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Abstract
Garbage Collection in concurrent data structures, especially lock-free ones, pose multiple design and consis-
tency challenges. In this instance, we consider the case of concurrent sets. A set is a collection of elements,
where the elements are ordered and distinct. These two invariants are always maintained at every point in
time.
Sets are usually represented as a linked list of nodes, with each node denoting an element in the Set. Opera-
tions on the set include adding elements to the set, removing elements from it and searching for elements in
it. Currently, multiple implementations of concurrent sets already exist. LazyList[1], Hand-over-hand List[2]
and Harris’ List[3] are some of the well-known implementations. However none of these implementations
employ, or are concerned with garbage collection of deleted nodes. Instead each implementation ignores
deleted nodes or depends on the language’s garbage collector to handle them.
Additionally, Garbage collection in concurrent lists, that use optimistic traversals or that are lock-free, is not
trivial.
For example, in Lazy List and Harris’ List, they allow a thread to traverse a node or a sequence of nodes after
these nodes have already been removed from the list, and hence possibly deleted. If deleted nodes are to be
reused, this will potentially lead to the ABA problem.[4]
Moreover, some languages like C++ do not have an in-built garbage collector. Some constructs like Shared
Pointers[5] provide a limited garbage collection facility, but it degrades performance by a large scale. Inte-
grating Shared Pointers into a concurrent code is also not a trivial task.
In this thesis, we propose a new representation of a concurrent set, GCList, which employs in-built garbage
collection. We propose a novel garbage collection scheme that implements in-built memory reclamation
whereby it reuses deleted nodes from the list. We propose both lock-based and lock-free implementations of
GCList. The garbage collection scheme works in parallel with the Set operations.
In our experiments with varying workloads and randomised Set operations, GCList shows comparable per-
formance to LazyList[1] & Harris’ List[3] while outperforming Shared Pointers[5], Hazard Pointers[6] and
Hand-over-hand List[2]. GCList also consumed 3-4 times less memory as compared to LazyList[1] and
Harris’ List[3] and is comparable to Shared Pointers[5] and Hazard Pointers[6].
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Chapter 1

Introduction

1.1 Introduction to Concurrent Sets

Sets are a collection of items where the set items are ordered and distinct. These two properties of the set,
commonly called as invariants, have to be maintained at every point of time. Sets are represented as a linked-
list of nodes where each node in the set denotes a distinct item. Operations include adding items to the set,
removing items from the set and searching for an item from the set.

Currently, multiple list-based implementation of concurrent sets are available. LazyList [1], Hand-over-Hand
List [2] and Harris’s LockFreeList [3] are some common examples. However none of these implementations
address the issue of garbage collection of nodes deleted from the list. Either the algorithm ignores the issue
or it relies on the language’s garbage collector to handle it for them.

There are several reasons to implement our own memory management scheme. Languages such as C and
C++ do not provide garbage collection and often it is more efficient to do our own memory management.
C++ has some constructs like Shared Pointers [5] that offer limited garbage collection facility. Other garbage
collection techniques like Stop-the-World and Hazard Pointers[6] are also available. Even though Shared
Pointers, Hazard Pointers [6] and these other garbage collection schemes are very generic techniques, since
they can be applied to almost all concurrent data structures, they are expensive and cost a lot in terms of
performance and the extra data structures required to implement them.

Integrating Shared Pointers, Hazard Pointers and these other garbage collection schemes into a concurrent
data structure is also not a trivial task. And more often than not, they are not very optimized for perfor-
mance. They become even more complicated in case of lock-free data structures employing lock-free meth-
ods. Garbage collection, in these cases, is byzantine [4].

In this thesis, we concentrate on the garbage collection scheme for a concurrent set. We introduce a new
representation of a concurrent set, GCList, with in-built garbage collection. Nodes that are removed from
the set are collected in a “Pool” of deleted nodes, to be reused for later add operations. We introduce both
lock-based and lock-free versions of GCList. We use the terms node, key and value interchangeably in this
thesis.
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Chapter 2

System Model and Preliminaries

2.1 System Model & Preliminaries

In this thesis, we assume that our system consists of finite set of p processors, accessed by a finite set of n

threads that run in a completely asynchronous manner and communicate using shared objects. The threads
communicate with each other by invoking higher-level methods on the shared objects and getting corre-
sponding responses. Consequently, we make no assumption about the relative speeds of the threads. We also
assume that none of these processors and threads fail.

Safety: To prove a concurrent data structure to be correct, linearizability proposed by Herlihy & Wing [7]
is the standard correctness criterion in the concurrent world. They consider a history generated by a data
structure which is collection of method invocation and response events. Each invocation of a method call has
a subsequent response. A history is linearizabale if it is possible to assign an atomic event as a linearization

point inside the execution interval of each method such that the result of each of these methods is the same
as it would be in a sequential history in which the methods are ordered by their linearization points [7].

Progress: The progress properties specifies when a thread invoking methods on shared objects completes
in presence of other concurrent threads. Some progress conditions used in this thesis are mentioned here
which are based on the definitions in Herlihy & Shavit. The progress condition of a method in concurrent
object is defined as: (1) Blocking: In this, an unexpected delay by any thread (say, one holding a lock) can
prevent other threads from making progress. (2) Deadlock-Free: This is a blocking condition which ensures
that some thread (among other threads in the system) waiting to get a response to a method invocation will
eventually receive it. (3) Wait-Free: This is a non-blocking condition which ensures that every thread trying
to get a response to a method, eventually receives it[8].

2



Chapter 3

Literature Review

We discuss some of the list-based set algorithms in this section and some existing garbage collection tech-
niques that can be used in concurrent sets.

3.1 Hand-Over-Hand List

In this list-based representation of a set, also called lock-coupling [2], each thread traverses the list from the
head of the list, while acquiring fine-grained locks in a hand-over-hand manner. Each thread acquires the
lock for the next node and then releases the lock for the current node.
All operations require the usage of locks which may affect the overall performance of the list, even though
garbage collection in this list is a fairly trivial task. A guarantee exists that only one thread can have a
reference to a node at any particular time. Any deleting thread can free a deleted node, without compromising
the Safety property of the list.

