
Polyhedral Compilation: Applications,

Approximations and GPU-specific Optimizations

Abhishek A. Patwardhan

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science & Engineering

June 2018

ii

iii

Acknowledgements

According to me, Its the most important section from everyones thesis – acknowledgment section

– where one can express sincere gratitude towards people who are always working for you in the

background. I believe acknowledgment section really throws light over all of them, helps rest of the

world to understand that the piece is actually a ”team-work” and not individual’s contribution !

First of all, I express my sincere gratitude towards Dr. Ramakrishna Upadrasta – my advisor –

without whom, I could not even be at the stage of writing my masters thesis. His positive attitude,

kind and down to earth nature, ability to enable his student to work at their maximum, all of these

really worked well during my 3 years of journey. He gave complete freedom to pursue research. He

was always keen to work on new, challenging problems. His ability to ask research students to get

a holistic view, keen love and interest in education are worth appreciating. His research interests

are truly aligned with mine and always revolve around The polyhedral model – A giant of giants!

I feel myself to be lucky enough to work on (or rather improve upon) a small portion of his Ph.D.

thesis. In spite of all this, we shared multiple research ups and downs (law of life !) in my three

years of stay, but his positivity, generousness, caring nature literally drove me gently through all of

those situations. He always encouraged me to target top-tier conferences irrespective of the final

outcome. This attitude really opened my eyes to see how hard it is to even submit a paper in such

conferences!. In addition to this, I really thank him for wonderful discussions on spiritual topics

including Bhagwat-Geeta, Ganesh-Puran, Ramayana etc. Thank you very much Ramakrishna sir.

Next, I would like to thank Dr. Saurabh Joshi sir for serving on my thesis committee. Dr.

Saurabh sir gave critical feedback, appreciated our ideas, suggested improvements (In particular,

asked us to prove the soundness of static analysis on modern GPUs having weaker memory models).

Dr. Saurabh also encouraged me to only re-submit to top-tier conferences, especially when I was

in frustrated mode after multiple rejections. I also thank him for wonderful courses on verification,

SAT solver. I thank Dr. Sparsh sir for his insightful as well as broad-coverage course on Advanced

Architecture. I also thank Dr. N.R.Aravind sir for his great teaching skills during Advanced Data-

Structures course.

I thank Dr. Vineeth sir for allowing me to use their GPU server for experimentation purposes.

In addition to this, I must thank many people from VIGIL Lab (especially Debaditya Roy, Dinesh

Singh, Adepur Ravi Shankar, Arghya Pal, Srinivas) for their timely help in resolving GPU-server

related issues quickly. I was lucky enough to work with many bright B.Tech students: Hrishikesh

Vaidya, Akilesh Badrinaarayan, Arasu Arun etc. I thank all of them.

iv

I was fortunate enough to start my journey at IIT-Hyderabad by meeting Prof. Dr. Sanjay

Rajopadhye – One of the ”inventors” of the Polyhedral Model. Unfortunately, I did not get enough

chance to work closely with him, but he visited IIT-Hyderabad twice during my stay. He gave honest

feedback which includes: critical comments as well as highly appreciating our new ideas! I also thank

Prof. Dr. Albert Cohen to whom I first discussed GPU-cache optimization idea. He motivated me

to pursue that track. Essentially, our current work is an outcome from his motivation.

Research in compilers cannot happen unless you have efficient tools already developed, their

developers are open to answer your (even) smallest doubts. I thank all the contributors of PLUTO,

ISL, PPCG for production-friendly open source tools they have developed over many years. I thank

Dr. Uday Reddy Bondhugula, Dr. Sven Verdoolaege, Dr. Michael Kruse, Dr. Riyadh Baghdadi,

Dr. Prashant Singh Rawat for taking time to answer my doubts from their busy schedule. Thank

you polyhedral compilation community!

Life in IIT cannot keep going well unless you have great friends around you. Great friendship

with Shalini, Gayatri, Nandini, Aniruddh, Mukesh bhaiyya, Rasika, Santanu, Venkat Utpal, Tharun

will be remembered and continued for a longer time. I also thank all the members of theory lab for

making my stay pleasant.

I am grateful to Dr. Pushkar Joglekar Sir (VIT-Pune) for his gentle mentorship for my B.Tech

project. His research-level thought process really enabled me to think of pursuing higher studies

with a research assistantship. I also thank Ratna Patil Madam for the wonderful undergraduate

course on Compilers – The hardest subject for most of the CS students. Her teaching style made

me course easy and only because of that, I could pursue masters into the subject. I also thank Dr.

Priyadarshan Dhabe sir for teaching CUDA in undergraduate which formed as a foundational basis

in my masters project work.

Nothing could have been possible without family support. I thank Aai (Mother), Baba (Father)

for their great support, motivation to pursue my studies. I also thank Ajoba (grand-father) for his

keen enthusiasm in my studies. I thank Aaji (grand-mother) who taught me Mathematics, Geometry,

and Sanskrit in my school days and made my basic concepts clear. I also thank Monika (cousin),

Mrs. Vandana Sathe (Aunt) for their immense help towards family during my three years of stay

at IIT Hyderabad. I thank my uncles (Mr. Subhash and Mr. Shrinkant Agashe) for timely help in

career related decisions.

I thank IIT Hyderabad CSE faculty, CSE-staff, security-staff, mess staff, hostel-staff for their

direct and indirect help in making my stay at IIT-Hyderabad good and secure.

I considered myself to be lucky enough to be a part of PATWARDHAN family; having the

v

tradition of spirituality and astrology. I consider myself to be blessed by teachings from two spiritual

guides: (1) Rashichakrakaar Sharad Upadhye: Who developed a keen interest in astrology and Datta-

sampradaya. Interaction with him for three days at Shri Narsinhawadi changed my life drastically.

(2) Sadguru Shri Kaka Maharaj: For his spiritual guidance. I also thank Sadguru kaka Maharaj for

asking me to pursue higher studies at the point of time, when I was about to give sweets for my

undergraduate placement selection. Pranam to both of them.

Thanking you ALL very much.

! Dhanyosmi !

! Idam Na Mama !

! Tatsat Brahma-ArpanM-Astou !

ShriGaneshCharanRaj

= Abhishek patwardhan

vi

Dedication

Dedicated to charanKamal (Lotus Feet) of:

Shri Sharada-Vignahar Ganesh

Shree Dattatreya

Sadguru Kaka Mahraj

Aai (Mother)

Baba (Father)

vii

Publications based on this Thesis

• Poster: Texturizing PPCG: Supporting Texture Memory in a Polyhedral Compiler

Abhishek Patwardhan and Ramakrishna Upadrasta

IEEE International Conference on High Performance Computing (HiPC), 2016

(Best Poster award)

(Also appeared at NVIDIA-GTCx-Mumbai, 2016)

• Poster: When Polyhedral Optimizations Meet Deep Learning Kernels

Hrishikesh Vaidya, Akilesh B, Abhishek Patwardhan and Ramakrishna Upadrasta

IEEE International Conference on High Performance Computing (HiPC), 2017

(Finalist for Best Poster award)

• Polyhedral Model Guided Automatic GPU Cache Exploitation Framework

Abhishek Patwardhan and Ramakrishna Upadrasta

Under revision.

• Some Efficient Algorithms for Polyhedral Over-approximations problem and it’s applications

Abhishek Patwardhan and Ramakrishna Upadrasta

Under preparation.

This page is intentionally left blank.

Abstract

Polyhedral compilation has been successful in analyzing, optimizing, automatically parallelizing

affine computations for modern heterogenous target architectures. Many of the tools have been

developed to automate the process of program analysis and transformations for affine control parts

of programs including widely used open-source and production compilers such as GCC, LLVM,

IBM/XL. This thesis makes contribution to the polyhedral model in three orthogonal dimensions as

follows:

• Applications: Applies polyhedral loop transformations on Deep learning computation kernel

to demonstrate the effectiveness of complex loop transformations on these kernels.

• Approximations: Develops two efficient algorithms to over-approximate convex polyhedra

into U-TVPI polyhedra having applications in polyhedral compilation as well as automated

program verification.

• GPU-Specific Optimizations: Builds end-to-end fully automatic compiler framework to

generate cache optimized CUDA code beginning from sequential C program by using polyhe-

dral modelling techniques.

x

Contents

Acknowledgements . iv

Publications based on this Thesis . viii

Abstract . x

Nomenclature xii

1 Polyhedral Optimizations for Deep learning kernels 1

1.1 Introduction . 2

1.2 Motivation . 2

1.3 Polyhedral Compilation . 3

1.4 CNN . 5

1.5 Max Pooling . 5

1.6 RNN . 7

1.7 LSTM . 8

1.8 PolyBench/NN in Julia . 9

1.9 Performance analysis . 10

1.10 Conclusions And Future Work . 12

2 Exploiting GPU caches by Polyhedral compilation 13

2.1 Introduction . 14

2.2 A Motivating Example: LSTM layer . 15

2.3 Related Work . 18

2.4 Polyhedral Model and PPCG . 18

2.5 GPUs: Memory Hierarchy . 19

2.5.1 Read-Write incoherency . 20

2.6 Automatic Framework for Cache Exploitation . 21

2.6.1 Static Analysis . 22

2.6.2 Cache selection . 24

2.7 Cost Model . 24

2.7.1 Cost model for Constant cache . 25

2.7.2 Unified Cost Model for Texture/ Surface caches 25

2.8 Code-generation . 27

2.9 Performance Evaluation . 27

2.9.1 Experimental setup . 27

2.9.2 Experimental Results . 28

xi

2.10 Real-World Use cases . 31

2.11 Conclusions and Future work . 33

3 Efficient Algorithms for Polyhedral Over-Approximation 35

3.1 Background . 36

3.2 Limitations of state-of-art Mine’s algorithm . 36

3.3 Algorithm#1: The Farkas lemma based OA algorithm 37

3.3.1 Enabling usage of Farkas lemma . 37

3.3.2 Joint search space and Cost function . 37

3.3.3 Iteratively finding the pairs of U-TVPI hyperplanes 38

3.4 The Insight . 38

3.5 Algorithm#2: Fourier-Motzkin based OA Algorithm 38

3.6 Implementation . 39

3.7 Conclusions . 39

References 40

xii

Chapter 1

Polyhedral Optimizations for Deep

learning kernels

Deep Neural Networks (DNN) are well understood to be one of the largest consumers of HPC

resources and efficiently running their training and inference phases on modern heterogeneous archi-

tectures (and accelerators) poses an important challenge for the compilation community. Currently,

DNNs are actively being studied by the automatic parallelization and polyhedral compilation com-

munities for the same purpose. In this (initial) paper, we study the kernels of four varieties of DNN

layers with the goal of applying automatic parallelization techniques for latest architectures. We

show the affine (Polyhedral) nature of these kernels thereby showing that they are amenable to well

known polyhedral compilation techniques. For benchmarking purposes, we implemented forward

and backward kernels for four varieties of layers namely convolutional, pooling, recurrent and long

short term memory in PolyBench/C, A well known polyhedral benchmarking suite. We also eval-

uated our kernels on the state-of-art Pluto polyhedral compiler in order to highlight the speedups

obtained by automatic loop transformations.

1

1.1 Introduction

Machine Learning (ML) techniques are being extensively used for solving real world problems in

various domains. In applications from Computer Vision and Natural Language Processing (NLP),

Neural Network (NN) models are trained in order to learn a pattern, after which the model can

be used for an unseen input. Due to extensive usage of high resolution graphics and large textual

datasets, the real-world HPC requirements of DNNs is quite large. This makes the application of

compiler optimizations, parallelization (and tuning) strategies to the training and inference phase

as a vital key to effectively parallelize and optimize these computations.

In this paper, we discuss the issues that arise from a per-layer implementation of the main classes

of DNNs as a specific variety of (affine) Polyhedral loop programs. Our implementation focuses on

following the PolyBench/C [1] structure, a widely used benchmark for Polyhedral compilation tools.

While two of DNN implementations are perfectly polyhedral codes, presence of stride parameters

makes the remaining two non-polyhedral. We describe a practical way in which they can be turned

into polyhedral programs. As a proof of concept of our implementation, as well as to show the

potential of polyhedral compilation framework on DNNs, we optimize our kernels using a well known

polyhedral compiler Pluto [2], to study the speedups obtained by applying a complex sequence of

loop transformations.

We see our work as the first step in automatically generating accelerator specific kernels using

advanced polyhedral compilation techniques. The larger goal of this study is aimed at applying

polyhedral techniques to automatically generate accelerator specific efficient programs on various

architectures.

