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Abstract

The current and voltage characteristics of a MOSFET device are maily characterized by the source

to channel barrier which is controlled by the gate voltage. The Boltazmann statistics which govern

the number of carriers that are able to cross the barrier indicates that to increase the current by a

decade, atleast 60 mV of rise in gate voltage is required. As a result of this limitation, the threshold

voltage of modern MOSFETs cannot be less than about 0.3 V for an ION to IOFF ratio of 5 decades.

This has put a fundamental bottleneck in voltage downscaling increasing the power consumption in

modern IC based chips with billions of transistors.

Sayeef Salahuddin and Supriyo Dutta proposed the idea of including ferroelectric in MOSFET

gate stack which allows an internal voltage amplification at the MOSFET channel which can be used

to achieve a smaller subthreshold swing which would further reduce the power consumption of the

devices. In this thesis we have undertaken a simulation based study of such devices to study how

the inclusion of negative capacitance ferroelectrics leads changes in various device characteristics.

Initially we have taken a compact modeling based approach to study device characteristics in

latest industry standard FinFET devices. For this purpose we have used the BSIM-CMG Verilog A

model and modified the model appropriately to include the effect of negative capacitance ferroelectric

in the gate stack. This simulation allowed us to observe that negative capacitance (NC) devices can

indeed give a subthreshold swing lesser than 60 mV/dec. Further other interesting properties like

negative output resistance and drain induced barrier rising are observed.

Using the compact models developed above, we have analyzed some simple circuits with NC

devices. Initially an inverter shows a hysteresis in the transfer characteristics. This can be attributed

to negative differential resistance. Ring oscillator analysis shows that RO frequency for NC devices

is lesser than that of regular devices due to enhanced gate capacitance and slower response of

ferroelectrics.

Scaling analysis has been performed to see the performance of NC devices in future technologies.

For this we used TCAD analysis coupled with Landau Khalatnikov equation. This analysis shows

that NC devices are more effective in suppressing short channel effects like DIBL and can hence be

used for further downscaling of the devices.

Finally we develop models to take into account the multidomain Landau equations for ferroelec-

tric into account. We have performed such an analysis for a ferroelectric resistor series network. A

similar analysis is performed for short channel double gate MOSFET without inter layer metal be-

tween ferroelectric and the internal MOS device. This analysis showed that coupling factor between

ferroelectric domains plays an important role in the device characteristics.
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Chapter 1

Introduction

The power consumed by modern digital circuits is roughly given by P = fCV 2
DD where C is the

capacitance at the output node, f is the frequency of operation while VDD is the supply voltage.

With reduction in device dimensions according to Dennard scaling rules [1], the capacitances of the

devices have reduced promising lesser power consumption. However the supply voltage VDD could

not be scaled according to the scaling rules, manifesting itself as a bottleneck in achieving high

speed low power devices. This is due to the the fact that carriers in source and drain region of the

MOSFET are governed by Boltzmann statistics which limits the rate of increase of drain current

with respect to voltage to 60 mV/dec. In this report we explore the idea of negative capacitance

in gate stack of MOSFETs to overcome the Boltzmann limit (SB = 60 mV/dec) in order to realize

high frequency low power devices.

1.1 Subthreshold swing

Subthreshold swing (SS) is defined as inverse slope of the log10ID vs VGS curve.

SS =

(
∂(log10ID)

∂VGS

)−1

(1.1)

The origin of subthreshold swing is illustrated in Fig. 1.1 [2]. Since only carriers with kinetic energy

greater than the barrier can be injected into the channel, the current in this situation can be written

in the form of diode current

ID = I0
(
eqψs/kBT − 1

)
(1.2)

From Eq. 1.2 we can write, n−1 = ∂(log10ID)
∂ψs

= q log10e
kBT

. At room temperature n turns out to be 60

mV/dec. The channel potential ψs is coupled to VGS by a capacitive network as shown in Fig. 1.1b.

By simple series capacitor formula we can write m−1 = ∂ψs

∂VGS
=
(

1 + CS

Cox

)−1

where Cox is the oxide

capacitance and CS is the semiconductor channel capacitance. Subthreshold swing is then given by

SS = m× n = 60 mV/dec

(
1 +

CS
Cox

)
(1.3)

Since capacitances are always positive, m > 1 which implies SS > 60 mV/dec. In order to
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Sour
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V
0


arrier density

V0 − ψs

(a)

ψs

CS

Cox

VGS

(b)

Figure 1.1: Origin of subthreshold swing (a) Band diagram along the channel of MOSFET. The
barrier height is modulated by VGS . Only carriers above the barrier can be injected to channel

(b) Gate is coupled to channel potential ψs by a capacitive network

maintain ION/IOFF ratio of more than 106 for reasonable noise margins, we need a minimum

supply voltage of 360 mV

A lot of effort has been put in optimizing electrostatics to minimize m to unity so as to get SS

reasonably close to 60 mV/dec. However in order to push the limits of n, new FETs employing

different carrier mechanisms like Tunnel FETs (TFETs) or Impact Ionization FETs (IIFETs) have

been proposed.

Datta and Salahuddin [3] however proposed a novel idea, wherein an oxide material is used such

that Cox < 0. This allows m < 1 which can give a subthreshold swing of SS < 60 mV/dec. The

advantage with this method is that it allows the use of existing fabrication flow with only addition

of an additional oxide layer deposition which can provide the negative capacitance effect. Typical

structure and characteristics of the device are shown in Fig. 1.2

DS dielectric
Additional ferroelectric layer

(a)

tFE	=	0	nm
tFE	=	1	nm
tFE	=	2	nm

I D
	[A

]

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

VGS	[V]
0 0.2 0.4 0.6 0.8

(b)

Figure 1.2: Ferroelectric based negative capacitance MOSFET (a) Conventional MOSFET with
additional ferroelectric layer can can show negative capacitance effect (b) Input characteristics of 14
nm FinFET showing an improvement in subthreshold swing (SS) as well as on current ION with
increasing ferroelectric thickness tFE
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1.2 Negative capacitance in ferroelectrics

A capacitor has a negative capacitance (in a differential sense), when C = dQ
dV < 0. This means that

when charge across it increases, the voltage across it decreases. As a consequence, higher charge in

semiconductor would require lesser supply voltage when a negative capacitance device is used with

a FET.

Negative capacitance can be achieved using a ferroelectric in series with some other circuit

element. The origin of such a negative capacitance lies in an interplay between thermodynamics and

electrostatics. This is discussed in following subsections.

