs satisfying the SLA constraints. The network is continu-

ously monitored and checks for a possible bottleneck. Once a possible bottleneck is detected, the

Bottleneck Removal algorithm 2 removes it.

NETWORK STATUSPLACEMENT
ALGORITHM

BOTTLENECK
REMOVAL

ALGORITHM

NETWORK MONITOR & 
BOTTLENECK DETECTION

New SLA

Bottleneck Detected

Bottleneck Removed

Figure 2.1: System Flow chart

2.2 System Block Diagram

Figure 2.2 shows the key components of the system. The system interacts with two external entities,

the Service Provider and the underlying Network. The Service provider may provide Online SLA

requests, and based on the agreement with the Network provider it is installed over the underlying
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network. Client-Server protocol is used between the Service Provider and the System. The underly-

ing network is composed of OVS-Switches and Hypervisors. Openflow v1.5 is used to communicate

with the OVS-switches and Client-Server protocol is used between the system and the distributed

Hypervisors. Next, all the components of the System are explained.

ORCHESTRATORMONITOR  DB

IN-MEMORY 
DATABASE

DETECTOR

FLOW MANAGER 

Periodic  
Statistics 

Update  
Statistic 

Retrieve 
 Statistics

Possible
Bottleneck
Indication

[Start new / 
Stop old  
VNFs] 

Updated Flow
Information

Add /
Remove 

Flow Rules

NETWORK

Retrieve 
 Statistics

Openflow  
v1.5

Openflow  
v1.5

DNF-Hypervisor  
Client-Server

Protocol

Online SLA
Request

Service
Provider DNF-Provider 

Client-Server  
Protocol

Figure 2.2: System Block Diagram

• Orchestrator. The Orchestrator is the controlling entity of the system. It processes online

SLA requests and handles possible bottlenecks informed by Detector. It uses the information

from In-memory Database and executes either Placement or Bottleneck Removal algorithms.

Finally, it indicates the Flow Manager about the necessary actions to be taken. Also, it may

setup new or remove old instances of VNFs on Hypervisor, if required.

• Monitor. This collects periodic statistics of the network and updates in the in-memory

Database. It collects switch statistics from OVS-switch, measures link latency (Cite) and

Hypervisor CPU utilization using the client-server protocol mentioned above.

• Flow Manager. The Flow Manager on receiving indication from the Orchestrator adds or

removes flow rules from the underlying OVS-switches.

• Detector. This continuously detects any possible bottlenecks in the network. This is done

by periodically retrieving statistics from the Database. On detecting a possible bottleneck, it

informs the Orchestrator.

• Database. Periodic run-time information of the Network is maintained in an In-memory

database by the Monitor module. The information is used by both the Orchestrator and

Detector.
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Chapter 3

Placement of VNFs/SLA Service

Chains

3.1 Overview

The Network provider places the VNFs of a SLA by utilizing the resources efficiently. Also, with the

advantages of Edge-Fog-Cloud Computing, the placement of VNF(s) at the Edge or Fog layer would

reduce the response time and the Network load at the upper layers. If no such option is possible,

then the VNF(s) are placed at the Cloud.

The algorithm accepts online SLA requests and performs VNF Service Chain placement satisfying

the SLA constraints. It provides placement of VNFs closer to the User devices for low network latency

for User traffic generated from any User end-point as mentioned in the SLA.

3.2 Placement Algorithm

The proposed algorithm uses an iterative version of Dijkstra algorithm along with subsequent greedy

approach for placement. Algorithm 1 presents the pseudocode of the Placement Algorithm and Table

3.1 shows the Notations used in the pseudocode.

An iterative version of Dijkstra’s algorithm is used to find the node where the first VNF of the

Service Chain is placed (line 2-23). If network resources at the Edge or Fog layer are insufficient then

the SLA is placed at the Cloud (line 24,25). If placement is at a node at the Edge-Fog layer, then

the difference between the Maximum Delay tolerated by the SLA and maximum latency incurred

from an entry-exit end-point to that node is the Latency Buffer (line 28). Remaining VNFs of the

Service chain may be placed over the links within the range of this Delay Buffer.