1.2 Motivation

Artificial Neural Networks (ANNs) are biologically inspired from interactions of neurons in the

human brain. ANNs consist of several layers with nodes in each layer obtaining input from nodes

in the previous layer via interconnections between layers. The activation of a node is determined by

the input values and the weights on the connections between the inputs and the nodes. The training

phase involves updating the weights on interconnections so that expected results are obtained at

the output layer. The forward pass involves executing the network on new training inputs, while

backward pass updates the weights to reduce the deviation from the expected output. The training

data is partitioned into chunks where each chunk is referred as a mini-batch. The input mini-batch

is presented to the network and is forward propagated through the layers to obtain an output at the

final layer. Error is computed between the obtained output and the desired output with respect to a

certain loss function (square loss, cross-entropy loss etc.). During backward pass, the weight values

of every layer get adjusted so as to be able to predict correct labels of input samples. After all the

mini-batches are presented, the process starts over again. Deep NNs have been successful at solving

many tasks of utmost importance. NN models are implemented as programs that perform various

array operations (for instance multiplication, reductions etc.) possibly lying within a deep loop nest,

and therefore are best candidates for polyhedral loop transformations. Deep NNs typically comprise

of a large number of layers, and their design is crucial to improve the accuracy of the network.

We now briefly discuss some widely used classes of deep NNs and state their broad application

2

domain. Convolutional Neural Networks (CNNs) are a class of NNs widely employed for image

and video data. In the recent past, CNNs have achieved tremendous improvement in accuracies for

several computer vision tasks [3, 4]. Convolutional network consists of one or more (convolutional)

layers often accompanied with a subsampling layer and fully connected layers; the convolutional

layers account for roughly 80% of the computation time. Pooling layer is a type of layer within

a deep CNN, which summarizes the input presented to it. Since CNNs are compute intensive,

pooling helps to compress the data as it flows through the deep net. Recurrent Neural Networks

(RNNs) have become a de facto for modeling sequential dependencies in discrete time series, useful

in context driven tasks (NLPs). Long Short Term Memory (LSTM) network is another variant of

RNN specialized for improving accuracy during learning phase.

Deep learning workloads are computationally intensive and manually optimizing their kernels on

a variety of modern parallel architectures (and accelerators) is a challenging task. In this paper, we

try to explore potential of automatic parallelization for deep learning kernels.

Further we observe that deep learning kernels involve deep loop nest and hence polyhedral opti-

mizations

Algorithm 1 Convolutional layer: Forward pass

Require: N, K, C, H, W, R, S, U, V
Require: inp[N][C][H][W]: Input data
Require: W[K][C][R][S]: Weight matrix for a given layer

1: P ← (H - R)/U + 1
2: Q ← (W - S)/V + 1
3: ∀(n ∈ N, k ∈ K, p ∈ P, q ∈ Q, c ∈ C, r ∈ R, s ∈ S) do {
4: out[n][k][p][q] += W[k][c][r][s] * inp[n][c][u*p+R-r-1][u*q+S-s-1]
5: }

The rest of this paper is organized as follows: In Section 1.3, we give a quick overview of poly-

hedral compilation. Then, in Sections 1.4–1.7, we present the computational kernels corresponding

to forward and backward phases of various deep NNs. In Sec. 1.9, we discuss the performance im-

provements obtained by loop transformations. Finally, in Sec. 1.10, we state conclusions and some

future work.

1.3 Polyhedral Compilation

The Polyhedral model focuses on optimizing and parallelizing the loop nests. It is a powerful for-

malism to analyze and transform the input affine programs so as to run them on varieties of modern

heterogeneous architectures. It can statically analyze programs which involve affine loop bounds

and affine array access functions. Typically, a polyhedral compiler first creates a model of input

loop nest. A statement nested within a d deep loop nest is represented as d-dimensional polyhedron

where each integral point represents dynamic instance of that statement. After extracting such a

representation, data dependence analysis—a well studied problem that boils down to solving an

integer linear programming problem [5]—is performed. This analysis finds the (dynamic) instances

of two possibly different statements which access the same array location, and at least one of the

accesses is a write. Such an analysis is important to preserve the semantics of original program. The

second step of polyhedral compilation is the affine scheduling problem [6], that involves finding a

3

Deep Neural Network layers BLAS / HPC kernels
Convolutional layer Stencils, tensor multiplication
Recurrent layer Stencil with varying time steps
LSTM Set of Matrix vector products
Max, sum Pooling Max/Sum reductions

Table 1.1: Correspondance among DNN layers and HPC kernels

Table 1.2: Program Parameters for CNN

N Number of Input Images in batch
C Number of Input feature maps
K Number of Output feature maps
P × Q Size of output feature map
R × S Size of filter kernel
U,V Stride parameters

complex sequence of classical loop transformations (such as loop tiling, permutation, skewing) which

expose the parallelism and improve the data locality. A number of approaches exist to find a good

program transformations from a large search space, and one practical approach involves scheduling

two dependent statement instances as much closer (in time space) as possible. The above approach

was first implemented in the Pluto source to source compiler [2] which we use in this work. The final

step of polyhedral compilation involves generating a loop nest which scans all valid integer points in

polyhedra [7]. The parallel loops is be marked with apt pragmas (like OpenMP, OpenACC) during

code-generation.

In recent past, polyhedral compilation has shown to be effective in accelerating various linear

algebra kernels, tensor contractions, stencils, image processing applications etc. We make the crucial

observation that many of the layers used in deep learning pipelines perform computations that are

similar to the ones polyhedral compilation has been successful in optimizing. It is known that entries

in the column 2 of above table are well optimized by polyhedral compilers. In this paper, we try to

explore how polyhedral model optimizes various deep learning layers given the close correspondence

as depicted in table 1.1. We also release the NN kernels. Earlier researchers who worked only on

CNN [8] did not release their code (Neither HDL nor HLS/C code) to open-source. To the best of

our knowledge, there is no known implementation of DNNs (as (affine) Polyhedral programs)

for benchmarking purposes. With this paper we overcome the above limitation.

Figure 1.1: C Code : CNN forward pass

4

Table 1.3: Program Parameters for Pooling

N Number of Input images
D Number of feature maps
(IH,IW) Size of input feature map
(OH,OW) Size of output feature map
(DH,DW) Size of Pooling kernel
(SH,SW) Horizontal and vertical stride values

1.4 CNN

The program parameters of a CNN are described in Table 1.2. For parallelizing purposes, the CNN

program can be thought of as a stencil (with uniform dependences) defined over a loop nest of depth

seven, with the loop body computing convolution. A quick study of the dependences of the code

shows that all four outer dimensions, namely n, k, p, q, are completely parallel. The array index

expression for inp array accesses the appropriate location in the input feature map accounting for

inverting and striding. Though our current implementation assumes absence of padding in the input

filters, though it can be added at a later time. The array access is clearly non-affine (due to the

Figure 1.2: C Code : CNN backward pass

multiplication of the stride parameter with the corresponding indices). The reader is referred to

Section 1.5 for a note on affinity of CNN and MaxPool. In the backward pass, the error information

is propagated from output of a layer to its input. err out contains the error derivative with respect

to the output of the layer. To compute the error derivative with respect to the input, err out is

multiplied with values from weight matrix W to accumulate values into err in matrix.

1.5 Max Pooling

Pooling is a form of layer usually added after convolutional layer in CNN to reduce the spatial size of

the representation in the network. The program parameters for max pooling operation are provided

in Table 1.3. In MaxPooling, the maximum input value within the window is termed as the output

of the operation as shown in Algo. 2. Only the maximum value of input window contributes to the

output value. During backpropagation phase (shown in Algo. 3), the error derivative with respect

to output is added only to the input pixels which have contributed to the output value.

Affinity of CNN and MaxPool: A central operation in CNN is convolution which accesses

the array index expression by multiplying the stride parameter with the loop dimension to get the

required offset in the input image. Though this makes the array access function non-affine, as these

5

Algorithm 2 Max pooling layer: Forward pass

Require: N, D, IH, IW, DH, DW, SH, SW, inp[N][D][IH][IW]: Input
1: OH ← (IH - DH)/SH + 1
2: OW ← (IW - DW)/SW + 1
3: ∀ (n ∈ N, d ∈ D, r ∈ OH, c ∈ OW) do {
4: val ← MIN INT foreach h ∈ [SH ∗ r,min(SH ∗ r + dh, ih)) do

end
w ∈ [SW ∗ c,min(SW ∗ c+ dw, iw))

5: val ← MAX(val, inp[n][d][h][w])
6:

7:

8: out[n][d][r][c] ← val
9: }

Algorithm 3 Max pooling layer: Backward pass

Require: N, D, IH, IW, DH, DW, SH, SW
Require: inp[N][D][IH][IW], err out[N][D][OH][OW]: Input data
1: OH ← (IH - DH)/SH + 1
2: OW ← (IW - DW)/SW + 1
3: ∀ (n ∈ N, d ∈ D, r ∈ OH, c ∈ OW) do { foreach h ∈ [SH ∗ r,min(SH ∗ r + dh, ih)) do

end
w ∈ [SW ∗ c,min(SW ∗ c+ dw, iw)) if out[n][d][r][c] == inp[n][d][h][w] then

4:
end
err in[n][d][h][w] += err out[n][d][r][c]

5:

6:

7:

8: }

6

Table 1.4: Program Parameters for RNN

T Number of time steps
P Size of input vector
Q Size of output vector
S Size of hidden vector
BPTT Truncated Unroll factor

stride parameters are constant integer literals for each individual layer within a DNN, and are fixed

while designing the network, we fix them statically. A similar strategy was used by Zang et al. [8]

who used Polyhedral techniques for FPGA code generation. The same argument applies MaxPool

layer as well.

1.6 RNN

The unique aspect of RNNs is the feedback loop where the output of the neuron is passed as input to

the same neuron leading to a recurrence in time dimension. The presence of feedback loop introduces

a set of dependences during both forward and backward phases of the network. The layer has three

weight matrices namely U, V,W which are learnt during back-propagation phase. During back-

propagation, the error of output neuron is propagated T steps back in time. The kernel parameters

for a typical RNN is shown in Table 1.4.

Algorithm 4 RNN layer: Forward pass

Require: BT, T, P, Q, S
Require: U[S][P], W[S][S], V[Q][S]: Weight matrices
Require: state(t), input(t): Vector of size S, P resp.
1: state(0) ← U * input(0)
2: output(0) ← V * state(0) foreach t ∈ [1, T) do
3:

end
state(t) ← U * input(t) + W * state(t-1)

4: output(t) ← V * state(t)
5:

6:

As described in Algo. 4, in the forward pass of RNN, state(t) denotes hidden state vector at

each time step and similarly output(t) is the output at timestep t. The hidden state (state(t))

computation at time step t uses information of current input vector and hidden state vector of

previous time step. U and W are multiplied with input(t) and state(t − 1) respectively and the

quantities are added to get the final result. The output vector is obtained by computing an inner

product of V and current hidden state i.e. state(t).

We describe the backward pass in Algo. 5, where the error derivatives are summed up for each

time step t. This computes the error accumulation of gradient using chain rule. The errBS acts as

an intermediate vector during the back-propagation step to store the error derivative with respect

to the hidden state vector state(t) represented as errAS in the Algorithm.

7

Algorithm 5 RNN layer: Backward pass

Require: BT, T, P, Q, S, (U[S][P], W[S][S], V[Q][S]): Weights
Require: errout(t), state(t), input(t): Vector of size Q, S, P resp. foreach t ∈ [T − 1, 1] do
1:

end
errV + = errout(t) ∗ state(t)

2: errAS [1 : r] = V * errout(t) foreach step ∈ [t+ 1,max(0, t−BT)) do
3:

end

if step > 0 errW + = errAS [1 : r] ∗ state(step− 1)
4: errU+ = errAS [1 : r] ∗ input(step)
5: errBS + = errAS [1 : r] ∗W
6: errAS [1 : r] = errBS [1 : r]
7:

8: =0

Table 1.5: Program Parameters for LSTM

T Number of time steps
P Size of input vector
Q Size of output vector
S Size of hidden vector

1.7 LSTM

LSTM is a special kind of RNN, designed to combat vanishing gradients [9] through a gating mech-

anism. A typical LSTM layer is comprised of a forget gate, an input gate and an output gate. Each

gate masks some information (from the stream of data flowing through the network) propagating

through itself, or its previous layers depending on the type of gate. The parameters required to

describe LSTM are given in Table 1.5.

In Algo. 6, inputgate, forgetgate, outputgate represent the input, forget and output gates respec-

tively, and work like masks. The inputgate decides to what extent the current input contributes to

the newly computed state memory(t). The forgetgate, defines the factor of the previous state which

is retained in the current state. Finally, the outputgate, defines how much of the internal state is

exposed to the external network (that is, to the subsequent layers and to the next time step as well).