1.2.1 Origin of permanent polarization in ferroelectrics

In an ionic crystal, lattice vibrations can create can create an effective charge separation in a unit

cell giving a net dipole moment to the unit cell. For long wavelength phonon modes (k → 0) such an

effective separation, u would be nearly same in all unit cells. In such a case the polarization of the

material is given by P = Nq∗u where q∗ is the effective charge involved in the charge separation and

N is the number of unit cells per unit volume. Such polarization would create a local electric field

Eloc = γP
3ε0

even in in the absence of external electric field. Here γ is called the Lorentz correction

factor and is equal to 1 for isotropic cubic systems. Electrostatic potential energy of the crystal is

then given by FES = −Eloc · P = −γP 2

3ε0
.

The elastic energy is FEL = ku2 + k1u
4. Using u = P/Nq∗, total potential energy would be

given by [4]

F =

(
k

N2q∗2
− γ

3ε0

)
P 2 +

k1
N4q∗4

P 4 ≡ αP 2 + βP 4 (1.4)

In dielectrics elastic energy is dominant giving α > 0, while in a ferroelectric, the electrostatic

component is dominant giving α < 0. This results in a double well potential profile in ferroelectrics

with a stable state corresponding to non zero permanent polarization, in contrast with dielectrics as

shown in Fig. 1.3

Free ene
rgy

Polarizationferroelectric

Dielectric

(a)

ferroelectric+ + + +- - - -P⃗0 +z
(b)

Figure 1.3: Dielectrics and ferroelectrics (a) Free energy of ferroelectrics have a double well profile
in contrast to dielectrics (b) Ferroelectric with open surface and finite polarization
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1.2.2 Origin of negative capacitance effect

Continuing from the previous discussion, the free energy of a ferroelectric is given by

F = αP 2 + βP 4 + βP 6 − EzPz (1.5)

where the last term indicates the dipole energy due to electric field. The dynamics of ferroelectrics

in diffusive limit are given by Landau - Ginzburg equation

ρ
∂Pz
∂t

= −(αPz + βP 3
z + γP 5

z − Ez · Pz) (1.6)

where we have considered only the z component of the polarization. Under steady state dPz

dt = 0

and we can write

Ez = αPz + βP 3
z + γP 5

z (1.7)

Hysteresis characteristics and free energy profile are shown in Fig. 1.4

Free ene
rgy

Polarization

Path of the unstable state

Path of the stable state

Increasing electric field Electric field
Polarization.

Stable state path
Unstable state path

Figure 1.4: Ferroelectric energy profile with respect to polarization. The inset shows the hysteresis
curves as obtained from Landau - Ginzburg theory

Negative capacitance in ferroelectrics arises due to high depolarizing fields, especially in situations

where the surface polarization charge is not compensated by external charges. Consider for example

an open circuited ferroelectric shown in Fig. 1.3b. In such a situation under no external electric

field, saturation polarization is not stable since an uncompensated surface charge would create

a large depolarizing field which would tend to realign the dipoles to the opposite direction. Once

reoriented the same problem occurs again as depolarizing field always acts opposite to that of crystal

polarization. The only stable state for which this problem does not occur is Pz = 0. However in

presence of say short circuited ferroelectric the metal electrodes can quickly provide a compensation

charge so that the net electric field is zero inside the ferroelectric.

Now consider the case when a small positive electric field is applied to the crystal. In usual

dielectrics, dipoles are then oriented along the electric fields. Although the depolarizing fields tends

to re orient the dielectric polarization, the stronger elastic forces hold them together. In ferroelectrics

4



however any small polarization would enhance the local electric field Eloc further increasing the

depolarizing field which again gives rise to an instability. However if dipoles are oriented in negative

direction, the local electric field at a dipole can be made smaller as Eloc = Eext − P
ε0

+ γP
3ε0

. Since

γ ≈ 10 [5] in ferroelectrics, a negative polarization along the surface would stabilize the system by

reducing the local electric field. Hence application of a positive electric field can lead to negative

surface charges, which indicates a negative capacitance.

The origin of negative capacitance has also been often discussed in relation to thermodynamic

system. Capacitance of a system can be written in terms of energy as

C−1 =
d2U

dQ2
(1.8)

As can be seen from Fig. 1.3, ferroelectrics have a concave down curvature at P = 0 which can

be inferred as negative capacitance.

1.3 Thesis objective

In this thesis, we study and analyse the ferroelectric based negative capacitance MOSFETs at

device level and circuit level. Our main objective is to model and simulate the ferroelectric negative

capacitance devices using physics based models. Using these models, our objective is to predict and

analyse the characteristics of the state of the art devices with the additional negative capacitance

ferroelectric in the gate stack.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 gives a brief review of the latest findings in the

negative capacitance devices. Chapter 3 describes the performance of modern logic devices with

negative capacitance effect. Chapters 4 describes the performance and scalability of NC devices

while Chapter 5 describes the phase field modeling and device performance taking into account

multidomain nature of ferroelectrics. Chapter 6 provides conclusion and future scope for work.
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Chapter 2

Literature Review

In this chapter we review the latest findings in the domain of negative capacitance FETs. We begin

with a review of development of the idea of the NC MOSFETs, and their future prospects in a

theoretical perspective. Then we look at various experimental realizations of negative capacitance

MOSFETs. Finally we review the latest developments in modeling of NCFETs with additional

physical effects like multi domain nature of ferroelectrics and leakage in ferroelectrics.

2.1 Development and prospects of NCFETs

Datta and Salahuddin [3] proposed the idea of negative capacitance MOSFETs to achieve SS <

60 mV/dec, wherein a ferroelectric insuator is used as gate oxide and provides step up voltage

transformation. Further they argued that for the system to stable in its totality the capacitance of

(a) (b)

Figure 2.1: Idea of negative capacitance devices proposed by (a) Ideal device structure employing
ferroelectric insulator (b) Amplification of surface potential observed with a BaTiO3 of thickness
175 nm [3]

the system should be positive. This poses a fundamental limit on the maximum thickness of the

ferroelectric for hysteresis free operation given by

tfe <
1

2|α|CS
(2.1)

where α is the material property of the ferroelectric and CS is the semiconductor capacitance.

6



In [6] design guidelines for designing NC-MOSFETs are given. They showed that for stable

operation, the total capacitance of the system should be positive, and hence C−1
S (Q) > C−1

ins(Q)

throughout the region of operation of the device. Further for minimum coupling factor m, CS and

ferroelectric capacitance −Cins should be as close as possible, since m =
C−1

S +C−
ins1

C−1
S

. For ferroelectric

FET operating in stable region, they showed that the minimum subthreshold swing is given by

SSmin =
2.3kBT

q

(
1 +

M

y0

)
(2.2)

where M = (2φt(αQC1 + βQ3
C1 + γQ5

C1)/(2α2Q2
C1), y0 =

√
4φfφt

α2Q2
C1

and QC1 is the solution of

the equation 5γQ4
C + 3βQ2

C + α = 0.