After placement of the first VNF of the Service Chain, rest of the VNF(s) are placed iteratively

using a Greedy approach (line 30-45). In each iteration, the same node (as in the previous iteration)

along with all its neighbor nodes satisfying the SLA constraints and within the range of the Latency

Buffer are considered for placement (line 32). Finally, the VNF is placed at the node with minimum

latency from the current Hypervisor(line 38). If any of the VNFs are not being able to place either

at the Edge or Fog layer, then all the VNFs of the SLA are placed at the Cloud (line 42).
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Table 3.1: Notations for Algorithm 1
Notation Description

G Network Graph
U List of Entry Points
Ltol Latency tolerated as per the SLA
BWreq Bandwidth requirement of SLA
BWu,v Available Bandwidth over physical link (u,v)
RAMreq Hypervisor RAM requirement
Seenx List of entry-point nodes that have visited node-x
du[v] Delay incurred till node-v from starting from entry-point-u
Lu,v Latency incurred over the link (u,v)
Start Node where 1st VNF of Service Chain is placed
DB Delay Buffer of the SLA
Prev Node where previous VNF was placed

minDelayNbr Neighbor with minimum Latency
Place(x, y) Placement of VNF-x at node-y

SC Service Chain of the SLA

3.3 Complexity

Consider a network having V - Edge or Fog nodes and E - links between them. K be the length of

Service Chain of a SLA. To find the center of Edge-Fog Network, we use Iterative Dijkstra algorithm

w.r.t. all the User entry points. The complexity for this part is V(V.log V + E.log V). The rest

of the VNFs of the Service Chain are placed using Greedy approach either at the same node where

the previous VNF was placed or any of its neighbor node. The complexity for this is K.V So, the

complexity of the algorithm is V(V.log V + E.log V) + K.V, as E ≥ V and K � V, then

O(V 2 log V )

.

3.4 Working Illustration

The Figure 3.1 shows a working illustration of the Placement Algorithm (line 2-23). Consider a

SLA agreement as shown in the Table 3.2 to be placed over the network. Fig 3.1(a) shows the

network status where each node represents a Hypervisor and the edges are the interconnections

between them. The three-layered architecture represents the nodes at the Edge, Fog and Cloud with

resources allocated relatively. Also, it shows the data-structures used by the algorithm (line 2-6).

Fig 3.1(b) & Fig 3.1(c) shows the 1st and 2nd iteration of the algorithm from the two entry-points

V4 & V7 respectively and the updated data-structures. In the next iteration Fig 3.1(d), the node

with the minimum latency from entry-point V4 is selected (line 9) and its neighbor nodes V1, V3

and V5 are considered as they satisfy the SLA constraints(line 10-14). As V3 has been visited by

all the entry-points it is chosen for placement of the first VNF of the Service Chain (line 15-17) as

shown in Fig. 3.1(e). Finally, the Latency Buffer of 13 ms is calculated.
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Table 3.2: SLA Agreement
Parameter Value
Maximum Delay tolerated 30 ms
Minimum Throughput Required 10 Gbps
Hypervisor RAM Required 2 GB
Hypervisor CPU Cores 1
List of Entry-Exit Points V4, V7
Service Chain Firewall

Figure 3.1: Finding centre during SLA Placement
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Algorithm 1 Placement of VNF

1: procedure PLACEMENT(G,U,Ltol,BWreq,RAMreq)
2: for v ∈ G(v) do
3: Seenv ← ∅
4: end for
5: for u ∈ U do
6: du[u]← 0
7: Seenu ← {u}
8: Enqueue(Qu,u)
9: end for