Algorithm 6 LSTM Neural Network layer: Forward pass

Require: T, P, Q, S, (input(t), state(t)): Vectors of size P, S resp.
Require: Wi[S][S], Wf [S][S], Wo[S][S], Wg[S][S]: Weight matrices for hidden state.Suffix represent

gate type (input, forget, output, hidden)
Require: Ui[S][P], Uf [S][P], Uo[S][P], Ug[S][P]: Weight matrices for input state. foreach t ∈ [1, T)

do
1:

end
inputgate[1:S]←input(t)*Ui+state(t-1)*Wi

2: forgetgate[1:S]←input(t)*Uf+state(t-1)*Wf

3: outputgate[1:S]←input(t)*Uo+state(t-1)*Wo

4: candstate[1:S]←input(t)*Ug+state(t-1)*Wg

5: memory(t)←memory(t-1)*forgetgate+ candstate*input(t)
6: state(t)←memory(t)*outputgate
7:

candstate is a candidate hidden state that is computed based on the current input and the previous

8

hidden states. The method of computing candstate is the same as that of computing state(t) in a

RNN, except that the parameters U and W are replaced with Ug and Wg. memory(t) can be

considered as internal memory of the unit, which is a sum of two components: a) memory(t −
1) multiplied by the forget gate forgetgate, b) newly computed candidate hidden state candstate

multiplied by the input gate inputgate. In other words, it is a combination of how we want to combine

the new input with previous memory. Given the memory(t), the output state(t) is computed by

multiplying the memory(t) with the output gate outputgate.

The back-propagation phase for LSTM(Alg. 7) consists of computing errors for vectors rep-

resenting various gates(input/output/forget/cand state). Using these, errors for weight matrices

are computed. Notice that, while computing errors for Ui, Ug, Uf , Uo, input(t) gets multiplied

with the error values for a gate. While, error computation of Wi,Wg,Wf ,Wo requires state(t).

This is so because during forward phase Ui, Uf , Uo, Ug represents weight matrices for input(t) and

Wi,Wf ,Wo,Wg represents weight matrices for candidate hidden state.

R
N

N

L
S

T
M

C
N

N

S
u
m

P
o
o
l

M
a
x
P

o
o
l

E
x
e
c
u
ti
o
n
 t
im

e

0

20

40

60

80 Serial

Parallel

Figure 1.3: Execution times for forward pass

1.8 PolyBench/NN in Julia

Julia [10] is a high-level language suited for scientific applications. Julia code gets translated into

LLVM-IR through its JIT compiler so as to facilitate varieties of compiler optimizations imple-

mented in LLVM. Recently during Google Summer of Code-2016, polyhedral transformations were

enabled into Julia via LLVM-Polly [11]. Hence, we also ported our PolyBench/NN programs into

PolyBench.jl framework [12].

9

R
N

N

L
S

T
M

C
N

N

S
u
m

P
o
o
l

M
a
x
P

o
o
l

S
p
e
e
d
u
p

0

5

10

15

0.793

1.779

2.215

1.003

14.848

Figure 1.4: Execution times for backward pass

1.9 Performance analysis

To study speedups obtained by applying polyhedral transformations, we use Pluto [2] (version

0.11.4), a widely used source-to-source polyhedral optimizer with --tile --parallel flags. All

experiments were performed with the data set sizes set to the PolyBench variable EXTRA-LARGE. We

compiled the parallel codes generated by Pluto using GCC-7.0.0, and OpenMP-4.5 for execution.

The experiments were performed on Intel(R) Xeon(R) CPU E5-2630 v3@2.40GHz cluster having

two processors with each processor having 8 hardware cores. We ran each program three times

by using benchmarking script bundled within PolyBench, which internally runs it five times. We

selected median of three trials as the execution time. We separately recorded the execution times

for serial and parallel versions for both forward and backward phases.

Algorithm 7 LSTM Backward pass

Require: T, P, Q, S, Wi[S][S], Wf [S][S], Wo[S][S], Wg [S][S], Ui[S][P], Uf [S][P], Uo[S][P], Ug [S][P],
outputgate[1:S],inputgate[1:S],forgetgate[1:S], candstate[1:S]

Require: memory(t), input(t) Vector of size S, P resp foreach t ∈ [T − 1, 1) do
1:

end
errgoutput = memory(t)*errstate(t)

2: errmemory(t) += outputgate[1:S]*errstate(t)
3: errgforget = memory(t-1)*errmemory(t)

4: errmemory(t−1) += forgetgate[1:S] * errmemory(t)

5: errginput = candstate[1:S] * errmemory(t)

6: errgcand state = inputgate[1:S] * errmemory(t)

7: err Ui/g/f/o+=input(t)*(errg
input/cand state/forget/output

)

8: err Wi/g/f/o+=state(t)*(errg
input/cand state/forget/output

)

9: errstate(t−1) += Wi*err
g
input + Wf*errgforget + Wo*errgoutput + Wg*errgcand state

10:
11: . Note: Line 8,9 defines 4 statements, with one to one correspondence between LHS and RHS alternatives

10

R
N

N

L
S

T
M

C
N

N

S
u
m

P
o
o
l

M
a
x
P

o
o
l

E
x
e
c
u
ti
o
n
 t
im

e

0

200

400

600

800

Serial

Parallel

Figure 1.5: Execution times for backward pass

R
N

N

L
S

T
M

C
N

N

S
u
m

P
o
o
l

M
a
x
P

o
o
l

S
p
e
e
d
u
p

0

10

20

30

40

50

1.713 1.596

51.783

0.371

Figure 1.6: Execution times for backward pass

The plots showing execution times for forward and backward phases are given in 1.3 and 1.6

respectively. We make following observations from plots: 1) Backward phase is more compute

intensive than forward phase for all layers except SumPooling. 2) RNN, LSTM consist of Polyhedral

loops that are successfully parallelized by Pluto. 3) For CNN and Maxpool, we were forced to

replace the stride parameters with integer constants defined in our header file. This made CNN

and Maxpool (forward pass) analyzable for Pluto. 4) The backward phase of MaxPooling kernel

11

Type Forward Backward
CNN 2.21x 51.78x
RNN 0.79x 1.71x
LSTM 1.77x 1.59x
MaxPool 14.84x NA

Table 1.6: Speed-up over serial execution

consists of a data dependent condition which Pluto's dependence analysis is unable to analyze. 5) No

speedups were observed for forward phase of RNN and backward phase of SumPooling. 6) Average

speedups observed for forward and backward phases are 2.15 and 2.69 respectively.

1.10 Conclusions And Future Work

We implemented the four varieties of neural network layers as loop-programs in the PolyBench

framework. While RNN and LSTM strictly adhere to Polyhedral framework’s affinity conditions,

CNN and MaxPool do not and we had to fix the stride parameters of their codes manually. The

programs show significant speedups after applying polyhedral transformations. We released our

PolyBench/NN C implementation https://github.com/hrishikeshv/polybench/tree/master/

polyNN so that other researchers can work on advanced optimizations on these kernels. Though

our work is preliminary, we believe it will form a basis to apply automatic loop transformations

that expose parallelization as well as data locality optimization opportunities for different DNN

architectures on various heterogeneous architectures and accelerators.

12

https://github.com/hrishikeshv/polybench/tree/master/polyNN
https://github.com/hrishikeshv/polybench/tree/master/polyNN

Chapter 2

Exploiting GPU caches by

Polyhedral compilation

e propose a compiler driven method by which parallel computations can be accelerated on GPUs by

exploiting the various special varieties of caches (such as texture, surface and constant for NVIDIA

GPUs) available on them. We show that our method obtains superior performance, when compared

with earlier methods of accelerating these classes of computations that use on-chip shared memory.

We provide an end-to-end solution by developing a fully automatic framework within a state-of-

art source-to-source Polyhedral compiler (PPCG) to exploit these varieties of GPU caches. Using

techniques from the formalism that Polyhedral model provides, we reason about the profitability

of using each of the particular variety of GPU caches. We evaluate our implementation on kernels

from PolyBench/C benchmark and report up to 1.5x speedups over the existing memory mapping

strategy used by PPCG compiler. As the usage of particular variety of cache is highly application

specific, we also consider five representative computations namely: PageRank, Recurrent Neural

Network, Long Short Term Memory layer, Poisson Solver and DWE-FDTD stencil and show that

usage of special GPU caches in these programs results in up to 2.6x speedup over a standard shared

memory based implementation. With these use cases, we show the general purpose computing usage

of these special GPU caches that were originally designed for image processing applications. With

increasing interest in mapping general purpose algorithms on GPUs, we believe that our contribution

is towards automatic exploitation of GPU cache/memory hierarchy.

13

PORPLE-
Analysis

GPU program

GPU details

Profiler
+ Placer

Access patterns

Cache Specs

Per-Array

Cache decision

(a) State-of-art approach

Polyhedral
compiler

GPU cache
optimization
framework

Cache optimized

GPU Code

GPU-AST

Poly-description

Affine parts of

C Program

(b) Our proposal

Figure 2.1: Profiler based approaches employ less-precise analytical models to guide cache decisions. We use polyhedral
representation to precisely model profitability criterion as specified by GPU vendors thereby resulting into end-to-end
fully automatic framework.

2.1 Introduction

The advancements made from the traditional processor architecture to multi-core, many-core ma-

chines after the collapse of Moore's law are greatly improving the execution times of various applica-

tions. Also, special hardware accelerators like GPUs are being used to speedup highly parallel SIMD

programs. However, it is well understood that correctly programming such parallel accelerators is

not only difficult but also highly error prone. Ever since the beginning of compilers, optimizing

compilers have long been shown themselves to be effective in making programmers free of the chal-

lenges involved in writing correct and efficient parallel programs. The primary motivation for many

of the optimizing compilers is to design new optimization strategies so as to expose and exploit the

parallelism present in the input program.

Such an approach of auto-parallelization has multiple benefits. Firstly, by relying on static/dy-

namic analysis implemented within the compiler, the correctness of the transformed program can

be guaranteed, as long as the compiler is free of bugs. Secondly, supporting upcoming architectures

reduces to the problem of writing a new backend, which is a well understood engineering challenge.

Finally, and most importantly, with extra target-specific information, the compiler can exploit the

available hardware resources to the maximum possible extent.

It is this last benefit that our work focuses on: by performing rigorous static and dynamic

analyses, optimizing compilers can generate efficient parallel/vector programs that can exploit the

complete power of multi/many core machines along with their hardware intricacies.

Polyhedral model is a powerful formalism to automatically parallelize the affine programs. In

recent past, using polyhedral model, many tools have been developed to optimize programs for CPUs

and various accelerators. PPCG [13] is one such state-of-art polyhedral compiler that analyzes

affine parts of programs written in C, and automatically generates CUDA/OpenCL code, while

incorporating several GPU specific transformations.

Parallelizing and optimizing compilers employ a variety of affine transformations to effectively

utilize the memory hierarchy with multiple level of caches. For CPUs, such transformations result in

effective utilization of on-chip L1, L2 and shared L3 level caches. In case of GPUs, the situation is a

little different; large number of cores share common GPU global memory. As GPU global memory

has much higher access latency [14], effective utilization of global memory bandwidth by reducing

the global memory accesses is critical to accelerate computations on GPUs. Thanks to architecture

level advancements, GPU architectures support a variety of software managed caches. These include

14

shared memory (software managed portion of L1 cache), constant cache, texture cache and surface

cache (Table 2.2).1 Beyond software managed caches, GPU architectures also support large register

files, and fast on-chip L1 and L2 level caches.

With this work, we make a case that, for real world computations that can be mapped to GPUs,

exploitation of shared memory incurs extra overhead. This can be avoided by effectively utilizing

special varieties of GPU caches, namely, surface/texture/constant memory in NVIDIA GPUs and

image/constant memory in AMD GPUs.2 Thereby, we show the general purpose computing usage

of these special GPU caches that were originally designed for image processing applications.

2.2 A Motivating Example: LSTM layer

For real-world computations in general, GPU shared memory may not be a good choice to access

arrays. To substantiate this claim, consider the computational kernel shown in Fig. 2.2. This kernel

depicts the working of forget gate included in Long short term Memory layer. LSTM layer is widely

used by deep learning community for various learning tasks in Natural language processing (NLP).

Even though we show only one portion of the LSTM code (representing forget gate only), discussion

is applicable to other types of gates involved in LSTM layer (such as input gate, output gate). In

LSTM, the outermost (time) loop captures the context information. At every time step, the kernel

computes the vector f by simply taking weighted combination of (i) input at current time step

inp F[t], and (ii) context provided by previous time step (s F[t-1][...]). In the above Figure,

the U_f, W_f arrays correspond to the weight matrices learned by the LSTM layer during training

phase. Finally, vector f depicts the output for the forget gate of LSTM layer at given time step t.

At each time step, the kernel simply performs sequence of array-multiplication followed by a

reduction operation with sum as operator. It can however be noticed that the above computation

uses a large number of arrays. Thanks to the affine nature of the above computation (affine array

access functions, affine loop bounds), GPU code can be generated for it by using the PPCG compiler.