Figure 2.2: Stable operation of NCFETs requires C−1
S (Q) > C−1

ins(Q). This is satisfied only for the
doping concentration of NA2 and hence it would be operating in hysterisis free mode [6]

Other implementations of NCFETs have been discussed in [7, 8]. In particular the nano electro

mechanical switch (NEMS) with suspended gate can also provide the negative capacitance effect. As

the suspended gate is charged, it is attracted towards the MOSFET and consequently the voltage

across it decreases. The NEMS switch can be then used in series with the ferroelectric capacitor to

provide an ideal logic switch with SS = 0 mV/dec

(a) (b)

Figure 2.3: Suspended gate and ideal logic switch (a) A suspended gate NCMOS with an nano
mechanical spring (b) SG technology can be used in series with ferroelectric insulator to provide an
ideal logic switch by providing a dual energy landscape [7, 8]
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2.2 Experimental evidence of NCFETs

Experimental evidence of NC mechanism has been first provided by A.I.Khan and Salahuddin [9].

In this experiment they connected a ferroelectric capacitor in series with a high resistor. The flow of

screening charges from battery is then hindered by the resistance and a transient negative capacitance

is observed, where in the charge across the ferroelectric decreases even though the voltage across it

increases.

(a) (b)

Figure 2.4: Verification of negative capacitance (a) Ferroelectric capacitor connected in series with
a resistor to demostrate NC effect (b) Resistance hinders the flow of screening charges which results
in a transient NC effectbetween points A and B [9]

Experimental evidence of FE-FinFETs have been discussed in [10]. In particular in 1.5 nm

thickness HZO (Halfnium Zincronium Oxide) was used to achieve a subthreshold swing of about 52

mV/dec.

(a) (b)

Figure 2.5: Experimental evidence of FE-FinFETs (a) Device structure showing a thin 1.5 nm
layer of HZO as ferroelectric (b) A minimum subthreshold swing of 52 mV/dec is observed without
hysterisis [10]

2.3 Modeling NCFETs

The basic methodology to model the performance of NCFETs has been including an additional

insulating layer governed by Landau Khaltnikov equation,

VFE = 2αQ+ 4βQ3 + 6γQ5 (2.3)

8



and then solve the MOS equation

VG = VFE + ψs + ψox + VFB (2.4)

self consistently. If the ferroelectric is connected through a metal, Eq. 2.3 is homogeneous throughout

the length of the ferroelectric and can be solved easily. However if the ferroelectric is connected

directly to the dielectric insulator, Eq. 2.3 has to be solved at each point along the length of the

ferroelectric self consistently as is done in [11].

A compact model compatible with BSIM-CMG model has been proposed in [12]. In this work

the core BSIM-CMG model is extended by an additional term vFE = −(a0qch + b0q
3
ch + c0q

5
ch) so

that it becomes

vG − v0 − vFE = −qm − ln(qm)− ln
(

eqt

eqt − qt − 1

)
(2.5)

where qm and qt are normalized mobile and total charges which are specified for different geometries

of multi gate FETs. This model can also be used without lumped metal by solving the equation self

consistently at n points along the channel so that

iDS =

i=n∑
i=1

qchdvch (2.6)

(a) (b)

Figure 2.6: Performance of different NCFETs (a) In lumped NCFET the ferroelectric capacitor can
be considered a separate series element (b) In distributed model, KVL and LK equations need to be
solved self consistently at each point along ferroelectric and in general shows better characteristics
due sustained NC effect at different regions of the ferroelectric [12]

The non ideal phenomena of leakage through the ferroelectric has been studied in [13]. The

leakage is modeled as resistor parallel to ferroelectric capacitor. The resistor provides an additional

path to provide screening charges to ferroelectric degrading its performance. A solution is also

provided by changing the metal work functions appropriately. With appropriate work function

selection, the point where ferroelectrics go into negative capacitance regime is decreased. This also

reduces the leakage, as leakage has been modeled as a resistance (I = V/R)

Multidomain nature of ferroelectrics is taken into account in [14] where NEGF formalism has

been used to get the device characteristics. An additional term of κ
(
dPz

dx

)2
has to be added to Eq.

9



Figure 2.7: Leaky ferroelectrics can degrade the performance of NCFETs. Appropriate workfunction
is required to restore the performance of the device [13]

1.5 to account for variation in polarization in ferroelectric. This gives us an equation of state

Ez = αP + βP 3 + γP 5 − κ∂
2Pz
∂x2

(2.7)

The κ factor is shown to provide a coupling between the polarization in different regions of ferro-

electric. Higher values of κ are shown to make the ferroelectric polarization more uniform and even

the MFIS structure tends to become MFMIS structure.

(a) (b)

Figure 2.8: Multidomain behavior of NCFETs (a) Increasing coupling factor κ makes the MFIS
structure more towards MFMIS structure and increases SS (b) Negative output capacitance is
observed in NCFETs [14]
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Chapter 3

DC modeling of NCFETs

In this chapter we discuss the quasistationary performance of NCFET devices. First we present a

compact model which we integrate with the industry standard BSIM-CMG model to study negative

capacitance based FinFETs. We observe a subthreshold swing of less than 60 mV/dec and a negative

output conductance in this study. Then we present an analytical DC compact model for double gate

ferroelectric based FET.

3.1 NCFET analysis using compact models

Using NCFETs in future technology nodes for circuit design would require the need for efficient

compact models which can capture the accurate device physics as well as the terminal characteristics

efficiently.

In this study we use the mono domain Landau - Khalatnikov equation to model the ferroelectric.

This equation is given by

ρ
dP

dt
= −dU

dP
(3.1)

Here P is the polarization of the ferroelectric, U is the Gibb’s free energy and ρ is the diffusion

constant which depends on the ferroelectric chosen. The Gibb’s free energy is usually expanded in

Taylor series as

U = αP 2 + βP 4 + γP 6 − EFEP (3.2)

Here EFE is the electric field across the ferroelectric. Substituting the above equation in Eq.