10: while Qu is not Empty for each u ∈ U do
11: v ← ExtractMin(Qu)
12: for x ∈ Adj(v) do
13: if du[v] + Lv,x ≤ Ltol AND BWv,x ≥ BWreq AND RAMx ≥ RAMreq then
14: du[x]← du[v] + Lv,x

15: Enqueue(Qu,x)
16: Seenx ← Seenx ∪ {u}
17: if |Seenx| ≡ |U | then
18: Start←x
19: break
20: end if
21: end if
22: end for
23: end while
24: if Start not found then:
25: Place(v, Cloud) ∀ v ∈ SC
26: else
27: Place(SC{1}, Start)
28: DB ← Ltol −max(Lu,Start)
29: Prev ← Start
30: for v ∈ SC − SC{1} do
31: minDelayNbr ← ∅
32: for y ∈ Adj(Prev) ∪ {Prev} do
33: if 2 ∗ Lx,y ≤ DB AND BWx,y ≥ BWreq AND RAMy ≥ RAMreq then
34: minDelayNbr ← min(minDelayNbr, 2 ∗ Lprev,minDelayNbr)
35: end if
36: end for
37: if minDelayNbr 6= ∅ then
38: Place(v,minDelayNbr)
39: DB ← DB − 2 ∗ Lx,y

40: Prev ← y
41: else
42: Place(v, Cloud) ∀ v ∈ SC
43: return
44: end if
45: end for
46: end if
47: end procedure

8



Chapter 4

Bottlenecks and its Detection

Some Network resources may be over-utilized or under-utilized depending on the placement of VNFs.

Over utilization may affect the placement of future SLA requests. In the worst case, even if the

resources are available at the Edge or Fog layer, placement of VNFs may not be possible because

of some SLA constraint violation. This would result in the placement of VNFs at the Cloud, thus

not utilizing the benefits of Edge or Fog layers. Our algorithm does not focus on an optimal use

of Network resources, but aims at the placement of VNFs in the proximity of the User devices. A

Hypervisor can be interpreted as a node, hence both are used interchangeably during explanation.

Suppose there is a tremendous increase in the number of requests for particular VNFs resulting

in high CPU utilization at the node and increased load over the links from the user to the VNF. This

may affect the other VNFs either utilizing some of those links or placed at the same node which may

cause violation of some SLA constraint. Thus, a bottleneck may be created due to high-utilization

of any of the network resources which may lead to the violation of one or more SLA(s). Bottleneck

may be either over a link or in the node.

To avoid bottlenecks, appropriate measures needs to be taken which could be either proactive

or reactive. No SLA agreement should be violated at any point of time. Taking reactive measures

after SLA violation is thus not a choice. Hence, proactive measure would require detection of a

possible bottleneck in the future using a Threshold-based detection. The cost of having threshold

is the under-utilization of the resources but it would not lead to an SLA violation. Table 4.1 shows

the classification of bottlenecks and possible actions for their removal.

We consider node bottlenecks due to high CPU utilization of the Hypervisor and perform mi-

gration of one or more VNFs from that Hypervisor to reduce the CPU load.
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Table 4.1: Classification of Bottlenecks
Bottleneck Cause Action
High CPU Utilization
of Hypervisor

Some VNFs in the Hypervisor may get
heavily utilized increasing the CPU uti-
lization at the Hypervisor thus impact-
ing the performance of other VNFs.

Migration of one or more VNFs in the
Hypervisor to reduce the CPU Load.

High Link Throughput Increase in traffic for a particular SLA
may lead to high load over the links of
the VNFs. This is in addition to the
other Service Chains utilizing the same
links.

Select VNFs of the Service Chain in de-
creasing order of their utilization of the
link. Create copies of the subsequent
VNFs on both sides of the link.

Increase in Delay over
a Link

Same as above. Due to congestion, the
delay over a link may increase which
may lead to violation of SLAs.