3.2 LazyList

An improvement over the Hand-over-Hand list is the LazyList [1]. Threads traverse the list optimistically,
without using any locks. Nodes are locked only when the required pair are found. An additional boolean field
called “marked” field is associated with every node. The “marked” field is used to identify nodes that have
been deleted but are still reachable from the head of the list.

In LazyList, nodes are deleted in two steps:
- Logical deletion: The marked field is set to true.
- Physical deletion: The node’s predecessor’s next reference is swung to the node’s successor.

The contains method is completely wait-free. It traverses the list without using any locks. It’s easy to see that
garbage collection, in this case, is not so trivial. It may lead to an issue known as the “ABA Problem” [4].
Figures 3.1 to 3.3 depict the ABA problem[4] in LazyList [1].

3



Figure 3.1: The ABA Problem in LazyList (Part 1)

3.3 LockFreeList

The LockFreeList [9] is an extension of the LazyList [1], where locks are eliminated altogether from the list
operations and all the methods are non-blocking [8].

The list uses an AtomicMarkableReference [10] object as a part of it’s structure, which allows a thread to
atomically read and update both the boolean mark and the next reference of a node. The list also uses
compareAndSet or CAS calls for its operations.

The remove method is similar to LazyList [1], in that deletion is done in two steps.
- A CAS call is used to set the marked field of a node.
- Another CAS call is used on the node’s predecessor to physically delete the node from the list.

An important difference between LockFreeList [9] and LazyList [1] is that LockFreeList never traverses log-
ically marked nodes. Instead the encountered marked nodes are physically deleted from the list. Essentially,
threads “help” out other slower threads that have completed the first CAS call but not the second.

It can also be seen that similar to LazyList [1], LockFreeList [9] is also vulnerable to the ABA problem [4].
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Figure 3.2: The ABA Problem in LazyList (Part 2)

Figure 3.3: The ABA Problem in LazyList (Part 3)

3.4 Reference Counting

In a dynamic and concurrent data structure, arbitrary objects can continuously and concurrently be added or
removed from the data structure. And multiple owners may have a reference to the shared objects. Unsafe
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freeing of a node may lead to safety issues and possible crashes [11].
So, before freeing a shared object, it should be checked that there are no remaining references to it. This
should also include possible local references to the shared object that any thread might have, as a read or
write access to the memory of a reclaimed object might be fatal to the correctness of the data structure andor
to the whole system [11].

In the “Reference-Counting” category of garbage collection techniques, shared counters are assigned to ob-
jects and they are used to count the number of references to any object at any given time [11]. In other words,
a group of owners share the ownership for an object.This group is responsible for deleting that object when
the last one among them releases that ownership. The shared object can be freed if and only if the counter
becomes zero [12].

This method, however is expensive. A shared atomic counter has to be associated with every object [11] [12].
Getting a reference to an object and incrementing the shared counter has to be an atomic operation. Same
thing applies when losing the reference to the object and decrementing the shared counter. Even a simple read
operation from the shared object has to increment the shared counter. Essentially, the memory read becomes
a read-modify-write operation [13].

In C++, Shared Pointers [5] comes under this category of garbage collection techniques. However they are
susceptible to data races when the shared object is accessed without proper synchronization. To prevent this,
the Shared Pointer atomic operations have to be used for every read and write, from and to, the shared object
[5]. This heavily affects the performance of the data structure.

3.5 Pointer-based techniques

Pointer-based techniques such as Hazard Pointers [6] explicitly mark live objects (objects that threads can
access) which are not de-allocated. Pointer-based schemes suffer from two limitations: they must be cus-
tomized to the data structure at hand, which makes them difficult to deploy; they publish each pointer that is
used in a shared memory location, which is expensive in terms of synchronization.

Hazard Pointers (HP) and other pointer-based techniques will typically publish the pointer to each object
they use, and then check that the pointer has not changed in the meantime. Such approach guarantees that an
object which has been deleted will not be later dereferenced, at the cost of each reader doing synchronization
on a per-object basis.

Because it requires validation of the pointer that will be accessed next, Hazard Pointers are lock-free for
readers, although in some situations they can be made wait-free for readers. HP is wait-free bounded for
reclamation, with the bound being proportional to the number of threads times the number of hazard pointers,
because each reclaimer has to scan all the hazard pointers of all the other threads before deleting a node. In
HP the retired nodes are placed in a retired list which is scanned once its size reaches an R threshold. In
terms of memory usage, when the R factor is set to the lowest setting of 1, each reclaimer can have at most a
list of retired nodes with a size equal to the number of threads minus 1, times the number of hazard pointers.
If each thread has one such list of nodes pending to be deleted, at any given point in time there are at most
O(N2

threads) nodes to be deleted.

6



Chapter 4

Our Proposal: GCList

4.1 Our Algorithm: GCList

We introduce a new list-based set algorithm, GCList, which has an in-built garbage collection scheme. Nodes
that have been deleted from the list are added to a “Pool” of deleted nodes. These nodes are reused for later
add operations to the list. The set is represented as a linked-list of nodes, supporting the following operations:
- add(key), adds key to the set, and returns true if and only if key was not already present in the set.
- remove(key), removes key from the set, and returns true if and only if key was present in the set.
- contains(key), searches for key in the set, and returns true if and only if key is present in the set.
We introduce two versions of GCList, a blocking version or GCLBList and a non-blocking version or
GCLFList.

4.1.1 GCLBList

Each node in the list consists of three fields: the key field, an AtomicStampedReference [14] object called
as infoNext and a lock associated with the node. We have implemented our own AtomicStampedReference
[14] in C++. The list is ordered according to the keys of each node. infoNext contains a reference to the
next node in the list and an integer stamp associated with the node. Both the stamp and the reference can be
read and updated atomically [14]. The lock field is a lock used for synchronization. Figure 4.1 denotes the
structure and components of a GCList node.