(3.1).we get

ρ
dP

dt
= −(2αP + 4βP 3 + 6γP 5 − EFE) (3.3)

Under steady state conditions, dP
dt ≈ 0. Using the fact that EFE = VFE/tFE , we finally get

VFE = tFE(2αP + 4βP 3 + 6γP 5) (3.4)

In the above equation, P is the polarization and is given by P = Q−ε0EFE , where Q is the electrode

11



charge per unit area. However in the present case we assume an ideal metal ferroelectric contact,

so that there are negligible depolarization fields, which allows us to approximate P ≈ Q. Using this

we can finally write the DC equation for ferroelectric capacitor as

VFE = tFE(2αQ+ 4βQ3 + 6γQ5) (3.5)

This equation infact corresponds to a non linear capacitor. When connected in series with another

capacitive device (such as a MOSFET), the total charge across the both devices should be same, i.e

QMOS = QFE (3.6)

The equivalent circuit for the ferroelectric MOSFET combination is shown in Fig. 3.1 The presence

S

B
G

D

to couple charge
Extra terminal

FE

Figure 3.1: Equivalent circuit model for a metal-ferroelectric-metal semiconductor MOSFET

of an intermediate metallic layer is crucial for this model as the intermediate metallic layer brings

the bottom surface of the ferroelectric to same potential and charge. Hence the Eq. 3.5 can be used

directly. Otherwise since under bias the potential drop accross the MOSFET is not uniform across

the channel, Eq. 3.5 has to be solved at each point in the channel self consistently. Also the present

model does not take into account the 3D effects of the ferroelectric gate stack. Rather we model the

ferroelectric gate stack as a 1D device that is coupled to the underlying FinFET. The equivalent

physical structure and the simulated structure are shown in Fig. 3.2. This structure although is

not completely physical it has also been investigated in experimental works, where a FinFET is

externally connected to a ferroelectric capacitor without physical integration [15].

The underlying MOSFET has been simulated using the industry standard BSIM - CMG model

[16]. Simulation has been done using Cadence Verilog A simulator. The ferroelectric model has also

been implemented in Verlog A to integrate it with the BSIM model.

For the FinFET parameters from ASU predictive technology models for 14 nm technology [17].

Halfnium Zincronium Oxide (HZO) has been used as ferroelectric material and parameters are chosen

as given in [18]. These values are tabulated in Table. 3.1

3.1.1 Results and analysis

Input characteristics of the device for various ferroelectric thickness are shown in Fig. 3.3
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Figure 3.2: Structure of negative capacitance MOSFETs. (a) Actual FinFET structure with an
intermediate metal layer (b) Simulated structure which uses a 1D model for the ferroelectric capacitor
with charge coupling between the devices.

Table 3.1: Parameters considered for simulation

Parameter Value
α −6.8× 1010 cm/F
β −6.8× 1020 cm5/F · C2

γ 85× 1029 cm9/F · C4

ρ 100 cm · s/F
tFIN 10 nm
HFIN 23 nm
LG 30 nm
tox 0.61 nm
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Figure 3.3: Input characteristics of the device for various ferroelectric thickness. Increasing ferro-
electric thickness leads to smaller subthreshold swing

The effect of increasing the ferroelectric thickness can be explained as follows. For small Q (in

subthreshold) from Eq. 3.5, dVFE ≈ 2tFEα dQ. Since α < 0, this implies that for larger ferroelectric
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thickness, a small change in MOS charge would lead to larger decrement in ferroelectric voltage.

Since voltage follows KVL, this should lead to larger drop across the MOS device giving better

subthreshold characteristics.
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Figure 3.4: Input characteristics of the device for various drain voltages. Negative drain induced
barrier lowering can be observed from the characteristics

The input characteristic variation with various drain voltages is presented in Fig. 3.4. A negative

drain induced barrier loweing is observed in this plot. As opposed to usual case, wherein the threshold

voltage decreases with increasing drain voltage, here the threshold voltage decreases with decreasing

drain voltage. A DIBL of -42 mV/V has been observed.

A negative drain induced barrier can be explained as follows. An increase in the drain voltage

VDS leads to decrement of the total gate charge due to drain to channel coupling modeled by the

capacitor CD. This reduction in gate charge the in turn leads to increment in ferroelectric voltage

since it is operating in negative capacitance. An increase in ferroelectric voltage naturally leads

to decrement in the internal gate voltage decreasing the channel current. As a result, a lower

drain voltage gives better more current in the subthreshold region especially for larger ferroelectric

thickness. Large ferroelectric thickness leads to more negative capacitance effect.

Capacitance matching is another important aspect of ferroelectric FET design. This can be seen

from the following equation of voltage gain using capacitance network formula

AV =
∂Vint
dVG

=
|CFE |

|CFE | − Cint
(3.7)

A closer matching between |CFE | and Cint where Cint is the internal gate capacitance gives highest

voltage gain AV . Ideally the capacitance matching should be achieved throughout the region of

operation. However, due to non linear nature of both Cint and CFE , this is not possible.

The output characteristics of NCFETs and normal FinFETs are shown in Fig. 3.7. An interest-

ing observation is the presence of negative output conductance in the output characteristics. The

negative output conductance can also be explained similar to negative DIBL. When VD increases,

the charge on the metal intermediate metal layer decreases, as a result of which the voltage across

the ferroelectric increases. This further decreases the internal gate voltage suppressing the drain
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current. A positive feedback mechanism is thus setup which is finally terminated by the non lineari-

ties of the ferroelectric and the internal MOSFET. Such a behaviour is also observed experimentally

for example in [19]
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Figure 3.6: Output characteristics of the FET device. (a) Without ferroelectric, the output shows
positive output conductance (b) with ferroelectric, the device shows negative output conductance

Finally we look at the subthresold swing of the device. Subthreshold swing decreases with

increasing ferroelectric thickness. This can be attributed to enhanced negative capacitance at higher

thickness. A minimum sub threshold swing of 52.4 mV/dec is observed which is consistent with the

experimentally reported data [10].

In summary we have seen that adding a ferroelectric can enhance the subthreshold swing of

the device. Increasing ferroelectric thickness can lead to better performance, however increasing

the thickness might lead to occurrence of hysterisis, which can lead to difficulties in circuit design.

Negative DIBL and output conductance are also seen, which are also observed experimentally in

other works.
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Figure 3.7: Subthreshold swing of the deices. (a) Variation with gate voltage (b) minimum sub-
threshold swing reduces with increasing tFE due enhanced negative capacitance

3.2 Modeling double gate ferroelectric MOSFETs

In this section we develop and analyse a model for double gate MOSFET with intrinsic channel.

This model, as opposed to previous model does not need an internal metal gate.