PPCG employs a variety of analyses and transformations on the input program to effectively manage

data in the register files, perform array privatization, exploit shared memory by performing array

reuse analysis, and optimize the data transfers from CPU to GPU global memory. The relevant

sections of the output produced by PPCG is shown in Figure 2.2.

Table 2.1: Execution times of PPCG generated CUDA code for LSTM layer on NVIDIA GPUs (Problem size: T=400,
S=2850, P=3000)

PPCG:Global PPCG:Shared PPCG:Caches
Tesla K20X 9.504 sec 3.882 sec 1.785 sec
Tesla P100 2.434 sec 1.968 sec 1.429 sec

In the transformed program, the GPU kernel kernel is invoked for each iteration of a sequential

loop (with iterator c0) which essentially executes on the host (CPU). Also, the GPU kernel uses

low-latency shared (also termed as scratchpad) memory and therefore, achieves good amount of

1GPU programming literature refers texture/surface/constant as memories rather caches. This is because, as
per GPU programming APIs, these are treated as objects which encapsulates the program data (arrays) that are
supposed to be accessed through special varieties of caches. The special caching techniques allow to access these
objects effectively.

2Though our framework equally applies to special caches available on both NVIDIA and AMD GPUs, our code
generator currently supports only CUDA. So, our discussion is mostly with respect to NVIDIA GPU caches.

15

Figure 2.2: LSTM: Original C-code fragment and PPCG Generated CUDA Code

1 for (t = 0 ; t < PB T ; t++)
2 for (s1 = 0 ; s1 < PB S ; s1++) {
3 f [s1] = 0 . 0 ;
4 for (p = 0 ; p < PB P ; p++)
5 f [s1] += U f [s1] [p] ∗ inp F [t] [p] ;
6 i f (t > 0)
7 for (s2 = 0 ; s2 < PB S ; s2++)
8 f [s1] += W f [s1] [s2] ∗ s F [t 1] [s2] ;
9 }

1 g l o b a l void ke rne l (. . .) {
2 . . .
3 s h a r e d f [. .] = f [. .] ;
4 shared U f [. .] [. .] = U f [. .] [. .] ;
5 shared inp F [. .] [. .] = inp F [. .] [. .] ;
6 s ync th r ead s () ;
7 for (int c4 = 0 ; c4 <= ppcg min (31 , c2 + 2999) ; c4 += 1)
8 s h a r e d f [t0] += (shared U f [t0] [c4] ∗ shared inp F [0] [c4]) ;
9 sync th r ead s () ;

10 f [. .] = s h a r e d f [. .] ;
11 }
12 }
13 h o s t void LSTM layer (. . .) {
14 . . .
15 // Copy data from CPU to GPU
16 for (int c0 = 0 ; c0 <= 400 ; c0 += 1) {
17 dim3 dimBlock (32) , dimGrid (63) ;
18 ke rne l <<<dimGrid , dimBlock>>> (. . .) ;
19 // synchron i ze and launch o th er k e r n e l s
20 }
21 // Launch next k e r n e l
22 . . .
23 }

16

speedup over the original näıve global memory based implementation. But, the following crucial

observations can be made on these programs:

1. Arrays U_f, s_F, W_f, inp_F are read-only; both in the original, as well as the transformed

program.

2. Before starting computations within a GPU kernel, small portion of arrays need to be copied

from global memory to the shared memory. Note that this need to happen for each iteration

of the outer-loop executing on host c0.

3. All the threads within a cudablock must synchronize once the data has been loaded to shared

memory. This contributes to extra latency; again, this is incurred for each iteration of outer-

loop c0.

So, in the above computation, read-only texture cache3 is an apt choice for accessing arrays U˙f,

W˙f. Using texture cache eliminates each of the latencies mentioned in observations 2 and 3, and

therefore results in superior performance. All these observations create a motivation for having a

unified automatic framework to support the entire GPU cache/memory hierarchy.

Contributions: We make the following contributions:

• We show theoretically as well as empirically the limitations of usage of shared memory on real-

world kernels of iterative nature. As a solution, we design a compile-time, fully automatic GPU

cache exploitation framework in the state-of-art source-to-source polyhedral compiler. Our

framework supports all GPU caches, including surface caches, an architectural advancement

of texture caches.

• We design a sound (on weaker memory models) static analysis to ensure program correctness

after transformation. We formalize the profitability guidelines provided by GPU-vendors (like

NVIDIA) for varieties of caches using integer set arithmetic and integer linear programming.

• On the PolyBench/C benchmarks we report up to 1.5x speedups over existing PPCG. As the

speedups after cache exploitation vary from program to program, we show that our framework

can accelerate some additional (representative) real-world iterative computations: PageRank,

RNN, LSTM, PoissonSolver and FDTD kernels. On these important programs from different

domains, we show up to 2.6x performance improvements over auto-generated codes (using

PPCG) that use shared memory, and up to 1.27x over manually annotated codes (using PGI).

We thereby show that GPU special caches could be effectively used in domains beyond than

what they were originally designed for.

• Considering that PPCG already exploits local, shared, and global memory effectively, with our

new framework added into PPCG, it is now able to support the complete GPU cache and

memory hierarchy automatically . To the best of our knowledge, none of the existing

(fully/semi) automatic optimizing compilers support code-generation for the complete GPU

cache/memory hierarchy.

3Even constant cache could be used, in case the array size is small.

17

The remaining part of this section is organized as follows: First, in Sec. 2.3, we summarize the

related work. In Sec. 2.4, we introduce polyhedral model and the PPCG compiler. In Sec. 2.5,

we discuss GPU memory hierarchy with a focus on special caches. In Sec. 2.6, we discuss static

analysis and cache decision algorithms. In Sec. 2.7, we describe the cost model, while in Sec. 2.8, we

discuss code-generation. In Sec. 2.9, we describe the evaluation results on PolyBench/C suite. In

Sec. 2.10, we show how our framework accelerates some real-world kernels (PageRank, RNN, LSTM,

PoissonSolver, FDTD) and finally in Sec. 2.11, we state conclusions and future work.

2.3 Related Work

There has been a significant work on automatic and semi-automatic compilation strategies to map

general purpose and affine programs on GPUs. The polyhedral model has been successful in effec-

tively parallelizing the sequential programs for GPUs. One such first experimental prototype tool

namely CToCUDA-C was by Baskaran et al. [15, 16] and uses PLUTO compiler to obtain program

transformations; while it claims to support constant memory, we were unable to obtain constant

memory optimized CUDA code for some simple kernels. The tool does not support texture caches.

(We used pluto-0.6.2-cuda [17].)

LLVM/Polly-ACC [18] supports PTX code generation from LLVM/Polly [19], but lacks support

for GPU caches. R-Stream [20] a proprietary compiler from Reservoir Labs that uses polyhedral

framework to map SCoPs to GPUs. Due to its unavailability, we could not use it for any comparison;

their paper [20] does not discuss about GPU caches.

While our framework is fully-automatic, there are many semi-automatic approaches where the

user can specify the affine transformations to the compiler to generate parallel code. CUDA-Chill [21]

is an example; it lacks support for GPU caches. PGI compiler from Portland group and NVIDIA

accepts C/Fortran programs with OpenACC annotations for loops and array-annotations (only for

texture/constant and not surface caches) that are interpreted by the compiler to generate PTX code.

Even among PGI compilers, texture/constant cache support seems to be limited to the PGI CUDA

Fortran compiler [22].

Another popular semi-automatic tool OpenMPC [23] is developed on the top of Cetus infrastruc-

ture which extends OpenMP so that the user can provide annotations. Like in the PGI compiler,

OpenMPC allows annotations to access arrays, but that too only from texture caches.

2.4 Polyhedral Model and PPCG

The Polyhedral model works on compute-intensive parts of a program and hence targets loop nests.

The specific variety of loops that Polyhedral Model operates on are called Static-Control Parts of

program (SCoP). Essentially, SCoPs are statically analyzable because of usage of affine-expressions

for loop bounds, conditionals, array accesses. Polyhedral model represents statements nested within

a d-deep loop nest as a d-dimensional polyhedron in the Euclidean space, henceforth referenced

as iteration domain. A valid integer point inside the iteration domain corresponds to a dynamic

instance of that statement. In the polyhedral model, array data-flow analysis [5, 24] is performed to

detect two dynamic instances of statements, both of which access the same array element, and at

least one of them is write. In order to preserve program semantics, dependences are used to obtain

18

Table 2.2: GPU cache varieties

GPU
vendor

Variety of Cache
Optimized for
spatial access

Optimized for
broadcast access

NVIDIA
Texture (Read only)
Surface (Read + Write)

Constant (Read only)

AMD Image (Read + Write) Constant (Read only)

constraints on coefficients of the statement wise transformation matrices, thanks to affine form of

Farkas lemma [6, 24]. By the procedure, an affine transformation search space is obtained, where

each (integral) point represents a valid program restructuring [25]. Of the several approaches of

scheduling, the approach by PLUTO [2] has been shown to be practical as it gives a transformation

with maximum permutable schedule dimensions. This makes loop tiling legal over permutable band

of the schedule. Finally, the original program that is modelled as a union of polyhedra and a schedule

(a bijective map from original space to transformed space) are given as input to code generation

algorithm [7] which generates the loop nests that scan the transformed union of polyhedra. Parallel

schedule dimensions can be detected and marked as doall loops.

PPCG PPCG is an open-source C to CUDA-C/OpenCL automatic parallelizer based on poly-

hedral model. PPCG detects SCoPs from input C programs using Polyhedral Extraction Tool

(PET) [26]. PPCG performs dependence analysis by using Integer Set Library (ISL) [27], a li-

brary for manipulating integer sets bounded by affine constraints. ISL supports algorithms useful

in analyzing and transforming SCoPs, like Feautrier's dependence analysis [5].

To compute a schedule, PPCG uses the ISL scheduler—a variation of PLUTO's algorithm [2]—

which allows to set several options so as to tailor the scheduling process. PPCG finds a schedule

by maximizing permutable dimensions. PPCG generates GPU code only if each permutable band

present in the schedule contains at least one parallel schedule dimension. This allows to generate

GPU code for each permutable band by tiling it. Since GPU architectures support two levels of

parallelism (block and thread level), outermost parallel dimensions within each permutable band

are tiled to support these two levels of parallelism. The tile loops are then mapped to blocks, and

the point loops are mapped to threads. Based upon the number of parallel schedule dimensions in

each band, PPCG generates 2D or 3D kernel grids and thread blocks. PPCG uses ISL-AST code

generator [28] to obtain kernel AST. The generated ISL-AST is transformed into CUDA or OpenCL

kernel function. PPCG also generates corresponding host code.

PPCG supports some GPU specific optimizations of which, the prominent are: (1) Array lin-

earization: To enable coalesced access to GPU global memory. (2) Array privatization: Avoid

accessing global memory by promoting arrays to scalars. (3) Usage of shared memory: By creating

a small tile of the array and storing that tile in shared memory.

2.5 GPUs: Memory Hierarchy

As per Flynn's taxonomy, GPUs comes under the SIMD category. A GPU architecture involves

collection of streaming multiprocessors (SMs) each having 32 cores. A GPU application is executed

by launching large number of threads. All the threads are grouped into fixed sized (user-specified)

blocks. Each block is scheduled to execute on some SM. SM scheduler selects consecutive 32 threads

19

(termed as a warp) from a block and executes it in SIMD fashion. GPUs hide memory latency,

pipeline stalls by switching to ready-warps.

A GPU architecture comprises of DRAM where all the address spaces are mapped. By default,

all the program arrays are stored in global memory space. GPU supports a low latency, software

managed shared memory which is essentially a part of L1 cache. GPUs typically support large

register files (to store private variables) facilitating parallel access by threads. Also, in order to

optimize accesses to read only data, GPUs support a special type of cache, namely constant cache.

Historically, GPUs were used for accelerating image/video processing applications and texture cache

was designed to accelerate such applications. Texture cache is supported by a sophisticated caching

hardware: texturizing hardware. Considering the topic of this section, we discuss these special caches

in detail.

Constant Cache: The constant cache is additional to, and physically different from regular

on-chip L1, L2 level caches. It is optimized for read-only broadcast access patterns, and is useful in

cases when all the threads within a warp need the same (read-only) data. For applications involving

large number of arrays, accessing the suitable arrays through constant cache helps to improve the

utilization of L1, L2 level caches.

Texture and Surface caches: The Texture/Surface caches are specially designed for spatial

array access patterns. While accessing 2-D or 3-D arrays4 using texture/surface caches, the array

linearization is done in a way that preserves the spatial neighborhood of array elements, as it would

be in 2-D or 3-D space respectively. By doing so, when a particular array element is accessed, its

spatial neighbor elements are cached. In contrast, for normal caches, linearizing 2-D or 3-D arrays

(by row-major, or column-major order) destroys the spatial neighbourhood.