As mentioned earlier, we consider three operations on the list i.e. add, remove and contains. However we

class Node
{

int key;
AtomicStampedReference<Node> infoNext;
mutex nodeLock;

};

Listing 4.1: GCLBList Node
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Figure 4.1: GCList Node and it’s components

factor out functionality common to the add and remove methods by creating an inner Window class to help
navigation. The common functionality is used to optimistically traverse the list and “find” the required pair
of nodes required for each operation. The find method then returns the references to the nodes and their
respective stamps in a Window object to the calling method.

The find method

The find method is used by the add and remove methods to optimistically traverse the list. The thread gets a
reference to the “head” node and keeps traversing the list in an optimistic hand-over-hand fashion. At every
step of the traversal, the infoNext’s reference and stamp fields of a node are read atomically [14]. The thread
keeps traversing the list until it finds the relevant pair of nodes, pred and curr. curr holds a reference to the
first node with a key greater than or equal to the key that is being searched, in the list, with pred being curr’s
predecessor. The find method returns a window object, containing references to pred and curr along with
their respective stamps, to the calling method.

An important observation to be made here is the use of stamps during traversal. Stamps are used to detect
synchronization conflicts by a traversing thread. This can be inferred from the working of the remove method
later. If at any time during a thread’s traversal, the stamp of the pred node changes, a synchronization conflict
with another “removing” thread is detected. The current thread “retries” it’s traversal from the head node.
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Algorithm 1 The find method

1: function Window find(Node head, int key) . Traverse from head and find node with key-value ’key’
2: if head.in f oNext.getRe f erence() == tail then . head & tail are the only nodes in the list
3: return Window (head, tail, head.in f oNext.getStamp() , tail.in f oNext.getStamp())

4: end if
5: while true do
6: pred← head . Start from the head
7: curr← pred.in f oNext.get(predSt) . Read pred’s infoNext’s reference & stamp atomically
8: while true do
9: breakTest← key≤ curr.key . Break when key-value greater than or equal to re-

quired key is found
10: succ← curr.in f oNext.get(currSt) . Read curr’s infoNext’s reference & stamp

atomically. succ may be null if curr has been
deleted

11: nPredSt← pred.in f oNext.getStamp()

. Read pred’s stamp again before advancing for-
ward. This is the safety check to ensure we are
traversing the list correctly, in increasing order
of keys

12: if predSt 6= nPredSt then
13: go to 5 . If pred’s new stamp is different from the one read previously,

a synchronization conflict is detected. curr may have been
deleted by another thread from the list. The thread restarts it’s
traversal to ensure correctness. If pred’s stamp is still the same,
then everything is fine.

14: end if
15: if breakTest then
16: go to 22 . If pred’s stamp has not changed, everything is fine. Check if required

pair of nodes has been found. If yes, break. Else, continue.
17: end if
18: pred← curr . Keep advancing pred and curr in the list
19: curr← succ

20: predSt← currSt . Keep track of new pred’s old stamp to be used later, to detect syn-
chronization conflicts

21: end while
22: return Window(pred, curr, predSt, currSt) . Return pred and curr, along with their

stamps, encapsulated in a window object.
23: end while
24: end function

The validate method

The validate method is used to ensure that the calling method has locked the correct pair of nodes. It uses the
stamps and references returned by the find method to ensure that both pred and curr are still present in the
list and pred is still pointing to curr. If the stamps of either node has changed or pred is no longer pointing

9



to curr, then it signifies a synchronization conflict with another thread. The current thread then restarts it’s
execution.

Algorithm 2 The validate method
1: function bool validate(Node pred, int predSt, Node curr, int currSt)

. Checks consistency of locked nodes ’pred’ & ’curr’, using
their stamps, predSt & currSt

2: nCurr← pred.in f oNext.get(predSt) . Re-read pred’s infoNext’s reference and stamp atomically
3: nCurrSt← curr.in f oNext.getStamp() . Re-read curr’s infoNext’s stamp atomically
4: return predSt == nPredSt && currSt == nCurrSt && curr == nCurr

. Checks if pred is still pointing to curr. And if any of their stamps have changed from
their old values. If yes, a conflict is detected. Returns true or false to calling method.

5: end function

The remove method

The remove method is used to remove key from the set, returning true if and only if key was in the set. It
calls the “find” method to determine the correct pair of nodes for the remove operation. The nodes are locked
and then validation is performed using the “validate” method. If validation fails, the nodes are unlocked and
the thread retries, otherwise it continues it’s operation.

Deletion is performed in two steps:
- Step 1: pred’s infoNext’s reference is swung to curr’s infoNext’s reference and pred’s infoNext’s stamp is
incremented by one. This operation to update pred’s infoNext’s reference and stamp fields is atomic.
- Step 2: curr’s infoNext’s stamp is incremented by 1. This marks the successful deletion of curr from the
list.
Figure 4.2 shows the deletion steps of GCLBList. Figures 4.3 - 4.4 shows the case of two concurrent deleting
threads in the list.

After curr has been successfully deleted, it is added to the “Pool”. A Pool is a concurrent data structure which
is used to hold the deleted nodes. These deleted nodes can now be reused for later add operations.

Now, an important thing to discuss in this section is why does a thread traversing the list, in the find or
contains method, has to retry if the pred’s stamp changes. Based on the working of the “find” method, we
can see that if any thread has a reference to curr, it should also have read pred’s old stamp. This is because
reads from an AtomicStampedReference [14] object is atomic. At this point, if curr were to be deleted from
the list, pred’s stamp would have been incremented, in Step 1. Again, this updation of pred’s infoNext fields
is atomic.