3.2.1 Basic model for double gate MOSFETs

An analytical model has been proposed in [20]. For an intrinsic MOSFET the Poisson equation will

be

d2ψ

dy2
=

q

εsi
nie

qψ/kT (3.8)

Assuming a symmetric MOSFET, with electric field at Ey(y = tsi
2 ) = 0 we have a solution for the

equation given by

q(ψ − ψ0)

2kT
= − ln

cos

√ q2ni
2εsikT

eqψ0/2kTx

 (3.9)

where ψ0 is the potential at the mid of the channel.

In presence of a channel potential we can write

ψ(x, y) = V (x)− 2kT

q
ln

[
tSi

2βLD
cos

(
2βy

tSi

)]
(3.10)

where β is unknown. In this gradual channel approximation, channel quaasi fermi level is assumed

to vary only along the channel from source to drain. LD is the Debye length.

The surface potential is given by

ψs(x, y) = V (y)− 2φtln

(
tSi

2LD

)
+ 2φtln(β)− 2φtln(cos β) (3.11)
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Using voltage law, VG = ψs + ψox + VFB and ψox = QCox where Q can be found out from Gauss’

law as Q = εSi
∂ψ(x)
∂x

∣∣∣
x=

tSi
2

Q =
4φtεSi
tSi

β tanβ (3.12)

Adding a ferroelectric term ψfe = 2αQ+ 4βQ3 we have

VG − V (x) + 2φtln

(
tSi

2LD

)
= 2φtln(β)− 2φtln(cos β)+(

tox
εox

+ αtfe

)
4φtεSi
tsi

β tanβ + γtfe

(
4φtεSi
tSi

β tanβ

)3

(3.13)

Current is next calculated by Pao Sah Integral:

IDS = µ
W

L

∫ VDS

0

Qinv(V )dV = µ
W

L

∫ βd

βs

Qinv(β)
dV

dβ
dβ (3.14)

where βs and βd are solutions to 3.13 at source where V = 0 and drain where V = VDS .

Evaluation of the above integral leads to

gr(β) = µ
W

L

16εSiφ
2
t

tSi

[
β tanβ − β2

2
+
εSi
tSi

(
tox
εox

+ αtfe

)
β2tan2β

]

+ µ
W

L

6εSiφtγtfe
tSi

(
4φtεSi
tSi

)3

β4tan4β (3.15)

Current is then given by

IDS = gr(βs)− gr(βd) (3.16)

The performance characteristics of the device with tsi = 5 nm and L = 1 µm are shown in Fig.

for various ferroelectric thickness
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Figure 3.8: Double gate MOSFET device performance. (a) Linear regime (b) Saturation regime
ION increases with increasing ferroelectric thickness

In this chapter hence we have first analyzed the DC characteristics of NC devices. LK equations

in their quasi stationary limit have been used to get FinFET characteristics at 14 nm technology

node. Sub 60 mV/dec subthreshold swing is observed and negative DIBL and output conductance

are observed which have interesting circuit implications.
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An analytical model for MFIS structure is derived for a double gate MOSFET structure. The

model outcome shows that as expected the device on current increases with increase of ferroelectric

thickness.
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Chapter 4

Transient analysis and performance

of NC devices

In this chapter we will look at the performance of the NC devices, especially the inverter and ring

oscillator. Then we will analyse the scalability of NC devices to future technologies. Finally we will

look at the transient performance of the NC devices using TCAD analysis.

4.1 Circuit performance of NC devices

In this section we review the transient performance of NC devices by first analysing the performance

with Ring oscillator and then inverter.

4.1.1 Ring oscillator performance

Ring oscillator is an important logic device useful in predicting the speed and response of a transistor.

A large time period implies a larger delay for the signal to propagate through the device, while smaller

time period of the ring oscillator implies a smaller delay.

The landau Khalatnikov equation described in previous chapter is used here to model the FinFET

device with ferroelectric gate stack.

ρ
dP

dt
= −(2αP + 4βP 3 + 6γP 5 − EFE) (4.1)

The compact model described in the previous chapter is again used for this analysis. A 13

stage inverter is designed and used to simulate the characteristics of the RO. Two cases have been

simulated and analyzed in case of a ring oscillator.

• Assuming that polarization can switch infinitely fast. This corresponds to the case of ρ = 0.

• Uing ρ 6= 0. This is the diffusive limit which is modeled by LK equation as described by Eq.

4.3. This limit however does not completely capture the polarization switching of the NCFET

and is discussed later.

The results for first case are shown in Fig. 4.1. Even though the polarization can switch infinitely

fast in this case, we see that the time period of the NC RO is greater than that without ferroelectric.
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The increment in time period is attributed purely to increase in parasitic capacitance at the output

node of an inverter.
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Figure 4.1: Infinitely fast switching ferroelectric (ρ = 0). Blue waveform indicates the waveform
without ferroelectric, while the red waveform shows the RO characteristics with ferroelectric

Due to addition of a ferroelectric in the gate stack f the ring oscillator, the effective capacitance

seen by the previous inverter is
1

Ceff
=

1

CG
+

1

CFE
(4.2)

Since CFE < 0 for certain bias conditions, Ceff infact is more that CG increasing the delay of the

inverter. This explains the higher time period of the NC RO.

In case ρ 6= 0, performance is shown in Fig

V
	[V
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0.6

0.8

t	[ms]
0 0.5 1 1.5 2 2.5 3

Figure 4.2: Finitely switching ferroelectric (ρ = 4 cm · s/F ). Due to large value of ρ, it takes finite
amount for the polarization to switch

In this case, in addition to increase in load capacitance, the polarization itself takes time to

change its value.

However it has been observed experimentally [21] that the ring oscillator performance of the

NCFET is on par with normal FinFET. This dilemma has been resolved in [22] where it has been
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shown that LK equation is only a diffusive limit of more general polarization switching phenomena

governed by the equation

κ
d2P

dt2
+ ρ

dP

dt
= −(2αP + 4βP 3 + 6γP 5 − EFE) (4.3)

In the limit when dP
dt is small, the first term can be neglected. Hence the LK equation in the form of

Eq. 4.3 is mostly suitable for transient based quasi stationary analysis wherein we allow the system

to relax to a steady state to get quasi static results. It should not be used for a full transient analysis.

A particular use of transient analysis is shown to calculate hysteresis phenomena in ferroelectric.

4.1.2 Inverter performance

An inverter is a building block for all digital circuits. The inverter characteristics of the NCFET

using model previously described is shown in Fig.
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Figure 4.3: Inverter VTC with tFE = 3 nm. Hysteresis is observed due to negative output conduc-
tance.