This special type of array flattening—linearization which preserves spatial neighbourhood—is

typically achieved by using space-filling curves (mainly Z-curves). The uniqueness of Z-curves lies

inside their simplicity of interpolation function that is required for address translation mechanism.

The interpolation for Z-curves involves application of bitwise operations (like and and shift), that

can be implemented as a hardware circuits, thereby making address translation mechanism to be

hardwired. It is clear that for a normal L1/L2 level cache to take care of such special types of array

flattening, it would have to be supported by sophisticated cache mapping techniques along with an

address translation mechanism. Hakura et al. [29] and Doggett et al. [30] discuss these techniques

in detail.

When to use Texture/Surface Caches? Texture/surface caches are promising for array

accesses patterns that exhibit spatial locality, like, in case a program accesses both B[i][j-1] and

B[i-1][j] values. Then, no matter how array flattening is done (row/column major order), it is very

likely that at least one cache miss will occur.5 In case, if any other thread within the same warp

also accesses one of those two locations, then one global memory access gets saved.

2.5.1 Read-Write incoherency

Texture cache only supports read-only arrays. The workaround to access writable arrays via texture

cache is as follows: create two copies of the array with one copy residing on texture cache while

other on global memory. All the reads from that array can be altered programmatically so as to

4Note that array dimensionality should be strictly less than 4 so as to access it through texture/surface caches.
5A subtle assumption here is that: array A is large enough, and no data locality transformations are applied.

20

access from the copy residing on texture cache. All the writes to that array must be performed

to the copy residing on global memory. However, this is guaranteed to work only if the update

(written) array value is not read by any of the thread inside a kernel. This is because the updated

value resides on the global memory array copy and array is read from the copy bound to texture

cache. This is termed as Read-Write incoherency and should be avoided to ensure correct semantics.

The workaround also suffers with a limitation of requiring two copies of array; increasing memory

footprint of the application. To eliminate this limitation, NVIDIA GPU architectures starting from

Fermi (with Compute capability ¿= 2.0) support a writable variant of texture cache, namely surface

cache. We note that read write incoherence should be avoided to ensure correct semantics if program

uses surface cache.

Polyhedral
Extraction

Tool

C Program Dependence
Analysis

PET Tree Affine
scheduling

Dependences

Polyhedral
AST

generation

Schedule

Static
analysis

Kernel-AST
Cache

decision
algorithm

Valid
candidate
arrays

Cost model

Cache decision
for each array

Kernel AST
alterationRefined

decision
for each
array

Host AST
alteration

Host-AST

PPCG Code generation
Kernel-AST

Host-
AST

Cache optimized CUDA code

Figure 2.3: Overview of our Framework
(Colour Encoding: Red ≡ PPCG module, Blue ≡ Proposed module, Green ≡ Modified PPCG module.)

2.6 Automatic Framework for Cache Exploitation

In this section, we describe our automatic cache exploitation framework. By default, we assume

that the surface cache is supported. We also exposed the -no-surface-memory flag so as to have

flexibility and backward compatibility for target GPUs having compute capability ¡ 2.

Our schema is explained in Figure 2.3. First we allow PPCG to analyze, transform the input

program. Once PPCG generates the AST, our algorithm performs static analysis so as to ensure

that Read-Write incoherency is avoided. We discard the arrays which result in incoherency and

access them using global memory. Then, we use the cost model to reason about profitability of

accessing an array via candidate GPU caches. After making the appropriate cache decision for each

array, we alter the kernel-AST and host-AST.

21

Nonestart Read

Write

LRead

Invalid

W

!L&R

L&R

L&R

!L&R

W

R

W

W&L

R&L
W&!L

R&!L

R,W

W:Write access
R:Read access
L:Access inside loop/s

Figure 2.4: Automata showing transitions of new state

2.6.1 Static Analysis

In order to preserve semantics, arrays resulting in read-write incoherence must be discarded from

candidate list of surface cache. In other words, during kernel execution, updated array value (by any

of the thread within a kernel) must not be read (by same or other thread). Since, GPU programs are

Single Instructions Multiple Data (SIMD), it suffices to make sure that for a given array, kernel-AST

is free of write followed by Read access (W-R access sequence) for a candidate array. Notice that,

the analysis is conservative in the sense that information about accessed location is discarded. Our

analysis traverses the entire GPU-AST visiting kernel statements, and detects potential W-R access

sequence for all the arrays in the program. A subtle point while traversing tree is that children

of a node must be processed in right to left order. This ensures correct analysis for assignment

statements of following form: where A is free from read-write incoherence: A[i] = A[i] + b[i]

Another small caveat in static analysis is that, if a loop contains Read followed by Write access

(R-W sequence) for some array, then it is likely to cause R-W incoherency. Because of implicit

back-edge for a loop, (R-W) sequence embedded within a loop can effectively be: R-W-R-W-R-

W,.... Hence, static analysis must look for R-W sequence as well; when array access is surrounded

within a loop nest. If the transformed-AST comprises of if-else constructs, we analyze each branch

separately and perform a conservative analysis. This means, presence of R-W incoherence in either

of the branches implies presence of R-W incoherence in the entire if-else construct. A pseudo-code

which performs static analysis is summarized in Algorithm 1. The corresponding automata which

decides how new state gets computed is shown in Figure 2.4.

The surface cache is refreshed each time a new kernel is launched [31]; thereby, values updated by

the previous kernel would be read in the next kernel launch while preserving coherency. Therefore,

we do not need to look for W-R incoherence across kernels. Hence, we force all the candidate arrays

in NONE state before analyzing next kernel.

We note that detecting read only arrays for a sequence of GPU kernels (which are extracted

from a single SCoP) turns out to be a special case of static analysis. The arrays accepted via Read

or LRead state of the automata are guaranteed to be read only arrays. We consider such arrays as

candidates for texture and constant cache.

22

Completeness

The input program to PPCG is affine. Polyhedral transformations are essentially iteration reordering

transformations. Hence transformed AST also has regular control flow involving only loops, if-else

constructs, statements. Our static analysis considers all of these constructs.

Soundness

Our static analysis assumes relative ordering among memory access is same as in program text.

However, due to architecture level optimizations (such as load/store buffering), such ordering may

not necessarily get respected at runtime. This is especially true in case of weaker memory models.

It has been experimentally observed by Algave et al. [32] that GPU memory models are believed to

have weaker memory models.6

1

2 d e v i c e ke rne l (. . .) {
3 int i = threadIdx . x + blockDim . x∗ blockIdx . x

4 B[i] = A[i] + A[i +1] + A[i +2] ;

5 }
6 . v i s i b l e . entry k e r n e l (. . .) {
7 . . .

8 su ld {\%r28 } , [surfRef A , { . . . }] ; //Read Surface v a l u e s

9 su ld {\%r29 } , [surfRef A , { . . . }] ;

10 su ld {\%r31 } , [surfRef A , { . . . }] ;

11 . . .

12 mul . f32 \%r42 , \%r29 , 0f3E4CCCCD; // computat ions

13 . . .

14 su s t [surfRef B , { . . . }] , {\%r42 } ; // Write Sur face v a l u e s

15 }

Listing 2.1: Sample kernel and PTX assembly after using surface cache. Due to intermediate computations, reads are

guaranteed to finish before initiating surface writes; thereby making memory view consistent.

We make the important observation to ensure the validity of static analysis at run-time even

on weaker memory models. Every GPU kernel generated by PPCG is free of data-races due to

exact data-dependence analysis. Hence, there are no observers (read/write from other threads) for

a memory location written by a particular thread. Single thread always has a consistent view of

memory. In spite of the above observations, two memory accesses (to different addresses) within

a thread might get reordered (because of architectural latencies). Due to such re-ordering, it may

appear that static analysis may get invalidated at execution time. 7 However, we make the following

argument to rule out such possibility: (1) Arrays accessed through texture and constant caches are

read-only, and notice that re-ordering of two read-accesses does not invalidate the static analysis

during execution time. (2) For surface caches, our static analysis rejects candidate array with W-R

6Exact characterization of memory consistency model needs accurate architecture details (eg memory latency) that
are not revealed by GPU vendors.

7R-W sequence may effectively be W-R thereby violating semantics.

23

access sequence. Furthermore, write only arrays are not good candidates for surface cache because

surface cache is a writable variant of read-only texture cache. This implies that the candidate array

is guaranteed to be accessed only by R-W access sequence within a kernel. At the start of the

kernel, all the threads read required values from reference bound to surface cache, then perform

computation, and finally at the end of the kernel writes values through the reference. Observe

that surface reads must be completed before starting the actual computations otherwise it leads

to incorrect results. Also, newly computed values will be written to surface cache implying writes

must be initiated after computations. Transitively, we can infer that surface reads are guaranteed to

be finished before starting surface writes thereby making static analysis valid (Refer 2.1). Finally,

reordering of surface-reads (correspondingly surface-writes) among themselves still makes the static

analysis to be true at run-time. Even though our static analysis might appear to be designed

considering a sequential consistency of memory operations, it is sound for weaker memory models

(like GPUs) due to specialty in access pattern.

2.6.2 Cache selection

Static analysis aids in analyzing the candidate arrays, so that semantics are preserved even after

accessing each candidate array through appropriate caches. For cache selection, first we analytically

decide potential caches, then we query cost model (discussed in the next section) for profitability

checks. The analytical cache decision tree 2.7 decides potential caches for arrays. The decision

is made at per-SCoP granularity. This avoids array setup time in-between two successive kernel

launches which are extracted from the same SCoP. Depending upon no-surface-memory flag, al-

gorithm decides whether to use surface cache or not. Read only arrays are candidates for texture,

constant cache. Algorithm chooses global memory for: (1) Candidate arrays end-up being in invalid

state (2) Write-only arrays.

Given
Array A

∃ kernel k
state(k,A)
=invalid?

Global

Is A
Read-
only?

Texture or
Constant

Compute
capability

<2?
Surface

Global

Yes

No

Yes

No

Yes

No

Figure 2.5: GPU-cache decision tree

2.7 Cost Model

In this section, we use the power of polyhedral framework to design a cost model for each variety

of cache. We analyze each array access present in the kernel and reason about its profitability.

24

(a) Constant cache (b) Texture cache

Figure 2.6: Profitable access pattern for a 2-D array

In the polyhedral model, array accesses are modelled as a functions from iteration domain(I) to

array access location(L). Formally, Foriginal : I → L. Transformed array access function for ar-

ray A is derived using original access function and newly computed schedule (Ftransformed(A) =

Foriginal(A) ◦ schedule−1). Our cost model analyzes transformed array access functions for all can-

didate arrays. For notational convenience, we assume Ftransformed(A) denotes transformed array

access functions for all the references to array A.

2.7.1 Cost model for Constant cache

Constant cache is well suited if all the threads within a same warp access the same memory element.

In other words, the array access expression should be independent of thread identifiers (threadIdx.x,

threadIdx.y, threadIdx.z). Recall that PPCG maps tile loops to blocks, and point loops to

threads. Therefore, array access function should be free from the point loop iterators(iterpoint)

[Fig. 2.6]. Formally, for a candidate array A, if following formula evaluates to True, we decide to

access it using constant cache.

∧
a∈Ftransformed(A)

∧
p∈iterpoint

a.isIndependent(p) (2.1)

2.7.2 Unified Cost Model for Texture/ Surface caches

Recall that usage of texture and surface cache is profitable if threads within a same warp access

neighbouring locations in 2-D or 3-D data space (See Fig. 2.6). Our cost model captures this situation

by operating over integer sets.

We assume the following notation: let A be the array to be analyzed and n be the dimensionality

of A. Recall that 1¡=n¡=3. Let f be function with which array A is accessed for some statement S

present in GPU kernel AST. Let I be the transformed iteration domain for statement S.

First we construct a set D which captures the neighbouring elements of Array A. Since D ⊂ A,

it follows dim(D) = dim(A). We construct universal set of dimension n. Then for each dimension

d ∈ D we add a constraint of form: 0 <= d <= 2. Operating on parametric integer sets leads to

un-scalability. Since we need to analyze every candidate array access appearing in the transformed

program, we purposefully fix the starting location of set D within array A. Such a design allows to

efficiently estimate (as opposed to exact calculation of) the spatial locality. Next, we compute the

set T ⊂ I which comprises of iterations accessing the elements in set D. We use pre-image operation

to compute T .