Same as above.
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Chapter 5

Bottleneck Removal Algorithm

5.1 Overview

The algorithm removes potential node bottlenecks by migrating VNFs from the bottlenecked node.

It also avoids ping-pong effect of traffic in the network because of the Service Chain. The algorithm

takes as input the node detected for a possible bottleneck. It reduces the CPU load by migrating

one or more VNFs in the network.

The algorithm takes into account multiple cases during migration without the violation of the

SLA constraints. Also, to avoid looping, it considers migrating part of Service Chain of VNFs, if

possible to the neighbor node hosting either the predecessor or successor of that part of Service

chain.

5.2 Algorithm

The proposed algorithm considers three cases of migration which takes place one after the other, if

required. The first case aims to migrate VNF to a neighbor node having both sufficient resources

and satisfying the SLA constraints. If the resources are not available at the neighbor, then a VNF

is migrated from the neighbor node to create resources at the neighbor. Multiple VNFs are thus

migrated from both the bottlenecked node and its neighbor node. Finally, if migration is not possible

using the above two cases then a VNF along with all the other VNFs of its SLA are moved to the

Cloud.

Choice of Node to Migrate - Priority Score

Choosing the victim VNF to be migrated and the node to which the migration would take place

is calculated using Priority Score. This takes into account the link characteristics between the

bottlenecked node and its neighbor node along with the node characteristics of the neighbor. The

formula for Priority Score for migrating VNF v from node r to s is

PS(v, r, s) = α.Rr + β.BW (r, s) + γ.L(r, s)
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where Rr is the available RAM on the node r, BW (r, s) and L(r, s) are the available link bandwidth

and link latency between r and s respectively. α, β and γ are the normalization constants.

For normalizing different parameters, the parameter is divided by its maximum value achieved.

For example, the maximum values for Rr and BW (r, s) are known initially. Higher the available

RAM at the node and high link bandwidth increases the chances for migration but the link latency

decreases it. So, higher the Priority score, more feasible is the migration.

Avoid Looping of Traffic due to Service Chain

In cases, where a part of Service chain is installed on the same node, then preference is given to the

VNFs at the two ends of this part of the Service chain to avoid looping of traffic as shown in Fig.5.1.

Also, nodes hosting the predecessor or successor of this Service chain is more preferred, shown in

Fig.5.2.

Hypervisor [A B C D] - VNF Service Chain

[A B C D] [A B] [C D]

(a) (c)

Bottleneck
Hypervisor

[A D] [B C]

(b)

Figure 5.1: Migration of successive VNFs of Service Chain

[B C D][A] [B C][A] [D]

[C D][A B]

(c)

(a) (b)

Hypervisor [A B C D] - VNF Service ChainBottleneck
Hypervisor

Figure 5.2: Migration to nodes containing part of Service Chain

Pseudocode

The Algorithm 2 presents the pseudocode of the Bottleneck Removal Algorithm and the Table-No.

shows the Notations used in the pseudocode. Choosing a victim VNF and a neighbor node is shown

in line(2-8). If the migration does not violate any SLA constraint then Priority Score is maintained

line(8). If no migration is possible due to insufficient resources at the neighbor nodes, then resources

are created by migrating VNF from the neighbor node. So, victim VNF and neighbor nodes are

considered at both the bottlenecked node and its neighbor nodes (line 9-16). The Priority score for

this multiple migration is updated (line15). After this, if there is no choice of migration, then the

network is assumed to be fully utilized and hence a victim VNF along with all other VNFs of its

SLA are moved to the cloud.
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Algorithm 2 Bottleneck Removal

1: procedure BOTTLENECK REMOVAL(Hypervisor r)

2: for each VNF v ∈ VNFs(r):

3: for Hypervisor s ∈ Adj(r) do

4: if s satisfies the Constraints of moving ’v’ then

5: 1. Available bandwidth along link r to s

6: 2. Within Latency Buffer

7: 3. New CPU utilization ≤ Threshold

8: Score[v, r, s] ← ζv,r,s

9: end if

10: end for

11: If No Score:

12: for for each VNF v ∈ VNFs(r) do

13: for Hypervisor s ∈ Adj(r) do

14: for for each VNF x ∈ VNFs(s) do

15: for Hypervisor p ∈ Adj(s) do

16: if p satisfies the Constraints of moving ’x’ AND s satisfies the Constraints of

moving ’v’ then

17: PS[v,r,s] ← max(PS[v,r,s], ζv,r,s + ζx,s,p)

18: end if

19: end for

20: end for

21: end for

22: end for

23: If atleast one Score

24: Return solution with the maximum Score

25: Else

26: Return ’Move any SLA to the Cloud’

27: end procedure

5.3 Complexity

For a network having V - Edge or Fog nodes and E - links between them. Also, N is the number

of VNFs installed on every node. Migration to a neighbor node would require selecting a victim

VNF and a neighbor node, O(N.E). For migration to neighbor by creating resources at the neighbor

would lead to multiple VNF migration at different nodes. Hence, selecting the victim VNF and the

neighbor at multiple place would involve a complexity of O(N2.V 2). Finally, migrating a VNF to

cloud is about selecting a victim VNF, O(V). Complexity of the algorithm is

O(N2.V 2)
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5.4 Working Illustration

5.4.1 Migration to Neighbor

A working illustration for Case-1 of the Migration algorithm is shown in Fig 5.3. The Fig5.3(a)

shows 4 Edge nodes, 2 Fog nodes and a cloud node and the current network status, also a possible

bottleneck is detected at node- V 2. Fig5.3(b) shows the calculation of priority scores for moving a

VNF from V2 to its neighbor nodes V3, V4 and V5. The table shows the calculation of the priority

scores. For simplicity, the values of α, β and γ are +1, +1 and -1/3 respectively. The result of

migration is based on the solution having the highest priority score and is shown in Fig.5.3(c).
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Vpq - Hypervisor 'p' hosting VNF 'q', S(a,b,c) - Priority Score of moving VNF-'b' at Hypervisor-'a' to Hypervisor-'c'.

 

(a) (b) (c)

Figure 5.3: Migration Algorithm - Case 1

5.4.2 Migration by creating resources at the Neighbor

Fig.5.4 shows the Case-2 of the Migration algorithm. The topology of the network is same as Fig.5.3

but the current network status is changed. No VNF can be migrated to a neighbor node of V2

Fig.5.4(a). Hence, resources are created at neighbor nodes V3, V4 and V5. Fig.5.4(b) shows the

priority score of migrating a VNF from node V3 to its neighbor nodes. Nodes V4 and V5 are not

considered as they do not have any other neighbors. As a VNF is migrated from node V3, resources

are created at this node, which is considered for migrating a VNF from the bottlenecked node-V2.

Fig.5.4(c) shows the possible solutions and their priority scores. The solution having the highest

priority score is applied to the network Fig.5.4(d).
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Figure 5.4: Migration Algorithm - Case 2
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Chapter 6

Implementation

The implementation is a proof-of-concept Emulated System of DNF using Ryu controller [5] and

Ubuntu 16.04 VMs as Hypervisors on a Ubuntu 16.04 Host Machine with 32 GB RAM. OVS-Switches

[6] are used for interconnection between the Hypervisors and are connected to the controller. Both

VNF(s) and Users are implemented as Docker containers [7] to be installed on the Hypervisors.

No VNFs of the SLA are placed on the same Hypervisor hosting the User Container. The Docker

containers used as VNF are either a Centos container [8] or Kali-Linux container [9]. The Users are

Iperf Containers [10] to generate Traffic. SLAs of different Service Chain length are created randomly

with Users at different Edge Hypervisors. A Hypervisor and a OVS-switch is connected on a one-

to-one basis. Interconnections between the Hypervisors are actually interconnections between the

their respective OVS-switches.