An interesting phenomena is the observation of hysteresis in the VTC even though the ID − VG
characteristics do not show any hysteresis.

To account for the same we note that under normal conditions, for given input voltage Vin

the output curves for NMOS and PMOS only intersect at one point, which decides the operating

point. However in presence of NDR, the curves can intersect at multiple points which leads to a

hysteresis. Also compared to the usual MOSFET we observe a steeper transition. This is due to

lower subthreshold swing compared to usual FinFET. As a result of lower subthreshold swing, the

MOSFETs can switch to on state with a lower requirement for voltage.

4.2 Scalability of NCFETs

To further study the advantages of the NCFET devices we perform a scalability analysis on the

NC devices with shrinking dimensions. Inorder to do the same we use TCAD analysis to enhance

our understanding as compact models are usually designed and calibrated only for a particular

technology node and cannot be used to perform the device analysis for future technologies.
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Three technology nodes have been analysed, particularly the 10 nm, 7 nm and the 5 nm. The

dimensions used are specified in ITRS [23] are given in the following table

Table 4.1: Device dimensions for various technology nodes

Dimension 5 nm 7 nm 10 nm

LG 11.9 nm 14 nm 18 nm
HFIN 42 nm 42 nm 42 nm
WFIN 6 nm 6 nm 6 nm
tox 0.61 nm 0.61 nm 0.61 nm

Source and drain have been doped with doping of NSD = 1020 cm−3 while channel doping has

been taken to be Nch = 1018 cm−3. The device structure and the doping concentration have been

shown in Fig. 4.4

Figure 4.4: FinFET device structure used for present analysis
s

Ferroelectric has been considered 1D and has been externally coupled to the device mentioned

in the previous chapter using 1D LK equations. As a result an intermediate metal layer has been

assumed. Models to take into account phenomena like high field saturation, doping dependence

of mobility, band gap narrowing due to high concentration and mobility degradation ue to ormal

electric fields have been taken into account.

Input characteristics are shown in Fig. 4.5. As can be seen from the characteristics, the sub-

threshold swing of the 5 nm technology is almost equal to that of 7 nm technology, while the

subthreshold swing of 7 nm technology with FE is on par with that of 10 nm technology. This

clearly indicates that the device scaling can be continued using FE technology to lower device device

dimensions in accordance with the Moores law without having significant short channel effects. A

similar plot is also shown for input characteristics in the linear regime where we observe that sub-

threshold swing of the FE devices has greatly reduced due to voltage amplification by the negative

capacitance ferroelectric. The usefulness of NC devices is especially visible in saturation region.

Due to high VDS , the off current in this situation is very high. However as discussed previously, NC

dielectric provides a negative DIBL effect which effectively tends to reduce the threshold voltage

at higher drain voltages and hence reduces the off current and at the same time enhancing the on

current.
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Figure 4.5: Input characteristics at various technology nodes (a) Saturation regime. Effectiveness
of NCFETs is especially visible here (b) Linear regime

The DIBL characteristics of the device are shown in Fig. 4.5. where saturation and linear

characteristics of 7 nm technology device have been compared.

Table 4.2: DIBL and SS performance for various technology nodes with ferroelectric gate stack

Technology → 5 nm 7 nm 10 nm
Parameter Std Fe Std Fe Std Fe

SS (mV/dec) 376 282 218 157 116 92
DIBL (mV/V) 278 120 155 56 77.6 19.2
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Figure 4.6: Ferroelectrics in gate stack can be used to achieve a performance enhancement of one
technology ahead
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Figure 4.7: 7 nm technology saturated and linear region input characteristics showing a reduction
in DIBL due to negative DIBL effect

4.3 Quasistationary anlysis using time domain LK equation

While the stationary LK equation can be used to get the characteristics of the device when the system

is stable (Ctotal > 0), it cannot be used get the system characteristics when there is hysteresis in

the device and the negative capacitance becomes unstable.

Such an analysis uses the LK equation in its diffusive limit. This use is justified as we finally

need the quasi stationary behaviour and really not worried abut the actual transient solution of the

device. The following algorithm is used to get the characteristics

• Provide initial guess to the system

• Allow the system to relax to steady state

• Record the values

This algorithm is shown schematically in Fig.

3D DC Simulation of
FinFET

−ρ
dP
dt

=2α P+4β P3
+6 γ P5

Solve time dependentLK equation
V g

Qg

Start
V DS ,V GS

I D

V ext

V internal

FE

Figure 4.8: Algorithm for quasistationary analysis using time dependent LK equations

Following figure shows the hysteresis characterization of the ferroelectric device when a tFE =

5 nm is used. The ferroelectric is unstable in this regime and hence shows a hysteresis.
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Figure 4.9: Hysteresis due to large tFE

In conclusion we have seen in this chapter the circuit performance of NC devices. The invereter

and the ring oscillator although can be operated at a lower voltage due to enhanced subthreshold

swing but have significant disadvantage of operating at a lower speed due to added capacitances at

the output node.

Also the circuit performance of the NCFETs at various future technologies has been observed.

We see that NC effect indeed provides an immunity to short channel effects and allows further scaling

of the devices.

Finally a model is developed where in time dependent LK equations are used to get quasi sta-

tionary response of the the 3D FinFET for 7 nm technology node.
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Chapter 5

Phase field modeling of NCFETs

In this chapter we develop and study some models which take into account the multidomain nature

of the ferroelectrics. This is important as most of the times ferroelectrics are observed to split to

domains so as to minimize the electrostatic energy due to depolarization fields. Initially we consider a

phase field model with ferroelectric capacitor in series with a resistor which resembles the experiment

described in [9]. We then investigate the performance of short channel double gate MOSFET taking

into account domain interactions.

5.1 Time dependent Landau Ginzburg theory with multi do-

main ferroelectrics

In presence of multiple domains, Landau Ginzburg theory can be described by [24]

dPz
dt

= −ρ
(
2αP + 4βP 3 + 6γP 5 − Ez −

1

2
κp∇2Pz

)
(5.1)

which has an additional gradient term as compared to traditional LK equation described in previous

chapters. This term indicates that whenever there is a gradient in polarization, the polarized domains

move in such a way so as to minimize the gradient in polarization. This in in particular important

in case of a ferroelectric in series with a MOSFET as the electric field along the MOSFET varies

with application of drain bias which tends to induce different polarization along the length of the

ferroelectric.

To apply this model, we initially consider the circuit shown in Fig. 5.1. Since we are considering

2D structure, the electrode of the capacitor has a total charge of

QF =

∫
S

PzdS (5.2)

where integral is taken over entire surface.