If the current thread were to continue it’s traversal, it may instead traverse the Pool or some other part of the
list, since we have no guarantees about curr’s position after it’s deletion. Instead, before advancing pred and
curr in the list, we check pred’s stamp again. If it has changed, it implies that curr may have been deleted and
the current thread is in a synchronization conflict with a removing thread. The current thread then restarts it’s
traversal from the list’s head again. If pred’s stamp is unchanged though, it implies that curr is still a part of
the list and the thread can advance pred and curr.

Conversely, we can say that if a thread has read pred’s updated stamp at the first read, then it cannot have a
reference to curr. Again, this is because the updation of pred’s infoNext fields is atomic [14].
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Step 2 is the linearization point for a successful remove method. Step 2 ensures that a thread which has
a reference to curr and is waiting to lock it, will fail in it’s validation later. This is because it will have
previously read the old value of curr’s stamp. The updated stamp of curr will cause the new thread to fail
in it’s validation and restart. An unsuccessful remove would be linearized when a node with a key-value
immediately greater than the required ’key’ is found in the list.

Algorithm 3 The remove method

1: function bool remove(Node head, int key) . Remove a node with key-value ’key’ from the list
2: while true do
3: window← f ind(head,key)

4: pred← window.pred,curr← window.curr

5: predSt← window.predSt,currSt← window.currSt

. Retrieve pred and curr, and their stamps, from the window object
6: pred.lock()

7: if !curr.tryLock() then
8: pred.unlock()

9: go to 6 . Lock both the nodes. tryLock() is to prevent deadlocks, since there is no
guarantee, that keys are being locked in increasing order

10: end if
11: if validate(pred, predSt, curr, currSt) then . Use validate to ensure the consistency of pred

and curr
12: if curr.key 6= key then
13: curr.unlock()

14: pred.unlock()

15: return f alse . If key is not present, unlock both nodes. And return false
16: else
17: stamp← pred.in f oNext.getStamp()

18: temp← curr.in f oNext.getRe f erence()

19: pred.in f oNext.set(temp,++ stamp) . Deletion Step 1: atomically swing pred’s
infoNext’s reference to curr’s infoNext’s
reference and increment pred’s infoNext’s
stamp by 1

20: temp← curr.in f oNext.get(stamp)

21: curr.in f oNext.set(temp,++ stamp) . Deletion Step 2: atomically increment
curr’s infoNext’s stamp by 1

22: Pool.set(curr) . Add deleted node ’curr’ to the Pool. curr can be reused for later
add operations

23: curr.unlock()

24: pred.unlock()

25: return true . Unlock pred and curr. Return true
26: end if
27: end if
28: curr.unlock()

29: pred.unlock()

30: end while
31: end function

11



Figure 4.2: GCLBList: Remove Steps

The add method

The add method is used to add a key to the list if and only if the key is not already present in the list. It calls
the “find” method to determine the correct pair of nodes for the add operation. The nodes are locked and then
validation is performed using the “validate” method. If validation fails, the nodes are unlocked and the thread
retries, otherwise it continues it’s operation. The thread then queries the Pool(a data structure containing
deleted nodes) for a node. If the Pool is not empty, a node is returned to be reused. Else, the thread creates a
new node. It then inserts the new node, unlocks pred and curr and returns true.

The step in which pred’s infoNext’s reference is set to the new node is the linearization point for the add
method. An unsuccessful add would be linearized when a node with a key-value equal to the required ’key’
is found in the list.
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Algorithm 4 The add method
1: function bool add(Node head, int key) . Add a node with key-value ’key’ from the list
2: while true do
3: window← f ind(head,key)
4: pred← window.pred,curr← window.curr
5: predSt← window.predSt,currSt← window.currSt

. Retrieve pred and curr, and their stamps, from the window object
6: pred.lock()
7: if !curr.tryLock() then
8: pred.unlock()
9: go to 6 . Lock both the nodes. tryLock() is to prevent deadlocks, since there is no

guarantee, that keys are being locked in increasing order
10: end if
11: if validate(pred, predSt,curr,currSt) then . Use validate to ensure the consistency of pred

and curr
12: if curr.key == key then
13: curr.unlock()
14: pred.unlock()
15: return f alse . If key is already present, unlock both nodes. And return false
16: else
17: node← Pool.get() . Query the Pool for a node
18: if node 6= null ptr then
19: node.key← key . node has been retrieved from pool. Reuse for new add operation
20: else
21: node← newNode(key) . Pool is empty. Create new node.
22: end if
23: stamp← node.in f oNext.getStamp()
24: node.in f oNext.set(curr,stamp) . Set new node’s reference to curr. No need

to change new node’s stamp
25: stamp← pred.in f oNext.getStamp()
26: pred.in f oNext.set(node,stamp) . Atomically set pred’s infoNext’s refer-

ence to new node. No need to change
pred’s stamp

27: curr.unlock()
28: pred.unlock()
29: return true . Unlock pred and curr. Return true
30: end if
31: end if
32: curr.unlock()
33: pred.unlock()
34: end while
35: end function
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Figure 4.3: GCLBList: Two concurrent removing Threads(Part 1)

The contains method

The contains method is similar to the find method. It starts from the “head” node and keeps traversing the list
in an optimistic hand-over-hand fashion. At every step of the traversal, the infoNext’s reference and stamp
fields of a node are read atomically [14]. The thread keeps traversing the list until it finds the first node with
a key greater than or equal to the key that is being searched.

Similar to the find method, stamps are used to detect synchronization conflicts during traversal. If at any
time during a thread’s traversal, the stamp of the pred node changes, a synchronization conflict with another
“removing” thread is detected. The current thread “retries” it’s traversal from the head node.