Figure 6.1 and Table 6.1 shows the implementation topology and setup parameters for the proof-

of-concept.

Fog
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Cloud

Users

300 Mbps
150 Mbps
70 Mbps
70 Mbps

Host Machine

[3] [3]

[1.5]

[5]

[1.5]

[3]

[1.5][1.5] [1.5]

[x]  
Hypervisor  

RAMHypervisor
(VM) OVS-Switch VNF 

(Docker)
User

(Docker)

Figure 6.1: Implementation Topology
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Table 6.1: Emulation Setup
Parameter Value
Number of Edge Hypervisors 5
Number of Fog Hypervisors 3
Number of Cloud Hypervisors 1
Number of OVS-Switches 9
Number of Hypervisors per OVS-switch 1
Host Machine RAM 32 GB
Cloud Hypervisor RAM 5 GB
Fog Hypervisor RAM 3 GB
Edge Hypervisor RAM 1.5 GB
Fog-Cloud Link Bandwidth 300 Mbps
Fog-Fog Link Bandwidth 150 Mbps
Edge-Fog Link Bandwidth 70 Mbps
Traffic generated by Users 50 Mbps
User Docker Container IPerf or Centos
VNF Docker Container Centos or Kali-Linux
Hypervisor RAM allocated to VNF Container 512 MB
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Chapter 7

Evaluation Results

This chapter shows the evaluation of the performance of both Placement and Migration Algorithms

in both simulation and emulation test bed.

7.1 Overview

Table 7.1 shows the steps involved during the Placement Procedure. Total time is the interval from

the input of an online SLA request till all the VNFs along with their flow rules are installed.

Table 7.1: Time distribution during Placement Algorithm
Name Partition
T1 Algorithm Run-time
T2 VNF Deployment Time
T3 Flow Rules installation Time
Total Time T1 + T2 + T3

Table 7.2 shows the steps involved during the Bottleneck Removal Procedure. Migration time

would consider the first three steps as the bottleneck is removed by that time. Subsequent steps

may be done later.

Table 7.2: Time distribution during Migration Algorithm
Name Partition
T1 Algorithm Run-time
T2 New VNF Deployment Time
T3 New Flow Rules installation Time
T4 Stopping of Old VNF(s)
T5 Removal of Old Flow Rules Time
Total Time T1 + T2 + T3

Due to the resource constraints of the Host machine, limited number of SLAs could be deployed.

To evaluate the algorithms on a large scale, simulation was performed on a Ubuntu 16.04 with 32

GB RAM. Neither VNFs were deployed nor were Flow rules installed. Hypervisors were considered

as nodes with different characteristics as per the Edge-Fog-Cloud architecture and their intercon-

nections were edges. The implementation topology remains the same as in Emulation setup.
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7.2 Cumulative Placement Time

In this experiment, we plot the cumulative Placement time of different number of SLAs for specific

lengths of Service Chain.

7.2.1 Simulation

Figure 7.1 shows with increase in the number of SLAs, the Placement time increases. Also, as the

Service Chain length increases, the Placement time also increases. This increase is due to network

resources getting utilized as more VNFs/SLAs are installed over the network. Hence, subsequent

placement are placed at the upper layers and require more computation. Table 7.3 shows the

simulation parameters for this experiment.

Table 7.3: Simulation Setup
Parameter Value
Cloud Hypervisor RAM 512 GB
Fog Hypervisor RAM 64 GB
Edge Hypervisor RAM 16 GB
Cloud Hypervisor CPU Cores 1024
Fog Hypervisor CPU Cores 32
Edge Hypervisor CPU Cores 8
VNF RAM Requirement 2 GB
VNF CPU Utilization 2 %
VNF CPU Cores Requirement 1
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Figure 7.1: Cumulative Placement Time of SLAs in Simulation Setup