T = PreImage(f,D)

25

x

y

z

Spatial array
neighbourhood as
integer set

Subset(in red) of iteration
space accessing spatial
neighbourhood

Only retain
dimensions mapped
to cuda-blocks

Linearize the space
to check whether
iterations belong
to the same warp
(length of set <= 32)

PreImage Projection Image

Figure 2.7: Statically modelling spatial access pattern within a GPU-warp through polyhedral operations

Note that, T may include following types of loop dimensions.(1) Outer loop dimensions which

corresponds to loops mapped to host code.(2) Block dimensions corresponds to the loops mapped to

blocks (3) Thread dimensions represents loops mapped to threads.(4)Inner loop dimensions repre-

sents the loops appearing within a thread. We are interested in estimating spatial locality available

within a warp. Hence, we project out the all but loop dimensions which are mapped to threads.

T ′ = Project out(T, dimouter, diminner, dimblock)

GPU architectures supports upto 3 thread dimensions (threadIdx.x, threadIdx.y, threadIdx.z).

Hence, dim(T′) ¡=3. GPU runtime linearizes 2-D or 3-D thread dimensions [31] by using following

mapping where Bx, By represents the kernel block dimensions.

L : tlinearized = tx + ty ∗Bx + tz ∗Bx ∗By

PPCG uses tile sizes as kernel block dimensions. We use tile sizes in place of Bx and By. We

refer to this function as linearization map L. Using L we can linearize T ′to obtain 1-D set W .

W = Image(L, T ′)

W exactly captures the linearized iterations that access neighbouring elements in array A. We

can compute length of W as follows:

Wlength = lexmax(W)− lexmin(W)

Observe that computing Wlength involves solving two integer linear programming problems.

Wlength can be interpreted as fictitious warp size which accesses neighbouring elements in Array

A through given access functions f . For each array A we compute average fictitious warp size Wavg

by computing average of Wlength computed for each access function f . In ideal case Wavg should

be close to (or less than) 32 (actual warp size on GPUs). Due to thread linearization, it may not

necessarily be the case. In order to make a decision on whether to use texture or surface cache we

use criterion shown in table 2.3

Spatial locality for 1-D array is implicitly captured by normal (L1, L2 level) caches. Therefore

cost model refuses to access such arrays from texture/ surface cache. The upper bounding threshold

value for Wavg for texture cache is set to twice of actual warp size on GPU. While for surface cache,

26

Table 2.3: Profitability parameters for texture, surface caches

Cache/
Memory
choice

Metrics of profitability

Array
accesses

Estimate of
spatial locality
(W {avg})

Array
Dimension

Global Write-Only W avg >=65 1-D
Texture Read-Only W avg <= 64 2-D/3-D
Surface Read+Write 5 <W avg <= 50 2-D/3-D

upper bound for Wavg is set to 1.5 times of actual warp size. We empirically observed that usage of

surface cache introduces little overhead (larger setup time) as opposed to texture cache, therefore

bounds on Wavg are made tighter for surface cache. The threshold value setup is based on empirical

observations and tuning of cost model may be necessary, but we do not consider this aspect as of

now and leave it for future work.

2.8 Code-generation

The code-generation phase consists of augmenting the PPCG-CUDA code-generator so that arrays

are accessed from references bound to appropriate caches. We alter the host and kernel code gener-

ation phases of PPCG to setup constant, textures, surfaces references and also to access arrays from

apt reference.

Host Code-generation: For each array selected to be accessed via texture/surface cache, we

generate code to: (1) Declare a unique texture/surface reference. (2) Declare a channel format.

(3) Declare and allocate cudaArray. (4) Generate a code to Copy array from CPU memory to

cudaArray. (5) Bind cudaArray to texture/surface reference. At the end of SCoP we generate code

to: (1) Unbind references. (2) Copy live-out arrays from surface cache to CPU memory. For constant

cache candidate arrays we generate code to: (1) Declare a device array qualified by constant

(2) Copy CPU array to constant array.

Kernel Code-generation: The main objective during kernel code generation is to transform

the AST node representing candidate array accesses to the appropriate CUDA function calls. We

transform each constant cache candidate array access so as to read from the array qualified with

constant .

2.9 Performance Evaluation

This section describes our experimental results. We implemented our approach within PPCG-0.06

using pet-0.09, Clang-5.0.0 and ISL library (isl-0.17.1-GMP).

2.9.1 Experimental setup

We evaluate our implementation on PolyBench/C 4.2.1-beta [33] a widely used benchmark in Poly-

hedral community with 30 kernels spanning domains from linear algebra, stencils etc.

Our machine comprises of two chips of Intel(R) Xeon CPU E5-2670 with 2.60GHz clock frequency.

Each chip comprises of 8 cores (with hyperthreading) thereby making total of 16 virtual cores. We

use NVIDIA Tesla K20Xm GPU having Kepler microarchitecture. The compute capability of Tesla

27

Table 2.4: PolyBench/C: Various GPU caches automatically exploited by the framework

PolyBench/C
GPU caches

Constant Texture Surface
JAC-1D, JAC-2D,
HEAT-3D, GRAMSCHMIDT

7 7 3

FDTD-2D, DURBIN,
GEMVER, LUDCMP

3 7 7

GEMM, 2MM, ATAX, BICG, MVT,
GESUMMV, TRMM, TRISOLV

3 3 7

SYRK, SYR2K, 3MM, DOITGEN 7 3 7

SYMM, DERICHIE, NUSSINOV, ADI,
CHOLOSKY, FLOYD-WARSHALL, SEIDEL,
LU, CORRELATION, COVARIANCE

7 7 7

Total = 30 Programs

K20X is 3.5 and hence supports surface caches. The GPU comprises of 14 Streaming multiprocessors

having 192 cores per SM thereby making total core count to 2688. Maximum clock rate of our GPU

is 0.73 GHz. The GPU comprises of 5.7 GB of global memory. The version of CUDA compilation

tools is 8.0 (V8.0.61). NVCC compiler uses GNU C++ compiler for host code compilation. We use

nvprof (release version 8.0.61 (21)) to collect various performance metrics.

PolyBench supports various dataset granularities in order to scale array sizes proportionally. Typ-

ically, constant cache size is much smaller than texture/surface cache size, hence we use SMALL DATASET

granularity during benchmarking constant cache. In contrast, we use LARGE DATASET (default gran-

ularity) for texture/surface cache evaluations. Furthermore, for all experimentation we disabled

array linearization transformation in PPCG so as to retain the spatial locality of arrays which we

are interested to exploit via GPU caches. We use float as a data-type.

PPCG generated code is compiled using the NVCC compiler. For recording the execution times,

we use following procedure: (1) Run each benchmark five times. Record execution time. (2)

Eliminate two extremal execution times, and verify that deviation for remaining is less than 5%. If

not repeat the experiment. (3) Repeat above steps thrice. (4) Take geometric mean of these three

values. With this procedure, we also record execution times for following two cases which serves as

a baseline: (1) PPCG generated CUDA code which uses only global memory. (2)PPCG generated

CUDA code which uses shared memory. The table 2.4 depicts varieties of GPU caches automatically

exploited on PolyBench/C kernels.

2.9.2 Experimental Results

In this section, we discuss the results of performance evaluation. First we discuss the results for

constant cache optimizations and then, the texture, surface cache optimizations.

Constant Cache Results: The baseline for evaluation is PPCG generated global memory based

CUDA code. The table 2.5 shows the speedups obtained when suitable arrays are accessed using

constant cache or shared memory. Out of 30 programs in PolyBench/C, 11 are successfully trans-

formed through our framework. We observe that 7 programs show small but significant speedups.

We also observe that except for 2MM and MVT kernels, constant cache performs better over shared

cache. It is well known that usage of shared memory results in better speedups compared to global

memory based implementation. But due to small dataset sizes, significant amount of kernel exe-

28

Benchmarks
Performance in MFLOPS/Sec

K20 P100
Global Shared Constant Global Shared Constant

GEMM 12316.77 49707.91 5082.06 20104.85 74330.59 11358.75
2MM 6047.92 21365.82 2294.12 10100.75 30685.17 5060.15
ATAX 339.31 778.41 340.36 1015.50 2041.65 993.98
BICG 351.15 800.36 354.07 998.14 1997.28 956.38
MVT 345.57 781.99 350.18 988.28 1977.30 957.50
GEMVER 835.47 1739.46 817.36 2307.91 3942.59 2236.71
GESUMMV 187.35 214.61 188.58 560.44 492.94 561.57
LUDCMP 12.65 12.68 12.66 27.81 33.09 27.83
TRMM 382.65 391.09 385.14 960.09 1584.38 1278.81
DURBIN 11.083 10.87 11.40 13.72 13.31 13.89
FDTD-2D 3849.35 4369.06 3835.57 4711.53 4868.49 4743.19

Table 2.5: Effectiveness of constant cache on PolyBench/C with problem size=SMALL˙DATASET

cution time is spent in loading arrays to shared memory and synchronization barrier following this

data copy. Both of these overheads are completely avoided by using constant cache for some arrays,

thereby resulting in a (slightly) better performance. To further investigate the potential of constant

cache, we record (using nvprof) the percentage reduction (with PPCG-Global as a baseline) in

global memory loads after exploiting constant cache.

Texture/Surface Results: Out of 30 benchmarks in PolyBench/C, 15 programs are trans-

formed through our framework. We observe speedups for 11 programs compared to global memory

based CUDA code. The geometric mean of the speedups is 1.05. We notice maximum speedup of

1.5x for heat-3d kernel due to 3-D spatial locality present in the kernel.

Benchmarks
Performance in GFLOPS/Sec

K20 P100

Global Shared
Texture/
Surface

Global Shared
Texture/
Surface

GEMM 99.082 343.366 77.987 161.204 1417.003 119.575
2MM 87.526 197.509 68.442 198.097 1107.626 122.044
3MM 64.091 230.902 53.297 109.107 991.159 87.749
ATAX 5.128 13.787 10.346 11.182 23.789 33.714
BICG 5.203 13.510 10.371 10.700 22.908 31.429
DOITGEN 0.947 2.687 2.028 1.124 4.646 3.201
MVT 5.139 13.633 10.405 11.883 22.967 31.314
GESUMMV 2.687 4.729 6.928 7.076 5.724 8.752
SYR2K 28.126 41.486 252.742 253.715 482.404 183.062
SYRK 27.222 107.757 244.236 241.343 332.702 181.327
TRMM 6.257 6.504 5.833 17.003 24.977 8.470
GRAMSCHMIDT 0.409 0.409 0.319 1.125 1.125 1.370
TRISOLV 0.278 0.246 0.290 0.334 0.293 0.339
HEAT-3D 21.669 N/A 42.168 94.798 N/A 111.864
Jacobi-2D 46.679 N/A 42.908 155.818 N/A 359.958

Table 2.6: Effectiveness of texture, surface caches on PolyBench/C with problem size=DEFAULT˙DATASET

The Table 2.6 also shows speedups obtained by PPCG when shared memory is enabled. For

stencils, the PPCG-shared memory heuristic fails to find array tiles to store into shared memory,

29

G
E

M
M

2
M

M

A
T
A

X

B
IC

G

M
V

T

G
E

M
V

E
R

G
E

S
U

M
M

V

L
U

D
C

M
P

T
R

M
M

D
U

R
B

IN

F
D

T
D

−
2

d

%
 S

a
v
in

g
s
 i
n
 G

lo
b
a
l
m

e
m

o
ry

 l
o
a
d
s

0

20

40

60

80

100

K20: constant

K20: shared

P100: constant

P100: shared

Figure 2.8: Reduction in global memory read requests after exploiting constant cache and shared memory

and so it cannot generate shared memory based code. In contrast, our new framework is able to

generate surface cache optimized CUDA code for stencils.

We also observe that access patterns present in SYR2K, SYRK, BICG are more suitable for

texture cache, resulting in better performance. In case of GEMM (matrix multiplication kernel),

PPCG uses shared memory for both of the read-only matrices. On the other hand, our cost model

rejects one of the array to access from texture cache. Therefore, shared memory based code performs

better. The argument equally applies to 2MM and 3MM.

We study percentage reduction in global memory accesses after usage of texture/surface caches.

The Figure 2.9 shows the result of our study. The maximal degradation in performance for gram-

schmidt kernel can be justified by referring to the plot. In spite of spatial locality in jacobi-2d, it

fails to achieve good speedup (as opposed to heat-3D kernel). For jacobi-2d kernel, reduction in

global memory reads is quite small. jacobi-2d kernel performs only 5 reads (while heat-3d performs

9 reads) per thread.

For this subsection, we do not present comparative results of PPCG with other tools over Poly-

Bench/C suite. The reader may refer to the PPCG paper [13] to see how it gives impressive speedups

when compared to other manually annotated tools like PGI, CToCUDA-C, OpenMPC etc., including

hand-optimized library like CUBLAS.