The method returns true if and only if the key is present in the list. A successful contains is linearized when a
matching key is found and the stamp of the predecessor hasn’t changed from it’s previous value. This shows
that when curr was read by the thread, it was still a part of the list. The unchanged stamp of pred denotes that
no other concurrent thread has deleted curr, while the current thread was obtaining it’s reference and reading
it’s key-value. An unsuccessful contains would be when a node with a key-value immediately greater than
the required key is found by the thread.
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Algorithm 5 The contains method
1: function bool contains(Node head, int key) . Traverse from head and find node with key-value ’key’
2: breakTest← f alse
3: while true do
4: pred← head . Start from the head
5: curr← pred.in f oNext.get(predSt) . Read pred’s infoNext’s reference & stamp atomically
6: currKey← curr.key . Read curr’s key-value
7: while true do
8: breakTest← key≤ currKey . Break when key-value greater than or equal to

required key is found
9: succ← curr.in f oNext.get(currSt) . Read curr’s infoNext’s reference & stamp

atomically. succ may be null if curr has been
deleted

10: nPredSt← pred.in f oNext.getStamp()
. Read pred’s stamp again before advancing for-

ward. This is the safety check to ensure we are
traversing the list correctly, in increasing order
of keys

11: if predSt 6= nPredSt then
12: go to 3 . If pred’s new stamp is different from the one read previously,

a synchronization conflict is detected. curr may have been
deleted by another thread from the list. The thread restarts it’s
traversal to ensure correctness. If pred’s stamp is still the same,
then everything is fine.

13: end if
14: if breakTest then
15: go to 22 . If pred’s stamp has not changed, everything is fine. Check if

required pair of nodes has been found. If yes, break. Else,
continue.

16: end if
17: pred← curr . Keep advancing pred and curr in the list
18: curr← succ
19: predSt← currSt . Keep track of new pred’s old stamp to be used later, to detect

synchronization conflicts
20: currKey← curr.key . Read curr’s key-value
21: end while
22: return currKey == key . Return true if ’key’ has been found. Else, return false.
23: end while
24: end function
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Figure 4.4: GCLBList: Two concurrent removing Threads(Part 2)

Figure 4.5: GCLBList: Add Steps
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class Node
{
public:

int key;
AtomicStampedReference<Node> infoNext;

}

Listing 4.2: GCLFList Node

4.1.2 GCLFList

GCLFList is the non-blocking version of our list-based set algorithm.

Each node in the list now consists of two fields, the key field and an AtomicStampedReference [14] object
called as infoNext. The list is ordered according to the keys of each node. infoNext contains a reference to
the next node in the list and an integer stamp associated with the node. Both the stamp and the reference can
be read and updated atomically [14]. There is no lock field associated with the node anymore.

We instead use atomic functions like compareAndSet [14] or CAS to perform our operations on the list.
Atomic operations [14] are used to atomically read and update the AtomicStampedReference object associ-
ated with each node. However, this also leads to complications. For example, if we follow the deletion steps
of GCLBList, what happens in the case of two adjacent concurrent remove operations, using CAS? We can
see that one of the nodes won’t be removed from the list.

To solve this problem, we need a way to identify a marked node in the list, even though it may still be present
in the list i.e. a logically deleted node. We differentiate between a logically deleted node and a node that is a
part of the list by using parity of stamp.
- A node with an even stamp is a part of the list.
- A node with an odd stamp denotes a node that has been deleted from the list.

The deletion operation is also divided into two steps
- Logical Deletion: Increment curr’s stamp by 1 using CAS [14] i.e marking curr. This step is the lineariza-
tion point of the remove method.
- Physical Deletion: Swing pred’s infoNext’s reference to curr’s infoNext’s reference and increment pred’s
infoNext’s stamp by 2, atomically using CAS [14].

We also adopt the concept of Helping i.e. if a traversing thread encounters a logically deleted or marked
node, it attempts to first remove the node from the list, before advancing forward.
The methods are similar to GCLBList with a few modifications to incorporate the above changes.

The find method

The find method is used by the add and remove methods to optimistically traverse the list. The thread gets
a reference to the “head” node and keeps traversing the list in an optimistic hand-over-hand fashion. At
every step of the traversal, the next reference and stamp of a node is read atomically [14]. The thread keeps
traversing the list until it finds the relevant pair of nodes, pred and curr. It returns a window object, containing
references to pred and curr along with their respective stamps, to the calling method.
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As mentioned above, each time the thread encounters a marked node i.e. a node with an odd stamp, it
attempts to physically delete the node first before advancing. If the CAS operation for the physical deletion
succeeds, the node advances forward. Else it retries. Threads never traverse marked nodes because they lead
to consistency issues.

For example, find may return a marked pred and an unmarked curr to the remove method trying to add a new
node between pred and curr. If pred is physically removed by another thread before the new node could be
added, the new node would end up being not added to the list. This difficulty arises because the current thread
is not holding locks on pred and curr.

Similar to the previous find method, stamps are also used to detect synchronization conflicts by a traversing
thread. If at any time during a thread’s traversal, the stamp of the pred node changes, a synchronization con-
flict with another “removing” thread is detected. The current thread “retries” it’s traversal from the head node.

Algorithm 6 The find method

1: function Window find(Node head, intkey, Node prevCurr)
. Traverse from head and find node with

key-value ’key’
2: breakTest← f alse,snip← f alse

3: while true do
4: pred← head . Start from the head
5: curr← pred.in f oNext.get(predSt) . Read curr’s infoNext’s reference & stamp atomically
6: while true do
7: currKey← curr.key . Read curr’s key value
8: succ← curr.in f oNext.get(currSt) . Atomically read curr’s infoNext’s reference

and stamp. Successor may be null if curr has
been deleted

9: if currSt mod 2 == 1 then
10: snip← pred.in f oNext.compareAndSet(curr,succ, predSt, predSt +2)

. This is the “helping” step. If curr is marked(stamp is odd), attempt
to physically remove from the list. Done by calling an atomic CAS
operation on pred, to atomically set pred’s infoNext’s reference to suc-
cessor and increment stamp by 2

11: if !snip then
12: go to 3 . If the CAS operation fails, restart the traversal
13: end if
14: Pool.set(curr) . Else, add curr to the Pool.
15: predSt+= 2 . And keep track of updated pred’s stamp
16: end if
17: breakTest← key≤ currKey . Break when key greater than or equal to re-

quired key is found
18: nPredSt← pred.in f oNext.getStamp()