7.2.2 Emulation

Figure 7.2 and Figure 7.3 shows the cumulative Placement time in the Emulated setup for SLA

hosts placed at Dedicated and Random Edge Hypervisors. With dedicated user entry points, the

placement algorithm would converge at the same point and would require comparison of the same

conditions for every SLA, hence uniformly increase in placement time. The other conclusions remain

the same as in the case with simulation.
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Figure 7.3: Cumulative Placement Time of SLAs in Emulation Setup for Random User-End points
in SLA

7.3 Placement Ratio Over Edge-Fog Network

In this experiment, we plot the ratio of SLAs that are placed over Hypervisors at the Edge and Fog

layers with the total number of SLAs to be placed for different Service Chain lengths.

7.3.1 Simulation

Figure 7.4 shows with the increase in the number of SLAs, lesser number of SLAs get placed at

the Edge-Fog layer. Also, increasing the Service Chain length would decrease the SLAs placed at

the Edge-Fog layer. Initially, as VNFs/SLAs get placed the network resources at the Edge and

Fog layers get utilized. For subsequent VNFs/SLAs, the resources at the Edge and Fog layers get

exhausted and thus are placed at the Cloud. The simulation setup remains the same as in Table 7.3.

7.3.2 Emulation

Figure 7.2 and Fig. 7.3 shows the Ratio of SLAs placed over the Edge and Fog Layers in Emulated

System for SLA hosts placed at Dedicated and Random Edge Hypervisors.
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Figure 7.5: Ratios of SLAs placed over Edge and Fog Layers for Dedicated User entry points

7.4 CDF of the Bottleneck Removal Algorithm

In this experiment, we evaluate the Bottleneck removal time for each Bottleneck in the network.

Also, the CDF shows the frequency of Bottlenecks getting handled by the different cases as mentioned

in Migration Algorithm.

7.4.1 Simulation

Large number of SLAs of Service length 3 were placed over the network. Later every node in the

Network was checked for possible bottleneck. The detection was based on violation of the node

constraints. Table 7.4 shows the simulation parameters for this experiment.

Figure 7.7 shows that for lower number of SLAs installed over the network, the frequency of

Bottlenecks is less and are handled by Case-1 (Migrating a VNF at a Neighbor). When more SLAs

are installed, more Bottlenecks are created which require more time and are removed by Case-3

(Migrating an entire SLA to the Cloud). This is because as more SLAs are installed over the

network, resources are utilized at the Edge and Fog layers. So, when a bottleneck is detected, no

VNF at the Bottlenecked Hypervisor can be migrated(both Case-1 and Case-2 are not applicable).

Hence, a VNF at that Hypervisor along with all other VNFs of the Service Chain are migrated to

the Cloud.
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Table 7.4: Simulation Setup
Parameter Value
Cloud Hypervisor RAM 512 GB
Fog Hypervisor RAM 64 GB
Edge Hypervisor RAM 32 GB
Cloud Hypervisor CPU Cores 1024
Fog Hypervisor CPU Cores 64
Edge Hypervisor CPU Cores 32
VNF RAM Requirement 2 GB
VNF CPU Utilization 2 %
VNF CPU Cores Requirement 1
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Figure 7.7: CDF of the Bottlenecks with Bottleneck Removal Time
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Chapter 8

Conclusion

In this work, we have explored the handling of online SLA requests from Service Providers by placing

the VNFs closer to the User devices which reduces both the Network latency and the load on the

network. Also, there may be situations where bottlenecks may be created in the network. Such

scenarios are detected proactively and measures were taken to handle it so as not to violate any SLA

agreement.

The Placement algorithm placed the VNFs closer to the user devices by placing VNFs of smaller

instances at the Edge and the larger or heavy instances at the upper layers. On detecting a possi-

ble Node bottleneck based on a Threshold based system, they were removed using the Bottleneck

Removal algorithm by migration of VNFs. The framework for this work can handle multiple Hy-

pervisors which can be geographically distributed.
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