30

G
E

M
M

2
M

M

3
M

M

A
T
A

X

B
IC

G

D
O

IT
G

E
N

M
V

T

G
E

S
U

M
M

V

S
Y

R
2

K

S
Y

R
K

G
S

C
H

M
ID

T

T
R

M
M

T
R

IS
O

LV

H
E

A
T

3
D

J
A

C
O

B
I2

D

%
 S

a
v
in

g
s
 i
n
 G

lo
b
a
l
m

e
m

o
ry

 l
o
a
d
s

−50

0

50

100

K20: constant

K20: shared

P100: constant

P100: shared

Figure 2.9: Reduction in global memory read requests after exploiting texture cache and shared memory

Benchmark
Tesla K20 Tesla P100
Shared Surface Shared Surface

DOITGEN 98.148% 93.827% 98.148% 96.296%
GRAMSCHMIDT 0.002% 0.324% 0% 0.302%
HEAT-3D N/A 66.494% N/A 100%
Jacobi-2D N/A 27.767% N/A 100%

Table 2.7: Reduction in global memory write requests after exploiting surface cache and shared memory

2.10 Real-World Use cases

In this section, we present some representative real world computations which benefit by our new

framework. In addition to our motivating example (RNN), we consider the following computations:-

PageRank algorithm [34]: used widely to score web-pages by finding eigenvectors for Google's
stochastic matrix; LSTM [9]: A widely used layer in natural language learning tasks; PoissonSol [35]:

Poisson's PDE solver over 3D grid; and DWE-FDTD [36, 37]: A finite difference discretization kernel

which is the basic building block in Reverse Time Migration (Seismic imaging).

To provide comparative study with other state-of-art tools, we consider two most representative

optimizing compilers namely: Intel C++ compiler (version 17.0.4) and PGI compiler (version pgcc

17.4-0). While Intel Compiler is fully-automatic, the PGI compiler requires precise user-annotations

for good performance. In comparing our framework with ICC and PGI, we use the same method-

ology followed by Verdoolaege et al.[13]. The method involves usage of state-of-art source-to-source

31

PLUTO compiler [2] (v0.11.4) so as to extract coarse grain parallelism by applying complex loop

transformations. We use PLUTO transformed OpenMP code to measure performance numbers with

ICC. Then, we interpret PLUTO generated OpenMP pragmas to OpenACC. As PLUTO only an-

notates outermost parallel loops with OpenMP pragmas, we manually annotate the inner parallel

loops. We also manage CPU-GPU data transfers by appropriate pragmas, enable usage of shared

memory by using cache directives in OpenACC. We explicitly annotate reductions. As a baseline

for this part of experimentation, we use PLUTO + ICC -O3 configuration (without OpenMP),

representing exploitation of parallel vector lanes on CPU8. In

Fig. 2.10, we compare the performance of various PPCG configurations9 with PLUTO+PGI).

P
a
g
e
R

a
n
k

L
S

T
M

P
o
is

s
o
n
S

o
l

D
W

E
F

D
T

D

Performance on K20

G
F

L
O

P
S

/S
e

c

1

2

5

10

20

50

100

P
a
g
e
R

a
n
k

L
S

T
M

P
o
is

s
o
n
S

o
l

D
W

E
F

D
T

D

Performance on P100

G
F

L
O

P
S

/S
e

c

1

2

5

10

20

50

100

200

PPCG: Global
PPCG: Shared

PPCG: Texture
PPCG: Texture + Surface

PLUTO + PGI

Figure 2.10: Various PPCG configurations against manually annotated code using openACC (Log scale for y-axis)

8In this case, PLUTO also improves data locality.
9Due to large array sizes, we do not consider PPCG-Constant configuration.

32

Some observations:

Among all our use-cases, (only) LSTM, due to the nature of its computation, is amenable for

simultaneous exploitation of both texture and surface caches; thereby resulting in a further (1.3x)

speedup over PPCG: Texture.

In case of both PoissonSol and DWE-FDTD, our framework outperforms PPCG-Global, by a

factor of 1.8x and 1.5x respectively. In case of both these kernels, PPCG’s heuristic is unable

find profitable array-tile to load into shared memory. In contrast, our framework (cost-model) is

successful in exploiting spatial locality for efficient use of surface caches for both of these kernels.

And, due to presence of Read/Write array accesses, it is not possible to use (read-only) texture

caches for these kernels.

The PGI compiler when annotated with precise OpenACC pragmas is able to generate efficient

target GPU-architecture-specific code by performing low level optimizations on PTX code. However,

the performance of the code produced by PGI is highly dependent on the user-placement of prag-

mas, and hence needs (expert) user intervention. On the other hand, all the PPCG configurations

(including our framework) are fully automatic, and hence no extra annotations are required. Our

framework automatically achieves comparable results to user-annotated code. In fact, our framework

outperforms PLUTO+PGI configuration in case of (1) LSTM kernels on both platforms. (2) Pois-

sionSol on P100. In all other cases, our framework helps PPCG to obtain better speedups against

PLUTO+PGI without sacrificing its fully-automatic nature.

We obtain better numeric speedups (than for the ones in PolyBench) for all our use-cases10. The

observations drawn from our motivating example in Sec.2.2 help explain this. PageRank and LSTM

suffer from bottleneck-latencies of shared-memory which are eliminated after exploiting caches, while

PoissonSol and DWE-FDTD benefit from 3-D spatial locality aware caching technique of surface

caches.

2.11 Conclusions and Future work

We proposed a complete end to end framework to support varieties of GPU caches in the polyhedral

compiler PPCG. To the best of our knowledge, this is the first attempt to automatically generate

CUDA code that exploits various GPU caches, beginning from a C program. In order to generate

cache optimized CUDA program, our framework performs static analysis to preserve the program

semantics. We use the power of polyhedral model to design a cost model which helps to decide the

type of cache to be used for accessing candidate arrays. We present a comparative study of various

caches vs. shared memory based CUDA codes. We have shown the importance of our framework

in accelerating five important real-world computational kernels. Traditionally, texture caches are

designed for image processing pipelines. Our work shows the general purpose computing use of these

special caches. With increasing interest in mapping general purpose algorithms on GPUs, we believe

that our contribution will make a strong case towards automatic exploitation of complete GPU

memory hierarchy, along with improving the scope of usage of texture, constant and surface caches.

In future we would like to support code-generation for OpenCL. We also believe that more precise

static analysis is possible instead of our conservative one. We believe that our new infrastructure

10Except PageRank on P100. Due to unification of texture and L1 cache in microarchitecture, texture cache gets
exploited by CUDA run-time in presence of shared memory based code as well.

33

provides an ideal platform for exploring many related questions.

34

Chapter 3

Efficient Algorithms for Polyhedral

Over-Approximation

Many of the analysis and verification problems in formal methods, static analysis are casted as

solving mathematical data-flow equations over various abstract domains. Examples of the above are

Convex-polyhedra, TVPI polyhedra, UTVPI polyhedra (Octagons) and Interval (Box) polyhedra.

The convex-polyhedral abstract domain is useful to capture the affine relationship among program

variables. However, majority of the algorithms (like feasibility/optimization) developed for convex-

polyhedra fail to scale for larger problem size due to their worst-case exponential complexity. In

particular, both the feasibility and optimization problems on general convex polyhedra are not

strongly polynomial in complexity.

The (Unit-)Two Variable Per Inequality Polyhedra (also called as Octagons) has been proven to

be a very useful abstract domain due to its improved worst-case polynomial time complexity [38]

and ease of implementation.

In this work, we propose two new algorithms for Over Approximating a given (arbitrary) convex

polyhedron into its tightest UTVPI Over Approximation. We show the limitations of the existing

Over-Approximation algorithm, and then discuss our new algorithms for Over Approximation (OA).

Our first algorithm is based on linear programming, while our second algorithm is based on Fourier-

Motzkin elimination (projections). Both of our algorithms return the tightest over-approximation

of the given convex polyhedron.

Both the algorithms are very simple to reason as they fully exploit the Octagonal nature of the

OA that they aim to obtain. The LP based algorithm is based on a series of linear programming calls.

The Fourier-Motzkin algorithm is based on a series of rotations and projections of the polyhedron.

Because of the above nature, they are also very easy to implement.

Furthermore, insight obtained from this algorithm, is used to design alternative algorithm which

is free from (Integer) Linear Programming Problem.

Our two algorithms are implemented in the Integer Set Library (ISL) [27];, a open-source

polyhedral compilation library.

35

3.1 Background

We now formally introduce some basic terminologies required for further sections.

Polyhedra: A Polyhedra is a space enclosed within n-dimensional vector-space by finitely many

linear (in)-equalities.

Dual Representations of Polyhedra: A Polyhedron in n-dimensional space can be repre-

sented in two alternate ways, and these representations are considered duals of each other.

Hyperplane (H) representation: The Polyhedron is expressed as an intersection of finitely

many affine inequalities.

Generator (V) representation: The Polyhedron is expressed as a convex combination of is

its extremal vertices, conical combination of its rays and a linear combination of its lines. A classic

algorithm to convert either of these representations to the other is the algorithm by Chernikova.

U-TVPI Polyhedra (Octagon) A U-TVPI polyhedron is a special case of convex polyhedra

where every affine constraint is restricted to the form: ±Xi ± Xj <= Cij . As the name suggests,

every constraint should involve at most two variables and having coefficients be one of the following

+1, 0, -1 [38] [39].

Difference Bound Matrix (DBM) A U-TVPI polyhedron can be represented in a compact

representation namely Difference Bound Matrix (DBM); A NxN matrix representing the constant-

values for each possible U-TVPI constraint.

Diameter (Fatness) of a polyhedron: A diameter (or Fatness) of a polyhedron corresponds

to the the width of the polyhedron in given direction. A direction can be one of the canonical axes.

Affine form of Farkas lemma: An affine function is positive over a polyhedron P if and only

if it is positive affine combination of hyperplanes describing polyhedron P. Essentially, affine form

of farkas lemma is corollory to farkas lemma (A lemma followed from principle of duality in Linear

Programming)

3.2 Limitations of state-of-art Mine’s algorithm

While proposing the Octagonal abstract domain [39], Mine presented an algorithm, the first-ever,

that Over-Approximates a convex polyhedron into a UTVPI polyhedron. His algorithm first converts

the input polyhedron from H-form to its V-form. Once the generators of polyhedra have been

enumerated, the algorithm iteratively tightens every possible U-TVPI constraint in n-dimensional

space (which is of form: ±Xi±Xj). The optimal (constant) value obtained by optimizing each such

possible constraint with respect to all the vertices of the original polyhedra is then used to obtain

U-TVPI over-approximating constraint. After this iterative procedure, the algorithm post-process

the constraints in the direction of rays, so as to set upper (or correspondingly lower) bounding

constraint to infinity value.

It is well known that enumerating generators of a convex polyhedra is never a polynomial time

process: an n-dimensional hypercube can be represented with at most 2n halfspaces while it has 2n

many vertices.

36

3.3 Algorithm#1: The Farkas lemma based OA algorithm

Feautrier [40] in his seminal work on affine scheduling proposed to use the affine form of Farkas

lemma as a means of avoiding the transformation of the polyhedron from H representation to V

representation. The result of the application is a polyhedron that encodes all semantic preserving

transformations of the input program.

In this section, we propose a new algorithm that uses the same lemma to construct a search

space for (over-approximating) U-TVPI hyperplanes. The algorithm involves a series of linear pro-

gramming calls (
(
N
2

)
in total), which find the tightest over-approximation effectively minimized.

3.3.1 Enabling usage of Farkas lemma

Consider a U-TVPI constraint of form: ±Xi ± Xj <= Cij . We are interested in finding good nu-

meric (or parametric) value for Cij such that the resulting constraint is satisfied by every (Integer)

point belonging to original convex polyhedron. Note that, such a constraint once formed, essentially

ensures that the constraint can be part of over-approximating U-TVPI polyhedron. In other words,

Cij ± Xi ± Xj >= 0 must be positive over original convex polyhedra. Now, farkas lemma can be

applied to obtain bounds on Cij . That is,

Cij ±Xi ±Xj ≡ λ0 +
∑
i

(λi ∗ (Aix+Bi))

where

λi : farkas multiplier

(Aix+Bi) : Hyperplane describing convex polyhedron P.

Now, we can equate the coefficients of the variables appearing from both of the sides; and

project out the farkas multipliers. The resulting in-equality captures all feasible values for Cij . This

essentially represents a search space for over-approximating octagonal (U-TVPI) hyperplanes.

3.3.2 Joint search space and Cost function

By applying affine form of farkas lemma, we obtain a set of feasible values (or search space) for every

possible over-approximating U-TVPI constraint. However, we are interested in finding tightest U-

TVPI over-approximation. For that purpose, we construct joint search space for two opposite

U-TVPI over-approximating constraints. For example, we construct a 2-dimensional search space

(cij , C
′
ij) obtained by applying farkas lemma to Xi +Xj <= Cij and −Xi −Xj <= Cij .