. Read pred’s stamp again before advancing for-
ward. This is the safety check to ensure we are
traversing the list correctly, in increasing order
of keys
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19: if predSt 6= nPredSt then
20: go to 3 . If pred’s new stamp is different from the one read previously,

a synchronization conflict is detected. curr may have been
deleted by another thread from the list. The thread restarts it’s
traversal to ensure correctness. If pred’s stamp is still the same,
then everything is fine

21: end if
22: if breakTest then
23: go to 34 . If pred’s stamp has not changed, everything is fine. Check if required

pair of nodes has been found. If yes, break. Else, continue
24: end if
25: if !snip then
26: pred← curr . If no helping was done i.e. no marked node was found,
27: curr← succ . Keep advancing pred and curr in the list
28: predSt← currSt . Keep track of new pred’s old stamp to be used later, to detect syn-

chronization conflicts
29: else
30: curr← succ . If helping was done to remove an encountered marked done, It

implies pred is still the same. Advance only curr
31: snip← f alse

32: end if
33: end while
34: return Window(pred, curr, predSt, currSt)

. Return pred and curr, along with their stamps, encapsulated in a Window object
35: end while
36: end function

The remove method

The remove method is used to remove key from the set, returning true if and only if key was in the set. It
calls the “find” method to determine the correct pair of nodes for the remove operation.
Deletion of “curr” is performed in two steps as mentioned earlier. The step for logical deletion of “curr” is
the linearization point for the remove method.
After curr has been successfully deleted, it is added to the “Pool”. These deleted nodes can now be reused
for later add operations.

Now, what happens if any of the two CAS operations fail.
Case 1: CAS for logical deletion of curr fails. It implies that some other thread has performed a concurrent
operation on curr and a synchronization conflict is detected. The current thread has to restart it’s operation.
Case 2: CAS for physical deletion fails. It implies that some other thread has performed a concurrent
operation on pred. The current thread has two choices: it can depend on other traversing threads to “help”
physically delete curr or it can traverse the list once more time to ensure curr’s deletion.
An important note is that incrementing the pred’s stamp by 2 during physical deletion prevents the ABA
problem.

Figure 4.1.2 shows the deletion steps in GCLFList. Figures 4.7 - 4.8 shows the case of two concurrent
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removing threads in the list.

A successful remove is linearized when the Logical deletion step succeeds. This ensures that even if the
thread fails in the Physical deletion step, another concurrent traversing thread will help with the physical
removal of the node from the list. The thread also has the option to retraverse the list, find the marked node
and physically delete it. An unsuccessful remove is linearized when an unmarked node with a key-value
immediately greater than the required key is found in the list.

Algorithm 7 The remove method
1: function bool remove(Node head, int key) . Remove a node with key-value ’key’ from the

list
2: while true do
3: window← f ind(head,key,null ptr)
4: pred← window.pred,curr← window.curr
5: predSt← window.predSt,currSt← window.currSt

. Retrieve pred and curr, and their stamps, from the window object
6: if curr.key 6= key then
7: return f alse . If key is not present, return false
8: else
9: succ← curr.in f oNext.getRe f erence() . Read curr’s infoNext’s reference

10: snip← curr.in f oNext.compareAndSet(succ,succ,currSt,currSt +1)
. Deletion Step 1: Atomically increment curr’s in-

foNext’s stamp by 1 using CAS i.e. Logical Deletion
11: if !snip then
12: go to 2 . If CAS fails, restart the operation
13: end if
14: if pred.in f oNext.compareAndSet(curr,succ, predSt, predSt +2) then

. Deletion Step 2: Atomically swing pred’s infoNext’s
reference to successor. And increment pred’s in-
foNext’s stamp by 2 i.e. Physical Deletion

15: Pool.set(curr) . If physical deletion is successful, add curr to the Pool
16: else
17: f ind(head,key,null ptr) . This step is optional. If physical deletion is unsuccess-

ful, retraverse the list to remove it. Or depend on some
other thread to “help out”

18: end if
19: return true . Return true on successful deletion. Note: Will return true even if only

Logical deletion is successful
20: end if
21: end while
22: end function

The add method

The add method is used to add a key to the list if and only if the key is not already present in the list. It calls
the “find” method to determine the correct pair of nodes for the add operation. The thread then queries the
Pool for a node. If the Pool is not empty, a node is returned to be reused. Else, the thread creates a new node.
It then inserts the new node, unlocks pred and curr and returns true. If the node is obtained from the Pool, it’s
stamp is incremented by 1 before inserting it into the list.

An important observation to be made here is if the adding thread’s CAS call on pred to insert the new node
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Figure 4.6: GCLFList: Remove Steps

Figure 4.7: GCLFList: Two concurrent removing Threads(Part 1)

to the list fails, it calls the find method again, resulting in a new pair of pred and curr. However, another
concurrent adding thread may have meanwhile added the same key to the list. The current thread now cannot
add the same key anymore and has to return false. Before doing that, if the node was retrieved from the Pool,
it is added back again to it. Else, if it was a newly created node, we can delete it since we have a guarantee
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Figure 4.8: GCLFList: Two concurrent removing Threads(Part 2)

that no other thread has a reference to it.

Figure 4.9 shows the steps of adding a node to the list. Two concurrent threads, Thread 1 and Thread 2, are
simultaneously trying to add a node with key-value ’2’ to the list. Thread 1 is trying to reuse a node that has
been retrieved from the Pool. Thread 2 is trying to insert a newly created node. Both use a CAS call to try to
insert their respective nodes, but only one CAS call will succeed. In this case, Thread 1’s CAS call succeeds.
Thread 2 retraverses the list but now finds that the key-value is already present. It now safely frees it’s newly
created node, since no other thread holds a reference to it and returns false.

This scenario never occured in GCLBList since once pred and curr were locked and validated and the key
was previously absent from the list, there is a guarantee that the current thread would be able to add the key
to the list successfully. Provided it doesn’t crash midway before that.