Total current in the circuit would then be given by

i =
dQF
dt

=
d
( ∫

S
PzdS

)
dt

=

∫
S

dPz
dt

dS (5.3)
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R=50Ω

CFE

+ −

+

−

vR

vFE

iR

vS

Figure 5.1: A series combination of ferroelectric capacitor and a resistor.The capacitor is considered
to have a 2D structure

Substituting Eq. 5.1 in the above equation we have

dQF
dt

= iR =

∫
S

−ρ
(
2αP + 4βP 3 + 6γP 5 − vFE/tFE − κ∇2Pz

)
dS (5.4)

Next we assume that electric field (Ez = vFE/tFE) in the ferroelectric is independent of spatial

location and is given by vFE = vS − iRR. This when back substituted in the previous equation we

have an equation for current

iR =
1

1 + AρR
tFE

(
AρvS
tFE

+

∫
S

−ρ
(
2αP + 4βP 3 + 6γP 5 − κ∇2Pz

)
dS

)
(5.5)

where vS is dependent on time. We solve this equation using finite difference discretization for a

ferroelectric of dimensions 50µm× 50µm.

The total charge on the ferroelectric always increases as QF =
∫
iRdt and the current in the

circuit is always positive as otherwise this would violate the law of conservation of energy.Hence the

charge on the ferroelectric capacitor always increases. However since there is a series resistor, the

supply of the charge to the ferroelectric capacitor is slowed down from the external source. During

some period of time, the polarization of the ferroelectric is not compensated by the external supply

and the effective voltage across it becomes negative.

In this study effect of ferroelectric coupling factor κp on characteristics of Fig. 5.1.

5.1.1 Analysis with different coupling coefficients

In this case the TDGL equation reduces to the one dimensional case. The simulated characteristics

are shown in Fig 5.2. Parameters are considered from Table 3.1 and tFE = 10nm. Since the entire

capacitor is assumed to have a uniform polarization, the entire polarization needs to switch, which

gives rise to sharp dip in ferroelectric voltage. However experimentally a much smoother negative

capacitance switching is observed, although it is qualitatively similar to the one considered here [9]

Next we consider the case with κp = 1.0 × 10−7. To get the initial state of the capacitor, we

initially assume a random state of polarization and the allow the Landau Ginzburg free energy to

minimize. Next we perform the analysis as described previously. The initial state of the ferroelectric

capacitor is shown in Fig. 5.3

The characteristics of the switching process are shown in Fig. 5.4. Here the transition is much
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Figure 5.2: Ferroelectric in series with resistor. Homogeneous ferroelectric is assumed. Observe
the sharp fall in vFE as the entire ferroelectric has to switch transiting from negative capacitance
regime.

Figure 5.3: Initial state of the ferroelectric capacitor considered for simulation
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Figure 5.4: Ferroelectric in series with resistor. κp = 1.0 × 10−7. In this case fall in vFE is more
smooth as entire ferroelectric need to switch during the process.

smoother as the entire ferroelectric does not have to switch during the switch process. However there

is an additional charge that needs to be supplied by the battery for the domain wall motion. In

addition to switching from positive to negative domains, the domain walls move so as to minimize free

energy, which requires some amount of charge. This can be seen from observing the characteristics
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of ferroelectric in Fig 5.5 with κp = 1.0 × 10−8 where in since the energy associated with domain

walls is small, the domains move at a much smaller rate. As a result, the battery needs to provide

even lesser charge further decreasing the negative capacitance effect.
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Figure 5.5: Ferroelectric in series with resistor.κp = 1.0 × 10−8. Lesser negative capacitance is
observed as a smaller fraction of the ferroelectric needs to switch.The charge associated with domain
wall motion is also small

5.2 Double gate MOSFET model with multi domain ferro-

electric

Next we develop and study a TCAD based model to study the effects of ferroelectric in double gate

MOSFET gate stack. The model we consider here is similar on that described in [14], however

instead of using NEGF formalism we use TCAD based drift - diffusion model for the core MOSFET

simulation. This has the potential advantage of extending the simulation to other device structures

like SOI MOSFETs.

The simulated structures for MOSFETs are shown in Fig. 5.6.

5.2.1 Simulation methodology

In this study, we divide the gate electrode into N = 12 smaller electrodes. This enables us toextract

the charges from all the electrodes, which in general case would be different owing the presence of

the channel potential. A domain of ferroelectric is placed on each electrode and the LK equation for

each electrode separately

EFE,i = αQi + βQ3
i + γQ5

i −
1

2
κp
Qi−1 − 2Qi +Qi+1

∆x2
(5.6)

Where the last term is central difference approximation of gradient and ∆x = Lg/N . This is

then solved self consistently by VGi = VG − VFE,i where VGi is the voltage on ith internal electrode.
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This entire process is automated using Python Jinja templating engine. Algorithm is depected in

flow chart in Fig. 5.7
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Figure 5.6: Double gate MOSFETs used for simulation (a) Structure without inter layer metal (b)
Structure with interlayer metal
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Figure 5.7: Flow chart depecting flow of simulation

Parameters cosidered for simulation are tabulated in Table. 5.1
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Table 5.1: Parameters used for simulation

Parameter Value
NSD 1020cm−3

Nch 1015cm−3

tox 0.5 nm
tSi 5 nm
Lg 12 nm
α −5.1× 109 m/F
β 2× 1011 m5/F/C2

γ 1× 107 m9/F/C4

5.3 Results and discussion

For inter layer metal case all electrodes are at same voltage and Qavg = 1
N

∑
iQi We first consider

the performance for different thickness of ferrroelectric as shown in Fig. 5.8. This case of ILM

corresponds to κp → ∞ as there is no variation in polarization along the ferroelectric. As κp gets

largerthe variation in polarization must decrease
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Figure 5.8: Input characteristics for various ferroelectric thickness with interlayer metal

Table 5.2: Subthreshold swing with interlayer metal

tFE SS
0 nm 66.1 mV/dec
1 nm 59.8 mV/dec
2 nm 51.8 mV/dec

As can be seen evidently, SS increases with decresing in κp. This is because at low gate voltage

polarization along x has a concave down curvature leading to d2Q
dx2 < 0. Hence with decrease in κp

especially at lower gate voltages, electric field in ferroelectric decreases leading to lower NC effect.
On the same account, DIBL decreases with increase in κp as shown in Fig. 5.10

Next we consider the analysis with different values of κp. The input characteristics asre shown

in Fig. 5.9
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Figure 5.9: Input characteristics for various κp (a) Linear regime (b) Saturation regime

Table 5.3: Subthreshold swing for various κp

κp SS
No ferroelectric 66.1 mV/dec
κp = 0.0m3/F 64.2 mV/dec

κp = 5.0× 10−8m3/F 62.3 mV/dec
κp = 1.0× 10−9m3/F 60.4 mV/dec

ILM 59.8 mV/dec
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Figure 5.10: DIBL in various configurations. Dashed curves are for linear regime while solid are for
saturation . In case of ILM there is a small negative DIBL observed.
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The decrease in off current and subsequent subthreshold swing can be justified due to influence of

drain side polarization on source side polarization. Since the drain side polarization is negative, this

reduces the polarization at source side increasing the source side barrier, decreasing the off current.