Consider a linear function f : Cij − C ′ij . It represents the distance among two resulting over-

approximating hyperplanes. Minimizing this cost function with respect to the search space (Cij , C
′
ij)

essentially results in finding tightest over-approximation.

Formally, we use below objective function over the joint search space constructed: (Cij , C
′
ij):

lexmin (Cij - C ′ij , Cij , C
′
ij)

That is Cij −C ′ij is minimized with highest priority, to find tightest over-approximation. In case

of existence of two possible sets of values for (Cij , C
′
ij) with equal separating distance among them,

the one with lower numeric value is preferred.

37

3.3.3 Iteratively finding the pairs of U-TVPI hyperplanes

Optimizing the cost function over the joint search space constructed gives two U-TVPI hyperplanes.

For n-dimensional (bounded) convex polyhedra, we need to find 8*
(
N
2

)
many hyperplanes. However,

due to construction of joint search space, we iterative above procedure 4*
(
N
2

)
times. The intersection

of all such constraints found gives U-TVPI over-approximation of original convex polyhedra.

3.4 The Insight

We now investigate the relation between tightness of over-approximation with respect to the diameter

(or fatness) of a over-approximating convex polyhedra. In above algorithm, we minimize the function:

Cij − C ′ij to find tightest over-approximation. Notice that this function can be minimized only till

a value, which essentially represents the diameter (or fatness) of a polyhedron along that direction.

In other words, by estimating the diameter (or fatness) of original convex-polyhedron along some

particular direction, enables to find the required constant values (namely Cij and C ′ij) thereby

providing the equations (or constraints) of U-TVPI over-approximating polyhedron. We use this

insight to formulate another algorithm which is free from Integer-Linear-Programming. The core

idea is to estimate the diameter of original convex polyhedron in various directions by using Fourier-

Motzkin projection algorithm.

3.5 Algorithm#2: Fourier-Motzkin based OA Algorithm

Given a convex polyhedron P in n-dimensional space, we first project the polyhedron on all possible

2-d planes. In other words, we need to project polyhedron P onto
(
N
2

)
many planes. We iteratively

process each such projection (referenced as shadow henceforth) obtained.

Given a shadow S of a polyhedron P on say Xi and Xj plane, we further project it onto each axis

(i.e. Xi and Xj). Notice that, this projection essentially results in finding a diameter (or fatness)

a polyhedron in that particular dimension. The constraints obtained after projecting a 2-d shadow

(of original convex polyhedron) on each individual axis provides a (lower and upper) bounds on

the values allowed for that particular dimension. In this way, a 2-D rectangular bounding box can

be constructed for a given shadow of polyhedron. This 2-D bounding box gives 4 constraints for

over-approximating U-TVPI polyhedron. However, (bounded) 2-D octagon needs to be described

using 8 constraints. The remaining four constraints essentially specify bounds on Xi+Xj and Xi-Xj

In order to find, the diameter in those direction, we use simple trick of rotation. A 2-D shadow

can be rotated by applying following linear transformation:

(Xi, Xj)→ (Xi +Xj , Xi −Xj)

The above linear transformation rotates the canonical axes of a shadow by 45 degrees. After

rotation, we again project the (rotated) shadow onto (new) canonical axes to obtain (lower and

upper) bounds onto (Xi +Xj , Xi −Xj). This gives rise to 4 more required constraints. Intuitively,

this corresponds to finding the rectangular 2-D bounding box for a rotated shadow.

By intersecting the constraints for bounding box of original shadow with the bounding box for

rotated shadow, we obtain 2-D octagonal (U-TVPI) over-approximation for a shadow.

38

Finally, iteratively finding such 2-D octagonal over-approximation for each of the
(
N
2

)
shadow

and intersecting the resulting constraints gives rise to the U-TVPI over-approximation for original

convex-polyhedra.

3.6 Implementation

We have implemented both of the algorithms in the latest version of Integer Set Library [27]; A

library for manipulating integer sets bounded by affine constraints. We use ISL’s implementation of

Affine form of farkas lemma to obtain the search space of U-TVPI hyperplanes. We implemented

our cost model using ISL’s Parametric Integer Programming solver. For Fourier Motzkin based

Algorithm, we rebase our implementation using Integer FM algorithm which ISL supports currently.

Our future work involves using rational FM and rational LP to achieve further scalability due to the

usage of integer FM and integer LP.

3.7 Conclusions

We show limitations of state-of-art algorithm (which is used extensively in program verification

libraries). We address these limitations by proposing two new algorithms, which soly uses origi-

nal hyperplane representation of convex polyhedra and thereby avoiding usage of vertex enumu-

ration algorithm. Both of our algorithms are designed in a way which guarantees computation of

tightest over-approximation provided it exists. Our algorithms effectively handles cases involving

parametrized and unbounded polyhedra. We provide priliminary implementation for both of these

algorithms using Integer Set Library.

39

References

[1] L.-N. Pouchet et al. PolyBench Benchmarks. https://sourceforge.net/projects/

polybench/.

[2] U. Bondhugula et al. A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.

In PLDI. ACM, 2008 http://pluto-compiler.sourceforge.net/.

[3] A. Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems 25. 2012.

[4] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556 .

[5] P. Feautrier. Dataflow analysis of array and scalar references. IJPP .

[6] P. Feautrier. Efficient solutions to the affine scheduling problem. IJPP .

[7] C. Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think. In 13th

International Conference on PACT. 2004 .

[8] C. Zhang et al. Optimizing FPGA-based Accelerator Design for Deep CNNs. In ACM/SIGDA

International Symposium on FPGAs. 2015 .

[9] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Comput. 9, (1997) 1735–

1780.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach to Numerical

Computing. CoRR abs/1411.1607.

[11] T. Grosser, A. Groesslinger, and C. Lengauer. Polly Performing Polyhedral Optimizations On

A Low-Level Intermediate Representation. Parallel Processing Letters 22, (2012) 1250,010.

[12] M. Reisinger. PolyBench Benchmarks in Julia. https://github.com/MatthiasJReisinger/

PolyBench.jl.

[13] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and F. Catthoor. Polyhedral

parallel code generation for CUDA. ACM Trans. Archit. Code Optim. 9, (2013) 54:1–54:23.

[14] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying GPU

microarchitecture through microbenchmarking. In 2010 IEEE International Symposium on

Performance Analysis of Systems Software (ISPASS). 2010 235–246.

40

https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
http://pluto-compiler.sourceforge.net/
https://github.com/MatthiasJReisinger/PolyBench.jl
https://github.com/MatthiasJReisinger/PolyBench.jl

[15] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-

dayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In

Proceedings of the 22Nd Annual International Conference on Supercomputing, ICS ’08. ACM,

New York, NY, USA, 2008 225–234.

[16] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA Code Generation

for Affine Programs. In Proc. of the 19th Joint European Conference on Theory and Practice

of Software, International Conference on Compiler Construction, CC’10/ETAPS’10. Springer-

Verlag, Berlin, 2010 244–263.

[17] U. Bondhugula et al. PLUTO Automatic Parallelizer for CUDA, Version 0.6.2. https://

sourceforge.net/projects/pluto-compiler/files/pluto-0.6.2-cuda.tar.gz/download

2011.

[18] T. Grosser and T. Hoefler. Polly-ACC Transparent Compilation to Heterogeneous Hardware.

In Proc. of 2016 International Conference on Supercomputing, ICS ’16. ACM, USA, 2016 1–13.

[19] T. Grosser, A. Groesslinger, and C. Lengauer. POLLY: Performing Polyhedral Optimizations

On a Low-level Intermediate Representation. In Parallel Process. Lett. 22. 2012 .

[20] A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C. Bastoul, and R. Lethin. A

Mapping Path for multi-GPGPU Accelerated Computers from a Portable High Level Program-

ming Abstraction. In Proc. of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units, GPGPU-3. ACM, USA, 2010 51–61.

[21] G. Rudy, M. M. Khan, M. Hall, C. Chen, and J. Chame. A Programming Language Interface

to Describe Transformations and Code Generation. In Proceedings of the 23rd International

Conference on Languages and Compilers for Parallel Computing, LCPC’10. Springer-Verlag,

Berlin, 2011 136–150.

[22] The Portland Group. PGI 2013 Release Notes Version 13.10. The Portland Group, 2013.

[23] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Programming and Tuning for GPUs.

In Proc. of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10. IEEE, USA, 2010 1–11.

[24] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. 1st edition.

Birkhauser Boston, 2000.

[25] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative Optimization in the Polyhedral

Model: Part Ii, Multidimensional Time. In Proceedings of the 29th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’08. ACM, New York, NY, USA,

2008 90–100.

[26] S. Verdoolaege and T. Grosser. Polyhedral Extraction Tool. In Second Int. Workshop on

Polyhedral Compilation Techniques (IMPACT’12). Paris, France, 2012 .

[27] S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model. In K. Fukuda, J. Hoeven,

M. Joswig, and N. Takayama, eds., Mathematical Software - ICMS 2010, volume 6327 of Lecture

Notes in Computer Science, 299–302. Springer, 2010.

41

https://sourceforge.net/projects/pluto-compiler/files/pluto-0.6.2-cuda.tar.gz/download
https://sourceforge.net/projects/pluto-compiler/files/pluto-0.6.2-cuda.tar.gz/download

[28] T. Grosser, S. Verdoolaege, and A. Cohen. Polyhedral AST Generation Is More Than Scanning

Polyhedra. ACM Trans. Program. Lang. Syst. 37, (2015) 12:1–12:50.

[29] Z. Hakura and A. Gupta. The Design and Analysis of a Cache Architecture for Texture Mapping.

In Proc. of 24th Annual International Symposium on Computer Architecture, ISCA ’97. ACM,

USA, 1997 108–120.

[30] M. Doggett. Texture Caches. IEEE Micro 32, (2012) 136–141.

[31] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide. NVIDIA Corporation, 2016.

[32] J. Alglave, M. Batty, A. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen, and

J. Wickerson. GPU Concurrency: Weak Behaviours and Programming Assumptions. In Proc.

of the 20th Int. Conf. on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’15. ACM, NY, USA, 2015 577–591.

[33] L.-N. Pouchet et al. PolyBench/C. https://sourceforge.net/projects/polybench/ 2013.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. PageRank Citation Ranking: Bringing Order

to the Web 1999.

[35] W.-m. W. Hwu. GPU Computing Gems Emerald Edition. 1st edition. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2011.

[36] P. Micikevicius. 3D Finite Difference Computation on GPUs Using CUDA. In Proc. of 2nd

Workshop on General Purpose Processing on Graphics Processing Units, GPGPU-2. ACM,

USA, 2009 79–84.

[37] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance Code Generation for Sten-

cil Computations on GPU Architectures. In Proc. of the 26th ACM International Conference

on Supercomputing, ICS ’12. ACM, NY, USA, 2012 311–320.

[38] R. Upadrasta and A. Cohen. Sub-polyhedral Scheduling Using (Unit-)Two-variable-per-

inequality Polyhedra. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’13. ACM, New York, NY, USA, 2013

483–496.

[39] A. Mine. The octagon abstract domain. In Proceedings Eighth Working Conference on Reverse

Engineering. 2001 310–319.

[40] P. Feautrier. Some efficient solutions to the affine scheduling problem. I. One-dimensional time.

International Journal of Parallel Programming 21, (1992) 313–347.

42

https://sourceforge.net/projects/polybench/

	Acknowledgements
	Publications based on this Thesis
	Abstract
	Nomenclature
	Polyhedral Optimizations for Deep learning kernels
	Introduction
	Motivation
	Polyhedral Compilation
	CNN
	Max Pooling
	RNN
	LSTM
	PolyBench/NN in Julia
	Performance analysis
	Conclusions And Future Work

	Exploiting GPU caches by Polyhedral compilation
	Introduction
	A Motivating Example: LSTM layer
	Related Work
	Polyhedral Model and PPCG
	GPUs: Memory Hierarchy
	Read-Write incoherency

	Automatic Framework for Cache Exploitation
	Static Analysis
	Cache selection

	Cost Model
	Cost model for Constant cache
	Unified Cost Model for Texture/ Surface caches

	Code-generation
	Performance Evaluation
	Experimental setup
	Experimental Results

	Real-World Use cases
	Conclusions and Future work

	Efficient Algorithms for Polyhedral Over-Approximation
	Background
	Limitations of state-of-art Mine's algorithm
	Algorithm#1: The Farkas lemma based OA algorithm
	Enabling usage of Farkas lemma
	Joint search space and Cost function
	Iteratively finding the pairs of U-TVPI hyperplanes

	The Insight
	Algorithm#2: Fourier-Motzkin based OA Algorithm
	Implementation
	Conclusions

	References