The CAS call to set pred’s infoNext’s reference to the new node is the linearization point for this method.
An unsuccessful add is linearized when an unmarked node with a matching key is found to be already present
in the list.
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Algorithm 8 The add method
1: function bool add(Node head, int key) . add a node with key-value ’key’ from the list
2: f romPool← f alse
3: node← Pool.get() . Query the Pool for a node
4: if node == null ptr then
5: node← newNode(key) . If Pool is empty, create a new node
6: f romPool← f alse
7: else
8: node.key← key . Else, node successfully retrieved from the Pool.
9: nodeSt← node.in f oNext.getStamp()

10: node.in f oNext.set(null ptr,nodeSt +1) . Increment new node’s stamp by 1, to make the stamp
even

11: f romPool← true
12: end if
13: while true do
14: window← f ind(head,key,null ptr)
15: pred← window.pred,curr← window.curr
16: predSt← window.predSt,currSt← window.currSt

. Retrieve pred and curr, and their stamps, from the window object
17: if curr.key 6= key then
18: nodeSt← node.in f oNext.getStamp()
19: node.in f oNext.set(curr,nodeSt) . If ’key’ is not already present in the

list, set new node’s infoNext’s ref-
erence to curr

20: if pred.in f oNext.compareAndSet(curr,node, predSt, predSt) then
. Attempt to atomically CAS pred’s infoNext’s reference to new node.

If CAS succeeds, return true
21: return true
22: else
23: go to 13 . Else, restart the operation. Note: Next iteration, some other thread

may have added the new key instead. If so, then this thread will
return false

24: end if
25: else . Key is already present in the list
26: if ! f romPool then
27: delete node . new node was newly created by this thread. It can be safely freed,

since no other thread has a reference to this node
28: else
29: nodeSt← node.in f oNext.getStamp()
30: node.in f oNext.set(null ptr,nodeSt−1)
31: Pool.set(node) . node was retrieved from the Pool. Decrement node’s stamp to

make it odd again and add the node back to the Pool
32: end if
33: return f alse . Return false since ’key’ already present
34: end if
35: end while
36: end function
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Figure 4.9: GCLFList: Add Steps

The contains method

The contains method starts from the “head” node and keeps traversing the list in an optimistic hand-over-hand
fashion. At every step of the traversal, the next reference and stamp of a node is read atomically [14]. The
thread keeps traversing the list until it finds the first node with a key greater than or equal to the key that is
being searched.

Again, stamps are used to detect synchronization conflicts during traversal. If at any time during a thread’s
traversal, the stamp of the pred node changes, a synchronization conflict with another “removing” thread is
detected. The current thread “retries” it’s traversal from the head node.

The method returns true if and only if the key is present in the list and it’s infoNext’s stamp is even. A
successful contains is linearized when a node with a matching key-value is found and the it’s stamp is even
i.e. unmarked. An unsuccessful contains is linearized when an unmarked node with a key-value immediately
greater than the required key is found.
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Algorithm 9 The contains method
1: function bool contains(Node head, int key) . Traverse from head and find node with key-value ’key’
2: breakTest← f alse
3: while true do
4: pred← head . Start from the head
5: while true do
6: curr← pred.in f oNext.get(predSt) . Read curr’s infoNext’s reference & stamp

atomically
7: currKey← curr.key . Read curr’s key value
8: succ← curr.in f oNext.get(currSt) . Atomically read curr’s infoNext’s reference

and stamp. Successor may be null if curr has
been deleted

9: breakTest← key≤ currKey . Break when key greater than or equal to re-
quired key is found

10: nPredSt← pred.in f oNext.getStamp() . Read pred’s stamp again before advancing for-
ward. This is the safety check to ensure we are
traversing the list correctly, in increasing order
of keys

11: if predSt 6= nPredSt then
12: go to 3 . If pred’s new stamp is different from the one read previously,

a synchronization conflict is detected. curr may have been
deleted by another thread from the list. The thread restarts it’s
traversal to ensure correctness. If pred’s stamp is still the same,
then everything is fine

13: end if
14: if breakTest then
15: go to 20 . If pred’s stamp has not changed, everything is fine. Check if required

node has been found. If yes, break. Else, continue
16: end if
17: pred← curr . Keep advancing pred in the list
18: predSt← currSt . Keep track of new pred’s old stamp to be used later, to detect syn-

chronization conflicts
19: end while
20: marked← currSt mod 2 == 1 . Check if curr is marked i.e. odd stamp
21: return currKey == key && !marked . Return true if and only if key is found and node

is unmarked. Else, return false
22: end while
23: end function
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Chapter 5

The Pool

5.1 The Pool

The pool is a concurrent data structure that is used to hold the deleted nodes that have been reclaimed from
the list. Ideally, any data structure that treats the node object as a “payload” can be used as the pool. In our
experiments we used two different queue implementations to act as the pool. The code for both the queues
has been kept in the appendix.

5.1.1 The blocking unbounded total queue

This lock-based concurrent queue [9] uses two separate locks for each queue operation i.e. an enqLock to
enqueue a deleted node to the queue and a deqLock to dequeue a node from the queue, respectively.

Before a thread performs an enqueue or a dequeue operation, it acquires the corresponding lock on the queue.
After acquiring the lock, the thread performs it’s operation and releases the lock upon completion. The lock
ensures that, at a particular time, only one thread is able to perform an enqueue or a dequeue operation on the
queue.

5.1.2 The unbounded Lock-free queue

This lock-free concurrent queue [9] uses atomic compareAndSet or CAS calls instead of locks for the queue
operations. The CAS calls are used to enqueue a node into the queue and also to dequeue a node from the
queue.

This lock-free implementation helps to prevent faster threads from starving, with the removal of coarse-
grained locks. This queue implementation also uses the concept of helping, where faster thread help the
slower threads to finish their queue operations.