This is shown in Fig. 5.11 where as can be seen the ratio of source side and drain side polarization

falls as κp increases.
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Figure 5.11: Influence of drain polarization on source polarization (a) Off situation (b) On situation

The effect of such a coupling on source side barrier is shown in Fig. 5.12. With increase in κp,

as source polarization decreases, the depolarization field increases which further increases the source

side barrier.
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Figure 5.12: Influence of drain polarization on source barrier (a) In off state the source barrier
increases with increasing κp (b) In On state with increase in κp, source side barrier decreases.

A study with varying thickness of ferroelectric is also shown in Fig. 5.13 where it is evident that

with increase in ferroelectric thickness, due to more negative capacitance effect, the subthreshold

swing drops.

The output characteristics of the device are shown in Fig. 5.14

As can be seen from the characteristics higher κp leads to lower output conductance and a

negative output conductance in case of ILM. With increase in κp, the drain side polarization starts
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Figure 5.13: With increasing thickness the subthreshold swing of the device falls
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Figure 5.14: Output characteristics for various κp (a) VG = 0.4 V (b) VG = 0.6 V

affecting the source side polarization more. As a result with increase in drain voltage source side

polarization decreases as drain side polarization also decreases. This leads to steady voltage drop

near the source side making the barrier almost constant.

In this chapter hence we have seen the phase field modeling of NCFETs. Initially we have

considered a 2D analysis of ferroelectric capacitor with series resistances and then we have developed

a TCAD based model using which we have analyzed the impact of domain interactions on NCFET

performance.
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Chapter 6

Conclusion and future work

In this chapter we provide conclusion and future scope of work

6.1 Conclusion

DC Modeling of NCFETs In this chapter we have developed compact models for NCFETs

both analytical and numerical. The compact model so developed is compatible with various present

generation industry standard compact models like BSIM-CMG. The use of negative capacitance in

gate stack can give sub 60 mV/dec subthreshold swing which is greatly helpful in reducing transistor

threshold voltage and hence power consumption. Also the inclusion of negative capacitance in gate

stack leads to an additional barrier rising due to decrement in internal gate voltage with increasing

drain voltage. This phenomena when dominates the barrier lowering due to drain side electric field

leads to NDR and drain induced barrier rising in NCFETs . Hence in addition to standard logic

devices, NCFETs can be used for creation of other useful circuits like oscillators. However this has

a potential disadvantage that this would make circuit design difficult (for example in such a case,

an inverter would show hysteresis.

An analytical model for long channel undoped double gate MOSFET with negative capacitance

gate stack without inter layer metal has been derived and indicates decrement in subthreshold swing.

However this model does not take into account short channel effects and hence can be mainly used

as a core model for more advanced compact models.

Transient analysis and performance of NC devices In this chapter we have analyzed impor-

tant circuits like inverter and ring oscillator using NC devices. Also we have analyzed the perfor-

mance of future technology nodes for NC FET devices. The circuits designed with ferroelectric in

gate stack exhibit negative output conductance. Due to negative output conductance the inverter

exhibits hysteresis in the transfer characteristics. This could lead to challenges in circuit design.

However this could also be used as advantage in designing oscillator circuits. We next investigated

the ring oscillator circuit using NC devices. The frequency of the ring oscillator is observed to be

lesser compared to that using normal FinFET. This can be attributed to additional capacitance in

the gate stack. In the diffusive limit, the performance is even poorer, however the diffusive limit is

itself useful only in slow transients.

35



Having evaluated the performance of some elementary circuits with negative capacitance de-

vices, we have undertaken a study on to future technology nodes. We have observed using TCAD

simulations that NC effect can be used to downscale the devices to future generations (upto 5 nm

technology). NCFETs give lower subthreshold swing as well as lower DIBL which indicates better

suppression of short channel effects. Subthreshold swing is reduced due to voltage amplification,

while DIBL decrement is due to another phenomena of barrier rising due to inclusion of negative

capacitance in gate stack which compensates for lowering of barrier due to drain electric field.

Phase field modeling of NCFETs In this chapter we have mainly analyzed the effects of

interdomain coupling of ferroelectrics on electronic device performance. Intially We developed a

model based on Allan Cahn equations to simulate a ferroelectric capacitor in series with a resistor.

We analyzed the effect of coupling factor on NC effect of a series resistor ferroelectric capacitor

circuit and observed that decreasing coupling factor leads to decrement in negative capacitance due

to lower domain wall velocity. We have continued this study of the effect of coupling coefficient to

device analysis where in we have developed a TCAD based model for simulating NCFETs in various

configurations like with inter layer metal and without inter layer metal with different coupling

coefficients. We see that with increase in coupling coefficient, the sub-threshold swing decreases.

Also in case of NCFET with interlayer metal, a negative output conductance is observed.

6.2 Future work

A lot of modeling and physical effects have been left out in this theses and can be carried out

in future. Most of the work doen herein is either 1D or 2D. However for more accurate analysis

of 3D short channel effects in negative capacitance MOSFETs, a full 3D analysis of ferroelectrics

needs to be performed. This should properly take into account all the effects of crystallographic

directions of permanent polarization in the ferroelectric materials.Stress and strain influence the

ferroelectric properties heavily. A proper evaluation of effects of stress and strain on NCFETs needs

to be done since in modern fabrication process, lattice mismatch between two materials can induce

large mechanical strain in the material. As a result Landau parameters depend on many external

parameters like stress, temperature, etc.A variability and reliability analysis needs to be performed

to evaluate the device performance in various process corners. Such an analysis should also take

into account the polycrystalline nature of ferroelectric when deposited on 3D FinFET gate stack.
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[24] A. Cano and D. Jiménez, “Multidomain ferroelectricity as a limiting factor for voltage amplifi-

cation in ferroelectric field-effect transistors,” Applied Physics Letters, vol. 97, no. 13, p. 133509,

2010.

39