The enqueue operation is done in two steps:
- The thread locates the last node in the queue and uses a CAS call to append the new node to the queue.
- It then uses another CAS call to change the queue’s tail from the previous last node to the current last node.
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Since the above two CAS calls are not a single atomic operation, threads help each other to complete the
second CAS, if a half finished enqueue operation is encountered.

An important attribute to be noted about the queue is that it also uses the AtomicStampedReference [14]
object, in its’ head and tail, to prevent the ABA problem [4] problem from occurring in the queue.
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Chapter 6

Results

6.1 Setup

We tested both versions of GCList against existing implementations of a concurrent set namely: LazyList
[1], Hand-over-Hand List [2], Harris’s LockFreeList [3], a Shared Pointer [5] version of LazyList and a
LockFreeList using Hazard Pointers.

We used both the lock-based queue and the lock-free queue, as a Pool, in combination with the two versions
of GCList. The resultant set representation is named by using the list’s name as prefix and pool’s name as
suffix. For example, the GCLBList using the lock-based queue would be named GCLBListLBQueue and the
GCLFList using the lock-free queue would be named GCLFListLFQueue.
The LazyList based on Shared Pointers has been named LazyList SP. The LockFreeList using Hazard Point-
ers for Memory Reclamation has been named LockFreeList HP.

Table 6.1: Table showing all the evaluated algorithms
Algorithms Description

GCLBListLBQueue The Lock-based variant of GCList using a Lock-based Queue as the Pool
GCLFListLFQueue The Lock-free variant of GCList using a Lock-free Queue as the Pool

LazyList The original LazyList without any garbage collection
LockFreeList The original LockFreeList without any garbage collection
LazyList SP The LazyList using Shared Pointers for Garbage Collection

LockFreeList HP The LockFreeList using Hazard Pointers for Garbage Collection

Table 6.1 shows all the algorithms used for the evaluation and their respective descriptions. We tested the
above mentioned algorithms versus our algorithms for both performance and memory consumption, with
varying workloads and randomized Set operations.

For performance, we fix the total number of operations that each thread can perform, divided in varying
ratios between adds, removes and contains. We allowed each algorithm to run for 10 seconds and measure
the number of operations completed during said time period. The higher the number of operations completed
by an algorithm in said time period, the better is it’s throughput.
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For memory consumption, we fix the total number of operations that each thread can perform, divided in
varying ratios between adds, removes and contains. We keep track of the number of times each thread
allocates and de-allocates memory. Whenever the thread allocates new memory, a thread-local variable is
incremented and whenever the memory is released, the variable is decremented.

At the end of all thread operations, the main thread consolidates the sum of all the thread-local variables.
We take the ratio of a List’s node count versus the Hand-Over-Hand List. This is because a thread can
immediately free a node, after it’s deletion, in the case of Hand-over-Hand List. We use this ratio to compare
the memory consumed by an algorithm during it’s entire execution. The lower the ratio of a List versus
Hand-over-Hand List, the lower is it’s memory consumption.

Based on the above setup and criteria, we ran the tests on different lookup-intensive and update-intensive
environments and obtained the following graphs.
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6.2 Results

Figures 6.1 to 6.3 show the performance graphs of the different algorithms with varying workloads. Figure
6.1 shows the throughput of each algorithm in a lookup-intensive environment. Figures 6.2 to 6.3 shows the
throughput of each algorithm in an update-intensive environment.
Figures 6.4 to 6.6 show the graphs for the memory consumption ratio with respect to the Hand-Over-Hand
List for the various algorithms. Figure 6.4 shows the memory consumption of each algorithm in a lookup-
intensive environment. Figures 6.5 to 6.6 shows the throughput of each algorithm in an update-intensive
environment. The plot for the Hand-Over-Hand list is a straight line and denotes our baseline.
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Figure 6.5: Memory Consumption Analysis with 50% writes

34



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Number of Threads

N
od

e
C

ou
nt

ra
tio

vs
H

an
d-

O
ve

r-
H

an
d

L
is

t

30% contains: 63% inserts: 7% removes

GCLBListLBQueue
GCLFListLFQueue

LazyList SP
Hand Over Hand
LockFreeList HP

Figure 6.6: Memory Consumption Analysis with 70% writes
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6.3 Analysis of Results

Performance Analysis

From the graphs, we can see that the performance of both versions of GCList i.e GCLBList and GCLFList,
is at par or even better than Harris’s LockFreeList. Both outperform the Hand-over-Hand List, the LazyList
based on Shared Pointers and the LockFreeList using Hazard Pointers for memory reclamation by multiple
folds. The GCList versions are only outperformed by the original LazyList.

Memory Consumption Analysis

However, in terms of Memory consumption, both versions of GCList consume a lot less memory than the
original LazyList. It also needs less memory than Harris’s LockFreeList and the Hand-over-Hand List.
In comparison with generic techniques like Shared Pointers and Hazard Pointers, memory consumption of
GCList is still comparable to both.

The plots for LazyList and LockFreeList have not been shown in the graphs. This is because they consume
way too much memory compared to the other lists. Adding the plots for LazyList and LockFreeList reduces
the other plots to straight lines similar to the Hand-over-Hand plot. This is due to the fact that LazyList and
LockFreeList are unable to either free deleted nodes or reuse them. For each insert operation, new memory
has to be allocated for the node.
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Chapter 7

Conclusion

7.1 Conclusion and Future Work

In this thesis, we have presented GCList, a linked-list representation of a concurrent set, with in-built garbage
collection. Both the lock-based and lock-free versions of GCList, i.e. GCLBList and GCLFList, are
introduced.

Our results show that GCList matches or outperforms most of the existing representations of a concurrent
set, while consuming a lot lesser memory than the higher-performing algorithms like LazyList. Memory
consumption was at par with generic garbage collection facilities like Shared Pointers and Hazard Pointers,
while outperforming them many folds.

In future work, we plan to investigate whether we can extend it to other data structures similar to a concurrent
list or using it as a part of it’s structure e.g. SkipList, Hash Tables etc.
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